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Cécile Huneau
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Abstract

In this paper, we prove the nonlinear stability in exponential time of Minkowki space-time
with a translation space-like Killing �eld. In the presence of such a symmetry, the 3 + 1
vacuum Einstein equations reduce to the 2 + 1 Einstein equations with a scalar �eld. We
work in generalised wave coordinates. In this gauge the Einstein equations can be written as a
system of quasilinear quadratic wave equations. The main di�culty in this paper is due to the
decay in 1√

t
of free solutions to the wave equation in 2 dimensions, which is weaker than in 3

dimensions. As in [21], we have to rely on the particular structure of the Einstein equations in
wave coordinates. We also have to carefully choose the behaviour of our metric in the exterior
region to enforce convergence to Minkowski space-time at time-like in�nity.

1 Introduction

In this paper, we address the quasi stability of the Minkowski solution to the Einstein vacuum
equations with a translation space-like Killing �eld. In the presence of a translation space-like
Killing �eld, the 3 + 1 Einstein vacuum equations reduces to the following system in the polarized
case (see Appendix A) {

�gφ = 0,
Rµν = ∂µφ∂νφ.

(1.1)

This system has been studied by Choquet-Bruhat and Moncrief in [7] (see also [6]) in the case
of a space-time of the form Σ× S1 × R, where Σ is a compact two dimensional manifold of genus
G ≥ 2, and R is the time axis, with a space-time metric independent of the coordinate on S1. They
prove the existence of global solutions corresponding to the perturbations of a particular expanding
universe. This symmetry has also been studied in [3], with an additional rotation symmetry.

In this paper, we consider a space-time of the form R2×Rx3×Rt, for which ∂3 is a Killing vector
�eld. Minkowski space-time can be seen as a trivial solution of Einstein vacuum equations with
this symmetry. The question we address in this paper is the stability of the Minkowski solution in
this framework.

In the 3+1 vacuum case, the stability of Minkowski space-time has been proven in the celebrated
work of Christodoulou and Klainerman in [8] in the maximal foliation. It has then been proven
by Lindblad and Rodnianski using the wave coordinates in [21]. Their proof extends also to the
Einstein equations coupled to a scalar �eld. In this work we will use wave coordinates.

1.1 Einstein equations in wave coordinates

Wave coordinates (xα) are required to satisfy �gxα = 0. In these coordinates (1.1) reduces to the
following system of quasilinear wave equations

1



{
�gφ = 0,
�ggµν = −∂µφ∂νφ+ Pµν(∂g, ∂g),

(1.2)

where Pµν is a quadratic form. To understand the di�culty, let us �rst recall known results in 3+1
dimensions. In 3 + 1 dimensions, a semi linear system of wave equations of the form

�ui = P i(∂uj , ∂uk)

is critical in the sense that if there isn't enough structure, the solutions might blow up in �nite
time (see the counter examples by John [13]). However, if the right-hand side satis�es the null
condition, introduced by Klainerman in [14], the system admits global solutions. This condition
requires that P i be linear combinations of the following forms

Q0(u, v) = ∂tu∂tv −∇u.∇v, Qαβ(u, v) = ∂αu∂βv − ∂αv∂βu.

In three dimensions, the Einstein equations written in wave coordinates do not satisfy the null
condition. However, this is not a necessary condition to obtain global existence. An example is
provided by the system {

�φ1 = 0,
�φ2 = (∂tφ1)2.

(1.3)

The non-linearity does not have the null structure, but thanks to the decoupling there is nevertheless
global existence. In [20], Lindblad and Rodnianski showed that the non linear terms in the Einstein
equations in wave coordinates consist of a linear combination of null forms with an underlying
structure of the form (1.3). They used the wave condition to obtain better decay for some coe�cients
of the metric. However the decay is slower than for the solution of the wave equation. An example
of a quasilinear scalar wave equation admitting global existence without the null condition, but
with a slower decay is also studied by Lindblad in [18] in the radial case, and by Alinhac in [2]
and Lindblad in [19] in the general case. In [20], Lindblad and Rodnianski introduced the notion
of weak-null structure, which gathers all these examples.

In 2 + 1 dimensions, to show global existence, one has to be careful with both quadratic and
cubic terms. Quasilinear scalar wave equations in 3 + 1 dimensions have been studied by Alinhac
in [1]. He shows global existence for a quasilinear equation of the form

�u = gαβ(∂u)∂α∂βu,

if the quadratic and cubic terms in the right-hand side satisfy the null condition. Global existence
for a semi-linear wave equation with the quadratic and cubic terms satisfying the null condition
has been shown by Godin in [9] using an algebraic trick to remove the quadratic terms, which does
however not extend to systems. The global existence in the case of systems of semi-linear wave
equations with the null structure has been shown by Hoshiga in [10]. It requires the use of L∞−L∞
estimates for the inhomogeneous wave equations, introduced in [16].

To show the quasi global existence for our system in wave coordinates, it will therefore be
necessary to exhibit structure in the quadratic and cubic terms. However, as for the vacuum
Einstein equations in 3 + 1 dimension in wave coordinates, our system does not satisfy the null
structure. It will in particular be important to understand what happens for a system of the form
(1.3) in 2 + 1 dimensions. For such a system, standard estimates only give an L∞ bound for φ2,
without decay. Moreover, the growth of the energy of φ2 is like

√
t.

One can easily imagine that with more intricate a coupling than for (1.3), it will be very di�cult
to prove stability without decay for φ2. To obtain a more useful estimate, the idea will be to exploit
more precisely the fact that φ1 also satis�es a wave equation. To understand how this might help,
we will look at special solutions of the vacuum Einstein equations with a translation space-like
Killing �eld : Einstein-Rosen waves. These solutions have been discovered by Beck (see [4], and
also [3] and [5] for a mathematical description).
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1.2 Einstein-Rosen waves

Einstein-Rosen waves are solutions of the vacuum Einstein equations with two space-like orthogonal
Killing �elds : ∂3 and ∂θ. The 3 + 1 metric can be written

g = e2φ(dx3)2 + e2(a−φ)(−dt2 + dr2) + r2e−2φr2dθ2.

The reduced equations {
Rµν = ∂µφ∂νφ,
�gφ = 0,

can be written in this setting

Rtt = ∂2
ra− ∂2

t a+
1

r
∂ra = 2(∂tφ)2, (1.4)

Rrr = −∂2
ra+ ∂2

t a+
1

r
∂ra = 2(∂rφ)2,

Rtr =
1

r
∂ta = 2∂tφ∂rφ.

The equation for φ can be written, since φ is radial

e2a�gφ = −∂2
t φ+ ∂2

rφ+
1

r
∂rφ = 0,

where g is the metric
g = e2a(−dt2 + dr2) + r2dθ2.

The equation for φ decouples from the equations for the metric. Therefore we can solve the �at wave
equation �φ = 0, with initial data (φ, ∂tφ)|t=0 = (φ0, φ1) and then solve the Einstein equations,
which reduce to

∂ra = r
(
(∂rφ)2 + (∂tφ)2

)
, (1.5)

with the boundary condition φ|r=0 = 0 in order to have a smooth solution. Since �φ = 0, if (φ0, φ1)
have enough decay, we have the following decay estimate for φ

|∂φ(r, t)| . 1
√

1 + t+ r(1 + |t− r|)
3
2

.

Therefore since

a =

∫ R

0
r
(
(∂rφ)2 + (∂tφ)2

)
dr

we have

|a| . 1

(1 + |r − t|)2
, for r < t,

|a− E(φ)| . 1

(1 + |r − t|)2
, for r > t,

where the energy

E(φ) =

∫ ∞
0

r
(
(∂rφ)2 + (∂tφ)2

)
dr

does not depend on t. For r > t, we have a ∼ E(γ) and hence is only bounded. In particular, the
metric

e2adr2 + r2dθ2

exhibits an angle at space-like in�nity, that is to say the circles of radius r have a perimeter growth
of e−E(φ)2πr instead of 2πr. However, in the interior, the decay we get is far better than the one
we could have found with standard estimates, if we had used (1.4) instead of (1.5).

3



1.3 The background metric

We would like to adapt the analysis of Section 1.2 in the case where we only assume one Killing
�eld (i.e. in the case where ∂3 is Killing but not ∂θ). Assume that

a =

∫ R

0
r
(
(∂rφ)2 + (∂tφ)2

)
dr

is still an approximate solution of (1.3), which will appear to be true in Section 7. As in this case
φ also depends on θ, we will have

lim
R→∞

a(t, R, θ) =

∫ ∞
0

r
(
(∂rφ)2 + (∂tφ)2

)
dr = b(t, θ).

Note that we have to be careful with the dependence on θ. The metric

e2b(θ)(−dt2 + dr2) + r2dθ2

is no longer a Ricci �at metric when b depends on θ. Consequently it is not a good guess for the
behavior at in�nity of our metric solution g. A good candidate should be Ricci �at in the region
r > t. Indeed if we considered compactly supported initial data for φ, by �nite speed propagation,
φ should intuitively be supported in the region r < t. Consequently, the equation

Rµν = ∂µφ∂νφ

implies that g should be Ricci �at for r > t. Consequently, we are yield to consider the following
family of space-time metrics

gb = −dt2 + dr2 + (r + χ(q)b(θ)q)2dθ2 + J(θ)χ(q)dqdθ, (1.6)

where (r, θ) are polar coordinates, q = r− t and χ is a cut-o� function such that χ(q) = 0 for q < 1
and χ(q) = 1 for q > 2. In the coordinates s = r + t, q, θ, a tedious calculation yields that all the
Ricci coe�cients are zero except

(Rb)qq =−
b(θ)∂2

q (qχ(q))

r + b(θ)qχ(q)
+
qχ(q)χ′(q)J(θ)∂θb

(r + b(θ)qχ(q))3
+

J(θ)2χ(q)χ′(q)

4(r + b(θ)qχ(q))3
− χ′(q)∂θJ(θ)

(r + b(θ)qχ(q))2
,

=−
b(θ)∂2

q (qχ(q))

r
+O

(
C(b, b′, J, J ′)11<q<2

r2

)
,

(1.7)

(Rb)qθ = − J(θ)χ′(q)

2(r + b(θ)qχ(q))
= O

(
C(b, J)11<q<2

r

)
. (1.8)

Therefore, the metrics gb are Ricci �at in the region r > t+ 2. We will see in the next section that
they are compatible with the initial data for g given by the constraint equations.

This choice of background metric will force us to work in generalized wave coordinates, instead
of usual wave coordinates. Indeed, for the metric gb de�ned by (1.6), the coordinates (t, x1, x2) are
not wave coordinates, not even asymptotically. The generalized wave coordinate condition reads,
for g of the form g = gb + g̃

gλβΓαλβ = Hα
b

where Hα
b is de�ned by

Hα
b = H̄α

b + Fα, (1.9)

where H̄α
b is de�ned by

H̄α
b = gλβb (Γb)

α
λβ (1.10)

and Fα is de�ned by the sum of the crossed terms of the form g̃ ∂θr gb in g
λβΓαλβ − H̄α

b . The reason
of this choice for Fα will be explained in next section, in the proof of Theorem 1.3.

The form of (1.1) in generalized wave coordinates is given by (2.1).
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1.4 The initial data

In this section, we will explain how to choose the initial data for φ and g. We will note i, j the
space-like indices and α, β the space-time indices.

We will work in weighted Sobolev spaces.

De�nition 1.1. Let m ∈ N and δ ∈ R. The weighted Sobolev space Hm
δ (Rn) is the completion of

C∞0 for the norm

‖u‖Hm
δ

=
∑
|β|≤m

‖(1 + |x|2)
δ+|β|

2 Dβu‖L2 .

The weighted Hölder space Cmδ is the complete space of m-times continuously di�erentiable functions
with norm

‖u‖Cmδ =
∑
|β|≤m

‖(1 + |x|2)
δ+|β|

2 Dβu‖L∞ .

Let 0 < α < 1. The Hölder space Cm+α
δ is the the complete space of m-times continuously di�er-

entiable functions with norm

‖u‖Cm+α
δ

= ‖u‖Cmδ + sup
x 6=y, |x−y|≤1

|∂mu(x)− ∂mu(y)|(1 + |x|2)
δ
2

|x− y|α
.

We recall the Sobolev embedding with weights (see for example [6], Appendix I).

Proposition 1.2. Let s,m ∈ N. We assume s > 1. Let β ≤ δ + 1 and 0 < α < min(1, s − 1).
Then, we have the continuous embedding

Hs+m
δ (R2) ⊂ Cm+α

β (R2).

Let 0 < δ < 1. The initial data (φ0, φ1) for (φ, ∂tφ)|t=0 are freely given in HN+1
δ ×HN

δ+1 with
0 < δ < 1. However the initial data for (gµν , ∂tgµν) cannot be chosen arbitrarily.

� The induced metric and second fundamental form (ḡ,K) must satisfy the constraint equations.

� The generalized wave coordinates condition must be satis�ed at t = 0.

Moreover, we want to prescribe the asymptotic behaviour for g : we want it to be asymptotic to
gb, where b(θ) is arbitrarily prescribed, except for its components in 1, cos(θ) and sin(θ).

We recall the constraint equations. First we write the metric g in the form

g = −N2(dt)2 + ḡij(dx
i + βidt)(dxj + βjdt),

where the scalar function N is called the lapse, the vector �eld β is called the shift and ḡ is a
Riemannian metric on R2.

We consider the initial space-like surface R2 = {t = 0}. We will use the notation

∂0 = ∂t − Lβ,

where Lβ is the Lie derivative associated to the vector �eld β. With this notation, we have the
following expression for the second fundamental form of R2

Kij = − 1

2N
∂0gij .

We will use the notation
τ = gijKij
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for the mean curvature. We also introduce the Einstein tensor

Gαβ = Rαβ −
1

2
Rgαβ,

where R is the scalar curvature R = gαβRαβ . The constraint equations are given by

G0j ≡ N(∂jτ −DiKij) = ∂0φ∂jφ, j = 1, 2, (1.11)

G00 ≡
N2

2
(R̄− |K|2 + τ2) = (∂0φ)2 − 1

2
g00g

αβ∂αφ∂βφ, (1.12)

where D and R̄ are respectively the covariant derivative and the scalar curvature associated to ḡ.
The following result, proven in Appendix B, gives us the initial data we need.

Theorem 1.3. Let 0 < δ < 1. Let (φ0, φ1) ∈ HN+1
δ (R2) × HN

δ+1(R2) and b̃(θ) ∈ WN,2(S1) such
that ∫

b̃dθ =

∫
b̃ cos(θ)dθ =

∫
b̃ sin(θ)dθ = 0.

We assume
‖φ0‖HN+1

δ
+ ‖φ1‖HN

δ+1
. ε, ‖b̃‖WN,2 . ε2.

If ε > 0 is small enough, there exists b0, b1, b2 ∈ R× R× S1, J ∈WN,2(S1) and

(gαβ)0, (gαβ)1 ∈ HN+1
δ ×HN

δ+1

such that the initial data for g given by

g = gb + g0, ∂tg = ∂tgb + g1,

where gb is de�ned by (1.6) with

b(θ) = b0 + b1 cos(θ) + b2 sin(θ) + b̃(θ),

are such that

� gij ,Kij = Lβgij satisfy the constraint equations (1.11) and (1.12).

� the following generalized wave coordinates condition is satis�ed at t = 0

gλβΓαλβ = gλβb (Γb)
α
λβ + Fα,

where Fα is the sum of all the crossed term of the form g0
∂θ
r gb in g

λβΓαλβ − g
λβ
b (Γb)

α
λβ.

