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Abstract

In this paper we prove the nonlinear stability of Minkowski space-time with a translation
Killing field. In the presence of such a symmetry, the 3 4+ 1 vacuum Einstein equations reduce
to the 2 + 1 Einstein equations with a scalar field. We work in generalised wave coordinates.
In this gauge Einstein’s equations can be written as a system of quasilinear quadratic wave
equations. The main difficulty in this paper is due to the decay in % of free solutions to the
wave equation in 2 dimensions, which is weaker than in 3 dimensions. This weak decay seems
to be an obstruction for proving a stability result in the usual wave coordinates. In this paper
we construct a suitable generalized wave gauge in which our system has a "cubic weak null
structure", which allows for the proof of global existence.

1 Introduction

In this paper, we address the stability of the Minkowski solution to the Einstein vacuum equations
with a translation space-like Killing field. More precisely, we look for solutions of the 3+ 1 vacuum
Einstein equations, on manifolds of the form ¥ x R,, x Ry, where ¥ is a 2 dimensional manifold,
equipped with a metric of the form

g =e g+ e*(dr’)?,

where ¢ is a scalar function, and g a Lorentzian metric on ¥ x R, all quantities being independent
of z3. For these metrics, Einstein vacuum equations are equivalent to the 2+ 1 dimensional system

0,6 =0
{ Ry = 20,00,0, (L.1)

where I, is the Ricci tensor associated to g. Choquet-Bruhat and Moncrief studied the case where
Y is compact of genus G > 2. In [7], they proved the stability of a particular expanding solution. In
this paper we work in the case ¥ = R2. A particular solution is then given by Minkowski solution
itself. It corresponds to ¢ = 0 and g = m, the Minkowski metric in dimension 2 + 1. A natural
question one can ask in this setting is the nonlinear stability of this solution.

In the 341 vacuum case, the stability of Minkowski space-time has been proven in the celebrated
work of Christodoulou and Klainerman [8] in a maximal foliation. It has then been proven by
Lindblad and Rodnianski using wave coordinates in [23]. Their proof extends also to Einstein
equations coupled to a scalar field. Let us note that the perturbations of Minkowski solution
considered in our paper are not asymptotically flat in 3 + 1 dimension, due to the presence of a
translation Killing field. Consequently they are not included in [§] and [23].



In [14] we already proved quasistability of the solution (¢ = 0,g = m) : the perturbed solutions

i
exist in exponential time : more precisely we show that the solutions exist up to time ¢ ~ ev®
where € measures the size of the initial data. In both [I4] and this paper, we work in generalized
wave coordinates. Consequently the method we use is more in the spirit of [23] than in the spirit
of [8].

1.1 Einstein equations in wave coordinates

Wave coordinates (z®) are required to satisfy Ogz® = 0. In these coordinates reduces to the
following system of quasilinear wave equations

{2t (12)
Og9pw = —40,60,¢ + Py, (dg, dg),

where P, is a quadratic form. To understand the difficulty, let us first recall known results in 3+ 1
dimensions. In 3 + 1 dimensions, a semi linear system of wave equations of the form

Ou' = PY(0u?, Ou®)

is critical in the sense that if there isn’t enough structure, the solutions might blow up in finite
time (see the counter examples by John [I5]). However, if the right-hand side satisfies the null
condition, introduced by Klainerman in [I6], the system admits global solutions. This condition
requires that P’ is a null form, that is to say a linear combinations of the following forms

Qo(u,v) = Oudw — Vu.Vu, Qag(u,v) = 0audgv — 0qvigu.

In 341 dimensions, Einstein equations written in wave coordinates do not satisfy the null condition.
However, this is not a necessary condition to obtain global existence. An example is provided by

the system
U =0,
{ Cide = (Suen)2 (13)
The non-linearity does not have the null structure, but thanks to the decoupling there is nevertheless
global existence. In [22], Lindblad and Rodnianski showed that once the semi linear terms involving
null forms are removed, Einstein’s equations in wave coordinates can be written as a system with the
same structure as They used the wave condition to obtain better decay for some coefficients
of the metric, which allow them to control the quasilinear terms. However the decay they are
able to show for the metric coefficients is @, which is slower than the decay for the solution of
the wave equation which is % An example of a quasilinear scalar wave equation admitting global
existence without the null condition, but with a slower decay is also studied by Lindblad in [20] in
the radial case, and by Alinhac in [2] and Lindblad in [2I] in the general case. In [22], Lindblad
and Rodnianski introduced the notion of weak-null structure, which gathers all these examples.
In 2 + 1 dimensions, to show global existence, one has to be careful with both quadratic and
cubic terms. Quasilinear scalar wave equations in 2 + 1 dimensions have been studied by Alinhac

in [I]. He shows global existence for a quasilinear equation of the form
Ou = g*?(0u)0adsu,

if the quadratic and cubic terms in the right-hand side satisfy the null condition (the notion of null
form for the cubic terms is defined in [I]). Global existence for a semi-linear wave equation with
the quadratic and cubic terms satisfying the null condition has been shown by Godin in [9] using
an algebraic trick to remove the quadratic terms, which does however not extend to systems. The
global existence in the case of systems of semi-linear wave equations with the null structure has



been shown by Hoshiga in [I1]. It requires the use of L% — L estimates for the inhomogeneous
wave equations, introduced in [I8§].

To show global existence for our system in wave coordinates, it will therefore be necessary to
exhibit structure in quadratic and cubic terms. However, as for the vacuum Einstein equations in
3 4+ 1 dimension in wave coordinates, our system does not satisfy the null structure. In particular
it is important to understand what happens for a system of the form in 2+ 1 dimensions. For
such a system, standard estimates only give an L™ bound for ¢o, without decay. Moreover, the
growth of the energy of ¢y is like v/2.

One can easily imagine that with more intricate a coupling than for|(1.3)] it will be very difficult
to prove stability without decay for ¢o. It seems that in the usual wave gauge one cannot prove
more than existence of the perturbed solutions in time 5% But it also seems that this problem is
only a problem of coordinates. In [14] we overcame part of the difficulty by looking at solutions
g = gp + g with

go = —dt* + dr? + (r + x(q)b(0)g)*d6?,

where r, 0 are the polar coordinate, ¢ = r —t and x is a cut-off function such that x(¢) =0 for ¢ <0
and x(¢) = 1 for ¢ > 1, and b(#) suitably chosen, depending on ¢. We have two complementary
points of view on this method. The metric g, can be seen as an approximate solution whose role is
to tackle the worst terms in[(1.1)] Also, since ¢, z1 = rcos(f), z2 = rsin(f) are not wave coordinates
for gp, this forces us to work in a different gauge, more suited to the geometry of the problem : the
procedure can also be seen as choosing the right coordinate system, in which Einstein equations
have a better structure. The condition we imposed on b(#) in [14] was

(7))

with b depending only on 6. However, due to the logarithmic growth in ¢ of the higher energy norms
of ¢, which seems inherent to such problems, the coefficient b(#) was controlled only by restricting
to exponential times.

The main idea of this paper to overcome this difficulty is to construct more carefully an ap-
proximate solution and gauge choice, noticing that in the metric gy, the Fourier coefficients

‘b(@) — /0 Oo(aqub)Q(r, t,0)rdr

/ b(6)do, / b(0) cos(6)do, / b(6) sin(6)do),

are imposed by the constraint equations, but the other Fourier coefficients of b(f) are only a gauge
choice in the region y = 1.

1.2 The initial data

In this section, we will explain how to choose the initial data for ¢ and g. We will note ¢, j the
space-like indices and «, 8 the space-time indices. We will work in weighted Sobolev spaces.

Definition 1.1. Let m € N and § € R. The weighted Sobolev space H§*(R™) is the completion of

Cg° for the norm
5+18]

lulgp = > I+ 272 DPul .
|B]<m

The weighted Holder space C§" is the complete space of m-times continuously differentiable functions

with norm
54181

lullep = 37 (L +[2) 72 DPulpe.
|BI<m



Let 0 < o < 1. The Hélder space C’(’;Ha is the the complete space of m-times continuously differ-
entiable functions with norm

am —gm 1 2\2
lullgmse = lullop +  sup  1274@) 70wl + [2[)2
' z#y, l[e—y|<1 |z — y|

We recall the Sobolev embedding with weights (see for example [6], Appendix I).

Proposition 1.2. Let s,m € N. We assume s > 1. Let f < J+1 and 0 < a < min(l,s —1).
Then, we have the continuous embedding

H§+m (RQ) C Cgl+a (R2)

Let 0 < § < 1 and N > 1. The initial data (¢o,¢1) for (¢,0ip)|i=0 are freely given in
H éV I H é\frl. For technical reasons, we will work here with compactly supported initial data for
¢ (¢o, 1) € HVTL(R?) x HN(R?) supported in B(0, R). The initial data for (g, dg,,) cannot
be chosen arbitrarily, they must satisfy the constraint equations.

We recall the constraint equations. First we write the metric ¢ in the form

g = —N%(dt)? + gij(da’ + Bidt)(da? + F7dt),

where the scalar function N is called the lapse, the vector field 8 is called the shift and g is a
Riemannian metric on R2.
We consider the initial space-like surface R? = {t = 0}. We will use the notation

80 :8t_£,37

where Lg is the Lie derivative associated to the vector field 3. With this notation, we have the
following expression for the second fundamental form of R?

1
Kij = _Waogij-
We will use the notation -
T =g Kjj
for the mean curvature. We also introduce the Einstein tensor

1
Gaﬂ = Raﬁ - §Rga67

where R is the scalar curvature R = ¢g®8 R,p. The constraint equations are given by

Goj = N(9;7 — D'K;j) = 20000;¢, j = 1,2, (1.4)
N2 _
Goo = 7(3 —|K? +72) = 2(809)* — g00g®? Datpp¢, (1.5)

where D and R are respectively the covariant derivative and the scalar curvature associated to
g. We have studied the constraint equations in [I2] and [13]. The following result is a direct
consequence of [I3] which was proven in Appendix 1 of [14]. It gives us the initial data we need.

Theorem 1.3. Let 0 <6 < 1. Let (¢o, ¢1) € HéVH(RQ) X Hﬁrl(R2) We assume

6ol + 6l S e



If e > 0 is small enough, there exists ag,ar,az € R x R x S', J € WN2(S!) and

(9a8)0, (9ap)1 € Hy T x HyY,
such that the initial data for g given by
9= 9a+ 90, 019 = 9i9a + 91,
where gq 1s defined by
ga = —dt* +dr® + (r + x(q)a(0)q)*d0> + J(0)x(q)dqdo,

with
a(0) = ag + ay cos(f) + az sin(6),

are such that
° gij, Kij = f%aogij satisfy the constraint equations|(1.4)| and |[(1.5)|
e the following generalized wave coordinates condition is satisfied at t = 0

9T = 2" (Ta)Ss,

where T, denotes the Christoffel symbols of gq, expressed in the coordinates t,zq1 = rcos(f),xy =
rsin(). Moreover, we have the estimates

1 lww2sty + llgoll gy +llgrllmy, S &2,

1 .
w0= - [ (3 +190P) do+ 0
a) = i/q@@daz +0(eh),
ag = 1 /é@g(bd:ﬁ +0(e?).
T

Let us note that in the resolution of the constraint equations, the only free data in the metric
is in the choice of 7 and corresponds to what hypersurface in the space-time will be "t = 0".

Before stating our main result, we will recall some notations and basic tools in the study of
wave equations.

1.3 Some basic tools

We will use the notation a < b when there exists a numerical constant C such that a < Cb.

Coordinates and frames

e We note 2* the standard space-time coordinates, with ¢ = 2°. We note (7, 6) the polar space-
like coordinates, and s = t + 7, ¢ = r — t the null coordinates. The associated one-forms
are

ds =dt +dr, dq=dr—dt,

and the associated vector fields are

1 1
0s = 5(6% +0,), 04= 5(87« — ).

5



e We note 0 the space-time derivatives, V the space-like derivatives, and by O the derivatives
tangent to the future directed light-cone in Minkowski, that is to say 0 + 0, and %.

e We introduce the null frame L =90, +9,, L=0,—0,, U = %. In this frame, the Minkowski
metric takes the form

mLL = —2, muyy = 1, mry = m@ =mrLy = mLU =0.

The collection T = {U, L} denotes the vector fields of the frame tangent to the outgoing
light-cone, and the collection V = {U, L, L} denotes the full null frame.

e When it is omitted, the volume form is dx, the Lebesgue measure for the background coor-
dinates, and the domain of integration is R%2. The LP spaces are also always considered with
respect to the Lebesgue measure for the background coordinates.

The flat wave equation Let ¢ be a solution of

{ O¢ = 0,
(¢, 0id)li=0 = (¢, $1)-

The following proposition establishes decay for the solutions of 241 dimensional flat wave equation.

(1.6)

Proposition 1.4 (Proposition 2.1 in [19]). Let u > 5. We have the estimate

(1+ [t —r|)l=r+
VITtrry/1+]t—r]

(1) S Mpu(do, d1)

where
M, (o, d1) = Sup (L+ [y o) + (1 + [y (Jor(m)] + Vo (y)])
y€ER?

and where we used the notation Alel+ = Amax(@0) 4 o £ 0 and AVl+ = In(A).

Minkowski vector fields We will rely in a crucial way on the Klainerman vector field method.
We introduce the following family of vector fields

Z = {8a, Qaﬁ = —waag + ajgaa, S =1to + 7"8,«} ,
where x, = maﬁzvﬁ . These vector fields satisfy the commutation property
d,7] = C(2)g,

where

C(Z)=0,Z+8, C(S)=2.

Moreover some easy calculations give

S+ COS(Q)QOJ + Sin(Q)QOQ

Op =

O+ t+r

}a i 9172 N COS(Q)Q[LQ — Sin(@)QOJ
r 0T T T t ’
9, — 8, = S — cos(&)(ioj T— sin(@)ngg.



With these calculations, and the commutations properties in the region —5 <1 < 2t

t
2
[278] ~ 87 [Z>5] ~ 57

we obtain

1
(14 lgh)*(1 +s)

where here and in the rest of the paper, Z'u denotes any product of I or less of the vector fields

of Z. Estimates [(1.7)| and Proposition yield
Corollary 1.5. Let ¢ be a solution of. We have the estimate

9kt < (24, (L.7)

(1+ [t —r)0—H+

0 p(x, )] < M (o, ¢
| (@ 9) i (%0 1)(1+t+r)l+%(1+yt—r\)’f+%

where

M (o, $1) = Sup (14 [y 1V do(y)| + (1 + [y (V21 (m)] + [V o (y)]).
yER?

Weighted energy estimate We consider a weight function w(q), where ¢ = r — ¢, such that
w'(g) > 0 and

T S S

for some 0 < p < %

Proposition 1.6. We assume that U¢ = f. Then we have

2
%at /R w(g) ((9:9)" +[Vo[*) dz + % /R w'(q) ((asw + (M> ) dx

S [ w@lfosids
R2
For the proof of Proposition we refer to the proof of Proposition

Weighted Klainerman-Sobolev inequality The following proposition allows us to obtain L*°
estimates from the energy estimates. It is proved in Appendix 5 of [14]. The proof is inspired from
the corresponding 3 + 1 dimensional proposition (Proposition 14.1 in [23]).

Proposition 1.7. We denote by v any of our weight functions. We have the inequality

E 1
V1tt+ a1+ 2] -1

S vz (=2 fl e

I|<2

|f(toa)vz (|z] — 1)

Weighted Hardy inequality If u is solution of Ou = f, the energy estimate allows us to
estimate the L? norm of du. To estimate the L? norm of u, we will use a weighted Hardy inequality.

Proposition 1.8. Let a <1 and 8 > 1. We have, with q=1r —t

1

v(q)?

97 < 30, f| 2,

LQ

f




where

v(g) = (1 +|q|)?, for ¢ <0,
v(q) = (1 +|q|)?, for ¢ > 0.

This is proven in Appendix 4 of [14]. The proof is inspired from the 3+ 1 dimensional analogue
(Lemma 13.1 in [23]).

L — L estimate With the condition w’(q) > 0 for the energy inequality, we are not allowed to
take weights of the form (1+ |g|)®, with a > 0 in the region ¢ < 0. Therefore, Klainerman-Sobolev
inequality can not give us more than the estimate

1
|0ul <

~ V14 ldVITs

in the region ¢ < 0, for a solution of Uu = f. However, we know that for suitable initial data, the
solution of the wave equation Cu = 0 satisfies
1 1
Jul |Ou| S

~ ? U ~ *
VIt+lgvi+s (1+1q))2vI+s

To recover some of this decay we will use the following proposition

Proposition 1.9. Let u be a solution of

{ Ou = F,
(u, Opu)|t=0 = (0,0).

For p > %, v > 1 we have the following L — L estimate

Ju(t,2)|(1+ ¢+ [2])2 < C(,v) My (F)(1 + |t — |a]|[) =224,

where
My, (F) = sup(L + [y + 8)" (1 + [s — [y[)" F(y, s),

and where we used the convention AlMl+ = Amax(@0) 4f o £ (0 gnd A+ =1n(A).

This is proven in Appendix 3 of [I4]. This inequality has been introduced by Kubo and Kubota
in [I8].
An integration lemma The following lemma will be used many times in the proof of Theorem

1.12] to obtain estimates for © when we only have estimates for du.
Yy

Lemma 1.10. Let o, 8,7 € R with B < —1. We assume that the function u : R*T! — R satisfies
|Oul S (14 ) (1+|g))*, for g <0, [0ul S (1+5)"(1+[g])” forq>0,

and fort =0
Jul S (1+7)7*7,

Then we have the following estimates

Jul S (14 8)max(1, (1+g)*™), for ¢ <0, |u] S (1+5)7(1+[g)**" for ¢ >0.



Proof. We assume first ¢ > 0. We integrate the estimate
|Oqul < (1+5)7(1+ q])”,

from t = 0. We obtain, since 8 < —1, for ¢ > 0
ul S (1+8)7(1+[g))"*.

Consequently, we have, for ¢ = 0, |u| < (1 + s)7. We now assume ¢ < 0. We integrate
0qul S (14 )7 (1 + |q])®,

from ¢ = 0. We obtain
Jul S (1+ s)7 max(1, (1 +[g))*").

This concludes the proof of Lemma [I.10] O
Generalized wave coordinates In a coordinate system z, the Ricci tensor is given by

1 1 1 1
R, = _§gap8aapg,uu + §Hp8p9;w + ) (g,upaqu + gl/paqu) + §Pw,(g)(ag, d9), (1.8)

where P,,,(9)(0g,0g) is a quadratic form in dg and

1
H® = —0,2% = —0\g™* — 5gwaagw. (1.9)
The wave coordinate condition (respectively the generalized wave coordinate condition) consists in
imposing H* = 0 (respectively H* = F* a fixed function, which may depend on g but not on its
derivatives).

Proposition 1.11. If the coupled system of equations

{ _%gap(‘)a@pglw + %Fpapglw + % (Qupaqu + QVpaqu) + %P,W(g)(ag, dg) = 20,60, ¢ (1.10)

G000, — FPOyp = 0

with F a function which may depend on ¢, g, is satisfied on a time interval [0,T] with T > 0, if
the initial induced Riemannian metric and second fundamental form (g, K) satisfy the constraint
equations, and if the initial compatibility condition

F%|i=0 = H"|i=0, (1.11)

is satisfied, then the equations|(1.1)| are satisfied on [0,T], together with the wave coordinate condi-
tion
Fe =H*“

For a proof of this result, we refer to [24], or Appendix 2 of [14].

1.4 Main Result

We introduce another cut-off function T : Ry — Ry such that T(p) = 0 for p < % and p > 2 and

T =1 for % <p< % Theorem is our main result, in which we prove stability of Minkowski

space-time with a translational symmetry. We give here a first version, a more precise one will be
given in Section



Theorem 1.12. Let 0 <e < 1. Let 3 <& <1 and N > 25. Let (¢, ¢1) € HVT2(R?) x HNT(R?)
compactly supported in B(0, R). We assume

”¢0HHN+2 + H¢1HHN+1 <e.

Lete € p Ko K9, such that § —20 > % If € is small enough, there exists a global solution (g,9)
of. Moreover, if we call C the causal future of B(0, R), and C' its complement, there ezists a

coordinate system (t,x1,z2) in C and a coordinate system (t', 2y, z4) in C such that we have in C :

(¢,0¢0)t=0 = (o, $1),

———, 19lS ,
(1+5)2" (1+8)2(1+|g))z%

_1_
11cOZY 6|2 + 11cO*ZV ¢l 2 + Me (1 + 1gl) 727702 (g — m) |12 S e(1 + 1),

e

lg—m| <

)

and we have in C
11a(1+1a)) 072702 (g9 — ga)ll 12 S e(1+1)*.

Comments on Theorem

e We consider perturbations of 3 + 1 dimensional Minkowski space-time with a translational
space-like Killing field. These perturbations are not asymptotically flat in 3 + 1 dimensions,
therefore the result of Theorem does not follow from the stability of Minkowski space-
time by Christodoulou and Klainerman [§].

e As our gauge, we choose the generalized wave coordinates. Therefore, the method we use
has a lot in common with the method of Lindblad and Rodnianski in [23] where they proved
the stability of Minkowski space-time in harmonic gauge. It is an interesting problem to
investigate the stability of Minkowski with a translation symmetry using a strategy in the
spirit of [§] or [I7].

e Theorem[I.12)can be easily generalized to the non polarized case, where the 3+ 1 dimensional
metric is of the form
g=e g+ e2(dzd + Apdr™)?.

In this case, the vacuum Einstein equations reduce to Einstein equations coupled to a wave-
map system in 2 + 1 dimension. Since the additional equations have the null structure, this
does not make any change to the proof given here.

e [t is conjectured that maximal Cauchy developments of asymptotically flat solutions to the
3+1 vacuum Einstein equations with a spacelike translational Killing field are geodesically
complete (see [3]). This result has been proved in the non polarized case with an additional
symmetry assumption in [3].

e We assume more regularity for ¢ than for g. This is possible in wave coordinates because
the equation [y¢ = 0 involves only g and not its derivatives. The proof is based on the
construction of an approximate solution in the exterior region, and it is for the control of this
approximate solution, which involves one derivative of ¢ that the additional regularity for ¢
is needed.

e Qur proof restricts to ¢ compactly supported. The reason why is the following. Our ap-
proximate solution forces us to work in adapted generalized wave coordinates in the exterior.
The approximate solution involves one derivatives of ¢, so if ¢ was not supported only in the

10



interior, the equation [y¢ = 0 would involve coupling terms between ¢ and the approximate
solution, at the level of two derivatives of ¢. Let us note that in [I4], the compact support
assumption for ¢ is not needed.

e The space-time constructed in Theorem [1.12]is the development of the initial data of Theorem
At space-like infinity, the metric converges to g, given by the constraint equations. The
metric g, is Ricci flat in the exterior and has a deficit angle. This behaviour is similar to the
behaviour of Einstein-Rosen waves (see [5] and [4]) which are radial solutions of

e Generalized wave coordinates have also been used by Hintz and Vasy in the proof of the non-
linear stability of Kerr-de Sitter black holes (see [10]). There seems to be a lot of similarities
between the two constructions. In their paper they choose the generalized wave coordinates
inductively in order to remove the non physical exponentially growing solutions which ap-
pear as solutions to the Einstein equations in wave coordinates. In our paper, solutions to
the Einstein equations in wave coordinates may have a growth in v/* : we also choose the
generalized wave coordinates to remove this pathological behaviour.

1.5 Sketch of the proof

To begin with, let us look at the structure of Einstein equations in wave coordinates. The structure
of Einstein equations can be seen when we write them in the null frame L, L, U. We decompose
the metric into

1
g=m+g+zg@dq2,

where m is the Minkowski metric. Then, if we neglect all the nonlinearities involving a good
derivative, we obtain the following model system for in wave coordinates

O¢ + gr202¢ = 0,
Ug + gLLagg =0,
Ogrr + 920029L = —16(90)>.

The quadratic terms involving gz, are handled by making use of the wave coordinate condition, as
in [23] : the condition H* = 0 where H® is defined by |(1.9)|implies 9,911, ~ Jg (more precisely it

is implied by L,H® = 0). Therefore, the quadratic terms involving grr behave like terms having
the null structure. Consequently, we are left with the model system
{ o =0,
Ogrr = —16(049)>.

Thanks to the decoupling it is of course possible to solve such a system. However, in 2 + 1
dimensions, for initial data of size € the energy estimate yields

10gLLllr2 S ev1+t,

and the metric coefficient gr 1, has no decay, not even with respect to ¢ = r —¢. This is not enough
to solve the full coupled system. However, this seems to be only a coordinate problem. To see it,
let’s assume for a moment we had found a coordinate system (not the wave gauge) in which all the
metric coefficients have at least the decay of a solution to the free wave equation. Then we can
compute, on the light cone

€
Rrr = —2(9§gUU+O — .
(147)2

11



Since we also have

_ 2 _ ¢

we see that the only term which could balance this behaviour is 83 guv- Consequently, we would
like to write

4 -
Oqguu = - /(8q¢)27”dq + 049uU -

We can impose to have such a decomposition in C, the causal future of B(0, R), by choosing to
work in generalized wave coordinates such that

q
HY = —L,0,2% = i/ (0,0)?rdq. (1.12)

—0o0

Indeed, we will see in Section {4 that L,[gx® ~ %OquU + 0g. With this gauge, a model equation
for grr will be
Dg@ = —16(8q¢)2 =+ ZgLL(‘)LHL ~ 4§Lé(aq¢)2.

In the right-hand side, instead of having a quadratic nonlinearity without null structure, we now
have a cubic nonlinearity without null structure. This leads to a logarithmic loss in the estimate for
grr but as in [23], this loss occurs only on "bad" coefficients. Thanks to the structure, "bad" com-
ponents of the metric interact only with good derivatives. Consequently, this is not an obstruction
for proving global existence.