Moreover, we have the estimates

‖J‖WN,2(S1) + ‖g0‖HN+1
δ

+ ‖g1‖HN
δ+1
. ε2,

b0 =
1

4π

∫ (
φ̇2 + |∇φ|2

)
dx+O(ε4),

b1 =
1

π

∫
φ̇∂1φdx+O(ε4),

b2 =
1

π

∫
φ̇∂2φdx+O(ε4).

Let us make a remark on the choice of F .

Remark 1.4. The initial data ∂tg̃00 and ∂tg̃0i are constructed so that the generalized wave coordi-
nate condition is satis�ed at t = 0. The choice of F is here to prevent terms of the form g̃∂U (gb)
in this gauge condition, and therefore allows us to have

∂tg̃00, ∂tg̃0i ∈ HN
δ+1.

Before stating our main result, we will recall some notations and basic tools in the study of
wave equations.
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1.5 Some basic tools

Coordinates and frames

� We note xα the standard space-time coordinates, with t = x0. We note (r, θ) the polar space-
like coordinates, and s = t + r, q = r − t the null coordinates. The associated one-forms
are

ds = dt+ dr, dq = dr − dt,

and the associated vector �elds are

∂s =
1

2
(∂t + ∂r), ∂q =

1

2
(∂r − ∂t).

� We note dx the Lebesgue measure with respect to the space coordinates xi.

� We note ∂ the space-time derivatives, ∇ the space-like derivatives, and by ∂̄ the derivatives
tangent to the future directed light-cone in Minkowski, that is to say ∂t + ∂r and

∂θ
r .

� We introduce the null frame L = ∂t + ∂r, L = ∂t − ∂r, U = ∂θ
r . In this frame, the Minkowski

metric takes the form

mLL = −2, mUU = 1, mLL = mLL = mLU = mLU = 0.

The collection T = {U,L} denotes the vector �elds of the frame tangent to the light-cone,
and the collection V = {U,L, L} denotes the full null frame.

The �at wave equation Let φ be a solution of{
�φ = 0,
(φ, ∂tφ)|t=0 = (φ0, φ1).

(1.13)

The following proposition establishes decay for the solutions of the 2 + 1 dimensional �at wave
equation.

Proposition 1.5 (Proposition 2.1 in [17]). Let µ > 1
2 . We have the estimate

|φ(x, t)| .Mµ(φ0, φ1)
(1 + |t− r|)[1−µ]+

√
1 + t+ r

√
1 + |t− r|

where
Mµ(φ0, φ1) = sup

y∈R2

(1 + |y|)µ|φ0(y)|+ (1 + |y|)µ+1(|φ1(y)|+ |∇φ0(y)|)

and where we used the notation A[α]+ = Amax(α,0) if α 6= 0 and A[0]+ = ln(A).

Minkowski vector �elds We will rely in a crucial way on the Klainerman vector �eld method.
We introduce the following family of vector �elds

Z = {∂α,Ωαβ = −xα∂β + xβ∂α, S = t∂t + r∂r} ,

where xα = mαβx
β . These vector �elds satisfy the commutation property

[�, Z] = C(Z)�,
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where
C(Z) = 0, Z 6= S, C(S) = 2.

Moreover some easy calculations give

∂t + ∂r =
S + cos(θ)Ω0,1 + sin(θ)Ω0,2

t+ r
,

1

r
∂θ =

Ω1,2

r
=

cos(θ)Ω0,2 − sin(θ)Ω0,1

t
,

∂t − ∂r =
S − cos(θ)Ω0,1 − sin(θ)Ω0,2

t− r
.

With this calculations, and the commutations properties in the region − t
2 ≤ r ≤ 2t

[Z, ∂] ∼ ∂, [Z, ∂̄] ∼ ∂̄,

we obtain

|∂k∂̄lu| ≤ 1

(1 + |q|)k(1 + s)l
|Zk+lu|, (1.14)

where here and in the rest of the paper, ZIu denotes any product of I of the vector �elds of Z.
Estimates (1.14) and Proposition 1.5 yield

Corollary 1.6. Let φ be a solution of (1.13). We have the estimate

|∂k∂̄lφ(x, t)| .Mk+l
µ (φ0, φ1)

(1 + |t− r|)[1−µ]+

(1 + t+ r)l+
1
2 (1 + |t− r|)k+ 1

2

where

M j
µ(φ0, φ1) = sup

y∈R2

(1 + |y|)µ+j |∇sφ0(y)|+ (1 + |y|)µ+1+j(|∇sφ1(y)|+ |∇1+jφ0(y)|).

Weighted energy estimate We consider a weight function w(q), where q = r − t, such that
w′(q) > 0 and

w(q)

(1 + |q|)1+µ
. w′(q) .

w(q)

1 + |q|
,

for some 0 < µ < 1
2 .

Proposition 1.7. We assume that �φ = f . Then we have

1

2
∂t

∫
w(q)

(
(∂tφ)2 + |∇φ|2

)
dx+

1

2

∫
w′(q)

(
(∂sφ)2 +

(
∂θu

r

)2
)
dx

.
∫
w(q)|f∂tφ|dx.

For the proof of Proposition 1.7, we refer to the proof of Proposition 9.1 which is the quasilinear
equivalent of Proposition 1.7.

Weighted Klainerman-Sobolev inequality The following proposition allows us to obtain L∞

estimates from the energy estimates. It is proved in Appendix F. The proof is inspired from the
corresponding 3 + 1 dimensional proposition (Proposition 14.1 in [21]).

Proposition 1.8. We denote by v any of our weight functions. We have the inequality

|f(t, x)v
1
2 (|x| − t)| . 1√

1 + t+ |x|
√

1 + ||x| − t|

∑
|I|≤2

‖v
1
2 (.− t)ZIf‖L2 .
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Weighted Hardy inequality If u is solution of �u = f , the energy estimate allows us to
estimate the L2 norm of ∂u. To estimate the L2 norm of u, we will use a weighted Hardy inequality.

Proposition 1.9. Let α < 1 and β > 1. We have, with q = r − t∥∥∥∥∥ v(q)
1
2

(1 + |q|)
f

∥∥∥∥∥
L2

. ‖v(q)
1
2∂rf‖L2 ,

where

v(q) = (1 + |q|)α, for q < 0,

v(q) = (1 + |q|)β, for q > 0.

This is proven in Appendix E. The proof is inspired from the 3 + 1 dimensional analogue
(Lemma 13.1 in [21]).

L∞ − L∞ estimate With the condition w′(q) > 0 for the energy inequality, we are not allowed
to take weights of the form (1 + |q|)α, with α > 0 in the region q < 0. Therefore, the Klainerman-
Sobolev inequality cannot give us more than the estimate

|∂u| . 1√
1 + |q|

√
1 + s

,

in the region q < 0, for a solution of �u = f . However, we know that for suitable initial data, the
solution of the wave equation �u = 0 satis�es

|u| . 1√
1 + |q|

√
1 + s

, |∂u| . 1

(1 + |q|)
3
2
√

1 + s
.

To recover some of this decay we will use the following proposition

Proposition 1.10. Let u be a solution of{
�u = F,
(u, ∂tu)|t=0 = (0, 0).

For µ > 3
2 , ν > 1 we have the following L∞ − L∞ estimate

|u(t, x)|(1 + t+ |x|)
1
2 ≤ C(µ, ν)Mµ,ν(F )(1 + |t− |x|||)−

1
2

+[2−µ]+ ,

where
Mµ,ν(F ) = sup(1 + |y|+ s)µ(1 + |s− |y||)νF (y, s),

and where we used the convention A[α]+ = Amax(α,0) if α 6= 0 and A[0]+ = ln(A).

This is proven in Appendix D. This inequality has been introduced by Kubo and Kubota in
[16].
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An integration lemma The following lemma will be used many times in the proof of Theorem
1.12, to obtain estimates for u when we only have estimates for ∂u.

Lemma 1.11. Let α, β, γ ∈ R with β < −1. We assume that the function u : R2+1 → R satis�es

|∂u| . (1 + s)γ(1 + |q|)α, for q < 0, |∂u| . (1 + s)γ(1 + |q|)β for q > 0,

and for t = 0
|u| . (1 + r)γ+β.

Then we have the following estimates

|u| . (1 + s)γ max(1, (1 + |q|)α+1), for q < 0, |u| . (1 + s)γ(1 + |q|)β+1 for q > 0.

Proof. We assume �rst q > 0. We integrate the estimate

|∂qu| . (1 + s)γ(1 + |q|)β,

from t = 0. We obtain, since β < −1, for q > 0

|u| . (1 + s)γ(1 + |q|)β+1.

Consequently, we have, for q = 0, |u| . (1 + s)γ . We now assume q < 0. We integrate

|∂qu| . (1 + s)γ(1 + |q|)α,

from q = 0. We obtain
|u| . (1 + s)γ max(1, (1 + |q|)α+1).

This concludes the proof of Lemma 1.11.

1.6 Main Result

We introduce an other cut-o� function Υ : R+ → R+ such that Υ(ρ) = 0 for ρ ≤ 1
2 and ρ ≥ 2 and

Υ = 1 for 3
4 ≤ ρ ≤ 3

2 . Theorem 1.12 is our main result, in which we prove stability of Minkowski

space-time with a translational symmetry in exponential time T . exp
(

1√
ε

)
where ε > 0 is the

size of the small initial data.

Theorem 1.12. Let 0 < ε < 1. Let 1
2 < δ < 1 and N ≥ 40. Let (φ0, φ1) ∈ HN+1

δ (R2)×HN
δ+1(R2).

We assume
‖φ0‖HN+1

δ
+ ‖φ1‖HN

δ+1
≤ ε.

Let T . exp( 1√
ε
). Let ε� ρ� σ � µ� δ. If ε is small enough, there exists b(θ), J(θ) ∈WN,2(S1)

and there exists a global coordinate chart (t, x1, x2) such that, for t ≤ T , there exists a solution (φ, g)
of (1.1) that we can write

g = gb + Υ
(r
t

)(gLL
4
dq2 +

gUL
2
rdqdθ

)
+ g̃

such that we have the estimates∑
|I|≤N

(
‖α2w

1
2
0 (q)∂ZIφ‖L2 +

1√
1 + t

‖α2w
1
2
3 (q)∂ZIgLL‖L2 +

1√
1 + t

‖α2w
1
2
3 (q)∂ZIgLU‖L2

+ ‖α2w
1
2
2 (q)∂ZI g̃‖L2

)
. ε(1 + t)C

√
ε.
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with {
w0(q) = (1 + |q|)2+2δ, q > 0
w0(q) = 1 + 1

(1+|q|)2µ , q < 0,{
w2(q) = (1 + |q|)2+2δ, q > 0
w2(q) = 1

(1+|q|)1+2µ , q < 0,{
w3(q) = (1 + |q|)3+2δ, q > 0
w3(q) = 1 + 1

(1+|q|)2µ , q < 0,{
α2(q) = (1 + |q|)−2σ, q > 0
α2(q) = 1, q < 0,

Moreover, for all ρ > 0, we have the L∞ estimate, for |I| ≤ N
2 + 2 and r < t

|ZIφ(x, t)| . εC(ρ)

(1 + t+ r)
1
2 (1 + |t− r|)

1
2
−4ρ

,

|ZIgLL| .
εC(ρ)

(1 + |t− r|)
1
2
−ρ
,

|ZIgLU |+ |ZI g̃| .
εC(ρ)

(1 + t+ r)
1
2
−ρ
.

and we have the estimate for b ∣∣∣∣∣b(θ) +

∫
ΣT,θ

(∂qφ)2rdr

∣∣∣∣∣ . ε2

√
T
,

where we have used the notation∫
ΣT,θ

(∂qφ)2rdr =

∫ ∞
0

(∂qφ(T, r, θ))2 rdr. (1.15)

Comments on Theorem 1.12

� We consider perturbations of 3 + 1 dimensional Minkowski space-time with a translational
space-like Killing �eld. These perturbations are not asymptotically �at in 3 + 1 dimensions,
therefore the result of Theorem 1.12 does not follow from the stability of Minkowski space-
time by Christodoulou and Klainerman [8].

� As our gauge, we choose the generalized wave coordinates, which are picked such that the
generalized wave coordinates condition is satis�ed by gb. Therefore, the method we use has
a lot in common with the method of Lindblad and Rodnianski in [21] where they proved
the stability of Minkowski space-time in harmonic gauge. It is an interesting problem to
investigate the stability of Minkowski with a translation symmetry using a strategy in the
spirit of [8] or [15].

� The function J(θ), and the quantities∫
b(θ)dθ,

∫
b(θ) cos(θ)dθ,

∫
b(θ) sin(θ)dθ

11



are imposed by the constraint equations for the initial data (see Theorem 1.3). The quantity∫
b(θ)dθ is called de�cit angle, and the vector (

∫
b(θ) cos(θ)dθ,

∫
b(θ) sin(θ)dθ) is called linear

momentum. We can make a rapprochement of these quantities with the ADM mass and linear
momentum. The remaining Fourier coe�cients of b are chosen to ensure the convergence to
Minkowski in the direction of time-like in�nity, and is an essential element in the proof of
the quasi stability. In the subsequent paper [12], it is shown that these remaining Fourier
coe�cient correspond actually to a gauge choice. This remark is the key ingredient in [12] to
show the full stability.

� The logarithmic growth of ‖w
1
2 (q)∂ZNφ‖L2 , and the condition

b(θ) ∼
∫

ΣT,θ

(∂qφ)2 rdr, (1.16)

give the estimate |∂Nb| . ε2(1 + T )Cε. To avoid factors of the form (1 + T )Cε in all our
estimate, we are forced to assume (1 + T )Cε . 1. This is the only place where we need
(1 + T )Cε . 1, and this is what prevents us to prove the stability.

� The condition (1.16) is not necessary to control the metric in the exterior region r > t. For
this reason we believe that the stability holds in the exterir region, without the condition

T . exp
(

1√
ε

)
.

As we said in the second comment, we use a method similar than Lindblad and Rodnianski
method in [21]. Let us list some of the similarities and di�erences with their method.

Similarities with [21]

� We use the vector �eld method. The vector �elds we use are the Klainerman vector �elds of
Minkowski space-time.

� We use the wave coordinate condition to obtain more decay on the coe�cients g̃T T of the
metric.

� We exhibit the structure corresponding to the model problem (1.3).

Di�erences with [21]

� The asymptotic behaviour given by the solutions of the constraint equations prevent us to
work in wave coordinates. Instead we work in generalised wave coordinates.

� In the exterior region, our solution does not converge to Minkowski, but to a family of Ricci
�at metrics gb.

� The decay of the free wave is weaker in 2 + 1 dimension. Consequently, the coe�cient gLL
of the metric does not have any decay near the light cone. We have to rely on the null
decomposition at all steps in our proof to isolate this behaviour, even in the L2 estimates.

� We have to �t b(θ) so that the condition (1.16) is satis�ed. This leads to regularity issues for
b, which prevent us from proving the global existence.

The structure of the paper is as followed. In Section 2 we describe the structure of the equations
(1.1) in generalized wave coordinates. We exhibit the structure of our system in Section 2. We also
describe the interactions between gb and g̃. In Section 1.3 we outline the main issues of the proof

12



by discussing some model problems. In section 4 we give our bootstrap assumptions. In section 5
we derive preliminaries estimates thanks to the wave coordinate condition. In section 6 we derive
preliminaries estimate for the angle and the linear momentum. In section 7, we will exploit the
analysis begun in section 1.2. In section 8.4 we will improve the L∞ estimate. In section 9 we will
derive the weighted energy estimate. In section 10 we will improve the L2 estimates and in section
11 we will adjust the parameter b(θ).

2 Structure of the equations

In this section, we provide a discussion of the speci�c features of the structure of the equations,
which will be relevant for the proof of Theorem 1.12. For sake of simplicity, we assume the result
of Proposition 6.1, and we will go backward in Section ??.