Let us analyse the consequence of in the exterior region. Since the initial data for ¢ are
compactly supported, outside the causal future of this compact region, we obtain

1 ~
8quU = ;CL(Q, S) + aquU7

for some function a which can be computed from ¢, and consequently

q

guu ~ —a(0,s).

r

We can compute that the metric
—dt* + dr* + (r + qa(0, s))?d6?,

is not Ricci flat when a depends on s. This is not compatible with the fact that outside the causal
future of B(0, R) we have R, = 20,¢0,¢ = 0.
To overcome this difficulty we will follow the following scheme.

e The initial data for ¢ are given, compactly supported in B(0, R). The initial data for g are
given by Theorem [I.3] At the level of the initial data, we can write g = g4 + g, with

ga = —(dt')* + (dr')? + (' + x(¢")a(0")q')* (d0')* + J(6")x(¢')dg' e,
a(0’) = ag + ay cos(0’) + ag sin(§'),

_ 1 12 2 4
ap = 47r/]Rz <<15 + |V )dx—i—O(s ),
1 .
ap = / 01 pdx + O(e?),
™ JRr2
1 .
ag = / ¢Orpdx + 0(54),
™ JR2
and (3, 0,9)|e—o € HY ' x HN | forall 0 <6 < 1.
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e We can solve [(1.1)| in generalised wave coordinates yz(® = O, 2(®) up to a time 7. We
obtain a solution of the form g = g, + g. Moreover the solution is global outside the causal
future of B(0, R) (see Appendix [A)).

e We consider a function b(0, s), satisfying a set of hypothesis H, and make a change of variable
in the region ¢ > R+ 1
s~ (1+0(0,s))s,

q, ~ (1 + b(97 5))_1(]7
0~ 0+ 1(0,5),

where f(0, s) is such that
14+ 0pf(0,8) = (1+b(6,s)"

We use the symbol ~ because we prefer to give a simplified formula at this stage, to enlighten
the main contributions. The precise formula is given in next section. With this change of
variable, we obtain a solution of the form g = gp + g, where in the region ¢ > R + 1, the
metric gy corresponds to g,, expressed in the new coordinates ¢, s,f. By construction gy is
Ricci flat for ¢ > R+ 1 and it is given by

go ~ —dt* +dr? + (r + x(q)(a(8) — b(8, s) — Fb(0, 5))q)*d6?,

where we have neglected the terms involving 0sb. By looking at the Riemannian metric
induced by g on the new hypersurface t = 0 and at the second fundamental form, we obtain
a solution to the constraint equations with an asymptotic behaviour compatible with g, (see

Appendix .

e We now perform a bootstrap argument. We assume that we have a solution (g,¢) on a
time interval [0,7”] in generalized coordinates such that in the exterior Oga® ~ Oy, 2* (plus
corrective terms) and in the interior we have (plus corrective terms). We assume that
we can write g = gy + g, with g satisfying estimates similar to the estimates for a free wave
(except for gz, which has a logarithmic growth in the energy). We note

h(6,s) = a(0) + b0, s) + IFb(0, s).

We would like to have h(60, s) fo O0gd(t = 5,7,0)) rdﬂ However, we can not ask directly
for this equality to hold because it would introduce non local terms in the equations. Instead
we will use bootstrap assumptions to construct h inductively : in the bootstrap assumptions
we assume that

'H (/Ooo(ang(t =5/2,7,0))*rdr — h(6, s)> ‘ < : (1.13)

1+ s

where IT : H*(S') — H¥(S') is the projection operator such that
/H(u)d9 = /H(u) cos(0)df = /H(u) sin(#)df = 0.

e By integrating the constraint equations on a time slab ¢ constant, we obtain the remaining

estimate for h )

9

- =S T 27" r — S
[ @t = s/ 0 10,0 5

S

Tt is more convenient for the estimates to use an integration along lines of constant ¢ and # than lines of constant

s and 6. On the light cone, we have ¢t = 3, so it is why we evaluate the integral at t = 3

13



e We obtain estimates for g and ¢ thanks to L> — L estimates and energy estimates. This
step follows a quite standard vector field method, similar to the one in [23]. Let us just note
that, as in [14], we have to introduce a set of weight functions to be able to use the structure
of our equations even at the level of our last energy estimate. We describe briefly this issue
in section[I.6] We also use the set of weight functions to treat the interaction with the metric

9b-
e To improve estimate we set

W(9,s) ~ 2 / (94(t = 5.7.6))?rdr,
0

and choose b to be the solution to the elliptic equation
b + 92b? = TIR®).

We then check that b satisfies the estimates H (for this purpose, some geometric corrective
terms have to be added to the formula given here for h(2)), return to the third step to construct
initial data with the asymptotic behaviour given by g,2), and solve the evolution problem
in coordinates adapted to gz, we note (9(2), ¢(2)) the solution. We remark that we can go
from one solution to the other by a change of coordinates, which can be controlled thanks
to the estimates we have on the metric. Consequently (g(Q), qﬁ(z)) satisfy the same improved

estimates as (g, ¢) and moreover, we have improved |(1.13)

e By performing an inverse change of variable in C' we see that g converges to g, in the exterior,
which is the behaviour given in Theorem [[.12]

1.6 Non commutation of the null decomposition with the wave operator

We have seen in the previous section that the coefficient grr is expected to have a logarithmic
growth in the energy

1
lw2dgp]re < (1 + ).

We do not want this behaviour to propagate to the other coefficients of the metric. To this end,
we will rely on a decomposition of the type

-7 ()

However, since the wave operator does not commute with the null decomposition, we have to control
the solution g; of an equation of the form (see the proof of Corollary [9.4)

gLL

Z2dq® + 7.
1 q" + g1

= (5)

When applying the weighted energy estimate for g, we obtain

d 1. 9 1 /7 O9LL 1,
lo@ionii < ot (7) 22| uion),
We estimate 5 )
1. (T 99LL 1 1 £
r(ryeL) L < = 1.14
o (7) 22| < @ onnsles £ s (1.14)

This yields
d 1 €2
— 200 —
dt”w(q)2 ngL2 = (1—|—t)17p
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So
lw(q)2 0812 < (1 +1)7,

which is precisely the behaviour we are trying to avoid with this decomposition ! However we have
not been able to exploit all the decay in ¢ in |(1.14)| : we could not exploit the good derivative 0
acting on grr. In order to do so, we will use different weight functions for g; and for grr. If we set

w(q) = (1 + lg))* wi(q),

and we assume that we have )
lw(q)28gLLll2 S e*(1+1),

then we can estimate

1o/ OgLL 1 Ly (7Y 99LL
T r LL < T ) I== .
st (7) 22| < g [wwie () 5]
We write 1 1
oh| < ——1Zh| < Zhl,
M TIPS e a e

so we obtain

@i (3) Bort 1

2~ (L +t)tte

1
2 ()

ZgrLL

1
29LL w(q)20Z ,
g lw(a)20Zgpsl1»

w(q)?

t r

where we used the weighted Hardy inequality. Consequently, the energy inequality for g; yields

d 1 g2
- 207 < -
dtle(Q)Q gillze S (11 )i+o—r

and therefore, if o > p
1,
lwi(q)20G1]| 2 S €.

Recall that the weighted energy inequality forbids weights of the form (1 + |¢|)® with a > 0 in the
region g < 0. Therefore we are forced to make the following choice in the region g < 0

w(q) =0(1), wi(q) = (1+1]q\)2‘7

Thus, for g1, the t* loss has been replaced by a loss in (1 + |g|)°.

2 The background metric

In this section, we explain the construction of the metric gy. This metric should be
e isometric to the Minkowski metric in the region ¢ < R,
e isometric to g, in the region ¢ > R+ 1,
e not flat in the transition region, but the Ricci tensor must not contain terms which can not

be handled.

Moreover we will need coordinates in which, in the region ¢ > R + 1, we have (go)ur ~ 2h(6, s).

For this, we will write
96 = X(0)ga + (1 = x(q))m,

where g, is expressed in appropriate coordinates, described in the following section, and x is an
appropriate cut-off function.

15



2.1 A change of variable

In this section we describe the coordinate change we will use. Corrective terms have to be added
compared to what was explained in the introduction because

e the metric coefficients expressed in the new coordinates should have enough decay,

e the Ricci tensor in the transition region should also have enough decay.

Let ag, a1, a2 € R given by Theorem They satisfy

lao| + |a1] + |az| < €2,

we will note a(f) = ap + a1 cos(0) + az sin(f). We have at this stage to already state the estimates
satisfied by b. It will allow us to see which terms can be treated as remainders and simplify the
exposition. Let b(0, s) satisfying the following set of hypothesis

and we can write

with

b(0,s)
_b0:s) g
/Sl 100,57 =0

2

ZN-1p <_°©
H HH2(S1) = ( +8)27
1210l 2y < €2,
2
_ 5
]]852N 1bHHl(Sl) < T 91,0
(1+5)22°

1ZN 0| 21y < €%(1 + 5)7,

S
/ (1+ )02V b2z gy ds < (1 + 5)2
0

S
| 9 0.2 s < <4
0

S
| 9102 by s < 1+ )
0

O0sb = f1+ f2

1ZY fill 2y < €21+ 52772,
1ZN fall 2y < €1+ )73 TP,

S
(1 + 5)%(|0s ZNf1HL2(§1)ds <1+ 8)%

Cl)

(149210 2N fill 31 gryds < ' (1+ 8)%

CIJ

C/)

(L+ ) 212" f2l| F1 sy ds < (1 4 8)*

S
(1+ )°10: 2N foll 3 51y ds < (14 8)

X
X
/0 (L+ )1 ZY frllGp gryds < e*(1+ )%
X
X

16
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We note H the set of hypothesis |(2.1) to |(2.14)
We begin by constructing a Ricci flat metric in the following way : we start with the Ricci flat
metric
Go = ds'dq’ + (' + a(0)¢)*(d0)* + J(0')db'dq .
We perform the change of coordinates
s' = (14+b(6,5))s — (9gb(6, 5))*(1 + b(8,5)) " 1q,
q, = (1 + b(@, 5))_1%

9pb(0),
_q 6( S)2+f(9’8)7

e N TN

where f(0,s) is such that
1+8pf(0,5) = (1+b(0,5) ",

and we note

1 1
7“:5(5‘“1)7 tzi(S—Q)-

In the following proposition, we estimate the coefficients of g, in the null frame L = 9; + 9y,
L=8,-0,U=2%.

Proposition 2.1. We can write g, = oV + ol where
o’(L,L) = -2,
o%(U, L) = s(1 + b)dsf,
o*(U,U) = 1+ 1h(0,5).

where 20
h(B,s) =2a(0)(1+b)2+(1+b)"2-1- 2(1 i b + (1 4+ b)"2(9gb)?, (2.18)
and we have the estimates (we denote by 0f any product of o or less vector fields Op) :
120 gu] S 510,270 + ql0,002"0] + 2105 2", (2.19)
I_1 I q I q° I
Moreover we have
1052 ga| < 5[0221b] + |05 270| + q|020p 27| + %yasangby + S%\angby. (2.22)

Proof. We have
ds' =(1+b(8, 5))ds + 0pb(0, s)sdf + Osb(0, s)sds — (9gb(6,5))*(1 + b6, s)) " dq
— Oy ((896(0, 5))2(1 + b(8, s))*l) qdf — O ((891)(0, 5))2(1 + b(8, s))*l) qds
dg = (1+b(6,)) tdg — q(1 +b(6,5)) "20sb(6, s)dO — q(1 + b(8, 5)) L b(6, 5)ds,

o' = ((1 +b(6,5) " — L0y (%)) do + 0, £(0,5)ds

0pb(0, s) q s q 0pb(0, s)
b (s — i) Lo, (T2 ) s



and also

= 506 ) = (0000 -
1
2(1+b(6,5))

1
(L+5b(6,s))

(0pb)%q + = ((1+b) —(1+0))g.

(6b(0.5))%q + (1 + b(6, s>>—1q)
=(1+b)r—

We note that g has at least the same decay in s and is more regular than s0sb, so if we are able
to estimate the second, we are able to estimate the first. We can also neglect quadratic terms with
similar or better behaviour than a term which is already present. Consequently we write

ds' = (14 b+ O (s0sb) + O (¢0s0b))ds — (1 + b) 1 (9pb)?dg + (s99b + O(c2qI3b)) db,
dq' = O(qdsb)ds + (1 +b)"tdg — q(1 + b)"20gbd#,

and consequently

ds'dq’ = (14 O (50,b) + O (qDs0gb)) dsdq — (9gb)*(1 + b) "2dg* + O (q0s0pb) ds*
+ (—gs(1+b)7%(9pb)* + O(2¢*95b) ) do*
+ (—qb(1 + b) ™ + O(eqs9509b))dsdd + (s(1 + b)~*(pb) + O(c2q;b)) dqdo.

We also estimate

(14 b)*r?(de")?
Dgb

= <r2 —2gr(1+b)dy <(1+b)2

— 50pb(1 + b) "Ldqdf + O(r2(8,f)2)ds? + (((1 +b)"2(9ph)? + O (%%b)) dg?

) + 0(eqagb)) d6® + (qdpb(1 4+ b) "L + (1 + b)r?0, f)dsdf

and
(r' +a(0)q)?* — (1 +b)*r* = rq(2a(0 + f) — (9pb)* + (1 — (1 +b)?)) + O(g*c*Ipb).
Consequently, we can estimate the coefficients of the metric g, in coordinates s, q, 0
(9a)sqg = 1+ O(s0sb) + O (q0s09b) ,
(ga)ss = O(qOs0pb),
(96)aa = O (L(00)?)
(ga)so = 77 (1 + b)Ds f + O (5q0:0pb) ,
(9a)go = J(0')(1 +b) "% + O(%q3b),

(ga)og =12 + qr <2a(9’)(1 +b0) 24+ (1402 —1-2(1+b)0 <(16jbb)2> — (14 b)72(0pb)* — 2(1 + b)_Q(é?gb)Qj
+ O(eq?93b)
=r’+qr <2a(9’)(1 +0) P+ (14b)P—1— 2(18566) +(1+ b)‘2(89b)2> + O(eq*05b)

To obtain the estimates for Z!g,, we note that we have the following expression for the commutator
of Z with 0,

T sin(0)dp, [Qo2,0s] = sin(0)d, + ~L

[Sa as] = 857 [90,17 85] = 008(9)63 2r 972 212

cos(6)0y.

We see that if we isolate the contribution 72(1 + b)dsf in (ga)sg and rqgh in (gq)eg Wwe obtain the
desired estimates for o'. O
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We call gy the metric whose coefficients in the coordinates s, ¢, 8 are given by the coefficients
above, where the terms involving b or f are multiplied by a cut-off function x(gq), more precisely

9o = X(@)9a + (1 = x(q))m,

where m is the Minkowski metric
m = dsdq + r2d6>.

From now on in the paper, x will be a cut-off function such that
1
x(@)=1, forg=R+1, x(q)=0, forg<R+.

In particular, when xy = 0, gy is isometric to Minkowski metric and when xy = 1, gy is isometric to
Ya-

Corollary 2.2. We have for I < N — 2

g2 e2(1+|q
Zge) § ——— + S0 LD, (223)
(1+s)1 (1459
2 2
Zlgb <24 €4 2.24
‘ TT~(1+S)£ (1+$)2 ( )
For I < N — 11 we have )
e*(1+g))
12" go| < 1) (2.25)

Proof. We have thanks to|(2.4)| and the Sobolev embedding H'(S!) c L™

2 2
10506 Z70] S 110527 ]| 11 g1y S q +€S)2_; < M :S)” for I < N —2
and
05276 <1270 g2 S €2, for T < N — 2.
Consequently,
1ZV2g,| < g2 n e2(1 4+ |ql)

(1+s)i (I+s)

e’ e?(1+|q))*
(1+ s)% (1+s5)?

12V 2077 S

~

Thanks to we have, for I < N — 11

I I €
|8Sa@Z b’ S HaSZ bHHQ(Sl) 5 (1 +S>2
and consequently
*(1+|al)
gN-11, 1 < £ ( ,
*(1+ lq))?
ZN-11 < & (
| UTT| ~ (1 n 5)2 )
which concludes the proof of Corollary O
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Corollary 2.3. We have the estimates

~

1ZY 7 b 2y S €7,

HZNhHL?(Sl) <L+ ),
S
|0 90,25 s < <1+ 5
0

Proof. Tt is a direct consequence of the definition of h and the assumptions for b, and
(2.5) O

2.2 Calculation of the Ricci tensor

We now turn to the estimate for the Ricci coefficients of gg.

Proposition 2.4. We can write R = R% + R, where

32(61X(61))
Ry =—02(x(q))otrn, RYp= Th(@,s),
and

1
1Z'RY < Tr<g<ri (83522[5! +102052"0| + 10599 2"0| + 82|332]b|> ,

1
2 Rba) £ Ly (102002101 4+ 10,0020 + 515521 )

Proof. When xy = 0, gp is isometric to Minkowski metric, and when y = 1, gp is isometric to g4
which is Ricci flat, so the Ricci coefficients are non zero only in the region where x is non constant,

that is to say near the null cone. Since g — m = O (%) in the region where y is non constant,

all the quadratic terms are a O (%lRéqSRH) and are easier to estimate than the non quadratic
terms. The non quadratic terms have to involve a term containing x’(¢). We calculate in s,¢,6
coordinates. We note that for Minkowski metric the non zero Christoffel symbols are

1 B r
-, = Fq = ——.
or’ TR0 g
We can consequently neglect the terms involving one of these symbols : they give contributions

which are O (X @) (g, — )) We calculate

0 _ 16 __
P@s_ré'q_

) ) X'(q)
g =0gT%, + 0I5, + 0T, — 0T, — 0,15, — 0T + O ( (6 >
+

)

0(

1
0,040 + 90004900 — 50405950 — 59" 0200 + O (X (q)(

).

Z%ag(qx(q))h(& s)+ 0 (X/(Q) (9a — m)> (

r
/ 4.7

Raq =0,T%, + 0,15, + 0T, — 9,T9, — 9,T%, — 1% + O <X 7@ (90 — m)) +0 <5 fﬂ(Q))
1 / 64 /

:aqaqgss + 5906606q950 - 2asaqgsq - 900856q999 +0 <X rq) (ga - m)) +0 ( )7(“2((]))

X' (q
T

—~
s
a
|
N———
+
o
A/~
™
S
>
RN
S
~—
N———

=0(sx(¢)95b) + 0(ax' (q)930pb) + O (
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! 4.1
Rss :aqrgs + &Fis + 86ng - 8sl—gq - 881—‘:5 - ﬁngg +0 <X ,,(4q) (gu o m)> +0 (E >’l<“2(Q)>
/ 4.1
—0,05gss — 0sDygss + O (X 7@ (g0 — m)) +0 (5 9;2((1))

0 (X9, ) 40 (220,

4.1
Rap =040 + 0.T% + 0pT% — TG, — 0.5, — 0.Tfy + O (X' () (ga — m)) + 0 (5 b (Q)>
84 /
:8q8€gss - asaqgsa + O (X/(Q) (ga - m)) + 0 <XT(Q)>
. 2.1 2 / 2 / 54X'(Q)
=0 (s°X'(q)92b) + 0 (sx'(q)0799b) + O (X' (q)(ga —m)) + 0 — )
A a s 0 q s 0 ) £/ (q)
Ryg =0,T%5 + 0sTig + 0gTgg — 94T, — 04155 — 0405 + O (X' (¢)(ga —m)) +0 .
00 1 0o / e\ (q)
=9"" 0404900 — 94(Dngas + 5904 — Dagso) — 59" Dadagos + O (X' (¢)(ga —m)) 4+ 0 "
64 /
=029s0 + O (s°X'(0)92b) + O (X' (q)(g9a — m)) + 0 <xr(q)> :

Rog =0,T'4y + 0sLgg + - 89ng — OpT5, — 9pT9y + O (rx'(9)(9a — m)) + 0 ("X’ (q))
=04(209gs0 — Os900) — Os0q900 — 9OqGas + 0pOqges + O (rX'(a)(ga — m)) + 0 (e*x'(q))
=0 (sx'(q)0595b) + O (rx'(q)(ga — m)) + 0 (e*X'(9)) -

2./
£ f;”) except the contribution of

%0g(qx(q))h(9, s) in Ryq and the contribution of 97gs (more precisely the term %83)(((])029) in

Ry, 0

We note that all this terms give contributions which are O(

2.3 The generalized wave coordinates

We will look for solutions of the form g = gy +¢. We will work in generalized wave coordinates,
chosen as follow. First we need them to be compatible with our choice of background metric. We

will note
Fyt =g,z

Next we need to get rid of the artificial bad term of,;82x(¢) in Ryr. If we look at |(1.8)l we see
that this contribution can only come from % gUUc?LFbU , and consequently from a term of the form
—J?, X' (q) in Uy F®. Consequently, we will modify the wave coordinate condition to remove this
term. We also want to take a coordinate choice in which the quadratic nonlinearities in our system
satisfy the null condition (see Section [L.5)). For these two reasons, we introduce the vector-valued
function G such that

UaG® = 001X (q), (2.26)
L =21 (5) [ @0n0rr 10, = 2 @), 2.27)
LG =0 (2.28)
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Finally, we will work in generalized wave coordinates such that
H® = g"T5 = F' + G* + G, (2.29)
where G is defined in the following manner :

Definition 2.5. G is the sum of all the terms in g)‘ﬁfi‘ﬁ, calculated for g = gy + g, which are of
the form §8§8§”b, where [ +k—2>1orl>2.

Proposition is the reason why we add this small modulation to the gauge condition.
In generalized wave coordinates, the expression allows us to write the system into
the form

{ Hy =0 (2.30)
Oy = —40,¢0,¢ + P, (9g,09) + 9400 HP + 91,0, H?,

where

1 o 8o 1
PMV(Q)(697 ag) 259 pgﬁ <augp080cgﬁl/ + &/gpaaocgﬁ,u - 8,Bgupaocgua - 2augaﬁaugpa>

(2.31)
1 af Ap
+ ig g 8agupa,6’g,up~
Remark 2.6. In generalized wave coordinates, the wave operator can be expressed as
Oy = %000, — H0,.
The expression |(1.8)| yields also
1 1 1 o o

(Rb);w = _imgb (%)uu + ip;w(gb)(aglw 69[)) + 5 ((gh)upaz/Fb + (gb)upauFb) . (2~32)

Therefore, subtracting twice the equation to the second equation of we obtain

DgQZ) = 07
~ IS ~ 2.33
{ Dggul/ = —4@%{5@,(1) + Q(Rb)w/ + gupang + gupauGg + Pﬂl,(g)(ag, ag) + P,LLV(Q? gb)v ( )

where P,,(9)(0g,09) is defined by ((2.31) and

PG, 90) = (957 = 9°7) 0aBs(g0)s + (G + )96
+ szx(g)(aga ag) - P;w(g)(aga 85) - P,Lw(gb)(agby agb) (2'34)
+ GupOu (FP) + G0pOu(FP) + 900G + g,,,0,G".

Let us note that ﬁw(ﬁ, gp) contains only crossed terms between gy and g.
Proposition 2.7. ﬁw@, ge) does not contain any term involving 930pb nor 02b nor ng.

Proof. By looking at the decomposition of g, we observe that the terms in ]5,“, (g, go) which involve
920 or O3 or agb, in fact involve 82(gp)s— or 93(gp)ge, where — stands for any index. The terms
involving two derivatives of gy in P, (g, gp) are the same than in
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Our choice of G” is done precisely in order for the terms involving 938pb or 83b or d4b in the above
expression to be the same than in the Ricci tensor of g4 + ¢, so the same than in the expression

0aT%, — 8,12, (2.35)

We look for the terms involving 02(gy)s—. When p and v are equal to q or 6 these terms are not
present. If 1 = s, the terms involving 92(gp)s— in |(2.35)| are the same than in

1 1
5gspas(asg,,p + 0vgsp — 8/)981/) _ §gapasal,gap.

If v is equal to q or 6, we directly see that the terms involving 92(gp)s— compensate. If v = s these
terms are the same than in

1 1 1
598p88(8sgsp + asgsp) - igssasasgss - igapasasgapv

so again they compensate. The case 63 (g6)pg is similar, so this concludes the proof of Proposition
2.7 O

2.4 Second version of Theorem [1.12]

We give here a more precise version of Theorem [I.12]

Theorem 2.8. Let 0 < e < 1. Let 3 <& <1 and N > 25. Let (¢o, 1) € HVNT3(R?) x HNF(R?)
compactly supported in B(0,R). We assume

[poll vz + [[@1]| g < e

Let e € p < 0 < 6§ such that § — 20 > % If € is small enough, there exists a global solution
(9.¢) of [I.1)| More precisely there exists b(0, s) satisfying the set of hypothesis H, and a set of
generalized wave coordinates (t, x', x?) defined by|(2.29)| such that we can write in these coordinates

9= 9o+ g, where gy is defined in Section[2.1] We have the estimates for g, ¢

& 6] < €
(1+5)2? T (148714 ]g)r

91 5

10ZY 6|l 2 + 1022V ¢ || 2 + [1w20ZN Gl 12 S e(1+ ),
where
wa(q) = (1 +1g)) 7172, for ¢ <0.
Moreover, for h(0,s) defined by we have

{ wa(q) = (14 |g)*t#74, for ¢ >0

/ooo 2(0g(t, 7,0))*rdr — h(0, s = 2t) = O <\/1€2Tt> |

3 Bootstrap assumptions and proof of Theorem [1.12

3.1 Bootstrap assumptions
Let p, o, 1 such that ¢ < p < 0 < 4, and

1
6—20>=, o<

1 <
2 M=

=~ =
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The initial data (¢g, ¢1) for ¢ are given in HV+2 x HN+1(R?), compactly supported in B(0, R).
Let b which satisfy the set of estimates . We construct a metric gy as described in Section
There exists initial data for g (see Appendix , such that we can write at t = 0

g=9o+ho, Og=0ge+mh
with (ho,h1) € HNM* x HN | and
e the constraint equations are satisfied at ¢t = 0,

e the generalized wave coordinate condition is satisfied at ¢ = 0.