2.1 The generalized wave coordinates

Wave coordinates allow to recast Einstein equations as a system of non-linear wave equations. The
wave coordinates condition, which consists in choosing coordinates such that �gxα = 0 can be
rewritten as

gλβΓαλβ = 0.

However, for the metric gb de�ned by (1.6), the coordinates (t, x1, x2) are not wave coordinates, not
even asymptotically. We will therefore work with generalized wave coordinates. We will impose
that our metric satis�es

gλβΓαλβ = Hα
b

where Hα
b is de�ned by (1.9)

Hα
b = (gb)

λβ(Γb)
α
λβ + Fα,

with Fα of the form

g̃
qχ(q)∂θb

r2
.

The role of Fα was explained in section 1.4. In generalized wave coordinates, the expression (C.4)
of Appendix C allows us to write the system (1.1) under the form{

�gφ = 0
�ggµν = −2∂µφ∂νφ+ Pµν(∂g, ∂g) + gµρ∂νH

ρ + gνρ∂µH
ρ,

(2.1)

where

Pµν(g)(∂g, ∂g) =
1

2
gαρgβσ

(
∂µgρσ∂αgβν + ∂νgρσ∂αgβµ − ∂βgµρ∂αgνσ −

1

2
∂µgαβ∂νgρσ

)
+

1

2
gαβgλρ∂αgνρ∂βgµρ.

(2.2)

Remark 2.1. In generalized wave coordinates, the wave operator can be expressed as

�g = gαρ∂α∂ρ −Hρ
b ∂ρ.

The expression (C.4) yields also

(Rb)µν = −1

2
�gb(gb)µν +

1

2
Pµν(gb)(∂gb, ∂gb) +

1

2

(
(gb)µρ∂νH̄

ρ
b + (gb)µρ∂µH̄

ρ
b

)
. (2.3)
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Therefore, subtracting twice the equation (2.3) to the second equation of (2.1) we obtain{
�gφ = 0,

�g g̃µν = −2∂µφ∂νφ+ 2(Rb)µν + Pµν(g)(∂g̃, ∂g̃) + P̃µν(g̃, gb),
(2.4)

where Pµν(g)(∂g̃, ∂g̃) is de�ned by (2.2) and

P̃µν(g̃, gb) =
(
gαβb − g

αβ
)
∂α∂β(gb)µν + F ρ∂ρ(gb)µν

+ Pµν(g)(∂g, ∂g)− Pµν(g)(∂g̃, ∂g̃)− Pµν(gb)(∂gb, ∂gb)

+ (gb)µρ∂νF
ρ + (gb)νρ∂µF

ρ + g̃µρ∂νH
ρ
b + g̃νρ∂µH

ρ
b .

(2.5)

Let us note that P̃µν(g̃, gb) contains only crossed terms between gb and g̃.

2.2 The weak null structure

To exhibit the main terms in the structure of (2.4), let us neglect for a moment Pµν , P̃µν , Hb. We
will see in the next section that this approximation is relevant. Let us also neglect the nonlinear
terms involving ∂̄ derivatives. Then we obtain the following approximate system

�φ+ gLL∂
2
qφ = 0,

�gT V + gLL∂
2
qgT V = 0,

�gLL + gLL∂
2
qgLL = 4

(
−2(∂qφ)2 − 2b(θ)

∂2
q (χ(q)q)

r

)
,

where we also have used the approximation

(Rb)qq ∼ −
b(θ)∂2

q (qχ(q))

r
+O

(
C(b, b′, J, J ′)11<q<2

r2

)
,

as shown in (1.7). In 2+1 dimensions, a term of the form gLL∂
2
qφ is impossible to handle if one only

relies on the decay for gLL provided by the fact of being a solution of a wave equation. However, as
in [21], we can exploit the wave condition to obtain better decay for some coe�cients of the metric.
More precisely, we have roughly

∂gT T ∼ ∂̄g.

This is done properly in Proposition 5.1 for the coe�cient gLL and in Proposition 5.2 for the
coe�cients gLU and gUU . Therefore, the gT T coe�cients have a better decay in t than the solutions
of the wave equation (the challenges of the quasilinear terms of the form gLL∂

2
qφ, gLL∂

2
qgT V are

presented in Section 3.4).

Remark 2.2. The other quasilinear terms are of the form

gT V∂T∂V φ, gT V∂T∂V g̃.

Consequently, they involved at least one "good derivative" of φ, g̃. Thus, they are easier to estimate,
and we can always focus on the terms

gLL∂
2
qφ, gLL∂

2
q g̃.
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Assuming that we can also neglect the terms involving gLL, we are reduced to the following
system {

�φ = 0,

�gLL = 4
(
−2(∂qφ)2 − 2b(θ)

∂2q (χ(q)q)

r

)
,

(2.6)

which is a system of the form (1.3) and displays the weak null structure.
The second component of the solution of (1.3) does not have any decay near the light cone in

2+1 dimensions (see Section 1.2 for the radial case). Therefore, the coe�cient gLL will not display
any decay at all near the light cone (see the estimates of Theorem 1.12). To obtain decay for gLL
in the q variable, we will approximate

gLL
4 by the solution h0 of the following transport equation

∂qh0 = −2r(∂qφ)2 − 2b(θ)∂2
q (qχ(q)).

The ideas of this approximation are presented in Section 3.2, and are exploited in Section 7.

2.3 Non-commutation of the wave operator with the null frame

The structure of Einstein equations can only be seen in the null frame. However it is well known that
the wave operator does not commute with the null frame. In Theorem 1.12 we have decomposed
our metric in the following way

g = gb + g̃ + Υ
(r
t

)(gLL
4
dq2 +

gUL
2
rdqdθ

)
.

The problems of non-commutation induced by gLL and gUL are totally similar. Consequently, we
can neglect the second one. We expressed the 2-forms dq2 in the coordinate (t, x1, x2)

dq2 = (dr − dt)2 = (cos(θ)dx1 + sin(θ)dx2 − dt)2

Therefore, we will have, in the coordinates x1, x2

�
(

Υ
(r
t

)
gLLdq

2
)
µν
−�

(
Υ
(r
t

)
gLL

)
(dq2)µν = Υ

(r
t

) 1

r2

(
u1
µν(θ)gLL + u2

µν(θ)∂θgLL
)

(2.7)

where u1
µν and u2

µν are some trigonometric functions. The challenges of the terms involving u1
µν

and u2
µν are explained in Section 3.3.

2.4 The semi linear term Pµν(g)(∂g̃, ∂g̃).

Recall the form of the term Pµν(g)(∂g̃, ∂g̃).

Pµν(g)(∂g̃, ∂g̃) =
1

2
gαρgβσ

(
∂µg̃ρσ∂αg̃βν + ∂ν g̃ρσ∂αg̃βµ − ∂β g̃µρ∂αg̃νσ −

1

2
∂µg̃αβ∂ν g̃ρσ

)
+

1

2
gαβgλρ∂αg̃νρ∂β g̃µρ.

The quadratic terms In the null frame (L,L, U) the only non zero coe�cients of the Minkowski
metric are mLL = −1

2 and mUU = 1. Thanks to this remark, we can describe the terms appearing
in the di�erent components of Pµν .

� In PT T (g)(∂g̃, ∂g̃), there can not be strictly more than 2 occurrences of the vector �eld L.
Therefore, the quadratic terms are of one of these form

∂V g̃VT ∂T g̃T T , ∂T g̃VV∂T g̃T T , (2.8)
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where we have used the fact, proved in Section 5 that

∂V g̃T T ∼ ∂T g̃VV .

These terms all have the classical null structure. How this structure can be used to show
global existence is explained in Section 3.1. Since they are by far easier to handle than the
one we will describe in the following, they will be neglected in the proof of Theorem 1.12.

� In PT V(g)(∂g̃, ∂g̃), there can not be strictly more than 3 occurrences of the vector �eld L.
Therefore, the quadratic terms are of one of these form

∂V g̃T V∂T g̃T V , ∂V g̃VV∂T g̃T T , ∂T g̃VV∂V g̃T T , ∂T g̃T V∂T g̃VV

where we have used the fact, proved in Section 5 that

∂V g̃T T ∼ ∂T g̃VV .

These terms all have the null structure. However, since gLL does not decay at all in t (see
the estimates of Theorem 1.12), one has to be more careful with the terms of the form

∂T gT T ∂LgLL

These terms have a good structure since ∂T gT T is a "good derivative" of a "good component".
However, one needs two steps to exploit this structure, which can be di�cult to achieve if
there is no regularity left. Thankfully, these terms have three occurrences of L, therefore they
can only intervene in PT L.

� In PLL we will have to be careful with

∂Lg̃LL∂Lg̃LL.

This term can be converted in ∂Lg̃LL∂Lg̃LL with the help of the algebraic trick

�(uv) = u�v + v�u+ ∂Lu∂Lv + ∂Lv∂Lu+ ∂Uu∂Uv.

This fact will be used only in the proof of Lemma 10.6.

� In PLU we will have to be careful with

∂UgLL∂LgLL.

This term can not be removed with the previous trick. We will have to single out its
in�uence thanks to the decomposition

g = gb + χ
(r
t

)
hdq2 + χ

(r
t

)
krdqdθ + g̃4,

where k satis�es
�gk = ∂U g̃LL∂Lg̃LL.

This will also be used only in the proof of Lemma 10.6.

� The terms in PLL which are not of the previous form can be written

∂LgLL∂LgLL, ∂LgLL∂LgLL. (2.9)

We note the crucial cancellation of terms of the form (∂LgLL)2 in PLL. The contributions
(2.9) will be singled out in (2.12).
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The cubic terms In two dimensions, cubic terms could be troublesome. However, in the form
PVT , if there are 4 occurrences of the vector �eld L, or in PLL if there are 5 occurrences of the
vector �eld L, then we have a factor gLL, which has a decay equivalent to gLL. Therefore we can
neglect the cubic terms in this nonlinearity.

2.5 The crossed terms

In this section, we discuss the structure of the crossed terms between b and (g̃, φ).

The crossed terms involving two derivatives of b are absent In the expression

�ggµν −
(
gµρ∂νH

ρ
b + gνρ∂µH

ρ
b

)
,

there could be terms involving two derivatives of b(θ), which would be troublesome since they
would lead to a loss of a derivative (recall that we only have the regularity b ∈ WN,2). However,
the terms involving two derivatives of b in this expression, are the same than the terms involving
two derivatives of b in Rµν(g). Thus, these terms cancel in the expression(

gαβb − g
αβ
)
∂α∂β(gb)µν + (gb)µρ∂νF

ρ + (gb)νρ∂µF
ρ + g̃µρ∂νH

ρ
b + g̃νρ∂µH

ρ
b ,

which appears in P̃µν(g̃, gb) de�ned by (2.5). These cancellations can be checked for example with
Mathematica.

The crossed terms in P̃µν We recall from (1.6) that

gb = dsdq + (r + χ(q)qb(θ))2dθ2 + J(θ)χ(q)dqdθ.

Therefore in P̃µν we can �nd terms involving

(gb)UU =

(
1 +

χ(q)qb(θ)

r

)2

and (gb)UL = −2
J(θ)χ(q)

r
.

Since (gb)UL decays faster than (gb)UU let us focus on the crossed terms between (gb)UU and g̃. The
problem with the term (gb)UU is that far from the light cone, it does not decay at all. This is one
of the causes of the logarithmic growth of the energy in the statement of Theorem 1.12. However,
these terms are present only in the exterior region. Moreover they display also a special structure.
Since the terms involving two derivatives of b are absent, and the terms involving two derivatives
of g̃ are only present in �g g̃, the terms in P̃µν are of the form

g−−∂−(gb)UU∂−g−−.

� In P̃T V the crossed terms involving ∂L(gb)UU can not contain more than two occurrences of
L. They must be of the following form

∂L(gb)UU∂T g̃T V , ∂T (gb)UU∂V g̃T V , ∂T (gb)UU∂T g̃VV ,

where we have used the wave coordinates condition ∂V g̃T T ∼ ∂T g̃T V . We have the following
inequalities, thanks to (1.14)

|∂L(gb)UU∂T g̃T V | .
1q>0(|b|+ |∂θb|)

1 + r
|∂T g̃T V | .

1q>0(|b|+ |∂θb|)
(1 + r)2

|Z1g̃T V |,

|∂T (gb)UU∂V g̃T V | .
1q>0(1 + |q|)(|b|+ |∂θb|)

(1 + r)2
|∂V g̃T V | .

1q>0(|b|+ |∂θb|)
(1 + r)2

|Z1g̃T V |.
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These two contributions are therefore quite similar. In the following, it will be su�cient to
study the term

∂L(gb)UU∂T g̃T V . (2.10)

The challenges of this term will be discussed in Section 3.5

� In P̃LL, we may have three occurrences of L. Therefore there are terms of the form

∂L(gb)UU∂T gLL, ∂L(gb)UU∂LgLL, ∂T gUU∂LgLL.

We have the following inequalities, thanks to (1.14)

|∂L(gb)UU∂T gLL| .
1q>0(|b|+ |∂θb|)

1 + r
|∂T g̃LL| .

1q>0(|b|+ |∂θb|)
(1 + r)2

|Z1g̃LL|

|∂L(gb)UU∂LgLL| .
1q>0(|b|+ |∂θb|)

1 + r
|∂Lg̃L| .

1q>0(|b|+ |∂θb|)
(1 + r)(1 + |q|)

|Z1g̃LL|

|∂T (gb)UU∂LgLL| .
1q>0(1 + |q|)(|b|+ |∂θb|)

(1 + r)2
|∂Lg̃LL| .

1q>0(|b|+ |∂θb|)
(1 + r)2

|Z1g̃LL|.

Consequently, the worst term is
∂L(gb)UU∂LgLL. (2.11)

We introduce the following notation, to single out the contributions of (2.11) and (2.9)

QLL(h, g̃) = ∂LgLL∂Lh+ ∂LgLL∂Lh+ ∂L(gb)UU∂LgLL. (2.12)

The crossed terms involving two derivatives of g̃ With our choice of coordinates, these
terms only appear in �g g̃. They are of the form

1q>0
b(1 + |q|)

1 + r
∂2
U g̃.

Their contribution is most of the time similar than the one of (2.10), except in the energy estimate,
where they require a special treatment because of their lack of decay far from the light cone (see
Section 9).

The crossed terms in �gφ The crossed terms between gb and ∂φ are of the form

g−−∂−(gb)UU∂−φ.

Consequently, they must be of the following form

∂V(gb)UU∂T φ, ∂T (gb)UU∂Vφ.

Like for P̃VT , it will be su�cient to study

∂V(gb)UU∂T φ. (2.13)

The crossed terms between gb and ∂
2φ are of the form

1q>0
b(1 + |q|)

1 + r
∂2
U φ̃.

As for g̃, their contribution is most of the time similar than the one of (2.13), except in the energy
estimate, where they require a special treatment because of their lack of decay far from the light
cone (see Section 9).

Remark 2.3. In the region q > 0 it is generally su�cient to study the crossed terms. Indeed, the
crossed terms are the one presenting the less decay far from light cone.
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3 Model problems

The proof relies on a bootstrap scheme. Roughly speaking, we will assume some estimates on the
coe�cients ZIφ,ZIgLL and ZIgT V :

� L∞ estimates for I ≤ N
2 ,

� L2 estimates for I ≤ N .

We rewrite the bootstrap assumptions in the condensed form

|φ|X1 ≤ 2C0ε, |g|X2 ≤ 2C0ε,

where C0 is a constant depending only on the quantities ρ, σ, µ, δ,N introduced in the statement
of Theorem 1.12 and such that at t = 0

|φ|X1 ≤ C0ε, |g|X2 ≤ C0ε.

Thanks to the L∞ − L∞ estimate and the energy estimate, we will be able to prove

|φ|X1 ≤ C0ε+ Cε2, |g|X2 ≤ C0ε+ Cε2.