We consider a time T" such that there exists a solution g = g + ¢, ¢ on [0, 7] of |(2.33)] We assume
that on [0, 7] the following estimates hold

L°°-based bootstrap assumptions For I < N —9 we assume

2Che

|Z1¢| < — (3.1)
VI+s(l+]q))z="
1Z1g] < _ 2Cee (3.2)
>~ (1_’_3)%_97

where here and in the following, Cj is a constant depending on p, o, i1, §, N such that the inequalities
are satisfied at ¢t = 0 with 2Cy replaced by Cy. For I < N — 7 we assume

2C
1z < ——%— (3.3)
(1+s)2=2
~ 2C
275 < ———. (3.4)
(1+ 5)5_3’)
L?-based bootstrap assumptions We introduce three weight functions
w(q) = (1+]q])***, for ¢ >0
w(g) =1+ (1+|g)7*, for ¢ <0,
wi(q) = (1 +]q])***727, for ¢ >0
wi(q) = (1 +]q])~%7, for ¢ <0,
wa(q) = (1 +]q])*** 74, for ¢ >0
wa(g) = (1 +|g|)~'72, for ¢ <0.
We introduce the following decompositions of the metric
g=9+9, (3.5)
g=go+47 (g) kdg® + 71, (3.6)
where k satisfies
Ogk = QL = 9y9uu049LL + GrLO,G. (3.7)

We introduce the second decomposition to exploit the weak null structure for cubic terms. Our
L?-based bootstrap assumptions are the following.
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Estimates for ¢ :

lw20ZN || 12 < 2Coe(1+ 1), (3.8)
w222V || 12 < 2Coe(1+ 1), (3.9)
w2 d(SZN ¢ — 50,62  grr)|l 2 < 2Cos(1 + t)7, (3.10)
[w2dZN || 2 < 2C0e(1 + )2 TP, (3.11)
Jw2dZN || 2 < 2Cqe, (3.12)

Integrated estimates for 0¢ :

t
w'(q)(0Z% ¢)2dxdr < 2Coe?(1 + ) (3.13)

~+

w'(q)(00Z ¢)2dxdr < 2Coe?(1 + )% (3.14)

W' (q)(D(SZN ¢ — 50,0Z" grr))?dxdr < 2Coe*(1 + 1) (3.15)

~+

w'(q) (14 7) 102N T ¢) dzdr < 2Ce?(1 4 1) (3.16)

S So—o— o —
— — — —

Estimates for g :

1
w3 dZN G| 2 < 2Coe(1 +1)*, (3.17)

1
|w2dZNG| 12 < 2Coe(1 + 1), (3.18)
w282 3G 12 < 2Coe(1 + t)?, (3.19)

1
w2 dZN 4G || 12 < 2C0e, (3.20)
10ZN =109, |2 < 2Cqe. (3.21)

Integrated estimates for 0g
t
/ / wh(q)(0ZNG1)2dxdr < 2Ce?(1 + )27, (3.22)
/ /wl (0ZNg)2dxdr < 2Coe®(1 +t)*° (3.23)
/ / (1 +7)72Pw) (q)(02Vg)?dxdr < 2Che*(1 + t)*F. (3.24)
0
Bootstrap assumptions for h
o) 2
‘ zN-1 (/ 20, ¢(t,r,0)0:p(t, v, 0)rdr + h(0, 2t)> <20p— " (3.25)
0 L2(sh) (1+t)2=%
o) 2
HHZN5 </ 20, ¢(t,r,0)0pp(t,r,0)rdr + h(0, 2t)> <2Cy - (3.26)
0 L2(s!) (1+1)2

We note

— ’/h(@,%)d@—/}RQ ((8:6)* + |Vo|?) (t,z)dx

+ ‘/h(@,%) cos(6)do + /R2 2(0:0019) (t, x)dx

+ ‘/h(&,?t) sin(@)d@—i—/RQQ(@tqﬁ@Qqﬁ) (t,x)dz|.
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we assume c

3.2 Proof of Theorem Q.12

We have the following improvements for the bootstrap assumptions. The constant C' will denote a
constant depending only on p, o, u, d, IN.

Proposition 3.1. We have
Ce?
VItt

The proof of Proposition [3.1]is the object of Section [6]

|Ap| <

Proposition 3.2. We have

Coe + Ce?
VIHs(1+ gz
Coe + Ce?
(1+s)27"

Coe + Ce?
(1+s)272
Coe + Ce?

1

(1 + 8)2 2p.
The proof of Proposition is the object of Section

|ZN9¢| <
1ZN~9g| <
1ZNTg| <

1ZN"Tg) <

Proposition 3.3. We have the estimates
|w20ZN |12 < Coe + Ce2(1 +1)?,
w202 ZN |12 < Coe + Ce2 (1 +1)°,
w2 d(SZN ¢ — 50,02  grr)|| 12 < Coe + Ce (1 + t)P,
lw2dZN || 2 < Coe + Ce3 (1 + )7,
w2 0ZNG |2 < Coe + Cei (14 1)7,

1
|w20ZNG| 12 < Coe + Ce2 (1 + )%,
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and the integrated estimates
/ / 102N §)2dwdr < Coe? + Ce®(1 + )%

t
/ w'(q)(00ZN ¢)?dxdr < Coe® + C*(1 + )%,
0

t

w'(q)(0(SZN ¢ — 50,02  gr1))?dwdr < Coe® + Ce(1 4 t)*

~+

w'(q)(1+ 7)1 02N ) dedr < Coe + C3(1 + )%

wh(q)(0ZN g ) dadr < Coe? + Ce3 (1 + 1)

~+

wi(q)(02Ng)*dudr < Coe® + 20> (1 +1)*

LS o o o
— e — —

/ /(1 + 7) 72w (q) (02N g)2dxdr < Coe® + 2C3(1 + t)%°
0

The proof of Proposition [3.3]is the object of Section [9]
Proposition 3.4. We have the estimates

|w2dZN g2 < Coe + Ce2 (1 + t)P,
Hw%azN—?fg“HLQ < Coe + Ce2(1+1)P,

»MU\

le YA 91HL2 < Cye + Cex,
HaZN71091”L2 < Coe + CEZ.

The proof of Proposition is the object of Section [10] To improve the estimate for h we set

h(d,s) = 2/ (14 8)g"*+/| det g|0n PO, @dr,
0

where the integrand is taken at time ¢ = § and f3 is defined by 3(r,T,6) = 0 and

1
058 + gLLar/B =—-—=— I,

where Fj is defined in Corollary [11.1] The additional terms we add (compared to the heuristic
choice —2 [ 8;¢d,¢rdr ) are needed for two purposes

e O;h must be O <(1+t) )

e O,h must be at the same level of regularity than dyd¢ and dyg.

We extend the function & to all times by
W(0,5) = (s)h(0, 5) + (1 — ¥(s)h(0, 2T),

where 1 is a cut-off function such that v =1 for s < 27T — 1 and ¥ = 0 for s > 2T
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Proposition 3.5. b’ satisfy the following estimates

1ZN 71| 2y < CE2, (3.28)
1ZNH || 2ty < €2(1 + 1), (3.29)
Ce?
N—-11
10sZ h/HLQ(Sl) = ma (3.30)
C 2
102V W | sty < —————, (3.31)
(1—}—75)2_50
t
/ (U + D2V agguydr < 21+ 6)%, (3.32)
0
and we can write dsh' = Iy + hly with,

t
/ (1+ ) 10sZV B 121y dr < Ce* (1 +1)%, (3.33)

0
HZNh’HHfQ(Sl < Ce2(1+1)2772, 3.34)
1ZN | -2s1y < Ce*(1+1)377, (3.35)
/(1+7)3 2p|yZNh 12161y < CEA(1 + 1) (3.36)

0
/ (1+7)20sZV R[22 gryds < C* (1 + 1) (3.37)

0
/ (1 4+ 710, 2V B[y 1 gy < CX(1+ £)% (3.38)

0
/ (14 P22V 2 oy dr < CA(1 + 1), (3.39)

0

and also - 5
ZN=5 / 8,6(t,r,0)8:(L, 1, 0)rd +h’6,2t> ° 3.40
H <O ¢( " ) t¢( " )T " ( ) L2(S) \/1+t ( )
o0 3(1+t)r

ZN-1 </ O, (L, 7, 0)0,6(t, 7, 0)rdr + I 9,2t> o il 3.41
|7 ([ oot ronsnorar o) <otTEE ey

The proof of Proposition is the object of Section We obtain b thanks to the following
proposition

Proposition 3.6. There exists by(s),bi(s),ba(s) such that there exists a solution b of
2@

2) @)-2_1_9 %7 (2))2(g,b(2))2
2a(0 + f)(1+b@)2+ (1+62)2 —1 2(1+b(2))+(1+b )72(99b™))

=TIR' (6, s) + by + by cos(6) + ba sin(8),

Mg
Jo @ ="

6P gr2s1y S B | sty
1056 | rrvagsry < 105D || snys

and b satisfy
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and
‘bo — ao‘ + ‘171 — a1’ + ’bz — CL2| SJ 54,

|05bo| + [05b1| + [05ba| S €2[|0FH || p2(sny-
The proof of Proposition [3.6]is the object of Section [II.2]

Proposition 3.7. We set
h® =TI1 (0, 5) 4 by + by cos(8) + by sin(6),

There ezists a solution (¢ = Jp2) + 72, 6@) of [(2.33)| on [0,T] x R2, in generalized wave
coordinates

(HO) = (PP, = (FO) + (GO + (G,
with
(F(Q))oz -0 a

9p(2) Ty

Ua(G®)® = —5(1 +b@)d, FPx/(q),
o 1 r T
La(@?)* = -7 (7) /oo (20236 = b (6,200 (ax(0))) dr.
L, (GP)* =0,
with f@) such that 1+ 3pf® = (1+b)~1, and (G@)* contains the terms in () (1®)3,; of

the form 5(2)(%851)(2), where | +k—2>1 orl > 2. Moreover (¢?), ¢?) satisfy the same estimates
as (g, 9), b2 satisfy the estimates H and

3
<C—

ey VI+t

HHZN—5 ( / OO(8Q¢(2) (t,r,0))rdr + h (0, 2t)>
0

< 053(1 +t)P
ey VIt

The proof of Proposition [3.6]is the object of Section [I1.3] Combining Propositions [3.1] to
we now give the proof of Theorem [I.12]

HHZN—l ( / Oo(aqq%?) (t,r,0))rdr + h?) (0, 2t)>
0

Proof of Theorem[1.13 We choose ¢ small enough such that
G
2 Y

Bl

Ce1 < Ce <

N

Then Propositions , and imply that the bootstrap assumptions for (¢, g) are true with the
constant 2C, replaced with . Moreover, thanks to Proposition the bootstrap assumption
is true with 2Cy replaced by Cy. Moreover, Propositions and yield the existence
of b satisfying the hypothesis H and (¢(® = p2) + 7®, $)) solution such that the
bootstrap assumptions are satisfied by (5(2),q§(2)) with 2Cy replaced by %, and the bootstrap
assumptions |(3.25)lI(3.26)| and |(3.27)| are satisfied by

92p(2)
h?) = 2q(6 T4+ 2 4 (146@)72 1220 4 (14 b2)72(9,p?)?
a(@+ f)(1+0)7" + (1+b) (1+b(2))+(+ )7 (0pb™)7,
with 2C) replaced by Cp. This concludes the proof of Theorem [I.12] O
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3.3 First consequences of the bootsrap assumptions

Thanks to the weighted Klainerman-Sobolev inequality, the bootstrap assumptions immediately
imply the following propositions

Proposition 3.8. We have the estimates, for g < R

ZN 3 (t, x)| < c , 3.42
5~ 1+ )P
97551, )| < =L : 3.43
€
0ZN g1 (¢, )| < ) (3.44)
L+ a2 ovITs
9ZN"12G (1, 2)| < ° , 3.45
and for g > R
€
02N 0G| < : (3.46)
(1+5)277(1+|g]) 2+
- €
102N 51 (t, x)| < : (3.47)
(1+]g)2t0oT+s
Thanks to Lemma we deduce the following corollary
Corollary 3.9. We have the estimates, for ¢ < R
N-3 < €y 1+ ‘Q|
e e(1+s)”y/1+|q
2 55,)| 5 NN (3.49)
1
A £ 1+ q §+O'
2 it 5 U (350
19~ ev1+|q
2N gite,) £ VY 51
and for g > R
€
1ZY0g] : (3.52)
(1+5)277(1+ [g]) 7+
12N Cg(t, )| S - (3.53)

(1+ g2t yI+s

To obtain L? estimates for Z/¢ and Z'g we may use the weighted Hardy inequality
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Proposition 3.10. We have

10+ lal) M wE 28] o+ (L + lal) M wF (SZV6 — 50,62V grr)e S s +8P, (350
(L + [gl) w2 ZN 4] 12 S e(1+ )57, (3.55)
10+ la) " wd 2V S <1+ 1), (3.56)
1L+ lal) w3 2] 2 S (1 + 1), (3.57)
1L+ ) M0z 2V 10 2 S e, (3.58)
1L+ )tz 273G < e(1+ 1), (3.59)
10+ la) w2 S e (3.60)

Proof. The only thing we have to check is whether we can apply Proposition with our weight
functions. In the exterior, the smaller weight is wa(q) = (1 + |¢|)? with 8 =2+20 — 20 > 1. In
the interior, the biggest one is a O(1). Consequently we are in the range of the weighted Hardy
inequality. O

Lemma 3.11. We have

[e9) 2
HHZN1 (/ 2(9,6(t,r,0))*rdr — h(8, 2t)> < £ (3.61)
0 2t (1+1)27%
o0 2
HHZN—5 ( / 2(3,6(t,7,0))rdr — h(0, 2t)> < < (3.62)
0 sty (141)2
Proof. We can write B
(040)* + 0,601 = O (0609) .
Consequently, thanks to and we have
£
(049)% + 0r0010| S 1Z¢l,
" RISt
and therefore
H / ((040)* + 0r0ep) rdr
L2(St)
5
< 1Z]| L2(s1ydr
/<1+s>%<1+\q|>34p i
€ Z¢
N4t [T+ gl
Estimates |(3.54) and |(3.58)| conclude the proof of Lemma O

4 The wave coordinates condition

Similarly to [23] we use the wave coordinate condition to obtain better decay on some coefficients
of the metric. More precisely, since we are in 2+ 1 dimensions, the wave coordinate condition gives
us three relations, which yield the fact that d,9rr, O49rv and O,guy have a better decay than
expected. In the first part of this section, we calculate the algebraic relations given by the wave
coordinate condition, and in the remaining parts, we give the estimates for these good coefficients
of metric.
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4.1 Good components of the metric

The wave coordinates condition yields better decay properties in s for some components of the
metric. Since far from a conical neighbourhood of the light cone, we have |q| ~ s, this condition
will only be relevant near the light cone. It is given by

H® = gMIg, = F* + G* + G°,
where the terms are defined in Section 2.3l

Proposition 4.1. We have the following estimate, in the region % <r <2t

— . 1 _ -
0,291 S 1072 gL +10Z7G77| + T5s (1Z"geLl +12"gr7l) -
Moreover, in the region ¢ < R+ 1 we can write

1 - e - 1.
5 9L+ 9179491 + 910791 + OUgrT + 97T

Let us note that the second part of the Proposition will only be used in Section [I1.1]

8quL =

Proof. The wave coordinate condition implies

1
— @ — 78 Ho de
L.H La< aet(o)] (9" VI t(9)!)>

— % 1.0,/ det(g)] + 0, — g"9,(L,)

,/\dt
‘dt —Z——0,/| det(g)| + 9,( 7quU

Y )|
+ —2——07/|det(g)| + Opg™E + dyg™¥ + gt
\/W ()‘ \/|7 T ‘ € Lg Ug LY

1 1
+ gLR TgUU’

where we have denoted by R the vector field 0., and used the following calculations

9" 0u(Lq) = = 9" 9u(Ra)
= — g9 cos(8) — ¢'?(Da cos(8) — Dy sin(6)) — g*2d, sin(8)

Oug™ =00g™" + 012" + Dog™?
:80gLO + 8RgLR + BUgLU + gLR(al cos(#) + Dy sin(0)) + gLU(—(?l sin(f) + 02 cos(h))

gLR
—aLg + 3U9LU +0 gLL + Y
Consequently
oLgtt = - L, (FO‘ +G* + G"‘) oy det(g)] - ———07+/] det(g)]
| det(g)] | det(g)] (4.1)
1 1
— dug™” — opgt" - ;QLR - ;QUU-
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Also we have in the basis L, L, U

det(g) (9rrgvu — (gur)®) — 9rL(9rLgvu — grvgry) + grv(grLgur — grrgry). (4.2)

and we can express

1 1
LL _ _ 2y _Z
g det(g) (9rr9vv — (guL)”) 2911+ O(977)0(9),
i L (9Lr9rv — guLgLL) = 1gLU + O(9771)0(9)
det(g) 7™ - 2 ’
1 1
LL
LL _ _ — L o),
g det(g) (9Lr.9vv — guLguL) . (977)

where we have used the notation O(g) = O(g — m) where m is the Minkowski metric. To go from
the determinant in the basis L, L, U to the determinant in the basis ¢, 1, 2 we just have to divide
by 4. Therefore

1._ ~
[V/Idet(g)] = /[ det(go)| + 59rL] S [g77]-

We note that in the terms involving dpgr;, compensate. Since in by definition of F®
the terms involving only g, compensate, we have

1. - 1
>-9LL = 0977 + —/—g77 + 5t

0.1 —
9gLL 2r 1+s

where s.t denotes similar terms (here these terms are quadratic terms with a better or similar
decay), and we have used the fact that in the region % < r < 2¢, we have r ~ s. This prove the
second part of the proposition. Since [Z,dy] ~ 0y and [Z, 0] ~ O we have

1~ ST~ =~ 1 - -
102" ge| S 127 oLl + 102" geLl + 102" grr| + m(\ZIQLgl +12"gr7)).
This concludes the proof of Proposition [4.1] O

The other two contractions of the wave condition yield better decay on a conical neighbourhood
of the light cone for g1 and gyy.

Proposition 4.2. We have the following property
~ =~ 1 ~
12" (8ggur + G| < 1027 g7v| + 7\219737\,
| Z" (9g9uu +2G")| < 1027g] + 7|Zlg|

Proof. To obtain the first estimate, we contract the wave coordinate condition with the vector field
U.

—UH® = Uad,(gH*)~/det
W L (g") (9)
\/WU 2O/ det(9)] + 8, (Uag"®) + g"*0,(Us)
€
ma /| det(g)] + 9,( + -9 gvR

Tt 1
—— o TE@)] + — 0 [A6T(G)] + 5" + D" + 0" + LV

Videt(g)l | det(g)]
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Therefore

gvL
OpgVt = ~U, HY — —2—=0r/|det(g)| —

[det(g)] \/r

and arguing as in Proposition we infer

1
87\/ |det(g)| — Oyg"V — drg"* — ;gUR,

- ~ 1 -
09uL + GY| S |0g7v| + mlgwl + s.t.

Commuting with the vector fields Z as before, we obtain the desired estimate. To obtain the second
one, we contract the wave coordinate condition with L

1
—LoH =——=L,0,(¢9"")/| det(g)|.
V| detyg| (43)
=y (VIdet@)lg"t) + ———or (VIdet@lg"” ) ~ #*0u(Le).
V] detg| /| det g ree
We note that
1
| det(g)|g"E = (9rL9vv — guLgur)
2/Idet(g)[LLul ™ N
gLLguu ~
== —— + O(g77)0(9)
V93 vw + O(Fr7)0(9)
1 ~
= = 5Vouu ++0@GrT)0(9).
Therefore |(4.3)| yields
0,900 + 2G| < |03 + 7lg|
We commute with the vector fields Z to conclude. O
4.2 Estimate for the good metric component g,
Thanks to the bootstrap assumptions, we obtain the following corollary.
Corollary 4.3. We have the estimates for ¢ > R+ 1
€
02N %G11] S (4.4)
(L+5)2(1+ g2
and forq < R+ 1
1
7~ + 2
0285, 5 ST (45)
(145}
1
. +1q])2
025, SIS (46)
(145)57
8~ €
02N g § ———— (4.7)
(1+ s)’_Sp
_10~ €
02N 9| § ———— (4.8)
(1+35)57
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Proof. First we note that g and g; differ only by their LL component. Thanks to Proposition
we have

- 1 -
|8qZIQLL’ < m\zlﬂgﬂ

Then ((3.53)] yields [(4.4)] [(3.50)| yields [(4.5)] [(3.49)| yields [(4.6)} [(3.4)] yields |(4.7)| and |(3.2)] yields
(4.8)] O

Thanks to Lemma since § — o > % we obtain the following corollary

Corollary 4.4. We have the estimates for ¢ > R+ 1

g
1ZN"Tg0r] < , (4.9)
(1+5)2(1+g)) 2+

and forq < R+1

3
7 1+ |q|)2
ARETIARS e+ lgD2"7 lg))? (4.10)
(I+s)2
e(1+]g)?
- 2
1ZN TGl S i (4.11)
(1+5)27°
8~ e(1+
2N -8, 5 S0t (112
(1+s)27°F
—10~ e(1+
7V10g,,| < Lt 1) |§q') : (4.13)
(L4 s)3
We now give L? estimates for the coefficient grr..
Proposition 4.5. We have
! Lo N~ |2 2 2
| lus@?oz5us) as s 2+ 0. (4.14)
0
' wha)? i
wyg N~ 2 2
Z7grrl| ds Sef(141t)P, (4.15)
A .
Ok (a)2
'UJQ q 2 N—-1~ g U}l q 2 N—-1 g
0 Jr < —, 072" g (4.16)
(L + la]) L= | ) LA
1 2 1 2
ws(q)? ZN_I?LL < € wi(q)? ZN—lg < £ (4.17)
(1+1ql)? Lo (L (1+q])? , A+t
1
wi(q)? AR £ (4.18)
(1+14l) Lo (L)
()% i
wl q 2 N—-5~ 3
Z < 4.19
PR ‘LQ Saro (19

Moreover, the same statement holds true with wa replaced by wy and p replaced by 2p.

Proof. Proposition |(4.1)| implies

10,2V g1L] S 1+ —— 2G| + 102"V g,
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Thanks to |(3.22)| we have
! L5,N~ || 2 2
[ us@rozva) as s 2+ 02,
0
and thanks to we have

1
wh(q)?
1+s

ZNal|l  ds

L2

1
wa(q)?
1+ |ql

t
/
t
1
S/ ds
0 (1+S) 12

t 52 9 9
S argrm s

where we have used |(3.56)l This concludes the proof of estimate |(4.14)l To prove |(4.15)| we notice
that thanks to the weighted Hardy inequality

ZNg

PPt
wy(q)? N~ rontaon~ |2
=77 gL SHw (9)20Z gLL‘
(1+ql) ) 2

L2’

L

Indeed in the exterior wh(q) = (1+ |g|)? with 3 =1+ 20 — 40 > 1, and in the interior, wy(q) =
(14 |g])* with « = =1 — 20 — 1 < 1. To prove|(4.16)| we write

- 1 -
|anIQLL’ N m\Zngl’a

and consequently

1
82

! Sil_a
12 (1+t)t=r

1
wa(q)2 , N_1~ wa(q)2 N~
———=0Z"""gr1|| S+ |14 90
T+ 14D STt [ D

where we have used To prove we notice that thanks to the weighted Hardy inequality

2

1 1
w2(q)? N1~ w2(q)? o N_1~
T N2 gt S|Aa 94 gL
‘ (0 + Ja] I i .
) . ws 5. Cos : o we
Indeed in the exterior 7(1+|Z|)2 = (1 + |q|)” with 8 = 20 — 40 > 1, and in the interior, 7(1+‘Z‘)2 =

(1 + |g])* with & = —1 — 20 — 2 < 1. Estimates |[(4.18)| and |(4.19)| are proved in the same way

thanks to [(3.60)] O

The outgoing null cone

Proposition 4.6. For € small enough, the causal future of B(0, R) is included in the Minkowski
cone ¢ < R+ %

Proof. With our estimates for g, we obtain that the outgoing solution of the eikonal equation
go‘ﬁﬁauagu =0,

with initial data v = r is such that

f)su = O(gLL) =0 (6(]3) 5
(1+5)27

36



u=q(1+0()).

The causal future of B(0, R) is the inside of the cone bounded by the hypersurface v = R. So in
the causal future of B(0, R) we have

1
qSR(1+a)§R+§.

As a consequence, ¢ is supported in the region ¢ < R + %

4.3 Estimate for the good metric coefficient gy,

We recall the definition of GY
GY = ot X' ()-
The following estimate for GV is a direct consequence of [(2.25)

Proposition 4.7. We have
€21
R+1<q<R+1

’ZN_HGU| <
~ 1+s

(4.20)

We now go to the estimate of gyr.

Corollary 4.8. We have the estimates for ¢ > R+ 1

g
(1+5)27P(1+|q)2*°

02 g1 < (4.21)

and forq < R+1

1
<t}
(L+5)37
e

(1 —|—S)%_3p7
€

(1+5)27

10,2 gL (4.22)

VAR TTARS (4.23)

10,2 g0 S (4.24)

Proof. In the exterior, GY = 0 so thanks to Proposition we have

- 1 -
02 g1 < 17+S|ZI+1!J|,

and [(4.21)|is a consequence of |(3.52)| In the interior Proposition [4.2| yields

- 1 -
1218y (Gur + ofx(@)] S m|21+19|-

We can write gru + x(q)o; = gur — x(q)of;; so thanks to|(2.24)| for I < N — 2

62

(1+s)3
Consequently yields |(4.22)] ((3.4)| yields [(4.23)[ and [(3.2)] yields [(4.24)] O

1 - 1 -
’anIgUL| N 11s ZM g + ﬂq>R’ZIUl11L\ N 17+S|ZI+19‘ +
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By integrating, we obtain the following corollary

Corollary 4.9. We have the estimates for ¢ > R+ 1

1ZY G| < 2 1 (4.25)

(145)270(1 + |gl) 73+

and forq < R+1

125 GuL — (1 x(a)obs)| S (f:’)q‘) (1.26)
258G — (L= x(a)odn)| S M (1.27)
1ZY Gy — (1= x(@)obo)| S (1<1++)q|> (4.25)

1ZN "Ny < W (4.29)

Proof. By integrating|(4.21)|in the exterior, since ¢ > %, we obtain |[(4.25)l For I < N — 7, we have

1
~ e(l+|q|)2
042" Gus, + x(@)oly)] < SOT1D2

(1+5)57

and consequently
1
) < 20+ la)?

10,(Z"gur + (x(q) — Do) S —s (4.30)

(1+s)277

For ¢ = R+ 1 we can estimate, thanks to|(4.25)| and the fact that x(¢) — 1 =0,

- €
2" (Guz + (x(@) = Do)l £ ——-

(1+5)}

Consequently, integrating from ¢ = R+ 1 yields [(4.26)] We obtain [(4.27)| and [(4.28)] in the

same way. Estimate [(4.29)|is a direct consequence of |(4.28)| and [(2.25)] O

We now give the L? estimates for the good coefficients of the metric

Proposition 4.10. We have

t ) N 2
| @202 Gow + xtwoto)|, as < 2+ 0. (4.31)
2
A NGur + x(9)odrr) sSer(1+1)7, (4.32)
2
wa (g ) N-1 €
0+ ’)8 2z (gur + x(q )GUL) ] S W, (4.33)
L
wa(g )% 02N Ll < c (4.34)
<1+|qr>%+“ ! (L)
1 2
wa(q)?2 €
a —i—(I;!)Q ZNNguL+ (1= x(@)otn)|| < arois’ (4.35)
2
wi(q)? '
1~ €
s 2" ui|| S . (4.36)
(1+1ghate 2 (1+1)3




Proof. Thanks to Proposition [£.2] we have

- S N~ 1 -

042" (Gur + x(9)otr)| S 1027 gi| + 155 S|ZN91|~
Thanks to [(3.22)| we have
“Is ot A N~ |2 2 2
/ HwQ(q)ﬁaZ g1HL2 ds Se“(1+1)°,

0

and thanks to |(3.56)| we have

wh(q)?
VA, d
1+ s 91 5

/t
0 12
t
1
§/ ds
0 (1 + S) 1.2

t 82 9 9
S, rarm sE0e

1
wa(q)?
1+ |ql

zNg

which concludes the proof of |(4.31)l Then [(4.32)|is a consequence of |(4.31)| and Hardy inequality.

To prove we write

s 1 _
\anN 1(QUL +X(Q)UZOJL)\ =S 17_|_S|ZN91|>

s0(4.33)|is a direct consequence of [(3.56) We prove [(4.34)l We have

4

_ 2 _ 5

X (2N ot || 5/X’(Q)2||58sZN || T gryrdr S T

(1+s)2
thanks to and thanks to
1 1

wi(q)? 72Ngl < 1 wi(g)? Nzl < £?

1 ~ 1 ~
(1+]g))TH (1 + s) Lo (t)te || 1+ gl o (141

=

This concludes the proof of |(4.34)l Estimates |(4.35)| and |(4.36)| are a direct consequence of the

weighted Hardy inequality and |(4.33)|and [(4.34)]

4.4 Estimates for the good metric coefficient gy
4.4.1 Estimates for G

Proposition 4.11. We have the estimates

‘|TZN75GLHL2(S1) < e + = + Ay,
T+¢ (14 |g)t—%
IrZN G sy S il E— = — + A,
(1+t)zr  (1+[g)t

IrZNG |21y S 2(L+1)7 + Ay,

t
/ (L + )02V GE 21y dr S (€2 + An)(1 + 1),
0

39

O

(4.37)

(4.38)

(4.39)

(4.40)



Proof. We have
Gt =11 (3) [ (0,0 — hio. 2002 ax(a)) o

Thanks to Proposition we have ¢ =0 for ¢ > R+ 5 so GI' =0 for ¢ > R+ 1, and we have

6= 2x (5) ([ 200u0rar 410,20+ [ 200,67 - 16,200 ax)) ar)

[e.9]

We have the estimate, thanks to (more precisely thanks to Lemma [3.11])

52 r T
IrGH s S ey + A0+ X (3) | (1002 -5y + 16, 20)Lyn-s1,02axta))

We estimate

T T l
/0 |!(3q¢)2|]H1(S1)rdr§/O 105 0q@ll Loo 51y 104 P || g1 (s1y7dr

~ 3 q 1 L2 Sl
0 1 S(]. |q‘)7274p ( )
1

T 1 E
Sel|0g2" |2 (/0 M‘)g_spm“)

13
S At 10,27 ¢| .-

~ (1D
where we have used |(3.1)| to estimate
3 141 e?
@%¢§HMMZM§QHW%MH@?
for ggggN—g We obtain
= “ 194276l T (3) 127725060, 8) [ sn) Lo

HT‘G ||HN SSI \/74’ h+T( )W

and so thanks to|(3.12)|and [(2.3)]

g g2
rGY || gv-s (1) < + +A 441
|| HHN 5(St) ~ \/m (1 + |q‘)1_4p h ( )

Similarly, thanks to |(3.25)| we have

52 52
+ TR + Ay (4.42)

PG || gv-rsry S

and thanks to and

PG| gv g1y S €21+ 1) + Ap. (4.43)

We now look at the derivatives with respect to r and .
0,6t =0 — +T(f)2(a¢)2—r
R I t 1

40

)

(r) h(8,2t)05 (ax(q))

t r




Or (2(040)%r — h(0,2)0 (qx(q))) dr

(205 — ;) (2(94¢)*r — h(0,2)0; (gx(q))) dr
- < 1 GL> T (C) 20,6) + T (f) h(0,2t)07(qx(q))
t q

r

L (4.44)
20 (100) = 21 (5) [ o oger - .20 av
2,GF = 0 (Jscﬂ) 11 (5) [0 e@orr - ne.200 (@) v

We calculate

(95(7“(8q¢) ) =2r0;¢050,4¢ + - ( q¢)
= 29,006 — 0,6 (am +o30)

—500 (0~ Dyoir - 0.0~ Togo).

We have
ZN0,00:0) = > 9,2"¢0Z"¢,

L+12<I
If I; <4 <N — 10 we estimate thanks to |(3.1){ and [(1.7)

3

10,25 6] <
! (14 g))2 (1 +s)2

)

and if Irb < % < N — 10 we estimate
€
1+[q))2 (1 +5)2

02" ¢ S —— |ZI?+1¢| <

)

and so
€

r|0Z7¢| + 02" 9.

€

(L+ )2 ~*(1+5)2 (L+ a2~ *(1+5)2
We estimate Z7 (ang%aggb) in the same way. For the estimate of Z!(Cg¢ — O,¢) we refer to Propo-
sition 5.2l We obtain

|21 (0,005¢)| <

E = g
1Z10,(r(949)*)| < 0211 g| + 102 |
! (14 g))2 % (1+s)2 (145)2(1 4 [g))2*
ev/1+ s 15 - 5
+ —4p< §—4p|ZIgLL|+ 3 34 1z z'g gl
(14 g2~ % \ VI +s(1 + q])? (145)2(1 4 [q])2*
( +|Q|)% I+ € I ~L € Al
+ ACIIEE oz .
ot M e e
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We estimate, for I < N — 1

2 3
574 dr < / 272
/ (1+ ‘QD (1+S) L2(s1) (1+‘q|)774p(1+5)3
2 2
WP gita, (/ & dr)
1+ |q| PRV A e
1
c W2 g2,
T (1497 |1+l .
and for I < N,
c g
07" | dr S o |w'(a)
+1al)2 (1 +5) L2(s") (1+s)
/ 1 z'¢ dr s 725,3 10279, ,
(1+5)2(1+1al) sy 5
1
/ E\/T; - 54 Z'g1L dr
(L+ g2 VI+s(1+g))>~" L2(st)
1
w3 et 2
<||®2 s (/ > N
vt ™ (14 5)(1 + |g])*— 10020
L2
1
< e’ wy s

S Z'grL||
(1+5)7 || (1+]q))2

evI+ts e(1+]q))z

1
4 2
07+ | </ £ dr)
/ (L+lgh> ™ (145 L S (U sP (At Jg)>
22
< azf+1¢ ,
Loz,
V1 2
/ < +354 < IGE| dr < c 5 Sup HTZIGL||L2(S1).
(1+lg)2™% (14 5)2(1 +|g))2~* 12 (1+5)? rer

Consequently we can estimate for I < N — 1
€

<
~ (14 s)2700

7! / . ((940)%r — h(0,20)82(qx(q))) dr

1
w?2
L+ |q|

I+2¢

£ 62 w

+ 0219, + 2

e P S )
e? I+1

+ 702762 +

€ 1AL I
sup [|[rZ' G +|0sZ" h ,
oo TS I G e+ 10,2
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and therefore, for I < N — 5, thanks to[(3.58)] |(3.12)} [(4.19)| and |(2.4)| we have

g2

I7(s0sZN PG | p2sty S I ZN°GH || 2y + ——- (4.45)
(1+s)2
For I < N — 2, thanks to|(3.54)} |(3.8)] [(4.17)[ and |(2.4)| we have
2
_ _ £
Ir(s0s 28 2 GH) |2 (s1) S P2V 2G| 2y + ————, (4.46)
(1+s)27°
and for I < N — 1, thanks to |(3.55)] we have
2
_ _ €
|r(s0s 2N 1GL)HL2(51) < ||rz¥ 1GL||L2(S1) +—. (4.47)
(1+9)}

Moreover, for I < N we have

1 € =
N AL N AL N+1
P2 G ey S 2 G iz + 1 0/ @0Z 49,
2 3 &2
€ w ~
+ T 2 ZNgroll  + — ”32N+1¢HL2 + ”asZNhHL?(Sl)'
(1+5)% | (1+]q)? PENCETE
(4.48)
We now estimate
[ (T 2~ (T 10,2007 (ax(q))
i <T<t)2(6"¢) T(t) r
L2(sh (4.49)

< ev1+s
T (14 Jg)z

Consequently we have proved, for I < N — 6, thanks to [(4.41)] [(4.45)| and |(4.49)|

102" ¢\l 2s1) + Lr<gers1 |1 2" Bl 2(s1).

2 2
rzGh 251y S < + ° + Ap + rZz!GF 2(st
eVv1l+s

+ TR 0,20 8l ) + Lrco<rnt |2 Bl e,
(L3t O v

We can estimate ILR<q<R+1HZ]h||L2(S1) thanks to Corollary . Thanks to the term 1roqcpr41 it
has as much decay in g as we want. By recurrence we have

g2 g2 eVv1+s

IrZ¥ PG | 2y S AN =T Ap + W)|aqzl¢|’L2(S1)- (4.50)
In the same way, thanks to |(4.42)] [(4.46)| and |(4.49)| we obtain
2 2
PG e $ s gy %uaﬂ%m(gl). (451)
Thanks to [(4.43)] |(4.49)| and |(4.47)| we obtain
1rZN G || 21y S (1 + 1) + Ap. (4.52)
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Moreover, thanks to |(4.48)| we obtain

t N ~LI2 < t €2+Ah I3 ’ 57N+1 2
0(1+T)Hrasz GH[Tegnydr S ) (1+T)1_2p+1+7||w(q)8Z |12 ) dr

1 2
! w; N~ N2
o \[|(1+1aD)3 p
and consequently

t
[+ D028 G agydr 5 (2 + A1+
0

]
4.4.2 Estimates for gyy
Corollary 4.12. We have the estimates for ¢ > R+ 1
0ZN " Tguu| < ¢ 453
S o
and forq < R+ 1
1
7 1+ 1q|)2 €
0.7 5] < &L n : 4.54
I A (a7t .
8.7N-85 | < € 4 < : 4.55
| q gUU‘N (1+S)%_3p (1+S)(1+‘q|)1_4p ( )
10~ € €
ARSI (4.56)

+ .
G1ei T Tt
Proof. Thanks to Proposition [£.2] we have

- 1 ~
|8qZ]9UU| N m\zlﬂﬂ +12'G*|.

Consequently, [(3.52)| yields |(4.53)l Thanks to |[(4.37), the Sobolev embedding H'(S') C L* and
the estimate |(3.27)| for Aj, we obtain

ARle L P ——— 2 . 4.57
| R ot T (457)
Consequently |(3.49)| yields |(4.54)} [(3.4)] yields |(4.55)| and [(3.2)| yields |(4.56)} O
Thanks to Lemma since § — o > % we obtain the following corollary
Corollary 4.13. We have the estimates for ¢ > R+ 1
€
VARETTIBS (4.58)
(L+8)277(1+[g) 2%
and forq < R+1
3
Y45z (I+s) ]
|ZN—8~ngU‘ < 6(1 + |q,) 5(1 + ‘Q|)4p (4.60)
~ (14 s)23 (1+s) ~
10~ e(1+ e(1+|q|)*
‘ZN 109UU‘ S ( ‘QD ( |Q|) ) (4.61)

(1+s)2>  (1+s)
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We now give the L? estimates for gy .

Proposition 4.14. We have

t 2
/0(1+T 2ﬂHw V282 gUUH Lds (14 1)% (4.62)
2
t / =
/ (147)"% Tﬂfq)j ZNGuu | ds SEA(1+t)* (4.63)
0 12
1()?
1~ 3
‘1“.3ZN You| S T (4.64)
(1+1ql)2 o (1+1)2
1
2 ~ €
w(@? - You|| S —. (4.65)
(1+[q))t o (1+1)2

Proof. Thanks to Proposition [£.2] we have
~ SN~ 1 ~
10,2  guu| S10Z2Ng1+ ——|Z2%g + |2V G").
1+s
We estimate

[asnui@izia|
0

1 N ~L/||2
L2 / ].+7' /MW‘TZ G HLQ(Sl)drdt
1+7’
S +1)%

This estimate together with |(3.24)| yield |(4.62)l Then the weighted Hardy inequality yields
Thanks to Proposition [.2] we have

A
\

1
0, 2N Vol < ——12Ng + |ZN1Gh.
|0q guul S 1JFSI gl + | |

We can estimate

2

1
wi(q)? N—1,~L / 1 N—1~Ly2 g?
————7""'G < rZN1GE|2, <
1 o) LN T I = 775
and ) .
wi(q)? VAl < 1 wi(q)? gN&l < €
(I+lg)2t(14s) |~ (462t || 1+]dl L (141)3

where we have used which concludes the proof of We obtain thanks to
and the weighted Hardy inequality. O

By taking at each time the maximum of the estimates from Corollary and @.13] and

G 52)3> thanks to |(2.23)| we obtain the following
+s)4

estimating ZN~"70%, = O <

Corollary 4.15. We have the estimates for ¢ > R+ 1
€
(1+5)277(1+|q)*~2

1ZN gl S (4.66)
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ad forq < R+1

2N TG < W (467)
Y
125577 < W (4.68)
RE
1ZN g7 | S W (4.69)
2G|+ (5 a2 5 (470

5 Structure of the equations

In this section we will study each terms of DgZIgW in order to perform in the next sections the

L™ — L™ estimates and then the L? estimates.

Proposition 5.1. We can write DgZ[gW = ZIR}“, + IMW + IME,, + IQW, where R' is given by

Proposition |2.4), and

o M is present in the right-hand side of the wave equations satisfied by all the components.

consists principally of terms which have the null structure. It satisfies

071 p| +

3 9

1 ’ 1
(1+5)2(1+ [g))z~% (1+5)2(1 +|g)2
15 — 1
n (|azf§| n rzfm)
(1+5)(1+ [g))2~* 1+
;\8fo§|+
(1+5)27° (1+5)(1+|q)
. ( 1 1
+ emin —, T
(1+ g (1 +5)27° (1 +q|)2

M| S —102%4]

€

1 _
YA —\Zlql+ 107G
+ \Z g1T| + 7 +S\ |+ | \

Njw

—p

= 1
8Z[§1 + ZIgLL ) .
(1+s)%> ( | 1+Iq\‘ |

Njw

It

o We have better estimates in the exterior region q > R so we isolate the contribution of this
region by introducing a term IMEV which is non zero only in the exterior region q > R. We

also include in this term the crossed terms between gy and g. IM,E/ satisfies

I E g A~ |CI| I~ 1 I~ 1 ~ )
M*| < 02 g+ ——|0Z2°g|+ ——|Z"g| +
| | 013 <| J| 1+S! J| 1+SI 1 T+ l977]

£ (s|85ZIb| + 0,09 27] + %]Zlagb\)

AT

. 13 g
+ min , -
((1 +1g)Et 1+ 5)77P (14 )20 (1 4 5)2
+ %yzfasagm + S%|Zfagby).

) <sya§21b\ + q|0209 20|

e The terms which do not have the null structure are not presents in all the components of

DgZIgW. It is why we introduce 1Q such that

'Qrr =0, 'Qrr=019000:2" 91, 'Qur = 0rdrrZ (Bugrr + 0r(Gur + olir)),
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"QrL = 2" (049vv049LL + GrLd,G) + > ZN g0, 2" grr,
h+1x=1, [,<I-1

50 the new contributions involved in 1Qrp are

€ — 1 g2 15
9275 + ngm) i T ) 1oz'g)
( 1+ |q] (1+s): ([@L+s)(+]g)t

(1 +lal)(1+ )37
+smin( 1 1

'Qrel S

> (102'g] +12'G*))

. € € )12
+1,~r min , =|Z705b| + 1y>r
” <<1+s>%P<1+|qr>3+5 <1+s>%<1+rq\>3+5+”> |7 00+ A

g
(1+ g2 (1 +5)27°

3

1+8\8Z]Zj1\

+1g5R (s1022"6] + qlo200 2" + 42" 0,36] + 12" 03b)) -

Proof. We can study the terms in [, 2 4 g With simple counting arguments : the quadratic terms
in DgZIgW are of the form

A__=m~m —o_zhg__o_z2g__

or
B._=m m " Z"g—m)__0_0_Z"72g _

with Iy + Iy < I. The _ and ~ stand for down and up indices. The indices __ in A__ or B__
appear as down indices in the right hand-side at any place a priori and the other down indices
should appear with a repeated up index in m~~. Consequently in the additional down indices we
can not have more than two occurrences of L. With this technique it may happen that we study
terms which are not in the equations but we are certain not to miss any. If some terms happen to
be difficult to handle we will of course check if they are or not present in the equations.

The case 777. In this case there can not be more than two occurrences of the vector field L. In
Ag7 : the terms involving two bad derivative are of the form

0 Z" grr0, 2" grr.
We may assume [ < I5. We estimate first
0 Z1 Grr0, 2" grr.
Thanks to [(4.70)] since I; < % < N — 11 this is bounded by
€
(1+8)(1+ g7
Thanks to Proposition this term is bounded by

|8qZ]§TT|-

€

_ 1

077G + —— ng> , (5.1)
(1+5><1+|q,>5—p<’ aE T
&

+ I
(1+s)(1+]g))27"

1Z1aq). (5.2)

We estimate
9aZ" (90)TT00 2" g7 T
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This term is only present in the exterior and thanks to [(2.25)| this is bounded by

€ = 1
lyop— (0279 + ——| 215 5.3
g (1021314 5127) 5.3
g
1 — Z'q|. 54
+ Q>R(1—|—S)’ ‘ ( )
We now estimate
042N GT70,2" (90) 77

This term is only present in the exterior and is bounded by

5 1
14 s)(1 4 |g))1+9=° 1+ |q|

Lrg (510:270] + alo,0s 28] + 11270501 (5.5)
where we have estimated 9,271 g7 with [(4.66)| in the region ¢ > R+ 1 and |(4.70)| in the region
R < q < R+1, and we have estimated 0,2'2(gy)77 with |(2.21)| and [(2.19)l The terms involving
only the metric gp are all taken into account in the Ricci tensor of gp.

We decompose the terms of the form 821198(12129, with I; < I in three part

0z1g0,7%g, 07§, 7% gy, 02" 940,223

They can be estimated respectively by

e

— 18,25 :
] (5:6)
€ 1 q
ﬂq>R(1 AL )P (s\aszlb\ +ql0s0p 20| + glzlagb!) ) (5.7)
S q
e(1+|ql) -
]lq>R(1_|_8)2’|an129|a (5.8)

where in we have used

A e
1+s (I1+s)27°
thanks to|(3.2)l In|(5.7) we have used
0713 S 2R S ———
1+ (1+s)277(1+ql)2*
thanks to [(3.50)} and we have estimated 0,Z%2g;, thanks to |(2.19)| and |(2.21)| In |(5.8)| we have
estimated . (1+ |4
_ -+ q
820 gy| < ——|zhHg,| < S TY
0200 S 112" el S S

thanks to|(2.25), with [; + 1 < § + 1 < N —11.
The remaining terms are of one of the following form

L7 91707297, OLZ"grr0Z"gLT.

We estimate the first one, beginning with 8qZ11§LTéZIQ§TT with I; < Is : it can be estimated in
two different way, according that we use ((3.2)| or [(3.45)

&
(1+ lg)(L +5)27"

102 G771, (5.9)
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€ 5 I~
T 102" gr7|. (5.10)

(1+lg))2(1+5)2
The term 0, 2% (gy) L70Z2G77 gives the contributions |(5.3)|and |(5.4)l The term 0, Z" g, 702 gy
gives the contribution

g g
1,~pr min )
! <<1+ la)F (1 +8)27" (14 |g))2 (1 +s>%> (5.11)

(s|a§Zfby v ql020,27b] + %\Zfasagb\ 410,99 27b] + S%\Zfagbo ,

where we have estimated 9,271 g7 thanks to|(3.53)|or|(3.52)}, and we have estimated 9Z2 g, thanks
to (2.22)1 Thanks to the estimates [(4.70)| and |(4.66)| the term 9y, Z g770Z"2 g7 can be estimated
by [(5.1)} [(5.3)[ and [(5.5)]

We now estimate By7. First we note that in generalised wave coordinates the terms involving
0%Z'G are absent. Moreover, thanks to Proposition we note that there are no terms involving
03092, 03710 or 93 Z1h.

The terms in Z1 (g — m)0?Z"2g, with I} < I < I give similar contributions than the terms in
A, noticing that

_ 1 1
002"7g| < ——|0z" |, 07279 S ——0Z"Tg|.
! 951 gl, | glwlﬂq,\ 9|

The terms of the form (002" g)Z2g, with I; < I give contributions
€
(1+ g (1 +5)27"

€ ~
+ 1q>Rm|ZIQQ|a (5~13)

|2"24], (5.12)

or [(5.7)} The other terms are of the form 8§Z hgrr Z2 g, They give contributions

€

\Z%2 G717, (5.14)
(1+5)(1+|q)2 "
g
lyso———| 22577, 5.15

or [(5.5)l We now estimate the terms involving G : they are
Z1(G0uagrr),  Z'(97007G*).

They give contributions

1 ’ a7l
—lz'el+1az'a) (5.16)
< <5>Zf§ gy ) (5.17)
7T+ —=2°917 |, -
(1+s)(1+ g2 1+s

where we have used the estimates |(4.20)| and |(4.57)| to estimate Z1G for I < &.

49



The case LL We now turn to Arr. The new terms are those who contain three times a L vector
field : they must also contain three times a L vector field. They are of the form

Z"OLgLrdrgrr), Z"(0pgLidrgrr), Z'(Opgrrdrgrr) Z'(0ngLLdgrL).
We treat the first term. Thanks to Proposition , Z1(0pgr0grL) is equivalent to
7'(99:091),

and consequently gives|(5.6) or either|(5.9)|or (5.10)1 The term 0L, Z" (g) LLOLZ 2 g with I; < Iy
gives|(5.3) BLZII (gb)LLGLZbgLL with Iy < I gives (5.7)l The term (BZZI1 (§)LL6'LZI2 (g9o) . with

I < I gives, thanks to the estimate |(2.20)|on o},

€ 1
(14 |q))2 sz~ 1+ gl

2
l,sr (assz\ + g\asangm + Z2|angb|> (5.18)

and the term 8LZ11§LL8LZIQ (9o)rr with Iy < I gives|(5.8)| The second term give contributions
similar to the first term, except for dpgr0r(gs) Lz, which give [(5.11)l We treat the third term.

The terms 02 gr10,2"2gLp with I < I give contributions |(5.6)] |(5.7)[ and |(5.8)l The term
OLZM g0, Zgyy, with I} < I < I is estimated by

1

Z'grL). :
(RS ETRaPA o

The term 6L§@8LZI§LL is in IQLL, and it can be estimated by

e

T 02" gLl (5.20)
(1+5)277(1+ |q])

The term 9,211 G,0L 72 (gp) L1 can be (roughly) estimated by (5.11)|, thanks to the estimate|(2.20)
on o} ;. The forth term give contributions |(5.6)} |(5.7) and [(5.8)l We turn to Bry. The new terms
are of the form

oLLZgrZgr, L2 gL Z"grL,
with Iy < I5. The term 8@211§LLZI2§LL gives contributions either

3

12" gLL] (5.21)
(1+[g)2(1 + )27

or
9

1Z'gLLl (5.22)
(1+Jg)2(1+ )2

according that we estimate gr; with or [(3.44)l The crossed terms between g and gy give
contributions |(5.15)| or |(5.18)] The second term give contributions |(5.12)] [(5.13)] or [(5.7)]
We now estimate the terms involving G :

ZNGT0rgrL), Z'(gL70LGT),  Z'(g170LGT).

They give contributions |(5.1)} [(5.16)| or |(5.17)] where we note that

1
1+ |q|

0,2'G| < \Z'G| + 1071 G|
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The case UL The new terms contain three times the vector field L, so they contain twice the
vector field L and once the vector field U. The terms containing two derivatives Jr, are of the form

Z"0Lg9rvdrgrr), Z'(0rgrrdrgur)-

The second term can be estimated in the same way as Zf(ﬁégLLaLgLL) in the case LL. We now
treat the first term. We consider Z!(9,9r0019Lr). We decompose it in

ZNOL(Gru + 090)0Lgrr) + 2 (0L(oLy)OLgLL).-

Thanks to the Propositithe first term is equivalent to Z!(0g0,grr) and gives contributions
(5.10)

(5.6)| or either |(5.9)| or The second terms give contributions |(5.18)[ or |(5.8)l The term
Z1(01gru0L(ge) L) gives contribution [(5.3)] |(5.4)] and |(5.5)] The new terms involving a good

derivative are the following (with I; < I)

0,21 GLLdrZ"grr, OLZMgLrorZerr, 002" grTorZ"gLL.

The third term can be bounded by [(5.1)l The first gives the contribution |(5.20)l The second term
consist of

OLdrLOvgrr, OLgrLon(Gur + o), OLgLLooT .

The first two are in Qs 1. They can be estimated by

1 1 _
£ min : 0217, (5.23)
((1 + |q])(1 + s)%*P V1+sy/1+ |q!>
1 g
>R 3 1_
(1+1g)2 (1 +5)2 7 (5.24)

(s|a§szy + 020,276 + 1127 8,02b| + |0,05 27| + %\Zfagm) .
s s
The third can be estimated (loosely) by We turn to Bry. The new terms are of the form
0L0LZ" gurZ"grr,  OL0LZ" (96)LrZ"gur, 0LOLZ™ (96)urZ"GLL.

The first two terms can be estimated by [(5.21)|or [(5.22)] [(5.18)[and |(5.15)] The last term would not
have enough decay, but it is actually not present : such a term could only come from gy Or H U and

more precisely from 8L6U. However, according to the definition of éU, this term do not contain
terms in Jr,gp.
We now look at the terms involving GG. They are of the form

ZN(G"orguL), Z'(grvoLGT), Z'(grLouGT).
Let’s look at the order one term in GG. They are of the form
Z10,GY), Z'(oyGh).

The first term has been introduced to compensate the bad component R?,L of the Ricci tensor
of gp. The second term gives a contribution which is |(5.16)l The quadratic terms give the same
contributions as in the LL case.
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The case LL We look at the term involving two bad derivatives. They are of the form

ZNOpgrLdrgrr),  Z'(Ongridrgrr), Z'(Opguvdrgrr), Z'(OgurdLgur)-
Using Proposition |(4.1)] the first term can be estimated by

_ 1 .
0.2 g1l (102977 + 11291+ 120014 )

so this gives contribution [(5.9)] [(5.13)] and |(5.18)l The term Z1(9191.0LgrL) Would come from
Pprp. We can check that it is not present. The third term is in /{Q . Thanks to the wave coordinate
condition, it is composed of

ZNG*oLgrL) Z"(0g0rgrr) Z'(On(gn)vvoLgrL)-

They give contributions

g2 € _
min , g1, 5.25
<<1+s>3 <1+s><1+\qr>1—4p>‘ 9 (529)
' 1 1 (1Z'G| +102'3) (5.26)
£min , ql), .
(1+s)277(1+q)) VI+sy/1+]q|
. € € 1 q I 9,12
1,>x min , 0, Z70| + 210,00 270) + | Z1020]) ,
“ <<1+s>%p<1+|qr>3+5 <1+s>%<1+|q\>3+“> 1+!q\< s s )
(5.27)
g I~
]161>017+8|82 g1 (5.28)

or (5.23), The fourth term is equivalent to the term Z!(0pgy0pgrr) which has already been
treated in the case UL.
We go to Brr. The new terms are of the form

OLoLZ" g7 grr,  0L0LZ" (90)rLZ"g1L, OLOLZ™ (96)vvZ2gLL.