Therefore, for ε chosen small enough so that Cε ≤ C0
2 , this improves the bootstrap assumptions.

We will �rst consider a toy model, which exhibits some of the mechanisms involved in the proof.

3.1 Global well posedness for a semi linear wave equation with the null struc-

ture

We consider the following 2 + 1 dimensional semi-linear wave equation{
�u = ∂u∂̄u,
(u, ∂tu)|t=0 = (u0, u1).

(3.1)

Note that the nonlinearity satis�es the null condition. Consequently, this model will show us how
to treat the terms of the form (2.8). The following result is proved in [10]. We will give a proof of
it for sake of completeness, and because it exhibits some of the mechanisms involved in the proof
of Theorem 1.12.

Proposition 3.1. Let 0 < δ < 1
2 . Let N ≥ 8. Let u0, u1 ∈ ×HN+1

− 1
2

+δ
×HN

δ+ 1
2

such that

‖u0‖HN+1

− 1
2+δ

+ ‖u1‖HN

δ+1
2

≤ ε.

If ε > 0 is small enough, the equation (3.1) has a global solution u.

Proof. Let 0 < µ < 1
4 . We introduce the weight function{

w(q) = 1 + 1
(1+|q|)2µ , q < 0,

w(q) = (1 + |q|)1+2δ q > 0.

Let 0 < ρ < δ
2 . To prove global existence for equation (3.1), we consider a time T > 0 such that,

on 0 ≤ t ≤ T

|ZIu| ≤ 2C0
ε√

1 + s(1 + |q|)δ
, I ≤ N

2
, (3.2)

|ZIu| ≤ 2C0
ε

√
1 + s(1 + |q|)

δ
2

, I ≤ N

2
+ 1, (3.3)

‖w
1
2∂ZIu‖L2 ≤ 2C0(1 + t)ρε, I ≤ N. (3.4)
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Thanks to the Klainerman-Sobolev inequality, the assumption (3.4) yields, for I ≤ N − 2

|∂ZIu| . ε(1 + t)ρ
√

1 + s
√

1 + |q|
, for q < 0, |∂ZIu| . ε(1 + t)ρ√

1 + s(1 + |q|)1+δ
, for q > 0. (3.5)

and consequently, thanks to Lemma 1.11

|ZIu| .
ε
√

1 + |q|
(1 + s)

1
2
−ρ
, for q < 0, |ZIu| . ε

(1 + s)
1
2
−ρ(1 + |q|)δ

, for q > 0. (3.6)

We use the L∞ − L∞ estimate to improve the estimates (3.2) and (3.3). We write

�ZIu =
∑

I1+I2≤I
∂ZI1u∂̄ZI2u. (3.7)

We �rst treat the case I ≤ N
2 . We assume I1 ≤ N

4 (the case I2 ≤ N
4 can be treated in the same

way). Therefore, we can estimate thanks to (1.14)

|∂ZI1u| ≤ 1

1 + |q|
|ZI1+1u|.

Since N
4 + 1 ≤ N

2 we obtain thanks to (3.2)

|∂ZI1u| . ε

(1 + |q|)1+δ
√

1 + s
.

To estimate ∂̄ZI2u we use (1.14) and the bootstrap assumption (3.3) to obtain

|∂̄ZI2u| . 1

1 + s
|ZI2+1u| . ε

(1 + s)
3
2 (1 + |q|)

δ
2

.

This yields

|�ZIu| . ε2

(1 + s)2(1 + |q|)1+ 3δ
2

.

We can now use the L∞−L∞ estimate of Proposition 1.10, together with the estimate of Proposition
1.5 and the Sobolev injection of Proposition 1.2, which gives

|ZIu| ≤ C0ε√
1 + s(1 + |q|)δ

+
Cε2 ln(1 + |q|)
√

1 + s
√

1 + |q|
.

This implies, since ln(1 + |q|) . (1 + |q|)
1
2
−δ

|ZIu| ≤ C0ε√
1 + s(1 + |q|)δ

+
Cε2

√
1 + s(1 + |q|)δ

. (3.8)

We now treat the case I = N
2 + 1. We assume I1 ≤ N+2

4 ≤ N
2 so we have the same estimate as

before for ∂ZI1u. To estimate ∂̄ZI2u, since N
2 + 2 ≤ N − 2 we use (3.6). We obtain

|∂̄ZI2u| . 1

1 + s
|ZI2+1u| .

ε
√

1 + |q|
(1 + s)

3
2
−ρ
.

Therefore we obtain

|�ZIu| . ε2

(1 + s)2−ρ(1 + |q|)
1
2

+δ
.

ε2

(1 + s)
3
2

+ δ
2 (1 + |q|)1+ δ

2
−ρ
.
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Therefore, like for (3.8), the L∞ − L∞ estimate yields

|ZIu| ≤ C0ε√
1 + s(1 + |q|)δ

+
Cε2

√
1 + s(1 + |q|)

δ
2

. (3.9)

We now use the weighted energy estimate to imrpove (3.4). Let I ≤ N . In view of (3.7), it implies

d

dt
‖w(q)

1
2∂ZIu‖2L2 + ‖w′(q)

1
2 ∂̄ZIu‖2L2 .

∑
I1+I2≤I

‖w
1
2∂ZI1u∂̄ZI2u‖L2‖w

1
2∂ZIu‖L2 . (3.10)

We �rst assume I2 ≤ N
2 . Then we estimate

|∂̄ZI2u| . ε

(1 + s)
3
2 (1 + |q|)

δ
2

.

This yields

‖w
1
2∂ZI1u∂̄ZI2u‖L2 .

ε

(1 + t)
3
2

‖w
1
2∂ZI1u‖L2 .

We now assume I1 ≤ N
2 . Then, we estimate

|∂ZI1u| . ε
√

1 + s(1 + |q|)1+ δ
2

.

Therefore we obtain

‖w
1
2∂ZI1u∂̄ZI2u‖L2 .

ε√
1 + t

∥∥∥∥∥ w
1
2

(1 + |q|)1+ δ
2

∂̄ZI2u

∥∥∥∥∥
L2

.

Since
w

1
2

(1 + |q|)1+ δ
2

≤ w′(q)
1
2 ,

we infer

‖w
1
2∂ZI1u∂̄ZI2u‖L2‖w

1
2 ∂̄ZIu‖L2 ≤

ε

1 + t
‖w

1
2∂ZIu‖2L2 + ε‖w′(q)

1
2 ∂̄ZI2u‖2L2 .

Therefore (3.10) writes

d

dt
‖w(q)

1
2∂ZIu‖2L2 + ‖w′(q)

1
2 ¯∂ZIu‖2L2 .

ε

1 + t
‖w

1
2∂ZIu‖2L2 + ε‖w′(q)

1
2 ∂̄ZI2u‖2L2 ,

so for ε small enough

d

dt
‖w(q)

1
2∂ZIu‖2L2 +

1

2
‖w′(q)

1
2 ∂̄ZIu‖2L2 .

ε

1 + t
‖w

1
2∂ZIu‖2L2 .

We obtain
‖w(q)

1
2∂ZIu‖L2 ≤ C0ε(1 + t)Cε. (3.11)

For ε small enough so that

Cε ≤ C0

2
, (1 + t)Cε ≤ 3

2
(1 + t)ρ,
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we have proved, in view of (3.8), (3.9) and (3.11) that for t ≤ T we have

|ZIu| ≤ 3

2
C0

ε√
1 + s(1 + |q|)δ

, |I| ≤ N

2
,

|ZIu| ≤ 3

2
C0

ε
√

1 + s(1 + |q|)
δ
2

, |I| ≤ N

2
+ 1,

‖w
1
2∂ZIu‖L2 ≤

3

2
C0(1 + t)ρε, |I| ≤ N,

which concludes the proof.

Remark 3.2. Actually, only the highest order energy ‖w
1
2∂ZNu‖L2 grows in t. To see this, we

estimate
‖w

1
2∂ZI1u∂̄ZI2u‖L2

for I1 ≤ N
2 and I2 ≤ N − 1. Since

|∂̄ZI2u| ≤ 1

1 + s
|ZI2+1|,

we obtain, together with the weighted Hardy inequality

‖w
1
2∂ZI1u∂̄ZI2u‖L2 .

ε

(1 + t)
3
2

∥∥∥∥∥ w
1
2

(1 + |q|)
ZI2+1u

∥∥∥∥∥
L2

.
ε

(1 + t)
3
2

‖w
1
2∂ZI2+1u‖L2 .

Therefore, the weighted energy estimate yields, for |I| ≤ N − 1

d

dt
‖w

1
2∂ZIu‖2L2 .

ε2

(1 + t)
3
2
−Cε

,

and hence
‖w

1
2∂ZIu‖L2 . ε.

Remark 3.3. The use of the term ‖w′(q)
1
2 ∂̄ZIu‖2L2 to exploit the structure in the energy estimate

has been introduced by Alinhac in [1] and is sometimes called Alinhac ghost weight method. It has
also been used in the case of Einstein equations in wave coordinates in [21].

Unfortunately, the Einstein equations in wave coordinates do not have the null structure, but
only a weak form of it. In the next sections, we will see what problems this creates and the method
we used to tackle them. We will be less precise than in this �rst example, since full details will be
provided when we proceed with the proof of Theorem 1.12.

3.2 The coe�cient gLL

To understand how to deal with gLL, let us consider the question of global existence for the following
system, which is of the form (2.6){

�φ = 0,

�h = −2(∂qφ)2 − 2
b(θ)∂2q (qχ(q))

r .
(3.12)

with initial data for φ of size ε and zero initial data for h. We recall ‖b‖L2(S1) . ε2. We have the
following estimates for φ

‖w
1
2∂φ‖L2 . ε, |∂φ| . ε√

1 + s(1 + |q|)1+δ
.
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Therefore, the energy estimate for h can be written

d

dt
‖w

1
2∂h‖2L2 .

(
‖w

1
2 (∂qφ)2‖L2 +

∥∥∥∥∥w 1
2
b(θ)∂2

q (qχ(q))

r

∥∥∥∥∥
L2

)
‖w

1
2∂h‖L2 ,

and thus
d

dt
‖w

1
2∂h‖L2 .

(
ε√

1 + t
‖w

1
2∂φ‖L2 +

ε2

√
1 + t

)
.

ε2

√
1 + t

.

We infer
‖w

1
2∂h‖L2 ≤ ε2

√
1 + t. (3.13)

This estimate is not su�cient. To obtain more information on h, we will approximate it by the
solution h0 of the following transport equation (this procedure will be made more precise in Section
7)

∂qh0 = −2r(∂qφ)2 − 2b(θ)∂2
q (qχ(q)), (3.14)

with initial data h0 = 0 at t = 0. The L∞ estimate for φ, and the fact that χ′ is supported in [1, 2]
yield

|∂qh0| .
ε2

(1 + |q|)2+2δ
.

To estimate h0 we write

h0(Q, s, θ) =

∫ Q

s

(
−2(∂qφ)2r − 2b(θ)∂2

q (qχ(q))
)
dq,

so we obtain

h0(s,Q, θ) = O

(
ε2

(1 + |Q|)1+2δ

)
, Q > 0,

h0(s,Q, θ) =

∫ −s
s

(
−2(∂qφ)2r − 2b(θ)∂2

q (qχ(q))
)
dq +O

(
ε2

(1 + |Q|)1+2δ

)
, Q < 0.

Therefore, since ∫ −s
s

∂2
q (qχ(q))dq = −1, for s ≥ 2

to maximize the decay in q for h0 (and hence for h, provided one has a suitable control over h−h0)
we will choose b such that

b(θ) '
∫ −s
s

(∂qφ)2rdq. (3.15)

Remark 3.4. b(θ) is a free parameter, except from
∫
b(θ),

∫
b(θ) cos(θ) and

∫
b(θ) sin(θ) which

are prescribed by the resolution of the constraint equations, and correspond intuitively to the ADM
angle (energy) and linear momentum. Let Π be the projection de�ned by

Π : W 2,N (S1)→ {u ∈W 2,N (S1),

∫
u =

∫
cos(θ)u =

∫
sin(θ)u = 0}. (3.16)

Then

Π(b(θ)) ' Π

(∫ −s
s

(∂qφ)2rdq

)
,
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will be forced in the course of the bootstrap procedure. On the other hand, the fact that∫
b(θ) '

∫ ∫ −s
s

(∂qφ)2rdqdθ,∫
b(θ) cos(θ) '

∫ ∫ −s
s

(∂qφ)2 cos(θ)rdqdθ,∫
b(θ) sin(θ) '

∫ ∫ −s
s

(∂qφ)2 sin(θ)rdqdθ,

will be obtained by integrating the constraint equations at any time t (see Section 7).

3.3 Non commutation of the wave operator with the null frame

In this section, we will discuss the in�uence of the terms appearing in (2.7). We have seen in the
previous section that h0 does not decay at all with respect to the s variable. In turn, we will show
that this is also the case for h, and �nally for the coe�cient gLL. We do not want this behavior to
propagate to the other coe�cients of the metric. To this end, we will rely on a decomposition of
the type

g = gb + Υ
(r
t

) gLL
4
dq2 + g̃i.

However, since the wave operator does not commute with the null decomposition, we have to control
the solution g̃i of an equation of the form

�g̃i = Υ
(r
t

) ∂̄h
r
,

where h is the solution of (3.12). The term Υ
(
r
t

)
∂̄h
r has the form of the terms appearing in (2.7).

Provided that we can approximate h by the solution h0 of the transport equation (3.14), we
obtain decay with respect to q for h. The decay we will be able to get is

|h| . ε2√
1 + |q|

.

With this decay we infer

|�g̃i| .
ε2

(1 + s)2
√

1 + |q|
,

and therefore, with the L∞ − L∞ estimate, we deduce

|g̃i| .
ε

(1 + s)
1
2
−ρ
,

for all ρ > 0.
On the other hand, assume we are only allowed to use the energy estimate for h, which is the

case when deriving L2 type estimates for g̃i at the level of the highest energy. When applying the
weighted energy estimate for g̃i, we obtain

d

dt
‖w(q)

1
2∂g̃i‖2L2 ≤

∥∥∥∥w(q)
1
2 Υ
(r
t

) ∂̄h
r

∥∥∥∥
L2

‖w(q)
1
2∂g̃i‖.

We estimate ∥∥∥∥w(q)
1
2 Υ
(r
t

) ∂̄h
r

∥∥∥∥
L2

.
1

1 + t
‖w(q)

1
2∂h‖L2 .

ε2

√
1 + t

, (3.17)
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where we have used the estimate (3.13) of the previous section for h. This yields

d

dt
‖w(q)

1
2∂g̃i‖L2 ≤

ε2

√
1 + t

.

So
‖w(q)

1
2∂g̃i‖L2 ≤ ε2

√
1 + t,

which is precisely the behaviour we are trying to avoid with this decomposition ! However we have
not been able to exploit all the structure in (3.17). In order to do so, we will use di�erent weight
functions for g̃i and for h. If we set

w̃(q) = (1 + |q|)1+2µw(q),

with 0 < µ ≤ 1
4 and we assume that we have

‖w̃(q)
1
2∂h‖L2 . ε2

√
1 + t,

then we can estimate∥∥∥∥w(q)
1
2 Υ
(r
t

) ∂̄h
r

∥∥∥∥
L2

.
1

1 + t

∥∥∥∥∥w̃(q)
1
2 Υ
(r
t

) ∂̄h

(1 + |q|)
1
2

+µ

∥∥∥∥∥
L2

.