The first one is in /Q 1, and gives a contribution |(5.21)|or|(5.18)l The second term would come from
grLoLF L but (see the analysis of the wave coordinate condition), in F'*, there is only one order
one term involving a derivative L which is drgyy, consequently the second term is not present.
The third one is in @ and give a contribution in |(5.27)[and |(5.28)l The terms with G consist in

ZNGTorgrr),  Z'(gproLG7),
We calculate 9,G* thanks to |(4.44)

92(qx(q))

1
0,G* = ;GL +2(0,0)% + h(6,2t) + 0,G*.

2
The term 2(9,¢)% + S(ax(@) p 3 0,GT is here to compensate the term (9,¢)% which comes from

the right-hand side of |(1.1)|and the bad component R%7L of the Ricci tensor of gy. Let us note that

this term is actually wh(ﬁ, s). However we have

92(ax(q))

r

33(6»(((1))0(8 .

(h(8, s) — h(8,2t)) =

so we can neglect this term, compared to the terms which are already present in R'. The terms
which remain give contributions |(5.25)} |(5.3), and [(5.26)] O
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We now give a similar result for ¢.

Proposition 5.2. We have

3

~ g ~ g -
| Z7GLL] + |Z7G1] + |Z74]
VT Fs(1 4 g))3% (1+8)2(1+|q))2% (1+8)2(1+|g))2%

g £ _
——0z1¢| + ziat| + 1021 ).
(1+5)2" (1+5)7(1+ |qr>%*4p‘ (1+5)y/1+ ]

0,271 <

+

Proof. First we note that since ¢ is supported in ¢ < R + %, the support of ¢ and the support

of go — m are disjoint, consequently the support of ¢ and the support of Fy, G and GU are also
disjoint. Therefore we have
Dg¢ = gaﬁaaaﬁ¢ + QGLasd)'

Consequently [y Z T is composed of terms

ZNGLLoiz¢,  Zhgry0,022¢, ZNgLLoizte, ZhG1o.z2™¢,

with Iy + I = I and Iy < I. Therefore [(3.1)] [(3.2)] and [(4.57)| yield the estimate of Proposition
.2 O

6 Angle and linear momentum

The aim of this section is to prove Proposition Roughly speaking, the estimates of Proposition
are obtained by "integrating the constraint equations". For this, we separate in R, the linear
terms in g and G from the quadratic terms, which are the same as the quadratic terms in gy, .

We denote by I' the part of the Christoffel symbol of g which involve derivatives of g. We note
O((9g)?) the quadratic terms : they are determined in Proposition

Roo = (Ry)oo + 9oT'0g + &Ly — 30T 9o — doTh; + O((99)°)

= (Ry)oo + 0iL'ho — oLl + O((99)?),

Rii = (Rp)ii + 0oL% + 9,1, — oLy — &ij +0((99)).

We note that _ B
—9oLly; + L'y = —000igio + O((9g)?).

Consequently

2((6t¢)2+!V¢\2) = (Rb)00+(Rb)11+(Rb)22+3if60+ajfgi_aifgo_aifgj_81‘30%0‘1‘0((89)2)- (6.1)

Moreover we have

82

(oo + (o) + (Roa = 202ax(@)h(0,5) + O (S ncoenn )

r2

We note that when R < ¢ < R+ 1 we can write h(0,s) = h(6,2t) + O <( 52)3,) . Consequently, if
1+s)2
we integrate |(6.1)[ over R? we obtain

/(at¢)2+|v¢|2 :/h(0,2t)d0+0< e >+/0((ag)2).

1+t

We calculate _ . N .
Roi = (Ry)oi + oLg; + 93, — 8oL, — doL'y; + O((9g)?),
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and consequently

2

O G @)no.5)+ Fx(aotsin)+0 (5

20,001 = ]lequH) +3jf%1—3031§jj+0((59)2)-

(6.2)
By integrating [(6.2)| over R? we obtain

/at(bal(b_ —/Cos( Vi (0, 2t)d0+0< ) /o (99)?)

Moreover, thanks to Proposition the quadratic terms in [g,, can be bounded by

g2

(1+5)2(1+[g])2~>

(see also the proof of Proposition for more details). Consequently we have

A e
=0 ——|.
' <<1+s>%>

7 L™ estimates

7.1 Estimate for /] < N —9
Proposition 7.1. We have the estimates for for ] < N —9
Coe + Ce?
(145)27
2
Z219] < CO&+C€,4
V1+s(l+g))2™

This proposition is a consequence of the following propositions.

1Z'g| <

Proposition 7.2. We have the estimate for | < N -9 and g < R+1

g2

(14 5)2737(1 + |q])

0z%¢| < L g < R+1,

and OZ1¢ =0 for ¢ > R+ 1.

Proposition 7.3. We have the estimate for | < N —9 and ¢ > R

2

3
0279 < 7
(1+5)2(1+ g%
and for g < R
2
0275 < -

T4+ al)

Remark 7.4. The estimate in the region ¢ > R is not sharp for the decay in q.

The following lemma is a direct consequence of the L>° — L* estimate and is proved at the end
of the section.
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Lemma 7.5. Let B,a > 0, such that 8 —a > p > 0. Let u be such that

1 1
Dul S , forq <0 |Dul S

(1+5)27(1+|q|) (14 8)2(1+ [q]) 8

forq>0

and (u, Oyu)|t=p = 0. Then we have the estimate

S m

We first assume Proposition and and prove Proposition

Proof of Proposition [7.1. We have

g2 g2

<
(145272 (1+[q]) ~ (14 5)>~*(1 + [g]) 1+

B2%¢| 5

therefore the L™ — L estimate, combined with Proposition [I.4] for the contribution of the initial

data yields
Coe Ce?

- \/1+s\/1+!q T+s(14|g))z—

where C' is a constant depending on p.
The estimate for g follows from Lemmawith a=0,08= %+5 —o combined with Proposition
L4

29| <

Pl pp—— o
_\/1+5\/1+|q (1+s)27°
which concludes the proof of Proposition O

Proof of Proposition[7.9 We have, thanks to Proposition

3 9

027¢| < | Z G| + |z
VIFs(1+|gl)5% (1+5)2(1+|g])> %
& 9 =
+— = |07+ 1Z'G | + 077 ¢
(1+s)27° (1+5)2(1+ |q)2~% (1+s)yv/1+1d]
£ £
< — A 125
~ 3 3
VITs(1+|gl)>* (1+5)%(1+|gl)z%
E £
— 1Z21+2| + 17/ : NViasr)
(1+5)27"(1+q]) (1+5)2(1+[g))2~% (1+5)2(1 + |q)2

For I < N — 9 we can estimate Z!gy;, thanks to |(4.12)

Z0G0r] < M’
(1+s)273%
we estimate Z7g thanks to|(3.4)
- 5
|ZIQ| S 14 i3
(14s)277°
we estimate Z/*2¢ thanks to|(3.3)
€
12729 S ————-
(14s)27%
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and we estimate Z/G" thanks to Proposition [(4.11)} with Proposition to estimate Ay,
2
Z'GH g T
(1+)(1 +[a])>

Consequently we obtain

| ; |< 82 52
0z1¢| < -
(14 5)2-30(1+|g)z~% (1+5)*73(1+1q])
52 82

! (14 5)3(1+ [g)) % R

82

<
(14527 (1+gl)

O]

Proof of Proposition[7.5 We start with the region ¢ < R. We estimate first @z which contain
the limiting contributions. Thanks to Proposition [5.I] we have

£ _ 1 22 -
QLLl S (8ZIQTT + Zlg ) + + _ 821G
ol i P g el ) G e ) 2

1 _
€mln< T 1) (|0Z"g] + |Z"'G*))
(1+lql) 1+8)2 =2 (14 g))2(1 4 )2

€

<<1+s>3 N S NP

- €
|8Zlgl| + S \ZIQLL| + s.t.
(1+5)277(1+q])?

where s.t. denotes similar terms. We estimate 9Zg; in two ways : thanks to we have

e

0275 <
(1+|g)(1 + )23

and thanks to [(3.44)| we have

g
(1+1]g)z (1 +5)7

02311 <

Consequently

g2 n € 0275 < g2 n g2
1 < — .
(roie Ars)+la)— T+ 0+ (14 )3(1+]a)i

We estimate Zgy;, thanks to|(4.7)

9 82

1Z'g1L] < — :
(14 8)27P(1+ |q|)2 (1+s)274(1 + q])

Therefore in the region ¢ < R we have

82

(1+8)2(1+|q))z~%7

'Qre| < (7.1)
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We now estimate the other contributions in JZ7§ : they are given thanks to Proposition by

E
(1+5)27"(1+|ql)

€ 1
‘ZI+2§|—|— |Z]+1¢|+7|ZI+1G|.
(1+5)2(1+ )2~ L+s

We estimate Z/12g thanks to[(3.4), we estimate Z/*1¢ thanks to|(3.3)], we estimate Z/*1G thanks
to Proposition with Proposition which is now proved to estimate Ap. We obtain

g2 g2

+ .
(1+1]g)2~%7  (1+8)2(1+]q)2

We now look at the region ¢ > R. We estimate the new contributions in )17, which are given by

02"g] <

3
2

(1+s)

g g
(14 5)2 (14 |g))2H0 (14 5)2(1+|g])2 0"

(102270 + 01020, 2"0] + L 270,080 + 5|27 550
(L+1gl)>"" (1 +5)>77 § s

€
1+s

1,55 min ( ) g\zfagm + 1R 02115

+Ilq>R

|z, |

I
<1 -
MR ) (1 Jal)

E E
(1+5)2 (14 [g])3+ (14 5)2(1 + |g)2+0F7

+ 145 g min ( ) <q|836921+1b| + %|ZI+18§b|>

We estimate 9509 Z!b thanks to[(2.4)| (and the Sobolev embedding H'(S!) ¢ L>(S!))

10509210 S ————,
(1+5)7%

we estimate Z793b thanks to [(2.3)]
21658 < €,
and we estimate Z/*1g; thanks to|(3.52)

9

(1+]g)z VT +s

12| <

Consequently, we obtain for ¢ > R

g2 g2

QLL| < +
(1+8)2(1+ g2 (1+g)2T (1 +s5)

T (7.2)

The estimate for M can be done exactly in the same way, which concludes the proof of Proposition

(L3l
O

Proof of Lemma [7.5. Let to > 0. We consider times ¢ < to. In the region r < 2¢ we have |q| <t <t
and s < 3t < 3tg. Therefore
(1 + to)a+p

(1+[g)'5(1+s)2*5

In the region 7 > 2¢, we have § <|[¢| <randr <s < 377", therefore

Dul S

Dul S

1 < (I+tg)err (14 to)>tr
(1+ r)g_a+1+5 ~ (1+ r)g_o“"ﬁ ~ (1+ |q‘)1+§(1 + s)%*‘g

)
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provided g +p < % + 06 —a,ie. f—a > p. Consequently, the L — L estimate yields, for ¢t < tg

< (1 + to)aer

U
If we take t =ty we have proved
1+ t)ate
lu| < L’
V1+s
which concludes the proof of Lemma, [7.5 O

We now give the L estimate for k, defined by [(3.7)]

Corollary 7.6. We have the estimate

2
2Nk S
(14t)27°
Proof. This is a direct consequence of Lemma since the initial data for k are 0 and Uk satisfies
the same estimate as [g. O

7.2 Estimate for ] <N —7

Proposition 7.7. We have the estimates for for I < N — 7

Coe + Ce?
(14 s)z-30
Coe + Ce?
(145)22

1Z"g| <
1Z7¢| <

This proposition is a straightforward consequence of Lemma Proposition and the fol-
lowing propositions.
Proposition 7.8. We have the estimate for | < N —7

62

BZ7¢| < g
(1+s)277(1 +[q])

, < R+1,

and OZ'¢ =0 for g > R+ 1.

Proposition 7.9. We have the estimate for | < N —5 and g < R

62

[mbS ; :
(1+s)272(1+q|)

and for g > R

g2

02'g] < -
2

(1+35)2(1+ g2
Proof of Proposition[7.8 We have, thanks to Proposition

e 9

0z < 1 Z"G1L] + VA
VIFs(1+]q)z% (1+5)2(1+|q)2%
+ — 1Z21+2¢] + —————|Z'G!| + [1Z2+g).
(1+5)277(1+q|) (1+5)2(1+|g])z (1+5)2(1+q))2
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For I < N — 7 we can estimate Zgy thanks to|(4.11)

3
’ZI§LL‘ < 8(1 + IQDQ
Y1tz
we estimate Z7g thanks to |(3.49)

1
|ZI§| 5 5(1 + ‘QDQ

(1+ s)%_p’
we estimate Z/*2¢ thanks to |(3.48)

and we estimate Z/G" thanks to Proposition [(4.11)

2

(1+s)(1+g))7

yaleglbs

Consequently we obtain

2 2
|DZI¢| S’ 2 2 1-4 2 2 1-4 + i
L+ 20+ [a) % " T+ A+ 1a) % (11 s/l t]dl
2 2
15

g
A+ 0+1) %  (1+s)

(N1

which concludes the proof of Proposition

[
Proof of Proposition[7.9. We start with the region ¢ < R. We estimate first Qzz, in the same way

than in the proof of Proposition by

9 c )
((1 +s)2 " (1+s)(1+ |q‘)1_4p> 0215, | +

We estimate 9Z7g; thanks to |(3.43)

= —|Z"gr1
(1+g))?(1+s)277

E
1027G1| S .
(1+]g)z(1+5)2"

Consequently

€ n € ]8Z1'§]< €2 " €2
1 ~ .
(1+s)z (L s)L+]d)= (1+8)2P(1+ g2 (14s)27"(1+ )2

We estimate Z/gpy thanks to|(4.11))

(1+ la)2(1 + )27

2

e
|Z% g1 < '
(1+]g))2 (1 + 5)22

Consequently

2
g
Qrr| S

(1+8)272(1+q|)
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We now estimate the other contributions in JZ7§ : they are given thanks to Proposition by

3

- : 1z 2,
(1+ )31+ |q) (Lt )3(1+ [qhi I+

We estimate | Z/72g| thanks to|(3.49) we estimate Z/*1¢ thanks to|(3.48)|and we estimate Z/T1G
thanks to Proposition with I +1 < N — 6. We obtain

|Z"+%g] +

g2 g2 g2

Lrs) 2t gD} A+PA+1aD " (11 s21 et

0273 < 1QLe| +

In the exterior region, the same estimates as for I < N — 9 are valid. O

8 Weighted energy estimate

8.1 On Minkowski space-time

We consider the wave equation on Minkowski space-time Uu = f. We introduce the energy-
momentum tensor associated to [

1
Qap = Oqudpu — ima/gm“”auuayu.

We have
D*Qap = fOpu.

We also note T' = 0%, and introduce the deformation tensor of T'
Tag = DaTs + DgTi, =0
where D is the covariant derivative. We have
DYQasT?) = fOru+ Qusm™ = foyu. (8.1)

We remark that 1
Qrr = 5 ((Oru)? + |Vul?).

Proposition 8.1. Let w be any of our weight functions. We have the following weighted energy
estimate for u

2 ( / QTTw<q>dx) +5 [v@ ((asuﬁ T (39“>) o < [ wlg)foulds.

Proof. We multiply [(8.1)| by w(q) and integrate it on an hypersurface of constant ¢. We obtain

-4 ([ @) = [w@sons [orare, (82)

QraDw = —2u' ()M EQrq = W' ()Qrr = w'(q) (8tu(8tu + Opu) — %(-(8tu)2 + \Vu]Q)) ,

We have

S0
1 pu'\”
QroDw = 3 ((asu)2 + <iu> > w'(q)
which concludes the proof of Proposition O
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8.2 On the curved space-time

We consider the equation
Ogu = f,

where g = gy + ¢ is our space-time metric, satisfying the bootstrap assumptions. We now introduce
the energy-momentum tensor associated to [,

1
Qaﬂ = aauaﬂu - igagg”’jaﬂu&,u.

We have
D*Qap = fOpu.

We also note T' = 0%, and introduce the deformation tensor of T'
Tap = DoTs + DgTy,
where D is the covariant derivative. We have
D*(QapT?) = fOru + Qapm®”. (8.3)

We remark that 1
Qrr = 5 ((8tu)2 + \Vu|2) + O(E(@u)2).

Proposition 8.2. Let w be any of our weight functions. We have the following weighted energy
estimate for u

2
% </ QTTw(Q)dU0lg> —|—C/w'(q) ((3su)2 + <62u> dvolg> < 1—6|—t w(q)(@u)2dvolg+/w(q)\f@tu|dvolg,
where dvoly = +/|det(g)|dz, and since —1 < |det(g)| < 3

i( / QTTw@)dvozg)w [ <<asu>2+ (ae“)dx> S5 [ w@@urdet [ w)|fould.

~14t

Proof. We multiply [(8.3)| by w(q) and integrate it on an hypersurface of constant ¢. We obtain

- % < / QTTw(q)dvolg> = / w(q) (fatu+Qamr"‘5) dvol, + / QraDwdvol,. (8.4)

We have
QraDw = =2 (9)g°LQra = w'(q)QrL + ' (q) (9°L — m*L) Qra.-

We calculate

Q11 =0u(du + Opu) — % (= (3)? + |Vul?) + O (gL (0u)? + (g — m)7vOudu + (g — m) L (0u)?) .

LL(éu)Q) )

2
:% ((8su)2 + (afﬂu> ) + O (gr.L(0u)? + (g — m)vOudu + (g — m)

We estimate the metric coefficients in the following way : first we estimate gy thanks to

(1 +lql)

| <
lge —m| S s

)
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thanks to |(4.8)| we estimate

~ (1+lq])
gLl < 3_
(I+4s)277
thanks to we estimate
G| < ev1+lgf
Vits '
and thanks to we estimate
€
9oLl S ————-
1+s)27°
Consequently we have
Opu\ 2 (I+1q]) e/ 14 |q| =
a, 2 Yot q / q
QraD*w = ((asm (%) ) aro@@+0 (M w?) wig o (Z M,
SO
o Opu e(l+
Qa0 = (0 + (2) ) 1+ oo +0 (G @up ) wio)
H / w(q)
and since |w'(q)| < T+l
D% — 2 Ogu 2 / ew(q) 2
QroDw = | (Osu)”+ (— | | (1+0(e))w'(¢) + O (Ou) (8.5)
r (1+41)
We now estimate the deformation tensor of T'. We have
Tap = ﬁTgaﬁ = 8tgo¢,3-
We obtain
T 19, c
LL =0rgLL = 111
T 19, 0 c
UL = 0rgur = 1
€ €
WLL—aTgLL—O( )+O ;
1+t (1+|g)(1+1t)z="
€ €
7TUL—3T9UL—O< >+0 :
141 (1+|g)(1+1)z"
€ €
oL = OrgLL ( ) +0 ;
- 141 (1+|g)(1+1t)z"
myu = Orguu = O <1 +t>
Consequently, the terms QY r, QVEmyr and QUYnyy give contributions of the form
€
ou)?. 8.6
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We can calculate

1 _
QL = OLudpu — QQLL (2gLL8Lu8Lu + ((")Uu)Q) + 0 (gLL(8U)2 + (g — m)7poudu + (g — m)@(au)z)

(1+lql)

= (dpu)*+ O <8(1 ) (8u)2> + 0 (e(du)?) .

Consequently Q*Erp gives the contribution

c  (Guw (8.7)

& w 9
a0

The terms QELry;, and QEVmpy also give the contribution |(8.7)]
Thanks to |(8.4)} [(8.5)} [(8.6)| and |(8.7)| what we obtain is

% ( / QTTw(q)dvolg) + % / w'(q) ((asu)2 + (aff‘>zduozg>

< 1 i " /w(q)(au)2dv0l9 + 8/ Oﬂ(j))g_p(auﬂdvolg + 5/w(q)|f8tu|dvolg.

All our weight functions satisfy

w(q) <
(R

therefore, for € small enough, we can subtract from our inequality the term

E/M(Q)S(ﬁu)zdvolg,
(1+1ql)2"

and we obtain

% < / QTTw(q)dvolg) +C / w'(q) ((3su)2 + <afq“>2> dvoly < 1%1& / w(q)(du)*dvol + / w(q)| fOpu|dvoly.

This conclude the proof of Proposition O

9 Higher order L? estimates
9.1 Estimate of 07§

Proposition 9.1. We have

1 .
wa 0ZNG|| < Coe+Cez(1+1)%

L2

and .
_ 2
/ [wt@202%5], ar < 032+ O 1 1.
0

Corollary 9.2. The proof of Proposition gives us also

/t(1 )2 Hw;(q)%ézNgH; dr < C222 4 C3(1 + 1),
0
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Corollary 9.3. We have
< Cer(141)%

1
wa 0ZNk
L2

and .
_ 2
/ Hw;(q)%aZNkHLZ dr < Ce3(1+ 1)
0
t _ 2
/ (1+7)°2 Hw’l(q)%aZNk:HL2 dr < Ce3(1+1)%
0

Proof of Proposition[9.1 We use the weighted energy estimate in the curved metric. Thanks to
Proposition [8.2] we have

jt (/(8ZN 9)*w1(g)dvol,, ) +C/w1 s

Sty [w@0292de + [ wi@@:279)0,2 5dvo,.

1—|—t

And consequently

'wfazw + [ |ustartoz g ar
) , t (9.1)
aZN go)| + / — aZN g dr+ w1 (0, ZN )0, 2" gdvolydr| .
.2 0 147 L2
First, thanks to we have
'e 397N ’ ' e’ 3 4
207V5)| < | ——— <+ 1) 2
| |wtozan| < [ g setaen 92

We will decompose DgZNﬁ = AN + BN + OV where

/Ots_l(l +7)

and OV is dealt with in a specific manner (like integration by part). We note that since —% <

62

1
2 AN
’wa L2 ~ (1 +t)172p7

2
dr <31+t

1
‘wf BN

L2

det(g)] < 3, this factor do not matter when we study A" or BY. However we need to keep

it when we do integration by parts, so when we study the CV terms. A term AN will give the

contribution
< /0 Jew? AN 12

/

and a term BY will give the contribution

t t
/ S [t B s + /
0 0

53

53(1+t)4p+/t (1 +1)%
o (L+7)t- e

1 ¢ g3
207Ny < | ——— 1+t)%, (9.
wioz's| < | Grses s 03)

/wl 0,2V ) AN dvol,

L2

2
aZN

/w1 (8.2 g)BY dvol,,

L2 (9.4)
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We estimate DgZN§ thanks to Proposition

0,279 < 1V QI+ [V M| + [V ME.
We start with 1Qpp,

€ - 1 g2 €
M Qe < (192 )+ + & ) 102,
I C ISP R 1+ q| (1+s)2 (L+s)(1+][g)t=
1 1 5N~
+emin 1o 1 1 (|aZNg’ + |ZNGL|)
I+ 1) +s)277 (1+]g))2(1+5)2
+14>p min T - 550 I : 5 7‘ N89b| +lg>r7—— |8ZN 1
(1 930+ )T (4 )1+ [gh 7+ I+
£
T (51022%0] + ql620527 | + 212V 0,058] + 512" 030
ql)2 s)2
We estimate the contributions term by term
t 1 £ — 2
/ Ya4+7)||w —0ZNg|| dr
0 C g1+ 5)2 17
(9.5)
§€(1—|—t2"/ Hw 8Z ng dr
Se(1+0)"
where we have used (lfr’JW < wh(q) and the bootstrap assumption |(3.22)] We estimate
t 3 ?
2
/ el (1+7) 2G| dr
o g
2 [ w% N 2 (56)
<e(l+t p/ 52 gLl dr
T a2
L2
S+
thanks to|(4.15)] We estimate
1 e 52
w2 VAT RS 7Hw28ZNg||L2 — . (9.7)
(14 5)(1+ ) PR T+
We have
e (147) ||w dT
/0 RV \/1 + Iq
. i (9.8)
se [ |uiwtoz g, ar
0
S+,
1 1 9
w2 2
wi Ll < € 1 N L2 €
e S ([ et ) 5
(9.9)
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thanks to|(4.39)] We estimate

1 €
w2]l>R 27N
CT A I )R

L2 X (9.10)
3 2

1 2 €
< 2r7N7 112 <
~ € </ (1 T ’q‘)1+20.(1 + 8)3_2/,”692 bHLQ(Sl)?"d?“) ~ ‘(1 T t)l_pv

where we have used [(2.5) We can bound M

1 1
MF| <— (1025 zNg
M8 S (1027914 12

9
TP (NP R ( 105 270] + 4l0s0p 2" b] + leaebo

g
+ )
(1+ g2 (1 +5)2"

(s|a§Zfb| + q|0%9, 27| + g\zfasagm n S%|zfagby) .

Consequently the estimate for M¥ will also give the remaining of the estimate of Q1. We estimate

1 ¢ 1
2 aZN~ ZN~
ot o5 (10231 + 129

1 £ 7 1 Ip2
wi ————5——0509Z" b 2 <e (/ i+ |q|)1+20_2p”3sz bHHl(Sl)TdT

(1+|g|)2+or
dr

t
/ 114 7 |[w
L2
1+T T 2
| L S 2102 Dl 9.12)

2 2 Ip2
S/R (1 +|q|)1+2072p (/0 (1+s)°)0:2 b\H1d5> dq
S (L+0)%,

1
<2 -
L2N€ Y= (9.11)

€ 1 ~
ST H“’f 027
L

L
and so

1 IS I 2
W 0,021
(1+lgl)2™="

where we have used |(2.14)| and |(2.15)| The term involving 92 Z™Vb has already been estimated. We
now estimate

1 €
w? PR VAL
Tl

1
1 2
<e (/ 292272, rdr) ,
> (1+ |g)t+2e ° &9

L

and so

/0t5_1(1+7-) w

where we have used [(2.13)| and |(2.16)}

2
e

(1+ g2t (1+5)2"

L VI

5852892119

t
dr S 5/0 (1+8)> 201102 270 31 g1y ds S 2(1+4)*
2

L
(9.13)

1

9 . 2
s (/ A 8)2"!8521by§p(81)rdr> :
2

1
2

P+ g))2 (14 8)z P

w 0508 70

L
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and so

/ e 1)
0
(9.14)

where we have used |(2.6)l We now turn to the term involving 93 ZVb. Unfortunately, we don’t have
a good estimate for 9y Z"'b. To treat terms of the form

2
9

271
8,032
(1+ a3 (1 +5)2 A2

Ll NI

t
dr < ¢ / (18) 2|0, 08 27|21 gy ds S (1)
2 0

L

~\ 4
(091) 5 x(0)95 2D,
we remark that

(05) X (@)% 2N = Oy((r29") 405 x(0)90Z )
< — 03 7Vb| + :
(1+5)27P(1+|g|)3+)

10,022Vb| + c

102092 b|.
(1+5)2P(1+|q)z*° (1+5)7P(1+|q)z*°

and all these terms have already been estimated. We easily check that q(r2¢%?)~1(991)x(q)09ZNb
satisfy the same estimates as the one we want ¢ to satisfy : for instance

s2P

2 _00\—1 9~ N2 N2 4 4
0 B ZNb2dr < | ——————|32Z"b dr < el(1+1)%
/RQUHI( )" 091x(q)9 Z b xw/(lﬂq,)uzp!\ 0 Z 0|2 gydr S e (L+1)

The terms Qu and Q1 can be estimated in the same manner as Qrr.
M can be estimated by

g N~ 9 57N~
A + o0z +
1—1—3‘ gl 1+!q\\/m\ gl

All these terms have already been estimated, except the last two. They can be estimated by

€ N N
—_ —I- 7V G+ RYAME:
LA e

N 27N N ~L N 3 " 2
X (@)(0.002°0] + 510220 + 112V G |+71+ 1 (9) 'z a/oo(ang) rdr

(= xta) (5) 102+ (1~ x(a)T (%) 0,2Vn).

1
* (147)2

We estimate =T (%) [ZV0 [ (9,¢)*r'dr’|. We have

HaZN / (0y0)2r" dr’

102" ¢|| 2 (s1yr'dr’
L2(s) /\/ \ql)*“‘”

1
,Sus )20 ZN

SO
t 2 t 1
/5_1(1—1—7) dT,S/us’( )20 8ZN¢H dr <31 +)%.
0 L2 0
9.15)

The contributions [(9.7)] [(9.9)] and [(9.10)| correspond to AN, and the contributions ,
1(9.11)} [(9.8)] |(9.12)} |(9.13)} [(9.14)] and [(9.15)| correspond to BY.
The terms we will now estimate correspond to C. We now estimate the contribution of

11 _
‘wf mTaZN / (0y0)2r' dr’

~

(1 _:7,,)2 (1 - X(Q))T <€) 8QZNh.
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which appears in 0ZVG. The estimates for ZVh are given by Corollary , but we do not have
bootstrap assumptions for 9pZNh. Consequently, we will estimate this term with integration by
parts in the energy estimate. We calculate

/0 t / wl(ljmﬂ (5) 0= (@)@ 2" )02V G)dvolyir
:/Ot/“’luir)T (5) (= x(@)(ZV0)(0:02 " G)dvoldr
s /0 J ot (5) (0= @) 0)(0.2V5) @y Tet(a) dads

[ () 0 xap @ w2 g,

t

0

) /Ot/wlr () a i 73 (1= X(@)(9:2% ) (027 G)dvolydr

t r
- /0 / 0, (w0~ xta) (5) vVidet(g)) o1 oy & WOz g)drdr
4 /O / wlmlr)gr(j_) (1 = x(@)ZV )0, 2VF) (Bp\/det(g)]) ddr.

We estimate

‘ /wl(lir)r (;) (1= x(g))(ZNh)(82ZV)dvol, ]t

0 (9.16)
<flwi o (5) 0 xt@)zVn| |wioz"g|  <en
~ ! 147 t L2 ! 2 ~
t 1 T N 5N~
i T)r (£) (1= x(@)(@:27 1) (02" ) dvoldr
1 1
wf Gy X T () 2:2%| w075
T 12 12
(1—x(9)* . (7 N2 e Lo
/ ]. + 7 /’ll)lﬂr (;) ||(9SZ hHLQ(Sl)TdeT -+ /0 m wfaZ g L2 dT
63(1+t)4p+/0 (1+ )05 ZN R 72 g1y ds
and consequently
wig )(1 — (@)D ZNR)(EZNG)dvolydr| < 3(1 + )% (9.17)

68



/ t [ - (wn(1 = XY (5) V@) (- (21002 Gats

1
T

"(q)207Ng

L2

and consequently

<+t (9.18)

Ot/aT (0 = x(@) (£) Videtg)]) (1ir)ZNhézN§dxtT

The last term can be estimated in the same way. The term x’(¢)s0?Z~b, which is also present in
R}W can be estimated in the following way : we estimate first the term

X' (@)s0sZ™ fa,
where we use the decomposition of 95Z™Vb|(2.9)l We calculate
[ w@x @s(0.2" 120,29V detlg)lrdras
=50 [ @Y @2 (@25 et @lrdrdd - 5 [ oyl (o) (@sr/detlg)) (2 £ (0.2 vt
-5 [ wl@X@s(2" 1)@ 25)idet(g)lrdrag
-5 [otwita det(g))(2” 202 T)dras 5 [ wr(@'(0)s(2” £2)(00,2° )V [det(g)rards
=50 [ @X @52 102DV erlglrdrdd — [ 0.(wn (@) @V TEHGD(2 £)(0,2V)rdrds
— 0 / )X (@)s(ZN £2)(8:2N )/ |det (g)|rdrdb + / Ai(w1(q)x (q)sZN f2)(0sZNG)\/|det(g)|rdrdf
o~ [ouwia det(g))(Z" £2)(0,2"G)rdrdt - / Ou(w1 (X ()52 for/[det () (0.2 G)rdrds

where we have noted

1

A= 2/wl(q) "(q)sZN 20,2V G/ |det(g)|rdrdd — /w1 (q)sZN £20,2N G/ |det(g)|rdrde.

We estimate, noticing that in the region x’(¢) # 0 we have t ~ s ~ r, ¢ is bounded from above and
from bellow and that |0s(s+/|det(g)])| S 1,

[

/wl(Q)X’(Q)(ZNfz)(atZNg)rdrdO‘ g/ot </|X( (2N f) Tdnm) (/Ix 10,27 Tdrd&)é

t
93 N~ N
< [ twtoz g+ [ [0 @IZY Rlfsdrar
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and so

/

t
/ w1(q)x’<q><ZNf2><atzN§>rdde\ SSL+H% 4 / (1482012 fallFa(enyds S 21+ 1),
0

(9.19)
where we have used [(2.15)} Noticing that [0, (w1(q)X'(¢)s/|det(g)])| < s we estimate
/a wi (q |det (g )|)(ZNf2)(8sZN§)rdrd6‘
3
5/ </\x’(q )(sZN f2)? ) (/|X (0:279) rdd@) + 5.t
<e / ) (q) 2027 ]2.dr + / |2+ DN @2 Rl
and so
/ O(wi(q)X'(q)s)ZN f20,ZNgrdrdd| dr < e3(1 +t)% (9.20)
where we have used [(2.15) m
t
/ /w1(q)x'(q)s(@SZNfg)(8SZN§)rdrd9 dr
0
t >
,S/ </\X'(q |(s05 2™ f2) rdrd&) </|X 0:ZNg) rdrd@) dr
0
t
Se [ (@202 adr + /0 [ 20+ D @102l o
and so .
| 1] wox @s@.2" 1) @.2°Gyrards| ar < 21+ 1), (921)
0
where we have used [(2.16) m We now turn to the estimate of A
|A] < ‘/wl )s(ZN £,)(02ZN g )rdrd&‘
(9.22)

+ )2 2N fol 2o lw?9zNg] 2 < 51+ 1),
where we have used 2.11. We now estimate the contribution of
X' ()55 2% fi.
We have

dr

[

t 1 ¢ g ~
5/0 /8(1+7-)4|X’(q)|||aSZNf1||%2(Sl)drdT+/0 m”“ﬁ 3tZN9HL2dT

/ W)X (@502 )02 G)rdrds

and consequently

/

t
[ @ @s(0.2% )@z Graras| S04 [ (109)10.2% e S 204007
0

(9.23)
where we have used[(2.12)] Estimates[(9.3)][(9.4)]} [(9.16)] [(9.17)} [(9.18)][(9.19)],[(9.20)} [(9.21)}, [(9.22)]
and [(9.23)| conclude the proof of Proposition O
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Proof of Corollary[9.3. We use the energy estimate

% </(8ZN§)2w1(q)dvolg> + C/wl(Q)(azN§)2

I

€ ~ ~ _
< T3 wl(q)(aZNg)2 + ‘/wl(q)atZNngZNgdvolg

we multiply it by (14 ¢)~2¢, and notice that

& (aro [ez9rne) s+t ([02'57u0).

Then Corollary can be proved with exactly the same steps as Proposition O
Proof of Corollary[9.5 We perform the energy estimate for k

% < / (aZNk:)2w1(q)dvolg> +C / w'(q)(0Z"k)?

S 1%% wi(q)(0ZVk)* + ‘ / w1(q)8: 2N g0, ZN kdvoly| ,

then the fact that the initial data for £ are 0, and that [y k satisfy the same estimates as [yg yield
Corollary O

9.2 Estimate of 07V,
We need the following corollary of Proposition

Corollary 9.4. We have

_ 1
0,285 = ZVR* + "M + Y ME + NQry, + 0 (T (%) 7239’“) ,

Proof. We expressed the 2-forms dg? in the coordinate (t,z1,x2)
dq* = (dr — dt)? = (cos(#)dz' + sin(h)dz? — dt)?

Therefore, we will have, in the coordinates x1, xo
T T r\ 1
(7 (3) omsde?) | ~0(7(7) one) @) =T (5) ;2 (whoO)gze + 5 (0)0bors)  (9:24)

| “and u?, are some trigonometric functions. O

where w,,,, w

Proposition 9.5. We have

< Coe + Cei(1 + )P,

1
H'LU22 8ZN§1 ,
L

/Ot Hwé(Q)%éZN@H; < Cpe? + ng(l N t)2p,
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Proof. We use the weighted energy estimate in the background metric g
1 ~ t 1= v
w30z n 0%+ [ k@025
1 t ¢ 1 t
S1Fo2 GO + [ T ludoz a0l + | [ [ w0z 50,2 vty
0 0

We decompose DgZNf]TT = AN + BN 4+ CN with

|
/0t51(1+s)

and C is dealt with in a specific manner. We start with VM

82

1
2 AN
'U)22A L2 5 (1 +t)1,p

2
ds Se3(1+8)%
L2

1
’wQQBN

€ 15 ~ 1
N < 02V + (\asz n \ZN@\)
(1+5)7(1+[g))z% (1+5)(1+|q)z" 1+s
£ £ 1 _
+ s [02Vg| + — |21+ ——12VG) + 02N G
(Hs)g,p\ 7l (1+S)(1+|q!)%*p| grrl+ 51270l + | |

1 1
+ emin —, T
A +1g)(A+5)27" (1 +]a])?

We estimate

- 1
0z | + zN )
(HS)JQ B+ 120w

£
(1+7¢)

1 _
w3 s 7%y
(1+s)(1+]q)3"

S o w927

2’

L2

1
where we used —22@2 _ < w) (q)% and so
(1+lgh27"
i 3 € 57N~ i ' 2 royE 5, N~|? 3 2
/z—:_ (1+7) ||ws —0Z"g dT,S/ e(1+t)” prl(q)EﬁZ g” , Sev(1+0)7.
0 (1+s)(1+]q)27" L2 0 L
We estimate
1
w3 € Y] I —— LR P
IRt e (T FE i e T
where we have used [(3.24)]
wi S _ggNgl < ’w ( )%aZN~‘ < &
2(14s)ir gLQN(1+t)1+2P 14 Nz~ 154
3 3
1 € N~ 1 Wy N~ €
w; f 97| ST gl S —
(1+s)(1+]q))2 " Lo LHt|[T+]g) L (1+¢)t=r
where we have used |(3.56)|
3 € 57N~ € 1= N~
w3 1 F0Z%grr| S — wé(Q)QaZNgTT‘ )
(1+1gh)z(1+5)2 2 (1+1)2 L
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2
t _ 2
dr < / £ Hwé(q)%é?ZNngL2 dr S e8(1+ )%
2 0

N |

S0
t -

/ 8_1(1+T) w 18ZN§1

0 (1+1g))2(1 +s)2

where we have used |(3.22)]

€
1
2

2
t 1 c 2 t ’U}%
/ e 1+ ) ||ws 3 T ZNgrL||  dr S / 72§ZN§LL dr Se(l+1)*
0 (L+1]gh2(1+s)2 L2 0 || (1+]ql)2 L2

where we have used We estimate the term involving G in the same way than in the previous
section : see |(9.15)| to [(9.23)] We now estimate the contribution of terms coming from the non
commutation of the wave operator with the null frame. It is sufficient to estimate

i)

< 1 wi

2" (14124 || (14 |q])2

which yields

thanks to Corollary
We now estimate the contribution of ME. :

1 1
8N~+H6N~+ ZNg| + g )
=5 (192291 + 110231 4 12731+ L g
(s\&sZNb| + 85952V b| + g\zNagm)

MFE| <
13

T A+ g

min £ ¢ T
(1+ a3 +5)277 (1 +[g))2077(1 + 5)
f|zNa 2b| + L |ZN89b]>

) (s|a§Zbe + q|020p 2N b|

We have
2 < 9 3 € 3 3 1 —
w2 aZN~ < w2 82N~ < __ & Hw/ 1
H 2(1-1—8) 9 LQNH 1(1+3)(1+|q‘)0 g 2 (1+t)%+p 1(9)
and so
t 1 t
[ aen b =929 arse [(asn fuiwiani], o s s
0 L2 0

We proceed in a similar way for the other terms involving g. The term 510509 ZN b|

£
(1+s)(1+[g[)2+o=»
can be estimated like [(9.12)l We estimate

1

1 c 2
wy ZNO3|| < </ N2 rdr)
H 2 (1 + 8)2(1 + ‘q|)1+6—p 0 12 ~ (1 + 8)4(1 i |q’)20_p|| ||H2(§1)
3
€
<
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We now estimate

1
1 €

1 2
w —5020pZVb|| <S¢ </ 59222 rdr) ,
(1+1g)2 77 (1 4 5) L2 (1+[q])1+27 HHED
and so
t 1 c 2 t
/ e (147) w3 . —5020)'b||  dr < 5/ (1+s)3||8§ZNbH%1(Sl)ds < 2(1+4t)%
0 (1+ g2t (1+5)2 L2 0

The other terms can be estimated in the same way.
We now treat the terms Qrr and Qur. We start with 8q§@83ZN§LL, that we estimate by
integration by parts

/ wr(0,31)(0:2V51.0) (8. 2V 1)V [det () de

1 " " . - - -
=30, / s (0aG) (ZVG11)(0:2V50) V[ det(g) e — / w30 (/2 (9)]045) (2 G11) (0. 2V G )drd

g, / ws(0,5) (ZNG11) (052G /et (9)]dr + / O (war/[4et(9) (D) 2V 510 )0s 2N G .

We estimate

‘/ w9 (6,15@) (ZNﬁLL) (8tZN§1)dvolg

§/ =2 —|ZN 100,22V g1
(1+1[g)(1+s)277

1

2 3
g w2

< e

Y4tz || 1+1d

S o1
2 (L4t)27%

1 ~
ZNgrL wa 0 ZN g
L2

~ ~ - ew - ~
’/wzas(\/Idet(g)IaquL)(ZNgLL)(atZNgl)dx 5/ — 127 §11.0:2" g1
(1+5)>"(1+lql)
1
€ ws 1
< 2 N~ ‘ 29 ZN~
gLL wy Ot g1
Y4t ||1+]dl ’ L2

e3

S—
(141t)273

1 ~
)wz )207 gLLH QHW/Q(Q)5332N91’

] [ wauina) @2 g0) 0.2 Gl

T (141 TP}

and consequently

t
/
The term 8q'gVQ8UZN§LL is similar to estimate. We now turn to 8q§@832NUgL. We follow the
same calculation, noticing that we have the estimate for d,gr1

<3(1+1)%

/ W (0uG10) (02 G10) (0,27 1) [det (g)

1 €
|w3 OggrL| S
PR (L s)ze(1 4 g7t
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and consequently

\ [ 2012 ) 07 )i

EW ~
5/ S —|ZN ot 102N G|
(14 g2 (1 + )27

1 1 2
w28, ZNg /1+52+2p8ZNb2 >
2 Yt g1 12 < (1 + |q|)1+g( ) || s ”L2

<e

<3141

where we have used |(2.15)[ and [(2.10)}

\ [0 (It 10,510) (2% 081002 )

gws N_0 N~
< —|Z" o, 02
</ i

1
1 1 2
<ellw2o,2Ng /1+52P8ZNb2dr>
~ 2 Ut g1 L2< (1+|q|)1+g( ) || s ”L2

and consequently

/ | [ st (V@ 0,0) (7 1) 05 1|

t
</6
N01+7—
<

S(1+1)%

1 2 t
wiaZVal| + 5/ (1+ 7)), ZVb|2,dr
L2 0

] [ 21 9 051) (2 1)) 0,7V 51)

EW9 N N
Z%o +0sZ% o ) 8Z
/(14_3); P(l_i_‘q’) <1+‘ |’ UL’ | UL| | g1

1 1
1 2+2p aSZNb 2 1 24+2p aQZNb ) >d)
2 (/ (1_|_|q|)cr <1+|q|( +S) || HL2(S2)+( +S) || A ”LQ(gl) .

1
2

<5H1U2 (9Z g]_’

and consequently

V1det(9)1(99LL) (2N oly1)) (0527 g1)de | dr

2 t
: / Hwé(q)msZNﬁle dr [ (4 91025y + (14 912V B ) d
0 0
(1 +1)*.

We now turn to the term sy’(q)0?Z~b. We cannot do the same reasoning as before because
of the estimates [(9.21)| and |[(9.22)] which are a consequence of the additional loss in ¢* in |(2.15)
Instead, we remark the calculation

O, (9" (1 (3) (x(a) — 1)s0.2")

sy ()2 ZVb + O (T (%) asaesz) +0 <ir (%) asagsz>

+0 (gLLT (%) safZNb) .
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We estimate

/Ot(1 +7)e !

2 t

1 r 2 1
27 (- N < —i (TN L N2
wiT (%) 0.0, 2" LQdTN/O /(1+T)€ (%) g 10002 by rrds

t
< g—l/ (14 2105002V b2 g1,
0

< S+

~

where we have used |(2.15)[ and |(2.14)]

/Ot(1+7)

11 /7 e ! “1e (T2 1 27N p|2
e (i e [ 040 () s 2 0
t
< /0 0,320 e

<31 +1)%

where we have used [(2.7)

/Ot(1+r)e— ' .

2
t ey Ela) sy
5/0(1+r)s /(1—|-|q|)1+2" (T(t>(1+s) 5|02 ZNo|| 2S1> drd

t
< / (1 + 522 B2V 2
0

S (1+0)%,

2
dr

w; 291 Y < ) 553ZNb

where we have used [(2.8)|and the fact that 2p < 0. We now check that grr, (T (5) (x(q) — 1)s9:Z"b)
satisfies the same estimates as ¢1. We have

Hw%gLLﬁq (T (%) (x(q) — 1)s0s ZNb) 2

1
5/(1_1_|q|)1+0||aSZNbHL2(S1)’I“dT —|—/ 2”8 ZNbHLZ Sl rdr 1 osit.

<1+ 1),

where we have used |(2.10)| and |(2.11)] We estimate

/ s d0ss (T (5) ) — 502 | ar / t [ s 1R W s
0 2 - t 2 ~ Jo (14 |q|)2+20 s L2(S1)

t
S [ Wt 5P 1227 ds

0

<e?(1+ )%

which concludes the proof of Proposition O

9.3 Estimates of 9Z"¢ and 9?2 ¢
Proposition 9.6. We have

|wtozo] .+ [wie2e] , < coe+ ey,
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/Hw 282N¢H +Hw % ZNqSH <C’0€+C€2(1+t)

Proof. As in the previous section, we use the weighted energy estimate in the metric g. Thanks to
Proposition [5.2] we have

13 £
0,2 ¢| < ——|ZNgLL| + 1ZN5)|
’ VI s(1+g))2 % (148)2(1+|g))2 %
€ I _
+——|0ZV | + ‘ 1ZNGE| + 102N ¢|
(14 s)27° (1+5)2(1+|g)7 % (1+s)v/1+q|

We estimate

1

1 3 N~ £ w22 N~ H H
w2 Z S Z S w 2(9Z ,
T+ g)i VItt| 1 gns” - W 2( gr|,,
q 2 q
SO
t c 2
-1 3 N~ 3 2
e (1 + ) ||w? ZNgll <+, (9.25)
A VIFs(L+g)i " 12
1
2 2
w? 7% < L 1“’1 NG| S (9.26)
(I+s)2(1+[q))2™ Lo (14s)2 |1+l RS
1 e N 62
w2 ———5—0Z2"¢|| S5 (9.27)
3_ 3_9
(I+s)277° 12 (L+t)z=
1
d \ZNGL! / 1ZN GE|2, n rdr )
(L+5)2(1+]gl)2 T 2
1
N ~Lj2 2 9.28
5(/ 1+ s)! 1+\ql)1 5 I"2"G ”L?(S?)dr> (6-28)
62
N 3
(1412
1 I _
w2 VAL <7Hw
(1+s)y/1+]ql Lo (L4s)tow
SO
/t€1(1+t) : : N¢ /H 282%” <S(1+p?. (9.29)
w w .
0 (1+s)y/1+]q]

Estimates [(9.25)] [(9.26)], [(9.25)] [(9.28)] and [(9.29)] conclude the first part of Proposition[9.6] We now
estimate 9Z™V ¢. The terms are all similar or easier to estimate, since no terms with two derivatives
of g are involved. The terms involving a derivative of G¥ can be estimated by

€

(145)2(1+ qf) 2~

1ZNGE|, ————|0zNah.
(14 s)2(1+ |g))2=?

The contribution of the second term can be estimated (very loosely) with an integration by part
as in the last section (see estimates [(9.15)] [(9.16)] |(9.17)| and [(9.18)]). O

77



9.4 Estimate of 0ZV*1¢
Proposition 9.7. We have
Hwé@ZN“(bHLQ < Coe + Ce2(1+1)2t

1 1o \LaoN+1 2 2 2 3 P
Proof. We use the weighted energy estimate in the metric g and multiply it by %th We obtain

d 1 1 =

el 32N+1 2 dvol C/ / 82N+1 2

i (10 [z torum@aca, ) + o [w0@z
€ 1

~Y1+t1+t

To estimate DgZN+1¢ we use Proposition and remark that

128 gl S (1 +9)[0Z2%g| + (1 +|a])|0Z™ g].

1
w(@OZ 0 + 1 | [ w00z 60,27 sava

Consequently
v1 =N~ ~
8,279l S %‘GZNQLL‘ + - 102" gLl
(L+q))2™" V1+s(1+[q))27
€ = N~ € -
+ T 3_4pyazNgl| + 3 ;_4p|3ZNg\
(1+5)2(1+q])2 (1+s)2(1+1ql)2

n ; :)3_ 92N 1g| + Eared
S)2

’ (1+35)2(1+ g2~
€ € =
+ 774 ’ N L‘"i‘ ‘8ZN+1¢‘.
(1+45)2(1+[q))z (1+5)yv/1+q]
We estimate the first term. It comes from a term of the form séZNﬁLLﬁgqb. We estimate its
contribution with an integration by parts

/ 1+7 aZNQLL)(82¢)(atZN+1¢)dvol dr

[H—t/ (q)s (aZNgLL)(82¢)(ZN+1¢ dvol ] //c%( V]det(g)] )|1+ (3ZNgLL)a§¢> ZNH pdrdr

- [141-7 /w(Q)S@ZNﬁLL)(agéf)) ZN+1¢} //at < Vdet(9)] )|r( gLL)f)2¢>> 97N pddr

(/ /|3t |det(g )|1a2¢)ZNgLL)ZNH¢|dxdT>

+0 ([ [ o (wto)Videttal S 20k zN%D .

We estimate

N 2 N+1
i ' [ wl@)s(0275,.)(820)( 2 vl
eVv1+s -
< /w )07 g |2V g
+1 (1+gh)2~*

e

1
<o
~ V14t

S 140)%,
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l / / at( |det (g )\172N La%s) 0ZN L pdxdr

< 0ZNgr| + \ZNgLL) 102N g |dadr
/0 /(1+5)%(1+\q|)2—4ﬂ< +| |
2

t
1

zN d7‘+€/
2ol )| aree [

<e aZN+1¢||L2 dr

wh(g) <|azNgLL| T

<31 41)%

1
1+ |q|

where we have used [(3.16)} |(4.14)| and [(4.15)]

Oy (w(q)y/|det(g)|sZN gr0;¢) ZN T pdadr

1+

< 0ZN gpr| + \ZNgLL]> |ZNTLp|dxdr
/0 /(1+3)S’(1+yq|)3—4p< +| |
2

1 t 1 1ZN+1¢
zN dT+5/
T+ g gLL') L o (1+7)3

1+ql I,
The last term can be estimated as the first. For the estimate of the other terms, we refer to the

<e AT S

t
wh(g) (|azNgLL| ;

following section. O

9.5 Estimation of 957V ¢

In this section we prove better estimates for SZN ¢. These better estimates allow to exploit the
better decay of 9,Z" ¢ noticing

1
0.2N¢ = —SZNo + %(%ZNqb'

This fact is used in Section to estimate 952V h.