We write

|∂̄h| . 1

1 + s
|Zh| . 1

(1 + s)
1
2

+µ(1 + |q|)
1
2
−µ
|Zh|,

so we obtain∥∥∥∥w(q)
1
2 Υ
(r
t

) ∂̄h
r

∥∥∥∥
L2

.
1

(1 + t)
3
2

+µ

∥∥∥∥w̃(q)
1
2

Zh

1 + |q|

∥∥∥∥
L2

.
1

(1 + t)
3
2

+µ
‖w̃(q)

1
2∂Zh‖L2 ,

where we used the weighted Hardy inequality. Consequently, the energy inequality for g̃i yields

d

dt
‖w(q)

1
2∂g̃i‖L2 .

ε2

(1 + t)1+µ
,

and therefore
‖w(q)

1
2∂g̃i‖L2 . ε2.

Recall that the weighted energy inequality forbids weights of the form (1 + |q|)α with α > 0 in the
region q < 0. Therefore we are forced to make the following choice in the region q < 0

w̃(q) = O(1), w(q) =
1

(1 + |q|)1+2µ
.

Thus, for g̃i, the
√
t loss has been replaced by a loss in (1 + |q|)

1
2

+µ.

3.4 The quasilinear structure

In this section we will discuss the challenges of the quasilinear structure. We will take as an example
the equation for φ, �gφ = 0. Following Remark 2.2, we can focus on the terms of the form gLL∂

2
qφ.

The wave coordinates condition yields
∂gLL ∼ ∂̄g.
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If g satis�ed �g = 0, the L∞ estimates for g given by Corollary 1.6 for suitable initial data would
imply

|∂gLL| ≤
ε

(1 + s)
3
2

√
1 + |q|

,

We would like to keep this decay in 1

(1+s)
3
2
after integrating with respect to q. However, we are not

in the range of application of Lemma 1.11. To this end, we will assume more decay on the initial
data. As stated in Theorem 1.12, we take (g, ∂tg) ∈ HN+1

δ ×HN
δ+1 with 1

2 < δ < 1. Then, with the
weight w0 stated in Theorem 1.12, the weighted energy inequality yields

‖w0(q)∂Zg‖L2 . ε,

and consequently, for q > 0, the weighted Klainerman-Sobolev inequality yields

|∂Zg| . ε
√

1 + s(1 + |q|)
3
2

+δ
.

If we integrate from t = 0, we obtain for q > 0

|Zg| . ε
√

1 + s(1 + |q|)
1
2

+δ
.

By writing |∂̄g| . 1
1+s |Zg|, we obtain

|∂gLL| .
ε

(1 + s)
3
2 (1 + |q|)

1
2

, for q < 0, |∂gLL| .
ε

(1 + s)
3
2 (1 + |q|)

1
2

+δ
, for q > 0.

Since δ > 1
2 we can apply Lemma 1.11, which yields

|gLL| .
ε
√

1 + |q|
(1 + s)

3
2

, for q < 0, |gLL| .
ε

(1 + s)
3
2 (1 + |q|)δ−

1
2

, for q > 0.

Consequently we easily estimate

‖w
1
2 gLL∂

2
qZ

Iφ‖L2 .
ε

(1 + t)
3
2

‖w
1
2∂qZ

I+1φ‖L2 .

This strong decay in the region q > 0 is also needed when estimating

‖w
1
2
0 Z

IgLL∂
2
qφ‖L2 .

The idea will be �rst to use the weighted Hardy inequality to derive

‖w
1
2
0 Z

IgLL∂
2
qφ‖L2 .

ε√
1 + t

∥∥∥∥∥∥ w
1
2
0

(1 + |q|)2
ZIgLL

∥∥∥∥∥∥
L2

.
ε√

1 + t

∥∥∥∥∥∥ w
1
2
0

(1 + |q|)
∂ZIgLL

∥∥∥∥∥∥
L2

.

Then we rely on the wave coordinates condition, which yields

|∂ZIgLL| . |∂̄ZIg| .
1

1 + s
|ZI+1g|,

and then use the weighted Hardy inequality again. However, one has to be careful when using the
weighted Hardy inequality. In the region q > 0 the weight must be su�ciently large to allow to
perform it twice. This is an other reason why we work with initial data in HN

δ with δ > 1
2 , which

is more than the decay which is necessary to prove the global well posedness of a semi linear wave
equation with null structure.
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3.5 Interaction with the metric gb

In this section we want to discuss the in�uence of the crossed terms between gb and φ, g̃. We will
take as an example the equation for φ, �gφ = 0. As discussed in Section 2.5, we can focus on the
term (2.13). We may look at the following model problem

�φ =
ε

r
χ(q)∂̄φ.

If we perform the weighted energy estimate, we obtain

d

dt
‖w0(q)

1
2∂ZIφ‖2 + ‖w′0(q)

1
2 ∂̄ZIφ‖2L2 .

ε

1 + t
‖w

1
2
0 ∂Z

Iφ‖2L2 .

Therefore
‖w0(q)

1
2∂ZIφ‖L2 ≤ C0ε(1 + t)Cε

and for all σ > 0 ∫ T

0

1

(1 + t)σ
‖w′0(q)

1
2 ∂̄ZIφ‖2L2dt . ε2. (3.18)

To avoid this logarithmic loss, we need to exploit more the structure of the equation. To this
end we introduce the weight modulator{

α(q) = 1
(1+|q|)σ , q > 0,

α(q) = 1, q < 0,

for 0 < σ < 1
2 . Then the energy inequality yields

d

dt
‖αw0(q)

1
2∂ZIφ‖2L2 ≤ ε

∥∥∥∥∥∥1q>0
αw

1
2
0

1 + s
∂̄ZIφ

∥∥∥∥∥∥
L2

‖αw0(q)
1
2∂ZIφ‖L2 .

We estimate, for q > 0
α(q)

1 + s
.

1

(1 + t)
1
2

+σ(1 + |q|)
1
2

.

And therefore, we obtain

d

dt
‖αw0(q)

1
2∂ZIφ‖2L2 .

ε

(1 + t)
1
2

+σ

∥∥∥∥∥∥1q>0
w

1
2
0√

1 + |q|
∂̄ZIφ

∥∥∥∥∥∥
L2

‖αw0(q)
1
2∂ZIφ‖L2

.
ε

(1 + t)σ
‖w′0(q)

1
2 ∂̄ZIφ‖L2 +

ε

(1 + t)1+σ
‖αw0(q)

1
2∂ZIφ‖L2 .

and consequently in view of (3.18) we obtain

‖αw0(q)
1
2∂ZIφ‖L2 ≤ C0ε+ Cε2.

With this technique, the logarithmic loss in t has been replaced by a small loss in q.
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4 Bootstrap assumptions and proof of Theorem 1.12

4.1 Bootstrap assumptions

Let 1
2 < δ < 1. In view of the assumptions of Theorem 1.12, the initial data (φ0, φ1) for φ are given

in HN+1
δ (R2)×HN

δ+1(R2).

For b̃ ∈W 2,N such that∫
S1
b̃dθ =

∫
S1
b̃ cos(θ)dθ =

∫
S1
b̃ sin(θ)dθ = 0,

and
‖b̃‖W 2,N . 2C0ε

2,

Theorem 1.3 allows us to �nd initial data g and ∂tg such that

� gij , Kij satisfy the constraint equations,

� g and ∂tg are compatible with the decomposition g = gb + g̃, where

b(θ) = b̃(θ) + b0 + b1 cos(θ) + b2 sin(θ) (4.1)

with b0, b2, b2, J(θ) given by Theorem 1.3,

� the generalized wave coordinate condition given by Hb is satis�ed at t = 0.

The system 2.1 being a standard quasilinear system of wave equations, we know that there exists
a solution until a time T . Moreover with our conditions on the initial data, our solution (g, φ) is
solution of the Einstein equations (1.1), and the wave coordinate condition is satis�ed for t ≤ T
(see Appendix C).

Remark 4.1. Our choice of generalized wave coordinates does not change the hyperbolic structure
because Hb does not contain derivatives of g̃.

We take three parameters ρ, σ, µ such that

ε� ρ� σ � µ� δ, (4.2)

σ + ρ < δ − 1

2
. (4.3)

We consider a time T > 0 such that there exists b(θ) ∈ WN,2(S1) and a solution (φ, g̃) of (2.4) on
[0, T ], associated to initial data for g. We assume that on [0, T ], the following estimates hold.

Bootstrap assumptions for b∥∥∥∥∥∂Iθ
(

Πb(θ) + Π

∫
ΣT,θ

(∂qφ)2rdq

)∥∥∥∥∥
L2(S1)

≤ B ε2

√
T
, for I ≤ N − 4 (4.4)

‖∂Iθ b(θ)‖L2(S1) ≤ Bε2, for I ≤ N (4.5)

where Π is the projection de�ned by (3.16),
∫

ΣT,θ
is de�ned by (1.15) and B is a constant depending

on ρ, σ, µ, δ,N .
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We introduce four decomposition of the metric g

g =gb + Υ
(r
t

)
h0dq

2 + g̃1, (4.6)

g =gb + Υ
(r
t

)
(h0 + h̃)dq2 + g̃2, (4.7)

g =gb + Υ
(r
t

)
hdq2 + g̃3, (4.8)

g =gb + Υ
(r
t

)
hdq2 + Υ

(r
t

)
krdqdθ + g̃4, (4.9)

where h0 is the solution of the transport equation{
∂qh0 = −2r(∂qφ)2 − 2b(θ)∂2

q (χ(q)q),

h0|t=0 = 0,
(4.10)

h̃ is solution of the linear wave equation{
�h̃ = �

(
Υ
(
r
t

)
h0

)
+ Υ

(
r
t

)
gLL∂

2
qh0 + 2Υ

(
r
t

)
(∂qφ)2 − 2(Rb)qq + Υ

(
r
t

)
Q̃LL(h0, g̃),

(h̃, ∂th̃)|t=0 = (0, 0),
(4.11)

where
Q̃LL(h0, g̃) = ∂LgLL∂Lh0 + ∂L(gb)UU∂LgLL. (4.12){
�gh = −2(∂qφ)2 + 2(Rb)qq +QLL(h, g̃),
(k, ∂tk)|t=0 = (0, 0),

(4.13)

and k is the solution of {
�gk = ∂UgLL∂qh,
(h, ∂th)|t=0 = (0, 0).

(4.14)

L∞-based bootstrap assumptions For I ≤ N − 14 we assume

|ZIφ| ≤ 2C0ε√
1 + s(1 + |q|)

1
2
−4ρ

, (4.15)

|ZI g̃1| ≤
2C0ε

(1 + s)
1
2
−ρ
, (4.16)

where here and in the following, C0 is a constant depending on ρ, σ, µ, δ,N such that the inequalities
are satis�ed at t = 0 with 2C0 replaced by C0. For I ≤ N − 12 we assume

|ZIφ| ≤ 2C0ε

(1 + s)
1
2
−2ρ

, (4.17)

|ZI g̃1| ≤
2C0ε

(1 + s)
1
2
−2ρ

. (4.18)

We assume the following estimate for h0 for I ≤ N − 7 and q < 0

|ZIh0| ≤
2C0ε

(1 + s)
1
2

+
2C0ε

(1 + |q|)1−4ρ
. (4.19)

and for q > 0

|ZIh0| ≤
2C0ε

(1 + |q|)2+2(δ−σ)
. (4.20)

We also assume the following for h̃ and I ≤ N − 7

|ZI h̃| ≤ 2C0ε

(1 + |q|)
1
2
−ρ
. (4.21)
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L2-based bootstrap assumptions We introduce four weight functions{
w0(q) = (1 + |q|)2+2δ, q > 0,
w0(q) = 1 + 1

(1+|q|)2µ , q < 0,{
w1(q) = (1 + |q|)2+2δ, q > 0,
w1(q) = 1

(1+|q|)
1
2
, q < 0,{

w2(q) = (1 + |q|)2+2δ, q > 0,
w2(q) = 1

(1+|q|)1+2µ , q < 0,{
w3(q) = (1 + |q|)3+2δ, q > 0,
w3(q) = 1 + 1

(1+|q|)2µ , q < 0.

We also introduce weight modulators{
α(q) = 1

(1+|q|)σ , q > 0,

α(q) = 1, q < 0,
(4.22)

{
α2(q) = 1

(1+|q|)2σ , q > 0,

α2(q) = 1, q < 0.

All the L2 norms are taken with respect to the Lebesgue measure. We assume the following estimate
for I ≤ N

‖α2w0(q)
1
2∂ZIφ‖L2 + ‖α2w2(q)

1
2∂ZI g̃4‖L2

+
1√

1 + t
‖α2(q)

1
2∂ZIh‖L2 +

1√
1 + t

‖α2w3(q)
1
2∂ZIk‖L2 ≤ 2C0ε(1 + t)ρ.

(4.23)

for I ≤ N − 1

‖w0(q)
1
2∂ZIφ‖L2 + ‖w2(q)

1
2∂ZI g̃3‖L2 +

1√
1 + t

‖w3(q)
1
2∂ZIh‖L2 ≤ 2C0ε(1 + t)ρ (4.24)

and for I ≤ N − 2

‖α(q)w0(q)
1
2∂ZIφ‖L2 + ‖α(q)w2(q)

1
2∂ZI g̃3‖L2 +

1√
1 + t

‖α(q)w3(q)
1
2∂ZIh‖L2 ≤ 2C0ε. (4.25)

In addition, for I ≤ N − 8 we assume

‖w1(q)
1
2∂ZI g̃2‖L2 ≤ 2C0ε(1 + t)ρ, ‖α(q)w1(q)

1
2∂ZI g̃2‖L2 ≤ 2C0ε (4.26)

and for I ≤ N − 9 we assume

‖w0(q)
1
2∂ZI g̃2‖L2 ≤ 2C0ε(1 + t)ρ, ‖α(q)w0(q)

1
2∂ZI g̃2‖L2 ≤ 2C0ε. (4.27)

Let us do two remarks to justify our di�erent decompositions of the metric, and our di�erent
weight functions.
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Remark 4.2. We use the decomposition (4.6) instead of (4.7) to avoid a logarithmic loss when
we want to improve (4.16) and (4.18) with the L∞ − L∞ estimate. This loss would have been due
to the terms coming from the non commutation of the wave operator with the null decomposition
(4.7). However, we use the decomposition (4.7) instead of (4.6) to avoid a logarithmic loss in the
energy estimate due to the term Q̃LL.

When h0 is a good approximation for h, we use the decomposition (4.7) instead of (4.8) in
the energy estimate. This allows us to have a better control on the terms coming from the non
commutation of the wave operator with the null decomposition. When h0 is no longer a good
approximation for h, we use the decomposition (4.8). Finally, the decomposition (4.9) allows us to
isolate the term ZN∂UgLL∂LgLL on which we do not have a good control.

Remark 4.3. The weight w2 is introduced to deal with the non commutation of the wave operator
with the null decomposition (see Section 3.3). The weight w1 is a transition weight between w0 and
w2. The weight w3 allows us to compensate the loss in

√
1 + t for gLL by an additional decay in√

1 + |q| in the exterior region.
The weight modulators α1 and α2 are introduced to transform the logarithmic loss due to the

interaction with the metric gb in a small loss in q (see Section 3.5).

4.2 Proof of Theorem 1.12

We have the following improvement for the bootstrap assumptions. The constant C will denote a
constant depending only on ρ, σ, µ, δ,N . The proof of Proposition 4.4 is the object of Section 7.

Proposition 4.4. Let I ≤ N − 5. We have the estimates

|ZIh0| ≤
Cε2

√
1 + s

+
Cε2

(1 + |q|)1−4ρ
, for q < 0, |ZIh0| ≤

Cε2

(1 + |q|)2+2(δ−σ)
, for q > 0.

Let I ≤ N − 7. We have the estimate

|ZI h̃| ≤ Cε2

(1 + s)
1
2
−ρ
.

The proof of Proposition 4.5 is the object of Section 8.

Proposition 4.5. Let I ≤ N − 14. We have the estimates

|ZI g̃1| ≤
C0ε+ Cε2

(1 + s)
1
2
−ρ
, |ZIφ| ≤ C0ε+ Cε2

√
1 + s(1 + |q|)

1
2
−4ρ

.

Let I ≤ N − 12. We have the estimates

|ZIφ| ≤ C0ε+ Cε2

(1 + s)
1
2
−2ρ

, |ZI g̃1| .
C0ε+ Cε2

(1 + s)
1
2
−2ρ

.

The proof of Proposition 4.6 is the object of Section 10.

Proposition 4.6. We have the estimates for I ≤ N

‖α2w0(q)
1
2∂ZIφ‖L2 + ‖α2w2(q)

1
2∂ZI g̃4‖L2 ≤ (C0ε+ ε)(1 + t)C

√
ε,

‖α2(q)
1
2∂ZIh‖L2 + ‖α2w3(q)

1
2∂ZIk‖L2 ≤ Cε2(1 + t)

1
2

+C
√
ε,
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for I ≤ N − 1

‖w0(q)
1
2∂ZIφ‖L2 + ‖w2(q)

1
2∂ZI g̃3‖L2 ≤ (C0ε+ ε)(1 + t)C

√
ε,

‖w3(q)
1
2∂ZIh‖L2 ≤ Cε2(1 + t)

1
2

+C
√
ε,

for I ≤ N − 2

‖α(q)w0(q)
1
2∂ZIφ‖L2 + ‖α(q)w2(q)

1
2∂ZI g̃3‖L2 ≤ C0ε+ Cε

5
4 ,

‖α(q)w3(q)
1
2∂ZIh‖L2 ≤ Cε

3
2 ,

for I ≤ N − 7

‖w1(q)
1
2∂ZI g̃2‖L2 ≤ C0ε(1 + t)C

√
ε + ε, ‖α(q)w1(q)

1
2∂ZI g̃2‖L2 ≤ C0ε+ Cε

5
4 ,

and for I ≤ N − 8

‖w0(q)
1
2∂ZI g̃2‖L2 ≤ C0ε(1 + t)C

√
ε + ε, ‖α(q)w0(q)

1
2∂ZI g̃2‖L2 ≤ C0ε+ Cε

5
4 .

The proof of Proposition 4.7 is the object of Section 11

Proposition 4.7. We assume that the time T satis�es

T ≤ exp

(
C√
ε

)
.

There exists b(2)(θ) ∈WN,2(S1) and (φ(2), g(2)) solution of (1.1) in the generalized wave coordinates
Hb(2), such that, if we write g(2) = gb2 + g̃, then (φ(2), g̃(2)) satis�es the same estimate as (φ, g̃),
and we have the estimates for b(2)∥∥∥∥∥∂Iθ

(
Πb(2)(θ) + Π

∫
ΣT,θ

(∂qφ)2rdq

)∥∥∥∥∥
L2

≤ C ε4

√
T
, for I ≤ N − 4,

‖∂Iθ b(θ)‖L2 ≤ 2C2
0ε

2, for I ≤ N.

We may now prove Theorem 1.12.

Proof of Theorem 1.12. We may choose C0 such that C0 ≥ 2, and B such that B ≥ 4C2
0 . We take

ε small enough so that

Cε
1
4 ≤ C0

2
, C

√
ε ≤ ρ, Cε ≤ B

2
.

Then Propositions 4.4, 4.5, 4.6 imply that the bootstrap assumptions for (φ, g̃) are true with the
constant 2C0 replaced by 3C0

2 . Moreover Proposition 4.7 yields the existence of b(2) and φ(2), g(2) =

gb(2) + g̃(2) solution of (1.1), such that the bootstrap assumptions are satis�ed by (φ(2), g̃(2)) with
the constant 2C0 replaced by 3C0

2 , and b(2) satisfy∥∥∥∥∥∂Iθ
(

Πb(2)(θ) + Π

∫
ΣT,θ

(∂qφ
(2))2rdq

)∥∥∥∥∥
L2

≤ B ε2

2
√
T
, for I ≤ N − 4,

‖∂Iθ b(θ)‖L2 ≤
B

2
ε2, for I ≤ N.

This concludes the proof of Theorem 1.12.

Let us note that the only place where we use the assumption T ≤ exp
(
C√
ε

)
is in the proof of

Proposition 4.7.
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4.3 First consequences of the bootstrap assumptions

Thanks to the weighted Klainerman-Sobolev inequality the bootstrap assumptions immediately
imply the following proposition.

Proposition 4.8. We assume I ≤ N − 4 we have the estimates, for q < 0

|∂ZIφ(t, x)| . ε√
1 + |q|

√
1 + s

, (4.28)

|∂ZI g̃3(t, x)| . ε(1 + |q|)µ√
1 + s

, (4.29)

|∂ZIh| . ε√
1 + |q|

, (4.30)

and for q > 0

|∂ZIφ(t, x)| . ε

(1 + |q|)
3
2

+δ−σ√1 + s
, (4.31)

|∂ZI g̃3(t, x)| . ε

(1 + |q|)
3
2

+δ−σ√1 + s
, (4.32)

|∂ZIh| . ε

(1 + |q|)2+δ−σ . (4.33)

Moreover, for I ≤ N − 11 we have for q < 0

|∂ZI g̃2(t, x)| . ε√
1 + |q|

√
1 + s

. (4.34)

Thanks to Lemma 1.11 we deduce the following corollary.

Corollary 4.9. We assume I ≤ N − 4 we have the estimates, for q < 0

|ZIφ(t, x)| .
ε
√

1 + |q|√
1 + s

, (4.35)

|ZI g̃3(t, x)| . ε(1 + |q|)1+µ

√
1 + s

, (4.36)

|ZIh| . ε
√

1 + |q|. (4.37)

and for q > 0

|ZIφ(t, x)| . ε

(1 + |q|)
1
2

+δ−σ√1 + s
, (4.38)

|ZI g̃3(t, x)| . ε

(1 + |q|)
1
2

+δ−σ√1 + s
, (4.39)

|ZIh| . ε

(1 + |q|)1+δ−σ . (4.40)

Moreover, for I ≤ N − 11 we have for q < 0

|ZI g̃2(t, x)| ≤
ε
√

1 + |q|√
1 + s

. (4.41)

The following remark allow us to compare the di�erent decompositions of the metric g.
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Remark 4.10. We have the following relations

g̃T T = (g̃1)T T = (g̃2)T T = (g̃3)T T = (g̃4)T T ,

g̃LL = (g̃1)LL = (g̃2)LL = (g̃3)LL = (g̃4)LL,

g̃UL = (g̃1)UL = (g̃2)UL = (g̃3)UL.

The following corollary allow us to estimate g̃, independently of the chosen decomposition (4.6),
(4.7), (4.8) or (4.9).

Corollary 4.11. We have the following estimates

|ZI g̃| . ε

(1 + |q|)
1
2
−ρ
, for I ≤ N − 14, (4.42)

|ZI g̃| . ε

(1 + |q|)
1
2
−2ρ

, for I ≤ N − 12, (4.43)

|ZI g̃| . ε, |∂ZI g̃| . ε

1 + |q|
, for I ≤ N − 11, (4.44)

|ZI g̃| . ε(1 + |q|)
1
2

+µ, |∂ZI g̃| . ε(1 + |q|)−
1
2

+µ, for I ≤ N − 4. (4.45)

(4.46)

Moreover, for q > 0 we have the following estimate

|ZI g̃| . ε

(1 + |q|)1+δ−σ , for I ≤ N − 4. (4.47)

Proof. Estimate (4.42) is obtained by using the decomposition (4.6) and taking the maximum of
the bounds given by (4.19) and (4.16). Estimate (4.43) is obtained by using the decomposition (4.6)
and taking the maximum of the bounds given by (4.19) and (4.18). Estimate (4.44) is obtained
by using the decomposition (4.7) and taking the maximum of the bounds given by (4.19), (4.21)
and (4.40). Estimate (4.45) is obtained by using the decomposition (4.8) and taking the maximum
of the bounds given by (4.37) and (4.36). Estimate (4.47) is obtained by using the decomposition
(4.8) and taking the maximum of the bounds given by (4.40) and (4.39).

The rest of the paper is as followed

� In Section 5, we use the wave coordinates condition to obtain better decay on the coe�cients
gT T of the metric. The strategy is similar to the one introduced in [21].

� In Section 6, we obtain the missing estimates for the angle and linear momentum, namely
the three �rst Fourier coe�cient of b which correspond to b−Πb, in order to get∣∣∣∣∣b(θ) +

∫
ΣT,θ

(∂qφ(q, s = T, θ))2rdq

∣∣∣∣∣ . ε2

T
1
2

,

by relying in particular on the constraint equations.

� In Section 7, we improve the estimates for h0, and show that it is indeed a good approximation
for the coe�cient gLL. We also obtain estimates for h̃. We prove Proposition 4.4.

� In Section 8 we prove Proposition 4.5 thanks to the L∞ − L∞ estimate.

� In Section 9 we derive a weighted energy estimate for an equation of the form �gu = f , where
g satis�es the bootstrap assumptions.

� In Section 10, we prove Proposition 4.6 thanks to the weighted energy estimate.

� In Section 11, we prove Proposition 4.7 by picking the right b̃ = Πb.
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5 The wave coordinates condition

The wave coordinates condition yields better decay properties in t for some components of the
metric. Since far from a conical neighborhoud of the light cone, we have |q| ∼ s, this condition will
only be relevant near the light cone. It is given by

Hα
b = − 1√

|det(g)|
∂µ(gµα

√
|det(g)|).

Proposition 5.1. We have the following estimate, in the region t
2 ≤ r ≤ 2t,

|∂qZI g̃LL| .
∑
J≤I

(
|∂̄ZJ g̃LL|+ |∂̄ZJ g̃T T |

)
+

1

1 + s

∑
J≤I

(
|ZI g̃LL|+ |ZI g̃T T |

)
.

Proof. The wave coordinate condition implies

−LαHα
b = Lα

(
1√
|det(g)|

∂µ(gµα
√

det(g))

)

=
gµα√

det(|g|)
Lα∂µ

√
det(g) + ∂µ(Lαg

µα)− gµα∂µ(Lα)

=
gLµ√

det(|g|)
∂µ
√

det(g) + ∂µ(gLµ)− 1

r
gUU

=
gLL√

det(|g|)
∂L
√

det(g) +
gLT√
det(|g|)

∂T
√

det(g) + ∂Lg
LL + ∂Ug

LU + ∂Lg
LL

+
1

r
gLR − 1

r
gUU ,

where we have denoted by R the vector �eld ∂r, and used the following calculations

gµα∂µ(Lα) =− gµα∂µ(Rα)

=− g11∂1 cos(θ)− g12(∂2 cos(θ)− ∂1 sin(θ))− g22∂2 sin(θ)

=− gUU

r
,

∂µg
Lµ =∂0g

L0 + ∂1g
L1 + ∂2g

L2

=∂0g
L0 + ∂Rg

LR + ∂Ug
LU + gLR(∂1 cos(θ) + ∂2 sin(θ)) + gLU (−∂1 sin(θ) + ∂2 cos(θ))

=∂Lg
LL + ∂Ug

LU + ∂Lg
LL +

gLR

r
.

Consequently

∂Lg
LL =− Lα

(
H̄α
b + Fα

)
− gLL√

det(|g|)
∂L
√

det(g)− gLT√
det(|g|)

∂T
√

det(g)

− ∂UgLU − ∂LgLL −
1

r
gLR − 1

r
gUU ,

(5.1)

where we have used (1.9). Also we have

det(g) = gLL(gLLgUU − (gUL)2)− gLL(gLLgUU − gLUgLU ) + gLU (gLLgUL − gLLgLU ).
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Therefore
|
√

det(g)−
√

det(gb)| . |g̃LL|+ |g̃T T |.

We can express

gLL =
1

det(g)
(gLLgUU − (gUL)2) = −1

4
g̃LL +O(g̃T T )O(g),

gLU =
1

det(g)
(gLLgLU − gULgLL) =

1

2
gLU +O(g̃T T )O(g),

gLL =
1

det(g)
(gLLgUU − gULgUL) =

1

4
(gb)UUgLL +O(g̃T T ),

where we have used the notation O(g) = O(g − m) where m is the Minkowski metric. Since in
(5.1), by de�nition of H̄α (see (1.10)) the terms involving only gb compensate, we have

|∂q g̃LL| . (|∂̄g̃LL|+ |∂̄g̃T T |) +
1

1 + s
(|g̃LL|+ |g̃T T |) + s.t..

where s.t denotes similar terms (here these terms are quadratic terms with a better or similar
decay), and we have used the fact that in the region t

2 ≤ r ≤ 2t, we have r ∼ s. Since [Z, ∂q] ∼ ∂q
and [Z, ∂̄] ∼ ∂̄ we have

|∂qZI g̃LL| .
∑

J≤I−1

|ZJ g̃LL|+ |∂̄ZI g̃LL|+ |∂̄ZI g̃T T |+
1

1 + s

∑
J≤I

(|ZJ g̃LL|+ |ZJ g̃T T |).

This concludes the proof of Proposition 5.1.

The other two contractions of the wave condition yield better decay on a conical neighbourhood
of the light cone for g̃UL and g̃UU .

Proposition 5.2. We have the following property

|∂qZI g̃UL| .
∑
J≤I
|∂ZJ g̃T V |+

1

1 + s

∑
J≤I
|ZJ g̃T V |,

|∂qZI g̃UU | .
∑
J≤I
|∂ZJ g̃|+ 1

1 + s

∑
J≤I
|ZJ g̃|.

Proof. To obtain the �rst estimate, we contract the wave coordinate condition with the vector �eld
U .

−UαHα
b =

1√
| det(g)|

Uα∂µ(gµα)
√

det(g)

=
gµα√
| det(g)|

Uα∂µ
√
| det(g)|+ ∂µ(Uαg

µα) + gµα∂µ(Uα)

=
gUµ√
| det(g)|

∂µ
√
|det(g)|+ ∂µ(gUµ) +

1

r
gUR

=
gUL√
| det(g)|

∂L
√
| det(g)|+ gUT√

| det(g)|
∂T
√
|det(g)|+ ∂Lg

UL + ∂Ug
UU + ∂Lg

UL +
1

r
gUR.

Therefore

∂Lg
UL = −UαHα

b −
gUL√
|det(g)|

∂L
√
|det(g)| − gUT√

|det(g)|
∂T
√
| det(g)| − ∂UgUU − ∂LgUL −

1

r
gUR,

36



and arguing as in Proposition 5.1 we infer

|∂q g̃UL| . |∂̄g̃T V |+
1

1 + s
|g̃T V |+ s.t.

Commuting with the vector �elds Z as before, we obtain the desired estimate. To obtain the second
one, we contract the wave coordinate condition with L

LαH
α
b =

1√
|det g|

Lα∂µ(gµα)
√
| det(g)|.

=
1√
|det g|

∂L

(√
|det(g)|gLL

)
+

1√
|det g|

∂T

(√
|det(g)|gLT

)
− gµα∂µ(Lα).

(5.2)

We note that √
|det(g)|gLL =

1√
| det(g)|

(gLLgUU − gULgUL)

=
gLLgUU√

g2
LLgUU +O(g̃T T )O(g)

+O(g̃T T )O(g)

=
√
gUU + +O(g̃T T )O(g).

Therefore (5.2) yields

|∂q g̃UU | . |∂̄g̃|+
1

1 + s
|g̃|.

We commute with the vector �elds Z to conclude.

Thanks to the bootstrap assumptions, we obtain the following corollary.

Corollary 5.3. We have the estimates for q < 0

|∂ZI g̃UU | .
ε

(1 + s)
3
2
−ρ
, |∂ZI g̃LT | .