Proposition 9.8. We have
|wbosz¥e - 50,02V grr)|| , < Cos + CF 1+ 1),

1

/Hw )20 SZN¢—S<9q<Z>ZNgLL)HL2§005+05%(1_|_t)p_

We do the weighted energy estimate in the metric g. We have, thanks to Proposition

0,576 < —VIT5 19 728G, 1+ € 107511
g ~ 5_4 3 _
(14 |g))2=7 VI+s(1+ g2
g = g
+ 027G | + 02V
(1+8)7(1+|ql)z* (1+5)2(1+ [q])z—*
b 1987V + L10:2V G|
§—p 1 1_
(1+4s)2 (L+s)2(1+g))z*
3 £ _
+ ZNGE + 2SZN¢
(1+5)%(1+Iq|)%‘4”’ | (1+s) 1+|q|| |
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We estimate the first term. It can be written s0,2"V g, L@ggb. We remark the following calculation

Oy50,0Z% grr, = ZV g0y (58,0) + 50,60, ZN grr, + 29% 0 (59,0)95 2N g1

g
—0 ZNgrr + 50,00,2N gr1,
(<1+s> 3(1+|g])5- ) Y

2
+ 20,2 g1,1.0,(50,0) + 20,2 g1,1,05(50,0) + ﬁaezNgLLag(sang)
~3 N ~ N ~ % , N
+290(5049)04Z " gr1 + 291L04(5049)0s 27 gL + 29UL04(5040) -~ Z" gL L-

In DgZN grrL, considering the support condition on ¢, it is sufficient to study the contribution
of My : the only dangerous terms are the one of the form 9.gr707Z" g7+ which can only be
8L§LL8LZN9LL, and the contribution of the commutator of the wave operator with the null frame,
which are more precisely in this case

1

Lo ()25 b (7)o

Consequently, the terms in DQ(SZN(Z5 — sﬁngZNgLL) are similar to one of the three following terms

€ € _
© ! Z%grr, O T , 0ZNG1, §10,(50,0)0:ZN gr1.
((1+8)2(1+\ql)34p> H ((1+s)2(1+|q\)§4p> b 5104(590) LL

We estimate the first term

2
! 1 1 € N i U)z% N
/5_ (1+7)||lw20 . ) Z7grL dTgs/ ) Z7grr| dr
! (482 +lgl)> 2 (1 Jgl) 27 1

<31 +1)%
(9.30)

where we have used |(4.15) The second term is similar. We now estimate the contribution of the
third term.

/ w(q)51(04(50,8)) (0. ZN gL ) (DS ZN B dvol,

=01 [ wla) (04(59,0))(2”91.0) @52 vl — [ 0. (w(a)V/[detl)3:0,(s0,0)r ) (2" 911 05 2 )
- [ @R (0,(50,0)(2¥ 91.)(@10,52” $)dvol,

=01 [ wla) (04(59,6))(2”91.0) @52 vl ~ [ 0. (w(a)V/[detla)3:0, (50,07 ) (2" 911015 2" 6) s
~ 01 [ wla @,(60,6)(Z¥ 911) @52V o)l + [ 0 w(qwmmaq(saqwz%u) (0,52 6}
=0, A / s (w(q)§104(s0,0)r) ZN gr.r0,SZ™ pdbdr + / O (w(q)§104(5040)Z N gr.1) 9sSZN ¢

with

A= /w(Q)§1(3q(80q¢))(ZNgLL)(atSZN@dvolg+/W(Q)§1(3q(83qd>))(ZNgLL)(3SSZN¢)dv0lg-
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We estimate

‘/ w(q)ﬁlﬁq(38q¢)ZN9LLatSZN¢’

2
(3
S / W‘ZNQLLH@SZNQS‘

1

w2 1
< g2 2Ny Huﬁ@ SzN H <A +t)?

L2
The second term in A obey a similar estimate so

Al S (1 +1)%

We now estimate

. L L e(l+g): G
Os (w de Dy(50,0)1) | S ———=|Zq1||Z3¢|r < T 1 T "
. (o) 00,(6009)r ) | £ (e 260 & (e 8 sk s

62

< 7.
(14 s)(L+ [g])2*

Consequently

q)\/|det(g)\§8q(88q¢)r> ZN g110,8ZN ¢dfdr | dr

t 52
<[ [uogs 1291110052 ol

)(1+ |g[)2~4e=
t22
5/0 (1+7)
w2(¢1)% ZN

1
w2(q)2 N
t
,se/ .
0 || (1+]ql)2

; lw20,52N 6| y2dr
(1+1ql)2
<1 +1)%.

gLL

L2

2
t

d+/ 39,82V |2, d

gLL 2 T ; (1+)||w i ol 72dr

L

We now estimate

/875 q)/ |det(g) gla Saq¢ gLL 8SZ ¢’

S/w( )W| ZN g1 1)|10sSZY p|dx + s.t.
(14 g™

t
s |
o)
/ 1 2 t
w2(q)2ZNgLLH —1—6/ Hw'(q)%asSZN
12 0

t
s»s/
o || 1+ gl

<1+ ).

w(q)? N w%

Z7grrL
T e

VAN

L2

We now estimate the other contributions in [0,5Z"¢. The term ———~<———90ZNg 1| can

VIFs(1+g) 3 %
be estimated like [(9.30)} We estimate
t
dr < / €
) 0

/0t5(1+7')1

2 2

w ¢ 5ZN§1

VIt s(1+ gz

w2 (¢) 925 2(1 4+ 1)

L L?
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2

w . € . ZN~ 5 g _ U}faZNg 5573
(1+3)§(1+\q!)5_4p 12 (1+1)2 2 (1 +t)§—2p
We decompose
3 = £ = e _
05zN | < B(SZN p—s0,0ZN gr1) |+ 5(s0.67N a1 1),
R P N To L L ey w2

We estimate

/0t5(1+7)—1

2

< dr < 3(1+1)%,

(1+5)y/1+|q|

ANSZN ¢ — 59,072 g1

L2
thanks to|(3.15), and
2
/t 1 < (0,67 gl d
e(l+71)” s gLL T
0 (1+s)/I+]q = L
2
/t ! < 97N d
S e(1+71)” JLL T+ s.t.
0 VIFs(1+[ql)s 2

t _ 2
S [ elus@iozvoul), s o
0

The other term can be estimated in a similar way. For the term involving 9G¥ we refer to [(9.15)
[(9.16)} [(9.17)[ and |(9.18)]

10 Lower order L? estimates

10.1 Estimate of 02V ¢
Proposition 10.1. We have

HwéaZN’lquLQ < Ce + Ces.

Proof. We perform the energy estimate in the Minkowski metric. Estimates [(9.26)| to [(9.29)| are
quite loose, so the only term we need to estimate is

1
€ € wa g2
Z |l S 27N S ——u—,
Hﬂ+m+m?@ 2 VIFE| (4 lal)? LT i

where we have used |(4.17)} O

10.2 Estimate of 02V 3y
Proposition 10.2. We have

Hw%GZN—?’gHLQ < Che + Ce3(1 +1)P,

3
2

oo, <esaery
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Proof. We use the weighted energy estimate in the metric g

00z o |wwoz =, < | [wwo,z 55027

il
2 (
dt

We use Proposition [(5.1)[ to estimate 0,2V ~3g. We start with Q.

+71 ; HwéaZN

3

(14 lg)(L +5)27"

€ = N3~ 1 _ g2
Quil £ (92251 + 12 Pl )+ g+
+lql (1+s)2

—i—smin( ! —,
(141X +s)277 (1 +a])

ol —

(1—}-5)%

>(3ZN gl + 28 P6h)

(1+s)(1+ gl

)14,)) 02N 3]

. € € 9, ,N-372 € N—3~
+1,>r min , =|Z77°05b| + 1g>r 0Z7 g1
"~ <<1+s>%—p<1+|q|>3+<s (1+5)3(1+|q)3 +“+<’>S T s
Hpno €(1+ = (s1022°2| + 02002 | + L1 2V 20,080] + 512V 050
q S
< 12N ~2g) + 17V g
(1+5)57(1+|q)) (14 [g)2(1 + 5)3~7
82 £
azN—?)"'
+<<1+s>3+<1+s><1+\qr>1—4p 077l
4 - 1ZVBGE] + 1o n—— |02V 3),
(1+5)5 (1 +]q)) L+

where we have used the fact that
0527720 S 1105 Z2Y bl sy SN2V bl Se,
thanks to|(2.3)} and

3

(1+s)°77

)

1920927 30| < Ha ZN | ey S

thanks to|(2.4)} to say that to estimate the terms involving b, it is sufficient to estimate 1

We estimate

!
w% . < gN=2% < 53 wf N—2§ <
(1+s)277(1+]q|) Lo (L4s)z P |[1+ lq| L (
thanks to|(3.57)}
1
w? c —ZN 3| S 61 wy N3
(1 +1gl)*(1+s5)27" (L4 s)2meme (L4 [a])?

thanks to Proposition We estimate

N|=

€ 9zN-37

g1
(1+s)y/1+lg| 12

w <7Hw28ZN 37 ‘

~
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(1+5)2 (1 +|ql)

ZN—3GL

L2

1

£ N—3 L2 ?
([ arommarr? " e

=

2 2
2 2 1
S / 2_26 b) : 1 + - 1—-4 + E\/? ”6(]ZI¢||L2(S1) dr )
(14527201 +1a))> \ (1412 (L+]a)™* (14 |g))2
SO
2
_c AL | I —— (10.4)
(1+5)57(1+ [ql) PR
We estimate
1 € € 1 €
31 azN=3g| < ‘ *aZN—?”‘ <__ £ 10.5

We now go to the other terms in DgZN_3§. The contribution of M can be estimated by
(10.5)l To estimate the contribution of R!, it is sufficient to consider

22
Lr<gert10s2"2 = O | Lpegrin ——1 | »
(14s)73

and we have

62

Sy e
L (1+t)z71
The terms in M can be estimated by [(10.1)| and [(10.2)} except

HwénRngRHaszf”b) (10.6)

€
(14 8)(1+ Jal)
The first term can be estimated by [(10.3)], and the second one by

- 1
|ZIQTT’, m\ZHlGL\-

w%LZN72GL
1+s

L2

1 _
S </ (1+8)3H7"ZN QGL”%%sl)dr)

/ 1 g2 . g2 ev1+s
Q+sP\@+pzr A+lgh= " (14|22

2,52

> \ 3 (10.7)
|yanN—2¢HL2(S1)> dr

Estimates [(10.1)], [(10.2)], [(10.3)], [(10.4)] [(10.5)} [(10.6)| and [(10.7)] yield
< L
L2~ (14t)t-r

Hw%DgZN—?’g‘

We also have

62

< 71 N
2~ (14t)t-r
which concludes the proof of Proposition [10.2] O

Hw%DgZN—%‘
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10.3 Estimate of 02V 4g,
Proposition 10.3. We have

< Coe + Cei,

1
wa 0zN—4g,
L2

Proof. We use the weighted energy estimate in the flat metric

‘wl V292N =37 H +C’Hw1 )282N-35 25‘ / wi(q) 0, ZN 510,255

il

We estimate
_ _ 1
0zN~g = (@ - 0g) 2V G + VM + N 4Qm, + VM 4 0 <2T (3) aQZN—%) .
r

The terms in Y *M, ¥~1Q7y and the terms in (O, — 0)ZN 4G, of the form §go?>ZN~1g; can be
estimated by [(10.1)} [(10.2)| and [(10.7)} except the term

g

1ZN G,
(14 5)(1+ |qf) s~
We estimate it
3 2
3 £ N-4 € wy N-4 £
wy 2" "grT|| S 2" gr7|| S =,
(1+5)(1+g))2~" P G (O ) Ea PRCEOL

thanks to |(4.17)] |(4.35)| and |(4.65) Terms coming from the non commutation with the null frame
can be estimated by

1
’UJ12 ZN_3]€ < 1
(1+s)? ~ (14 s)tto
L2

3
€2

~ (1 t)ltor’

1
w2

ZN—3
1+ |ql

L2

The terms in Mg, and the terms in (O —O,)ZV g, of the form g,0?Z" 4G, can be estimated by

€ _3~ e(1+lql) ~
1 ZN 3 1 78 ZN 5
q>R(1+8)2 9 q>R (1+ )
We estimate
w%ﬂ g ZN_3~ 9 ’LU% N—-3~ L
! q>R(1 + 5)? g 2~ (L4 s)to |11+ gl 12 ~ (A t)rome

We now estimate the terms coming from the non commutation with the null frame

1
2
Wy ZN_3]€ 5 1
(1+s)? (14 s)lte
L2

3
£2

~ (14 t)Ho—re’

1
w?2 ZN-3
1+ q|

L2

Consequently we have proved
3
£2

1
5|:|2N—4~ <
Hw1 g1 12 ~ (1 +t)1+o._p7

which concludes the proof of Proposition10.3 0
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10.4 Estimate of 0ZV~10g,

Proposition 10.4. We have
~ 5
H@ZN_mngL2 S Coe + Cen.

Proof. We perform the energy estimate in the flat metric. We note that in the exterior region the
result is already given by Proposition In the interior, the only place where the weight w; was
needed, was in the estimate of the term coming from the non commutation with the null frame,

<r) DpZN 10k
t/) (1+r)?
We estimate it thanks to Corollary [7.6] For I < N — 10 we have

2
H’r (f) ;Zﬂ-lk, < / tirdr < i
t/ (1+s)? 2T \Jr (L+s)>7% Y14t

N

11 Choice of b

11.1 Proof of Proposition [3.5
In this section we will choose h for the next iteration. The heuristic choice would be 2 fooo T (%) 0,0 ¢prdr.

However we have to modify this choice in order for h to satisfy two important conditions

e O0:h must be O (ﬁ),

e O:h must be at the same level of regularity than 9yd¢ and 0Oyg.

We can achieve the second point by choosing h to be equal to 2 fooo T (%) g'“+\/| det g|0,$0,pdr,
where in this section det(g) denotes the determinant of ¢ in the coordinates ¢,r, 0. How-
ever, with this choice, 0:h contains a term of the form f 8,«gLL(8q¢)2'rdr which does not have the

decay O (ﬁ) (we can note that the regularity condition is satisfied by such a term because the

0, which falls on gz, can be put on the other factors if necessary with an integration by part). To
deal with such a term we will set

.20 =2 [0 (7) (4 B)g Vet glono0n

with the metric g expressed in coordinates ¢, 7,6, and § is a factor whose role is to compensate the
term f 8rgLL(8q¢))27“dr. We have to be careful with the choice of 3, because it should not induce
terms that do not have the required regularity. Fortunately, the wave coordinate condition implies
1
(145)2

of g. To define precisely 8 we need the following Corollary of Proposition

that the only term with a decay of in dygrr is ‘(]LTA, which is more regular than a derivative

Corollary 11.1. In the region ¢ < R+ 1 we can write

- 1_
O0ggrLL = gL+ F + Py,
where )
Fy = gr70:01 + 910U g1 + OugrT + ;577,

and

1 _ » 1 ~
Fy = (88 + ZgLLar)gLL + a0 (as + ZgLL(aT)gl.

86



Proof. We recall from Proposition §.1] that

- 1. . . _ - — 1.
orgrLr = gL+ 9770491 + 910791 + OUgTT + 97T

To obtain Corollary we just reorder the terms, noticing that 9, = 0, — Js, and neglecting
cubic terms which have a similar decay. O

We can now define by 5 =0at t =T and

1 lgrL
08 + gLLarﬁ ==

1
2 r 27

Proposition 11.2. We have the estimates
1Z5R(0,8) | 21, S €21+ )7,
||ZN_1h(97t)HL2(Sl) Se
Proof. We have
r «
128 (7 (5) (1+ B)g™ v/ det gl0a00,) ) |
< ev1l+s g2

I I~ 7
We can estimate
1
[ e s <ot
(14 lgf)>=" L2

For I = N we estimate it with [(3.8)|and for I = N — 1 with |(3.12)]

e e o e
(14 [q])3=8¢ L2y VI+t 1+|q\

thanks to [(3.57)} We now estimate 5. We have

e3

ST iy
2 (14s)2=7

1 1 7%,
0sZ1B + ZgLLaerﬂ =5

1 _
- §Z]F2 + 72" g11.0,27

and consequently

(05 + imar)(zfﬁ +2'q1)=0 ( z'y > +0 (2" 9100,27 ).

Thanks to |(3.51)| we easily obtain that ZN=135 = O <€V\/II+T|;I> . It is equivalent to integrate with

respect to s than with an affine parameter s’ along the integral curve of 95 + g1.1.9,3. We obtain

S AN ZgLL
Z18(q,5,0) = 0 (215 / 91 5. 11.1

87



We estimate

1
1 2T—t4r I 2 2
/< - / gl(pv tve)dp) drdo
e A
1
2T I~ 2 3
1 Z gl(par_t79)
< 1, ity drdf | d
<) (/ s (<1+|r—t>1+u prr—t )]

1
2T 2 2T I~ 2 2
1 5 1 Zgl(pvr_tag))
< —d 1] _ drd .
~ </t p4 P) (/t /P’ r+t<p<2T—t+r ((1 I —¢)ia o1 —t P

We make the change of variable ' —t' =r —t, 7’/ +t = p. We obtain

G

t
2

[un

1

t+R 1 2T—t+r FIs —tp 2 2
/ gl(par y )dp drd6
—Hr—t\)ﬂ‘ i p+r—t
R+t/ 1 AT A 2 2
/ —d / / (r +1) i< T gi(r' + /,r ! )> drdp
IlqSR

1

1 2 + R)1 2 2

<1 / Gren: - at' | .
ts \Je (0 +5)3 [[(1+ gt L2

In the same way we estimate
2
t+R 1 2T —t+r ZI —t0
/ ( : 1+u/ grr(p,r —t, )d,o drdd
t (L [r =t S N/AVAEST=
2
2T R+t’ 1 ZI~ P o —
S </ > / / (' + ) g Glr £, —,6) drdp
t Tl v+ (14 [ — #[)2+n V!
1

1 /T (2t' + R)\ 24 2 dt, 2
t%72p t (t/—|— )% 1.2 ’

and consequently

1 5
1 2 1 T2t + R)1 Llo<r ~
o itraa) < (] |t
</ (1+\q|)2+2#( »8) T Nt% . (t’—l—%)?’ (1+‘q|)1+,u g1

L1 /T (2 + R)!+3%
t2=20 \ Jy (' + %)%

-

Z'q

N[

D=

ly<r
(1+ |g)t*

N

711

1

2 2
dt’>
L2

lo<r
(1+ql)

1

2 2
dﬂ)
L2

I~

-

1 s
1 T 1 2 1 T ! 2 2
([ ) s ([t ]
ts \Jt /37172 t2=20 \Ji 1+ 1q| L2
5
-
t22
(11.2)
where we have used |(3.56)| (we assume p > 1 4+ ). It is easy to convince oneself, with Section
of
T / 2
— w (Q) I /
(1+t/) || 22 7 gLL dt SE.
/t 1+ q] L2
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Consequently

g3

S
2y (1+1)z7

g2 I
———|Z
|/ i
This concludes the proof of Proposition [11.2]

Proposition 11.3. We have the estimates

XZN RO, 1) || =151y S —————,
10 @, a1 S 1ok

9

N
10:Z7h(0, )|l g1(s1) S Axpir

t
/ (1+ A2V hZagr) S 41+ 1),
0

t
|t 102 My S 4 0,
0

and we can decompose
Osh = hy + ho

with
2

1Z% -2y S 51
(i

t
[ P12 oy S 20 0,
0
t
| 102l oo 5 21+ 17,
0

t
[ P10z By S 20417,
0

52

(1+5)7°

10eZN ha|| gr-2(s1y S ,
t

/ (14 ) 225 a1 oy S 22(1+ £)%,
0

t
[ @+ 902 e S 20+ 0.
Proof. Since ¢ satisfies [y = 0 we have in coordinates ¢,r, 0

99" /[ det(9)]0,6) = 0.
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We can neglect the contributions of T (%), because when it is different from 1, we are far from the
light cone and q ~ s. We calculate

20:1(6.21) = | " 0,891 /[ det gl0abOr bir
0
4 / (1+ B)0y (9 /Tdet gl0a) Oy + / "1+ B)gt /[ det 900, Drbdr
0 0
- /0 " 0,891 \/[det gl0nsOr bir
—/0 (14 5)d ( \/\detgﬁa¢)6¢dr—/ (1+B8) 89< \/|detg8agz5) B,
+3 |+ B Tdetglo (010 o
+ / "1+ B)g" /et 910,60, 0,6dr + / (1+ B)g/Tdet 910960, Dl
0
- /0 0,541 /| det 9|0 by i + / 089" /et g1 (0,)%dr
+1/ (1+ B)g""+/| det 9|0, (9, ¢)*dr
2 Jo
—/0 (1+ B)grt\/]detg]@@@&«gbdr —/0 (14 5)0y ( eo‘\/ldetg 8a¢> Orodr
- [ @ mag Viderahooe,eir [+ 8)0, (77 Tdetglons) o,odr

1

-5 | o (0 i Videtsl) @ ar

+ /0 (1t B9t /et 910,60, dr + /0 (14 B)g" /[ det glp 60,01
= [ oy idetgionon.odr + 5 [ 0,8 Tdetg] (57 00" " @0))dr
- ;/000(1 +5) (&(9”" | det g])(8,¢)* + 20, (¢"" /| det g]) ;0,6 + O, (9" /| det 9!)(8t¢)2) dr
|k (s Tdetslons) o.odr + [ 0,507 et glonod, odr
+/O (14 B)g J\dTgagw?qﬁdH/ (14 3)g"+/] det g|9g 0, 0, pdr
We analyse the different contribution to d;h
ath:/A1+A2+...

where

Ay = 0,8+/| det(g)](9,0)° (—g“ +9" + %(g”" — g“)) = 0s8/| det(g)|(9g9)* (—4g™E — 4g"E),

= 9581/ det(9)|05¢0y¢ (29” +5(29" +29") ) = 0s8+/| det(g)[9s 00, p4g™",
Ao = 0.6/ [R(@[0.07 (4 + 4 + 367 = 4 ) = 0.5V [aot] (01629
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Ay = 9yB/| det(9)](9,9) (9“ -9+ %(g” — g“)) = 0,8+/| det(g)|(9,0)*2g",
As = 0yBv \det(g)\as(ﬁang <_2gtr =+ %(QQM + tht)> = 0yBv \det(g)\as(ﬁaq(bélg@,

Ao = 0,0 [T (0.0~ — 4" + (67 — 4)) = 0.0V [F 0.0 (-2 — 14°0)
A7 = (1+ B)(0,0)%0, (VI detgl(g"" = 20" +4)) = (1 + 8)(9,0)*0, (/[ det gl4g™E) .
A = (1+ 8)0,00.00, (v/detgl(g" = g")) = —(1+ B)0:0, 60, (erTg 195),
Ag = (14 8)(0:0)%0, (VIdetgl(9" +29™ + ")) = (1+ B)(0:0)*, (/[ det glag™")

d
Ay = (1+ 5)0% (gUU':tg'am) )
A = (14 B)9 (gUL|d7;etg|as¢> Or ),

A = (1 + 6)89 (QUL@aq¢> a?“¢7

Ayg = 05B(g"" + g"")\/| det gloy 0,6 = 089" " \/| det g0y ¢0, ¢,

Arg = 0B8(=g"" + g"")\/| det g0y 60,6 = 9,897/ | det 9|0y 0,0,
Ars = (1+ B)/] det g (g + ¢"")0ud0,05¢ = (1 + B)\/| det glg¥ Ly 60,050,
Asg = (1+ B)/| det g[(g"" — g"")0u¢0,0,¢ = (1 + B)\/| det glg" L0y ¢0,0,¢.

We remark (see|(4.2)]) that

1
| det g|g=" ~ —59uUT;

80 the term Ag has the required decay. We recall that we choose 8 such that g =0 at time T and

1 grL
20,6 + gLLaqﬁ =, Fs.
We remark that thanks to Corollary
1 ~ - 1.
2056 + 5911948 = ~Orgrr + F1 = —0rgrL + 9770091 + 910091 + QugTT + 97T

Consequently we have

Ay + Az + Ay =0,\/[det(9)](240)(— 495 — 4g7E) + (14 B)(0,6)°0, (/[ det glag™E)
+0y8V/] det(9)](940) 729"
=(2,0)° V[ A€(9)](20,6 + Orgur + L0110,8) + O (r(0,0)(0rg10)in) + 51
=0 (r(840)*0ug7T) + O (r(949)*(DrgrLL)gr) + s.t.

We note that applying a vector field to h corresponds to applying a vector field to the integrand.
We note also that we can get rid of a 9, derivative on a term Z~g or 9Z" ¢ by integration by part.
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Then we can distribute the vector fields and use the L> estimate for the terms Z/§ and Z”7¢ with
J < N/2. We obtain that

0sZh = /(31 + By +...)dr

where
€

By =0 ( 1 3
1+ )51+ lgh i

3 Oczf
p>88€ ¢a

B2:0( <
(1+5)2(1+q])2™

B;=0 LE— 71
(1+S)5(1+IQ\)5_4P r

I
3_ 8p> agZ 97T,

> 8qagzl¢7

By =

((1+8 1+\f1|)

=0

O( 3 )Zlﬁu
1+851+\QI) -

B; =0 957,
<<1+s> <1+\q|>—8ﬂ) ’

where a = 0,1. We estimate the term for I = N. We start with B;. We write

aaZI'v
1+\ql)2 8”) e

8.2N ¢ = SZNgZ) + qa 2N = (SZN¢ — 50,02V grL) + 0,07 gL + a 2N 6.
The last two terms are similar to By and By respectively. We note

§1:O 3 2 3
(145)2(1+]q))z~*

) (805 ZN ¢ — 50,005 ZN gr1).

We estimate

H/ Eldr
H-1

1SZN ¢ — 5030 Z" grill 2 (s1ydr

</ €
sy ) (148)2(1+ )2

1 1
S wr ([ wrmpests? o - oz ntrar)” ([1(3) e
~ ﬁ“w%a(bﬂ]\% — 50,07 grr) |l 12
e
(141227

|/ 2],

< / c 1032 8l 121y dr
ey TS At st |ghE &

(1;)2(/@2[ Td””) </T e 8pd>;

62

(141)2=307

N

A
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We estimate Bz in H 2 first

| o

and now in H~!

H/Bgdr

2

£ 9
(141t)2-50"

</
a2y ) (T48)2(1+g))2™

4PHZN¢HL2(Sl)d7“ S

g

< / 182N |l 21 dr
aoey ~ ) (L4 5)E(1+ [g)F Y &

€ 1 ~ 1
SO+ / <1+q|>1+2~‘aZN¢’2rd’”d9> </ <1+|q|>2892ud7">
' ()202ZN || 2

/Ot(1+s)2 /Bgdr
| 5

[NIE
N

and so
2

ds < et(141)%.
H-1(S1)

We also have )

<__ &
H-1(S1) ~ (1 + t)l—p

We now turn to By.

H/B4d7“

82

< N ]
HSY) / (14 s)(1+ ,q|)3_spH grrllL2(stydr

<ot ([ wpeem)
T
~ (1452 \J (14 g2

First of all, thanks to|(3.56)| we have

H/B4dT’

To have a more precise estimate use Propositions and We have to decompose

By = B + B® with
t 1
/ (147)3% /BAE Jdr
0

w ~
2(Q) QZNQLT
(1+ql)2

L2

2
< 9

Hoish (L4t

dr < eX(1+t)%,

H-1(S1)
and
B? =0 e 95 (%) (1 o) e 1 WAL
4 - (1+S)(1+|q|)378p Q(UUL)( _X(Q)) - (1+S)(1+‘q|)3,8p( _X(Q))S s .
We again decompose BAEQ) = Ef) + Ef’) with
2

52 _ € N

B =0 (g s - @2 5)
and

82

=3) _ B 8
Bt =0 <(1 +5)(1+ ,q‘)s_sp(l x(q)) ZNf2> _
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We have
4

€ €
< | —0 2 dr < ————
L2(SY) ~ / (1+ |‘]|)378p” fillzxgndr = (1+s)%"2
/Ef)dr

&2

< Z]~
H1sY) / (14 8)2(1 + |q])2~8r 1279 L2 s

H/Ef)dr
t
/(14—5)3_2’)
0

| o

and
2

t
ds St [0 9" W25 olfads S 51+ 0
L2(S) 0

2

1
€ 1 1 2
S 1+ AT I L\ @ qenzioes
2 ) 2
S wpozVle S —
(1+5)} (145)5

To estimate Bg we use |(11.2)}

o

2
< L Z'8d
Lz”/<<1+s>2<1+|q|>2—8P—“> -

g2 1 2
< 112
~ (1—|—t)% (/ <1+‘q|)2+2u‘z Bl dr)
<&
~(141t)2%

We estimate

=

2

1
< / 125 2 gy dr
ey~ (L4 5)F 1+ (g3 &

2 1

< € 1 i 2 |lwa(q)?

T A48\ (gt 1+ q| L2
< e

Y (14s) T

We set

ZNm :/El+B2+B3+§£2)+B5+B6+B77 ZN hy =/B£1)+§£3).

We now turn to the estimate of 0§ZNh. We start with 9sZVh;. We have

8,81 =0 I SZN G — 59,627
1 (<1+s>2<1+|qr>2—4ﬂ>( P

+0 ———
(L+s)2(L+g))2"

) 0(SZV§ — 50,67 g11).
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We estimate

H/ &;Eldr
H-

/<1+s>3<1+rq|>3 e

1(s1)
2

10s(SZN ¢ — 50,0 2™ gLr) bl L2 (s1ydr +

VI

&
(1 + )35

e Tl ‘ =T 105(SZN ¢ — 88q¢ZNgLL)|2rdrd0>
2

5—
(14 t)3=5p—n

W' (q)0s(SZN ¢ — 50,07 N g1 12 +

+
<;H e
~(1+1)? (1+t)3=Bo—n"

To estimate O, fBQ and 9Js fBg we note that

8S/B2dr - / (1SBQ+ 1@32) -

Consequently we obtain
‘ Oy / Bsdr

‘aS/Bng

To estimate OsB3 in H™! we write

1/(532 By,

g2

< 71, IN2_2,°
~(14t)33

H-1(S)

82

< ___ -
) (L)

H-2(S!

&
0sB3 =0
((1 +5)2(1+]|g))2 %

Consequently
‘as/Bng
H-1

H/aB

< 3

sy T (1+1)?

2
i N
1(s1) < / (1 + 8)(1 —+ |q‘)3—8pH$Z 88f1HL2(Sl)dT

H/ aSB5d7’
H-

62

<
oy~ / (L+ 2L+ [q))> %

E2

1= N~
< 1+ )g”wl( )2BZNgHL2.
S

Since 958 ~ gLL + 017, 0sBg gives contributions similar to 9, By.

H/asBﬂiT

2

5 8p||8sZN§1HL2(Sl)d7"

</ €
sy T (T4 8)2(1+g))2”

1

< g? 1 d 2
s (U armee) |

95

' (9)20(SZN ¢ — 59,62 grr) |l 12,

10s 27 G| 2 (s1ydr

9

4

1 - 2
W'g(q)ié’sZNgll

1
2-8p—21 dr)

O arm

) ‘%a (SZN¢ — 50,072 gr1) + O(9sB2) + O(dsBy).

< =
~(14t)2r

L2’

VI



Consequently we have proven

t
[0 [ s
52

1t

< [ @ |wlaszo - soz¥oun)|

1= ~
Hwi(Q)wZNg‘

L2
1 2 gl
+52Hw’ 20 ZN~‘ +—— _ds
2(0)20:27 0|, 177

<1+ )%

and also .
2
/O (148|052 ha || g1 gy ds S €* (1 + 1)

We now turn to hg. We have

H / 05(BY + BY)

'Hl(Sl)

82 62
< 0, 2N +/ s ZNb
N/(1+S)(1+q|)38p” QTT|’L2(Sl) (1+8)(1+|q’)3*8f0‘|8 HLQ(Sl)
S [ubta)?02 G|, + / T
MCESE g ) (a3 )

and consequently

t
/(1+3) 102 hall? 2 1) S / |usta)2oz gTTH te /(1+s>3|yassz\§2(S1)554(1+t>2ﬂ
0

We now do the estimate of 9sZVh in L?. We can write the terms of our decomposition in the

form
~ 6 —
B =0 dSZN ¢,
((1 +5)7(1 4 |q\>3—4p>
By =0 .
(1+ 5)5 (1+ ]q|

Ba=0 dzN+1gp
’ <(1+s)% 1+|q| ‘4P> i

ZN+1¢,

Qi

(B4 + Br) :O< N,

1+\(J!3 5

Bs = azN

10
<(1+ lq[)?~8r(1

-0 N
Ho <(1+s)3(1+!ql)8” ")Z ’

H/EldT

We estimate

"(@008Z¥ ¢ 2,

ey 1
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2

1
€ r 1 2 €
< (5 OZN g S —
. ek (/ <t><1+|q\)1*8p ) et e S

=

H/Bgdr < £ Hw )37 N+
L2(SY) ~M 1+t
e? N~
H/ B4—|—B7)d < 7”’[02 8Z HLQ,
sty (141)2

H/B5d?” 5 3
sy (141)2

I ‘ / B6 dr
Consequently

Ut ) |0h2ads e [ (5 [w(@)30 R,
[ snoias <= [ (5 v o ) &
(2 ub@0ZY 5| + —— [ (@02 ) d
+ | (& @925 + s i (@927 ) ds

<1+ ).

[wi(0)0Z" ][

E2
< ___ -
L2(SY) ~ (1 _|_t)2—P

We finish with the estimate of 92h(6, s) in H=2(S!). We claim that it satisfies the same estimate
as Osh(0,s) in H=1(S'). Indeed, to estimate

3331:/0 _c | o205 27,
(1+5)2(1+ql)2

we write
9000705 SZ ¢ = 9000705 SZ" ¢ — 0,805 2" ¢ + 0,805 Z" ¢ = O (09,0805 2" ¢) + O (9y 095 SZ" ¢) .

The term 0,505 Z1¢ contains quadratic term and we can neglect it. We can get rid of a 9, with
an integration by parts, and we are reduced to estimate

/0( R )asag‘z%,
(1+s)2(1+ g2

which can be estimated in the same way as By. Since g also satisfy a wave equation, we can treat
the other terms in a similar way. This concludes the proof of Proposition [11.3] O

Proposition 11.4. We have

62

(1+s)2
Proof. We use the decomposition d;h = f B + By + ... We estimate,

10:2Y " h| 21y S

I g
B =0 : 0.0527¢ = O Z™2,
1 <<1 FREITE rq|>34p> ’ ((1 +8)3(1+ |q)34f’>

so thanks to|(3.1)

62
Br=0 <(1 +9)2(1+ !q)2‘89> '
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In the same way

2
By=0 . 0,05 7" 0( - )
: QLMﬁ1+M > B2 = O\ T + e

_ Ty _ e’
&_O<u+géyum-“> %2'6=0 (s s

5=

ﬁ\gv

We estimate
€

052" grr.
u+ﬂx1+mw%&> e
Thanks to estimates |(4.13)] |(4.61)| and |(4.28)| we can estimate

e(1+|q))2

YA =0
04 9TT < 1+ s)

)+0@&T@.

Consequently

e e’ I g3
&:O<@+WO+MﬁﬂJ+O<O+MW@&ZQ:O<u+wu+mﬂ%>'

where we have used the estimate [(2.2)|for 9,Z7b. We estimate

62

— arzl~ e
2= (it s ) 47 ‘anmﬁﬂaﬂm%&y

62
B:O 3 7 ZIIB
" <u+@wrwwf&”>

The equation gives, for I < N —6

18(q,5,0) = O u+mmwv 2Tq€u+Mﬁw(h:o<(1Hﬂ>
700 ( (1+8)% +/s (T+q)(1+7)% (1+ s)

SIS w\»—A

where we have used |(3.50)| Consequently we obtain

52
0= (o s )

By integrating we obtain

Proposition 11.5. We have

&3

S

N-—1
Hz <h(9,2t)+2 / arqs(t,r,e)am(t,r,e)rdr) LS ot

< .
L2 1+t

sz—5Quamg+2/}mwunm@¢wrﬁvw)
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Proof. We have
h(0,2t) — / (0,0)%rdr = / O(9¢pd¢)r + O (8(39)*) r + O (91(09)*) r = / C

with
2 2

< Ty &
S e P aapgs

We have already estimated, for I < N — 1 (see the proof of Proposition

Z'q| +12'8)).

e3

S
2y (L+t)z7

H/u+|f|>3—80<lzfﬁll+lzfﬁ|>

We have

e 07"
/ e

For I < N — 5 we easily see from the previous calculation

52
[ =lezte
(1 la)

52 ZI~
T+ a2 9

where we use [(3.60)} Thanks to [(11.2)| we have

&3

<2 oz'oll ([ i) S
e, VI e e ) S

N|=

e3

S
2y (1+1)

53

i

[NIES

< ;
st (1+1)2

Y

L 5 1
1 2 1 T (Zt/ +R)Z ly<p N 2 5
T No49,, ZN_5 2d do < / a= ZN—S dt/
wrmmeoran) s 5 ([ Goge L),
1
1 T 2
5,1(/ 3 5dt/> §£“
ts t t°Ta t2
and consequently
3

< 3

sty (L4t)2

e? N—5
H/ aripre? 7!

We now prove Proposition
Proof. We extend h to oo by setting
W(0,5) =(s)h(0, s) + (1 — P(s))h(0,2T),

where 1) is a cut-off function such that ¢ =1 for s <27 — 1 and ¥ = 0 for s > 2T. The fact that
I’ satisfies the estimates of Proposition is straightforward. For the estimates of Propositions

and we just have to notice that
Osh'(0,s) = (s)0sh(0,s) + ' (s)(h(0,s) — h(0,2T)).
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Since in the region s ~ 2T, we have h(0, s) — h(0,2T) = O(0sh), we easily see that 9sh’ satisfy the
same estimates as dsh. For the estimates|(3.40)[ and [(3.41)| we write

h'(0,s) = h(0,s) + (1 —(s))(h(6,2T) — h(0, s)),

and notice that

B 2T 2T 52 62
|ZV =1 (h(6,2T) = h(8, 5)) | 251y 5/ 127 (8sh) || r-1(s) 5/ — S —-
s s (1+8)2 P T(1+8)2 P

Without loss of generality, we can assume T > g, and consequently

3
12N (h(9,21) = b8, $))ll12e) S ———
(1+5)i7
In a similar way
3
_ 5
12572 (h(6,2T) = 10, 5)) | L2(s1) < T
s
which concludes the proof of Proposition O

11.2 Proof of Proposition

We want to find three coefficients bo(s), b1(s),ba(s) and a solution b(f, s) of

2a(0 + f) 1 , Bb ()

(1+06)2 (14062 ~ “(1+b) (1+b)?2
=TIA'(6, s) + by + by cos(6) + be sin(6)

satisfying [ %de =0and 1+ 9yf = (1+0b)~". We make a change of unknown 8 = &.. We

1+b°
calculate
b (Dgb)?

1+b)2 “(1+b)3
The problem is therefore equivalent to finding bo(s), b1(s), b2(s) and S a solution of

03B =

—20°8—28 = (1—B)(ITN (6, 5) + by + by cos(0) + by sin(h)) —2(1 — B)3ao(1+ f) + R(9pB3, B) (11.3)

with [ 8 = 0 and f defined by dpf = —f3, and we have denoted by R a quadratic form. We will
do this with a fixed point argument. We consider F : H?(S') + H?(S') which maps 3 such that
|B]lzr2 < e and [ B =0 to 3 solution of

—20%8'—28" = (1—B)(IIK (8, s) + by + by cos(8) + by sin(8)) — 2(1— B)3ap(1+ f) + R(DsB, B) (11.4)

with b1, bg, by chosen such that

/cos(ﬁ) ((1 = B)(IIL' (8, s) + bo + b1 cos() + basin()) — 2(1 — B)*ap(1 + f)) + R(9pB,8)) db = 0,

(11.5)
/sin(e) (1 = B)(IIR' (0, s) + by + by cos(0) + basin(8)) — 2(1 — B)3ag(1 + f)) + R(0B,8)) df = 0,
(11.6)

/ ((1 = B)(IIA/(B, s) + bo + by cos(0) + by sin(0)) — 2(1 — B)*ao(1 + f)) + R(9pB,8)) df = 0.
(11.7)
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We first show that we can find three such coefficients. We have, thanks to Sobolev embedding

1b] + [8pb] < .

Consequently the three integral conditions|(11.5)} |(11.6)| and |(11.7)| can be written

%bl = O(e)by + O(e)b1 + O(e)by +/cos(0) (1—=p)Ir'(0,s) —2(1 — B)3a(l+ f) + R(08,8)) db.

%bg — O(e)bo + O(e)b1 + O(e)ba + /sm(e) (1 + BT (0, s) — 2(1 — B)%a(1 + f) + R(9pB, B)) do.

b= [ (1= 96, — 20— B)%al1 + 1) + R(@u5. 57) .
This system is invertible : we have a unique solution which satisfies the estimate

[bol + [b1] + [b2| S 11]| 21y + el Bl ey S €

Thanks to [(11.5)] and [(11.6)] we are allowed to solve |(11.4)l There exists a unique solution 3’ €
H?(S'), and it satisfies

16" zz2 < W] z2(s1) + €ll Bll sty + laol < €

Moreover, thanks to |(11.7)| we have [ = 0. We see easily that the map F is contracting.
Consequently it admits a unique fixed point 3(6, s), satisfying

1Bl 2 S 17| L + Ll
Moreover there exists bg, b1, by such that 3 satisfy In addition we have

1Bl g2 S N0 e + lal,

and deriving |(11.3)[, |[(11.5)] |(11.6)| and [(11.7)| with respect to s we obtain

l .
10581 gre+2 S NOSH || v

|8Lbo| + 18501 + |0Lba| S 110LH|| -

11.3 Proof of Proposition (3.7

From the initial data of Theorem we can construct a solution of up to time T = 1.
Moreover, this solution exists in the entire region ¢ > R+ 1, ¢ > 0 (see Appendix . Let 5@ be
defined by Proposition [3.6] and set

h3) = 1'(9,5) + by + by cos(8) + by sin(8).

By performing the change of variable of Section with b, and looking at the data on t = 0, we
obtain a solution of the constraint equation with the desired asymptotic behaviour (see Appendix

(2) 2)

97 = gy +9'7.

We consider the solution (9(2), ¢(2)) in generalized wave coordinates

(HD) = ()M T@)g, = (FO) + (D) + (G,
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with

3

o=t ()|

(204022 = 120, 20)x () dr,
Lo (GP)* =0,

where (U?JL)(Q) = 5(1 4+ @), f?) with

L+ 0pf®) = (1407,

and (G?)® contains the terms of the form GHOLoEV?) | where [ +k —2> 1 or 1 > 2. b® satisfy
the hypothesis to . We assume that on [0,7®], ¢® satisfy the bootstrap estimates.
Thanks to all we have done so far, we know that (9(2),¢(2)) satisfies the improved bootstrap
estimates, except which remained to be proved. For this, thanks to Proposition all we
have to do is to compare ¢ and ¢®). We can pass from (g, ¢) to (9, ¢?) by a change of variable,
that we note W.

We note 2(2) = ¥(z) the new generalized wave coordinates. We have

I

Vs, = |(g)"

and so

@ _ g < [Tl _ gLL| 1 [5®] g
|s s| S ‘gb@) 9p ‘4‘ g q
S
q

q/ 2 / €
<[ o (ag(b— b >)> dq +
/s s (1+Jgl)2#0(1 + )27
Sevl+s,

where we have used that § — p > % and in the interior

s [

q
55\/1+3+/ %dq/
S

g@)) dg' + |s® — s|,_g

(1+s)27°
1
<evi+ 5+5+7|q1|.
(L4s)277

We have in the exterior region

)

V(g — g1 +b)7)], = | )L

so in the exterior region we obtain

q
0 —al Sl — bl + ]3] dg

q €

< Jgllb® — b + / dd/
s (L+]g) 21+ 5)27°

elq| £
<
S Vits  (Ltspr
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where we used )

32 _p < Ih? —p <_°
| | ~ || ”L2(Sl) ~ \/m

We recall that § —o — p > % In the interior we obtain

q
2
Iq()—qIS/
S
3
2

(1 /
st [rlrid),,
I+s Js (1+459)2

(5(2))@‘ dq' +1¢® — qlg=o

Njw

~—

1+ q|
SASLL A

(
(1+5)3

()

<

2

We have |
VO], = | (g

9

so in the exterior
771 1)
o o [ (2o - b+ 1 [a)]) ao
S

</q0<q/8§(b—b(2))> dg + c
TS (1+]a) 7 (14 5)2 7"

and in the interior

€ q €
St [ —dd
Vits Jo (1+s)277
1
L + lq|

VIits (14+s)2r

With these estimates it is easy to see that ¢(?) satisfy the same improved estimates as ¢. We have

We calculate
06 = (05@))0:0 (¥ (2)) + (9994 p (¥ (x)) + (90)) Db (W ().
We compare ¢ and ¢ to improve (3.25)l ¢ is non zero only in the interior region. We obtain

106 — (96)(¥(x))| <I9/10¢] + |grL]0,]

< € 5 1+ |q| 5
TA48)T P (L4 s) 21+ g2 (148)27 (1+45)7(1+[g))> "
< e’

1+ |g) 21+ 5)2
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We estimate

1
(00)(¥(x)) — d¢(x)| S /0 (¢ —2).Vg(z + 7(2? — x))dr

1 o
€ 8%7 z+7(? -z w
S/O <<1+ )21006(x + 7( N+ Gt

N[ MW

0%p(z + (2@ — x))|> dr
< a
(1 +s)(1+g)t e

In the same way we have

026 —(027¢)(V(x))| S ———|2"g|+ =

T (1) VIHs(1+ g

€

125G
(1+5)2(1 4 |g))z~%

\Z%grr)+

and
(021 9)(W(x)) — 02" p(x)]

1
5 / (55(2) - x)vaZI¢(x + 7—(3;(2) _ $))d7’
0

(1+lgh2*

1
$)2100Z ¢z + r(z® — x £
SA Ga+>rwz¢<+< I R

NI W

0°2! $( + (2 — x))l) dr

Le(l+ g2t
< | oz o+ 7 — )| ar
0o (1+s)2

Consequently, we have

’zl ( / (0g0?)?rdr — / (8q¢>)2rdr>

</ € e(1+ lql)
T @+ la) A4 s)z (L+s)

52

" / (1+s)(1+|g])38 HZIQLLHL2(S1)7“dr + s.t.

) + s.t.
L2

S
sty (141¢)

L2(St)
+o

102" || 121y rdr

NI=] D=

Zlgr
1+ |qf

< = (102 0+

Y (1+1)2

Consequently we have,

HZN—5 ( / (8,02 rdr — / (8q¢)2rdr>
HZN—l < / (0g0'®)2rdr — / (0q¢)2rdr>

A Global existence of solutions in the exterior

&3

9

NG

and

&3

ST
sy (1+¢)27°

We denote by C' the complementary of the domain of dependence of B(0, R+ 1). Let g, be defined
by Theorem In generalized wave coordinates COgz® = Oy, x® the system R,, = 0 can be
written, with the decomposition g = g, + ¢

Dgglw = Puy(g)(ﬁa, 8@) + ﬁMV(§7 ga)7
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where we used the fact that g, is Ricci flat. We perform a bootsrap argument : let T be such that
we have a solution g of this equation on Cp where Cr is the restriction of C' to times less than T,
and assume that

where

Thanks to Klainerman-Sobolev estimates (which are still valid in a region C'N %) we have

1 -
1202 2oz, S €L+ )7,

1
1 Ne_o~
lvf 02" 231l L2,y S €

v(q) = (1 + |q)**,
v1(q) = (1 + |q|)*T20 2.

9

(1+5)27°(1 + [g)2+"
g

(1+ [gl)2 %07

027 %g] <

027 %g] <

)

[V

(1+5s)
g
(L4 5)2 (1 + g2+

—~ g
EYARTTES —
(1+5)2(1 4 [g))2 0~

VARBS

Thanks to the wave coordinate condition

g
1ZN 37| S -
(1+5)27P(1+|g) "2+
A~ £
1ZN 47| S

(1+8)2(1+]|g)) 2t

(A1)
(A.2)

(A.3)

(A4)

(A.5)

(A.6)

To improve [(A.1)| we perform the energy estimate in the background metric, in the region C;. We

obtain

where £ is a null vector tangent to 9C and @Q is the energy momentum tensor for 0,

/ wQrr+ [ ware+c [ t [ @y
<[ [ [ [1aza10,79

- 1 .y » -
Qop = 021505215 — 59089" 0,2'30,2"3.

Consequently

Qre = T(Z'GL(Z'5) — Sore(L(ZDLZ'D) + eo(2'6)?)

where £ is null such that g(L,£) = —2 and ey is tangent to C' and orthogonal to £ and £. We

have

1 - - 1 - - -
Qre ==9rc L2 L(Z1G) + Z9reL(ZTG) L(Z1G) + gre, L(Z1G)e0(277)

2 2

1

= Sorc(L(Z'9)L(Z'g) + eo(2'9)°)

= SoreL(Z L) — Sorcen 29 + g1, L2 G)en(2'5)
>(1—Ce)(L(Z79) + ea(Z'9)%) > 0.

105



Since in all our proof, the bootstrap condition was not needed in the exterior region, we
easily see from section that we will be able to improve

To improve we perform the energy estimate in the flat metric. @ is now the flat energy-
momentum tensor. We now have to be careful with

- | B 1 N
Qre =0,Z2'5L(Z2"g) — T (85(Z19)6q(219) + 72(892]9)2> :

which may not be positive. Since £ = (14 O(g —m))ds + O(gr1)94 + O(gur)0u, we have

Qre = (1+ 0(e)) <(aszf§)2 + :z(anggﬁ) +0(g10)(0,27)?

53

2 (1-9) (029" + 5@79?) -

where we have used |(A.3)l Consequently the energy estimate yields

t
/ w(02'5)? + / W(d2'5) + C / / ()35
pon aC 0
// Gm,2 4 [ —
<[ [0z ~+/T.
o J 1O AZA T

We then easily see from Section that we can improve the bootstrap assumption (we can check
that the cubic non linearities without null structure in @z are not present).

B Regularity of the initial data

To obtain solutions of the constraint equation with an asymptotic behaviour g = gy + g, we take
the exterior solution constructed in the previous section (we denote by s', ¢, 8" the coordinates used
for this construction), make the change of variable

S = (1= x(r))s + x() (14500, 9))s — (@ub(6, )1 +b(6, ) a),
= (1= X))+ x(r)(1+00,9) s
. 000,
= (1= 30+ ) (0 P 4 169,

and consider the space-like hypersurface, given by ¢ = 0. We denote by > this hypersurface, and
consider g = g|y,, and K the second fundamental form of the embedding ¥, C M. (g,K) is a
solution to the constraint equations.

Proposition B.1. There exists

(9a)0s (9ap)1 € HY T x HY

such that the initial data for g given by

9= go + 9o, 0rg = Ogp + g1,

are such that

106



* Gij = gij, Kij = L3gi; satisfy the constraint equations|(1.4)| and|(1.5)|

e the following generalized wave coordinates condition is satisfied at t = 0

9T = 65" (To)3s + G + G,

where G is defined by [(2.26)] (2.27)| and [(2.28)| and G is the sum of all the crossed term of the
form go%gb and goOsgp N gkﬁf‘j\‘ﬁ — g;"B(I‘b)‘/{‘ﬁ. Moreover we have the estimate

<
lgollgrver + gl S e

Proof. There are two issues to consider for the regularity of (g, K).

e We have t’ ~ ¢t —b(0,s)r, so [t/| - 0o as 7 — oo in . Consequently we have to be careful
with the logarithmic growth in ¢’ of the higher energy of g.

e In 9}'g, we have terms of the form 8év+2b(9,s)89§ : we have also to be careful with the
logarithmic growth in s of ||8év+2b(9, $)lz2(st)-

We treat the first issue. We can estimate fEb w(q)(0ZNg)?rdrdf by performing the energy estimate
on the domain delimited by ¥ and ;. We denote by €0 this domain. We have

/E w(q)(0ZVG)? < / w(q) (0ZVG)? + w(q) (027 9)%

o Q 1 + S
We note that in the region Q, N {g > R} we have |¢| > Ct. Since w(q) < v(q)(1+ |g])°~® we have
~ ~ € N2
w@)029° £ [ @O + | @02
L N
S [ wl@@zV9? +
Yo

We treat the second issue with the help of the weight w:

9

/w(r)(8N+2b(0,5)889§)2 < / == \|3§V+2b(9,r)||§2(sl)

3 3
5/(1+7a)1+(5—5/—2p Se
£

/w(r)(3N+285b(9,s)09£7)2 5/(14‘7")6_5/

We now discuss the regularity of 0;gp;. The generalized wave coordinate condition can be
written

10505 26(6, 1) |72 g1y dr S €.

9IS = (90 (To)3s + G + G,

Therefore, if we write it for a = i we obtain a relation for d.gg; and if we write it for a = 0, we
obtain a relation for 0yggo. However, if we write g = gy + g, the term

9TS5 = (96)(Th)5

contains crossed terms of the form

_O3b(9)

9Gouge ~ g + 5.t GOsgy ~ GOZ0pb + s.t.

r
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which do not belong in H zﬁl because we are missing a derivative on b. However these terms

are removed thanks to the addition of the term G in the generalized wave coordinate condition.
Consequently drgop and 0:go; are given by a sum of terms the form

X\T)3e
Ka vQO) ghK7 gbv.g()a ( ) go

With this choice, 0,go; and 0,ggp belong to H é\jrl. O
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