ε

(1 + s)(1 + |q|)
1
2
−ρ
, for I ≤ N − 15, (5.3)

|∂Z̃IgLT | .
ε

(1 + s)
3
2
−2ρ

, |∂ZI g̃UU | .
ε

(1 + s)(1 + |q|)
1
2
−2ρ

, for I ≤ N − 13, (5.4)

|∂ZI g̃LT | .
ε
√

1 + |q|
(1 + s)

3
2

, |∂ZI g̃UU | .
ε

1 + s
, for I ≤ N − 12, (5.5)

|∂ZI g̃LT | .
ε(1 + |q|)1+µ

(1 + s)
3
2

, |∂ZI g̃UU | .
ε(1 + |q|)

1
2

+µ

1 + s
, for I ≤ N − 5, (5.6)

and for q > 0

|∂ZI g̃LT | .
ε

(1 + |q|)
1
2

+δ−σ(1 + s)
3
2

, |∂ZI g̃UU | .
ε

(1 + |q|)1+δ−σ(1 + s)
, for I ≤ N − 5.

Proof. As mentioned in Remark 4.10, the metric coe�cients g̃VT do not depend on the choice of
decomposition between (4.6), (4.7) and (4.8). Thanks to Proposition 5.1 and 5.2, and the fact that

|∂̄u| ≤ 1

1 + s
|Zu|,

we may write

|∂ZI g̃LT | .
1

1 + s
|ZI+1g̃T V |. (5.7)
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The bootstrap assumptions (4.16) and (4.18) in the region q < 0 yield

|ZJ g̃T V | .
ε

(1 + s)
1
2
−ρ
, for J ≤ N − 14,

|ZJ g̃T V | .
ε

(1 + s)
1
2
−2ρ

, for J ≤ N − 12.

Therefore we obtain, in view of (5.7)

|∂ZI g̃LT | .
ε

(1 + s)
3
2
−ρ
, for I ≤ N − 15,

|∂ZI g̃LT | .
ε

(1 + s)
3
2
−2ρ

for I ≤ N − 13.

Corollary 4.9 yields the following estimate for q < 0

|ZJ g̃T V | .
ε
√

1 + |q|√
1 + s

, for J ≤ N − 11,

|ZJ g̃T V | .
ε(1 + |q|)1+µ

√
1 + s

, for J ≤ N − 4.

Therefore we obtain in view of (5.7)

|∂ZI g̃LT | .
ε
√

1 + |q|
(1 + s)

3
2

for I ≤ N − 12,

|∂ZI g̃LT | .
ε(1 + |q|)1+µ

(1 + s)
3
2

for I ≤ N − 5.

For q > 0 and I ≤ N − 4, we have in view of Corollary 4.9

|ZI g̃T V | .
ε

√
1 + s(1 + |q|)

1
2

+δ−σ

which together with (5.7) yields

|∂qZI g̃LT | .
ε

(1 + |q|)
1
2

+δ−σ(1 + s)
3
2

for I ≤ N − 5.

We now estimate ZI g̃UU . As for Z
I g̃LT , Proposition 5.2 yields

|∂ZI g̃UU | .
1

1 + s
|ZI+1g̃|.

Therefore, the estimates of Corollary 5.3 are a direct consequence of the estimates of Corollary
4.11.

Thanks to Lemma 1.11, since δ − σ > 1
2 we obtain the following corollary

Corollary 5.4. We have the estimates for q < 0

|ZI g̃LT | .
ε(1 + |q|)

(1 + s)
3
2
−ρ
, |ZI g̃UU | .

ε(1 + |q|)
1
2

+ρ

1 + s
, for I ≤ N − 15, (5.8)

|ZI g̃LT | .
ε(1 + |q|)

(1 + s)
3
2
−2ρ

|ZI g̃UU | .
ε(1 + |q|)

1
2

+2ρ

1 + s
, for I ≤ N − 13, (5.9)

|ZI g̃LT | .
ε(1 + |q|)

3
2

(1 + s)
3
2

|ZI g̃UU | .
ε(1 + |q|)

1 + s
, for I ≤ N − 12, (5.10)

|ZI g̃LT | .
ε(1 + |q|)2+µ

(1 + s)
3
2

|ZI g̃UU | .
ε(1 + |q|)

3
2

+µ

1 + s
, for I ≤ N − 5, (5.11)
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and for q > 0

|ZI g̃LT | .
ε(1 + |q|)

1
2

+σ−δ

(1 + s)
3
2

, |ZI g̃UU | .
ε

(1 + s)(1 + |q|)δ−σ
, for I ≤ N − 5. (5.12)

6 Angle and linear momentum

We call angle and linear momentum the three �rst coe�cients of b, b0, b1, b2. These coe�cients
can not be prescribed arbitrarily, they are given by the resolution of the constraint equations (see
Theorem 1.3). We need b to satisfy∥∥∥∥∥∂Iθ

(
b(θ) +

∫
ΣT,θ

(∂qφ)2rdq

)∥∥∥∥∥
L2

.
ε2

√
T
, for I ≤ N − 4. (6.1)

This is used crucially to estimate h0 in the proof of Proposition 7.2. The heuristic of it is discussed in
Section 3.2 (see (3.15)). The estimate (6.1) is satis�ed with b replaced by Πb thanks to the bootstrap
assumption (4.4) (Π is the projection de�ned by (3.16)). For the angle and linear momentum,
this is the object of the following proposition, which says that the relations of Theorem B.1 are
asymptotically conserved by the �ow of the Einstein equations.

Proposition 6.1. We have∣∣∣∣∫ b(θ)dθ +
1

2

∫
R2

(
(∂tφ)2 + |∇φ|2

)
(t, x)dx

∣∣∣∣ . ε2

√
1 + t

,∣∣∣∣∫ b(θ) cos(θ)dθ −
∫
R2

(∂tφ∂1φ) (t, x)dx

∣∣∣∣ . ε2

√
1 + t

,∣∣∣∣∫ b(θ) sin(θ)dθ −
∫
R2

(∂tφ∂2φ) (t, x)dx

∣∣∣∣ . ε2

√
1 + t

.

To prove this proposition, we need the following lemma.

Lemma 6.2. The equation for gµν can be written under the form

�g̃µν = −2∂µφ∂νφ− 2b(θ)
∂2
q (χ(q)q)

r
Mµν +O

(
ε2

(1 + t)
3
2 (1 + |q|)

3
2
−2ρ

)
, (6.2)

where the tensor Mµν corresponds to dq2.

Proof of Lemma 6.2. We recall the quasilinear equation for g̃µν (see (2.4))

gαβ∂α∂β g̃µν −Hρ
b ∂ρg̃µν = −2∂µφ∂νφ+ 2(Rb)µν + Pµν(∂g̃, ∂g̃) + P̃µν(g̃, gb).

The worst term in
gαβ∂α∂β g̃µν −�g̃µν

is, according to Remark 2.2,
gLL∂

2
q g̃µν .

We distinguish two kinds of contributions :

gLL∂
2
q g̃1 and gLL∂

2
qh0.

39



To estimate the �rst term, we use (5.8) of Corollary 5.4, which gives

|gLL| .
ε(1 + |q|)

(1 + s)
3
2
−ρ
.

We estimate then

|∂2
q g̃1| ≤

1

(1 + |q|)2

∑
I≤2

|ZI g̃1|,

and we use the bootstrap assumption (4.16) for I ≤ N − 14

|ZI g̃1| ≤
ε

(1 + s)
1
2
−ρ
,

to obtain

|gLL∂2
q g̃1| .

ε2

(1 + s)2−2ρ(1 + |q|)
. (6.3)

We now estimate the second term. To estimate ∂2
qh0, we recall (4.19) for I ≤ N − 6

|ZIh0| .
ε√

1 + s
+

ε

(1 + |q|)1−4ρ
.

Consequently

|∂2
qh0| .

ε

(1 + |q|)2
√

1 + s
+

ε

(1 + |q|)3−4ρ
.

The �rst contribution can be estimated like 6.3. To tackle the second contribution we need to use
the estimate for gLL which gives the most decay in s : we use (5.10) of Corollary 5.4, which yields

|gLL| .
ε(1 + |q|)

3
2

(1 + s)
3
2

.

This, together with the estimate (6.3), yields

|gLL∂2
qh0| .

ε2

(1 + s)
3
2 (1 + |q|)

3
2
−4ρ

+
ε2

(1 + s)2−2ρ(1 + |q|)
. (6.4)

The semi linear terms Pµν(∂g̃, ∂g̃) are estimated similarly. We now turn to the crossed terms.
Thanks to Section 2.5, the worst contribution is (2.11), which gives a contribution of the form
ε
r∂g̃LL in the region q > 0. We estimate thanks to (4.32) of Corollary 4.9 in the region q > 0

|∂g̃LL| .
ε

(1 + s)
1
2 (1 + |q|)

3
2

+δ−σ
.

Therefore we obtain ∣∣∣1q>0
ε

r
∂g̃LL

∣∣∣ . ε

(1 + s)2(1 + |q|)
3
2

+δ−σ
. (6.5)

We now estimate (Rb)µν . Thanks to (1.7) and (1.8), we may write

(Rb)µν = −
b(θ)∂2

q (qχ(q))

r
Mµν +O

(
11≤q≤2ε

2

(1 + r)2

)
. (6.6)

Thanks to (6.3), (6.4), (6.5) and (6.6) we conclude the proof of Lemma 6.2.
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Proof of Proposition 6.1. We want to integrate equation (6.2) for (µ, ν) = 0, 0 over the space-like
hypersurfaces of t constant. To deal with the term ∂2

t g00, we use the wave coordinate condition

gαβ∂βgα0 =
1

2
gαβ∂tgαβ + (Hb)0.

We can rewrite it, by de�nition of (Hb)0

(gαβ − (gb)
αβ)∂βgα0 + gαβb (∂βgα0 − ∂β(gb)α0) =

1

2
(gαβ − gαβb )∂tgαβ +

1

2
gαβb (∂tgαβ − ∂t(gb)αβ) + F0.

By de�nition, F contains only terms of the form g̃∂Ugb, so we can estimate

|ZF | . ε1q>0(1 + |q|)
r2

|Zg̃| . ε2

(1 + s)2(1 + |q|)δ−σ
, (6.7)

where we have used (4.47) to estimate |Zg̃|. We note

mαβ∂β g̃α0 −
1

2
mαβ∂tg̃αβ =

1

2
(−∂tg̃00 − ∂tg̃11 − ∂tg̃22) + ∂1g̃01 + ∂2g̃02,

and we estimate

(gαβ − (gb)
αβ)∂βgα0 = (gLL −mLL)∂LgL0 + f1,

1

2
(gαβ − gαβb )∂tgαβ = (gLL −mLL)∂tg̃LL + f2,

(mαβ − gαβb )∂β g̃α0 = f4

(mαβ − gαβb )∂tg̃αβ = f5,

where the fi contain terms of the form

g̃LL∂g̃VV , g̃VV∂T gT V ,
bχ(q)

r
∂U g̃UV , ...

They satisfy the following estimate

|Zfi| .
ε2

(1 + s)
3
2 (1 + |q|)

1
2
−2ρ

. (6.8)

We note 2∂tg̃LL = ∂Lg̃LL + ∂Lg̃LL and 2gL0 = gLL + gLL. Consequently

(gLL −mLL)(∂LgL0 − ∂tg̃LL) = O
(
g̃LL∂Lg̃LL + g̃LL∂Lg̃LL

)
satis�es the same estimate (6.8) than the fi. Therefore the wave coordinate condition gives

1

2
(−∂tg̃00 − ∂tg̃11 − ∂tg̃22) + ∂1g̃01 + ∂2g̃02 = f5

where f5 satis�es (6.8). Therefore, di�erentiating this equation with respect to t, and using (6.2)
for (µ, ν) = (0, 0), (1, 1), (2, 2) we obtain

∆g̃00 + ∆g̃11 + ∆g̃22 − 2∂1∂tg̃01 − 2∂2∂tg̃02

=− 2((∂0φ)2 + (∂1φ)2 + (∂2φ)2)− 4b(θ)
∂2
q (χ(q)q)

r
+O

(
ε2

(1 + s)
3
2 (1 + |q|)

3
2
−2ρ

)
.

41



Integrating on the space-like hypersurface t constant we obtain, since
∫∞

0 ∂2(qχ(q))dr = 1,

−1

2

∫
(∂tφ)2 + |∇φ|2dx =

∫
b(θ)dθ +O

(
ε2

√
1 + t

)
. (6.9)

To obtain the next relation we do the same reasoning but with (6.2) for (µ, ν) = (0, 1) and (µ, ν) =
(0, 2). We only detail the case (µ, ν) = (0, 1) as the other one is treated in the same way. Recall
the wave coordinates condition

gαβ∂βgα1 =
1

2
gαβ∂1gαβ + (Hb)1.

We can rewrite it, by de�nition of (Hb)1

(gαβ − (gb)
αβ)∂βgα1 + gαβb (∂βgα1 − ∂β(gb)α1) =

1

2
(gαβ − gαβb )∂1gαβ +

1

2
gαβb (∂1gαβ − ∂1(gb)αβ) + F1

We note

mαβ∂β g̃α1 −
1

2
mαβ∂1g̃αβ = −∂tg̃01 + ∂1g̃11 + ∂2g̃12 −

1

2
mαβ∂1g̃αβ

and we estimate

(gαβ − (gb)
αβ)∂βgα1 = (gLL −mLL)∂LgL1 + f6,

1

2
(gαβ − gαβb )∂1gαβ = (gLL −mLL)∂1g̃LL + f7,

(mαβ − gαβb )∂β g̃α1 = f8,

(mαβ − gαβb )∂1g̃αβ = f9,

where the quantities fi satisfy (6.8). We note 2∂1g̃LL = − cos(θ)∂Lg̃LL + ∂̄g̃LL and 2∂Lg̃L1 =
−∂L(cos(θ)gLL) + gLT . Therefore we obtain

−∂tg̃01 + ∂1g̃11 + ∂2g̃12 −
1

2
mαβ∂1g̃αβ = f10,

where f10 satis�es (6.8). Di�erentiating with respect to t and using (6.2) for (µ, ν) = (0, 1) we
obtain

∆g̃01 + ∂1∂tg̃11 + ∂2∂tg̃12 −
1

2
mαβ∂1∂tg̃αβ

=− 2∂tφ∂1φ+ 2b(θ) cos(θ)
∂2
q (χ(q)q)

r
+O

(
ε2

(1 + s)
3
2 (1 + |q|)

3
2ρ

)
.

Integrating on the space-like hypersurface t constant we obtain∫
∂tφ∂1φdx =

∫
b(θ) cos(θ)dθ +O

(
ε2

√
1 + t

)
, (6.10)

and similarly ∫
∂tφ∂2φdx =

∫
b(θ) sin(θ)dθ +O

(
ε2

√
1 + t

)
. (6.11)

Estimates (6.9), (6.10) and (6.11) conclude the proof of Proposition 6.1
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Corollary 6.3. We have the estimates∣∣∣∣∫ b(θ)dθ +

∫
ΣT

(∂qφ)2rdrdθ

∣∣∣∣ . ε2

√
T
,∣∣∣∣∫ b(θ) cos(θ)dθ +

∫
ΣT

cos(θ)(∂qφ)2rdrdθ

∣∣∣∣ . ε2

√
T
,∣∣∣∣∫ b(θ) sin(θ)dθ +

∫
ΣT

sin(θ)(∂qφ)2rdrdθ

∣∣∣∣ . ε2

√
T
.

Proof. We may write

∂tφ = −∂qφ+ ∂sφ,

∂1φ = cos(θ)∂qφ+ cos(θ)∂sφ− sin(θ)∂Uφ,

∂1φ = sin(θ)∂qφ+ sin(θ)∂sφ+ cos(θ)∂Uφ.

Moreover, thanks to the bootstrap assumption (4.15)

|∂φ∂̄φ| . 1

(1 + |q|)(1 + s)
|Zφ|2 . ε2

(1 + s)2(1 + |q|)2−8ρ
,

and consequently ∣∣∣∣∫ (∂φ∂̄φ) (t, x)dx

∣∣∣∣ . ε2

1 + t
.

Therefore ∣∣∣∣2 ∫
ΣT

(∂qφ)2dx−
∫

ΣT

((∂tφ)2 + |∇φ|2)dx

∣∣∣∣ . ε2

1 + T
,∣∣∣∣∫

ΣT

cos(θ)(∂qφ)2dx+

∫
ΣT

∂tφ∂1φdx

∣∣∣∣ . ε2

1 + T
,∣∣∣∣∫

ΣT

sin(θ)(∂qφ)2dx+

∫
ΣT

∂tφ∂2φdx

∣∣∣∣ . ε2

1 + T
.

This concludes the proof of Corollary 6.3.

Corollary 6.3 and the bootstrap assumption 4.4 directly imply the following corollary.

Corollary 6.4. We have, for I ≤ N − 4∣∣∣∣∣∂Iθ
(
b(θ) +

∫
ΣT,θ

(∂qφ)2rdq

)∣∣∣∣∣ . ε2

√
T
.

7 The transport equation (4.10)

In this section we will estimate h0, �h0 and h̃.
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7.1 Estimations on h0

We recall the equation (4.10){
∂qh0 = −2r(∂qφ)2 − 2b(θ)∂2

q (χ(q)q),

h0|t=0 = 0.

The solution of this equation is

h0(s,Q, θ) =

∫ Q

s

(
−2(∂qφ)2 − 2

b(θ)∂2
q (qχ(q))

r

)
rdq. (7.1)

All the estimates we will perform in this section take place in the region r > t
2 since we will always

apply the cut-o� function Υ
(
r
t

)
to h0.

Proposition 7.1. In the region r > t
2 we have the estimates on h0, for q < 0

|∂sh0| .
ε2

(1 + s)
3
2

, |h0| .
ε2

√
1 + s

+
ε2

(1 + |q|)2−8ρ

and for q > 0

|∂sh0| .
ε2

(1 + s)
3
2 (1 + |q|)

3
2

+2(δ−σ)
, |h0| .

ε2

(1 + |q|)2+2(δ−σ)
.

Proof. We write the wave operator in coordinates (s, q, θ)

� = 4∂s∂q +
1

r
(∂s + ∂q) +

1

r2
∂2
θ . (7.2)

We calculate

∂s∂qh0 = ∂s(−2r(∂qφ)2) = −r∂qφ
(

4∂s∂qφ+
1

r
∂qφ

)
= −r∂qφ

(
�φ− 1

r
∂sφ−

1

r2
∂2
θφ

)
, (7.3)

where we have used
∂s(−2b(θ)∂2

q (qχ(q))) = 0.

Therefore we have

∂sh0 =

∫ Q

s

(
−�φ+

1

r
∂sφ+

1

r2
∂2
θφ

)
∂qφrdq +O

(
ε2

(1 + s)3+2δ

)
, (7.4)

where we have used

∂sh0|t=0 = −∂qh0|t=0 =
(
2r(∂qφ)2 + 2b(θ)∂2

q (χ(q)q)
)
|t=0 = O

(
ε2

(1 + s)3+2δ

)
.

The bootstrap assumption (4.15) gives∣∣∣∣1r ∂sφ
∣∣∣∣+

∣∣∣∣ 1

r2
∂2
θφ

∣∣∣∣ . 1

(1 + s)2
|Z2φ| . ε

(1 + s)
5
2 (1 + |q|)

1
2
−4ρ

,

and

|∂qφ| .
1

1 + |q|
|Zφ| . ε

(1 + s)
1
2 (1 + |q|)

3
2
−4ρ

.
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Therefore ∣∣∣∣(1

r
∂sφ+

1

r2
∂2
θφ

)
∂qφr

∣∣∣∣ . ε2

(1 + s)2(1 + |q|)2−8ρ
. (7.5)

To estimate �φ we write �φ = (�−�g)φ. Thanks to Remark 2.2, in the region q < 0 it is su�cient
to estimate gLL∂

2
qφ. We start with the region q < 0. To obtain all the possible decay in s, we use

the estimate (5.10) of Corollary 5.4 for I ≤ N − 11, which gives, for q < 0

|gLL| .
ε(1 + |q|)

3
2

(1 + s)
3
2

.

The bootstrap assumption (4.15) imply

|∂2
qφ| .

ε

(1 + |q|)
5
2
−4ρ
√

1 + s
,

therefore

|gLL∂2
qφ∂qφ| .

ε3(1 + |q|)
3
2

(1 + s)
5
2 (1 + |q|)4−8ρ

,

and we obtain

|(�φ)∂qφr| .
ε3

(1 + s)
3
2 (1 + |q|)

5
2
−8ρ

. (7.6)

Thanks to (7.5) and (7.6), in the region q < 0 we have∣∣∣∣(−�φ+
1

r
∂sφ+

1

r2
∂2
θφ

)
∂qφr

∣∣∣∣ . ε3

(1 + s)
3
2 (1 + |q|)

5
2
−8ρ

. (7.7)

We now estimate the integrand in the region q > 0. Estimate (4.38) yields, for q > 0 and I ≤ N−3

|ZIφ| . ε
√

1 + s(1 + |q|)
1
2

+δ−σ
,

and estimate (5.12) yields for q > 0

|gLL| .
(1 + |q|)

1
2

+σ−δ

(1 + s)
3
2

.

In the region q > 0, �φ−�gφ contains also terms of the form εχ(q)
r ∂̄φ (see (2.13) in the discussion of

Section 2.5). We can neglect them since we already take into account terms of the form 1
r∂sφ+ 1

r2
∂2
θφ

in (7.3). Consequently for q > 0∣∣∣∣(−�φ+
1

r
∂sφ+

1

r2
∂2
θφ

)
∂qφr

∣∣∣∣ . ε2

(1 + s)
3
2 (1 + |q|)

5
2

+2δ−2σ
. (7.8)

Therefore, (7.4) and (7.8) yield for q > 0

|∂sh0| .
ε2

(1 + s)
3
2 (1 + |q|)

3
2

+2(δ−σ)
, (7.9)

and (7.4), (7.7) and (7.8) yield for q < 0, since 1

(1+|q|)
5
2−8ρ

is integrable,

|∂sh0| .
ε2

(1 + s)
3
2

. (7.10)
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Figure 1: Integration of h0

Thanks to Corollary 6.4 we have∣∣∣∣∣b(θ) +

∫
ΣT,θ

(∂qφ)2rdr

∣∣∣∣∣ . ε2

T
1
2

.

Moreover ∂rh0 = ∂qh0 + ∂sh0 and therefore (7.10) and (7.9) yield

∂rh0 = −2r(∂qφ)2 − 2b(θ)∂2
r (χ(q)q) +O

(
ε2

(1 + s)
3
2

)
. (7.11)

Therefore, on the line t = T , with �xed θ we obtain the following estimate for h0 in the region
r < t by integrating (7.11)

h0(T,R, θ) =−
∫ ∞
R

(
−2r(∂qφ)2 +O

(
ε2

(r + T )
3
2

))
+ 2b(θ)

=

∫ R

0
2r(∂qφ)2dr +O

(
ε2

√
1 + T

)
=O

(
ε2

(1 + T )
1
2

)
+O

(
ε2

(1 + q)2−8ρ

)
.

To estimate h0 elsewhere in the region r < t, we can integrate the estimate (7.10), at �xed q, as
shown in the left of the �gure 7.1. To estimate h0 in the region r > t we integrate the transport
equation from t = 0, as shown in the right of the �gure 7.1 : we rely on formula (7.1) and the
estimate for q > 0

|∂qφ| .
ε

√
1 + s(1 + |q|)

3
2

+δ−σ
.
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We obtain

h0 = O

(
ε2

(1 + q)2+2(δ−σ)

)
, q > 0,

h0 = O

(
ε2

(1 + s)
1
2

)
+O

(
ε2

(1 + q)2−8ρ

)
, q < 0.

Next we derive an estimate for ZIh0.

Proposition 7.2. Let I ≤ N − 5. We have the estimate for q < 0

|ZIh0| .
ε2

√
1 + s

+
ε2

(1 + |q|)1−4ρ
, |∂sZIh0| .

ε2

(1 + s)
3
2

, |∂qZIh0| .
ε2

(1 + |q|)2−4ρ
,

and for q > 0

|ZIh0| .
ε2

(1 + |q|)2+2(δ−σ)
, |∂sZIh0| .

ε2

(1 + s)
3
2 (1 + |q)1+2(δ−σ)

.

Observe that

S = s∂s+q∂q, Ω12 = ∂θ, Ω01 = cos(θ)(s∂s−q∂q)−
t

r
sin(θ)∂θ, Ω02 = sin(θ)(s∂s−q∂q)+

t

r
cos(θ)∂θ.

Hence Proposition 7.2 is an immediate consequence of Proposition (7.3).

Proposition 7.3. We assume Let j+k+ l ≤ N −5 then in the region r > t
2 we have the estimates

on h0, for q < 0, if j, k ≥ 1

|∂js∂kq ∂lθh0| .
ε2

sj+
1
2 (1 + |q|)k+1−4ρ

and

|∂kq ∂lθh0| .
ε2

(1 + |q|)k

(
1√

1 + s
+

1

(1 + |q|)1−4ρ

)
, |∂js∂lθh0| .

ε2

(1 + s)
3
2

+j
.

For q > 0 we have, with j ≥ 1

|∂js∂kq ∂lθh0| .
ε2

sj+
1
2 (1 + |q|)k+ 3

2
+2(δ−σ)

, |∂kq ∂lθh0| .
ε2

(1 + |q|)k+2+2(δ−σ)
.

Proof. We assume �rst j = 0 and k ≥ 1. We assume l + k ≤ N − 3. Then we can write

∂kq ∂
l
θh0 = −2∂k−1

q ∂lθ
(
r(∂qφ)2 + ∂2

q (qχ(q))b(θ)
)
.

Therefore we can estimate

|∂kq ∂lθh0| .
r

(1 + |q|)k−1

∑
J≤k+l−1

|ZJ(∂qφ)2|+ 1

(1 + |q|)k+1
|∂lθb|.

The terms in ZJ(∂qφ)2 are of the form ∂qZ
J1φ∂qZ

J2φ, where J1 ≤ k+l
2 ≤ N − 15 therefore we can

estimate, thanks to the bootstrap assumption (4.15)

|∂qZJ1φ| .
ε

(1 + |q|)
3
2
−4ρ
√

1 + s
,

47



and we estimate ∂qZ
J2φ thanks to (4.28) of Proposition 4.8 since J2 ≤ l + k − 1 ≤ N − 4

|∂qZJ2φ| .
ε√

1 + |q|
√

1 + s
.

Consequently we have shown that for k + l ≤ N − 3, k ≥ 1

|∂kq ∂lθh0| .
ε2

(1 + |q|)k+1−4ρ
. (7.12)

In the region q > 0 we have the better estimate for i = 1, 2 thanks to (4.31) of Proposition 4.8

|∂qZJiφ| .
ε

(1 + |q|)
3
2

+δ−σ√1 + s
,

so

|∂kq ∂lθh0| .
ε2

(1 + |q|)k+2+2δ−2σ
. (7.13)

We now assume k ≥ 1, j ≥ 1 and estimate ∂js∂kq ∂
l
θh0, for j + k + l ≤ N − 4. Thanks to (7.3),

we can write

∂js∂
k
q ∂

l
θh0 = −∂j−1

s ∂k−1
q ∂lθ

(
r∂qφ

(
�φ− 1

r
∂sφ−

1

r2
∂2
θφ

))
.

We estimate ∣∣∣∣∂j−1
s ∂k−1

q ∂lθ

(
r∂qφ

(
1

r
∂sφ+

1

r2
∂2
θφ

))∣∣∣∣
.

1

(1 + |q|)k−1(1 + |s|)j−1

∣∣∣∣Zj+k+l−2

(
r∂qφ

(
1

r
∂sφ+

1

r2
∂2
θφ

))∣∣∣∣
.

1

(1 + |q|)k(1 + |s|)j
∑
J1+J2

≤j+k+l−2

|ZJ1+2φZJ2+1φ|

We can assume J1 ≤ j+k+l−2
2 . In the region q < 0, (4.15) and (4.35) yield

|ZJ1+2φ| . ε
√

1 + s(1 + |q|)
1
2
−4ρ

, |ZJ2φ| .
ε
√

1 + |q|√
1 + s

.

Consequently, for q < 0∣∣∣∣∂j−1
s ∂k−1

q ∂lθ

(
r∂qφ

(
1

r
∂sφ+

1

r2
∂2
θφ

))∣∣∣∣ . ε2

(1 + |q|)k−4ρ(1 + s)j+1
. (7.14)

To estimate the contribution of �φ, we write as before �φ = (�−�g)φ. Following Remark 2.2, it
is su�cient to estimate∣∣∣∂j−1

s ∂k−1
q ∂lθ

(
rgLL∂qφ∂

2
qφ
)∣∣∣ . 1

(1 + |q|)k−1(1 + |s|)j−1

∣∣∣Zk+j+l−2
(
rgLL∂qφ∂

2
qφ
)∣∣∣

.
1

(1 + |q|)k(1 + |s|)j−2

∑
J1+J2+J3
≤j+k+l−2

|ZJ1gLL∂qZJ2+1φ∂qZ
J3φ|.

We have J1 + J2 + J3 ≤ j + k + l − 2 ≤ N − 5. We separate in two cases
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� J1 ≤ N
2 − 2 and J2 ≤ N

2 − 2 : then we have thanks to (5.10), (4.15) and (4.28)

|ZJ1gLL| .
ε(1 + |q|)

3
2

(1 + s)
3
2

,

|∂qZJ2+1φ| . ε
√

1 + s(1 + |q|)
3
2
−4ρ

, |∂qZJ3φ| .
ε√

1 + |q|
√

1 + s
.

The case J1 ≤ N
2 − 2 and J3 ≤ N

2 − 2 can be treated in the same way.

� J2 ≤ N
2 − 2 and J3 ≤ N

2 − 2 then, since |J1| ≤ j+ k+ l− 2 ≤ N − 4 we have thanks to (5.11)
and (4.15)

|ZJ1gLL| .
ε(1 + |q|)2+µ

(1 + s)
3
2

, |∂qZJφ| .
ε

√
1 + s(1 + |q|)

3
2
−4ρ

, for J = J2 + 1, J3.

In the �rst case we obtain

|ZJ1gLL∂qZJ2+1φ∂qZ
J3φ| . ε3

(1 + s)
5
2 (1 + |q|)

1
2
−4ρ

, (7.15)

and in the last case we obtain

|ZJ1gLL∂qZJ2+1φ∂qZ
J3φ| . ε3

(1 + s)
5
2 (1 + |q|)1−8ρ−µ

.

We have µ+ 4ρ ≤ 1
2 . Consequently, we have in the region q < 0∣∣∣∂j−1

s ∂k−1
q ∂lθ

(
rgLL∂qφ∂

2
qφ
)∣∣∣ . ε3

(1 + |q|)k+ 1
2
−4ρ(1 + |s|)j−2

. (7.16)

Estimates (7.14) and (7.16) yield, in the region q < 0 for j + k + l ≤ N − 4, j, k ≥ 1

|∂js∂kq ∂lθh0| .
ε2

(1 + s)j+
1
2 (1 + |q|)k+ 1

2
−4ρ

. (7.17)

In the region q > 0, thanks to (4.31) and (5.12) we have the better estimate, for J ≤ N − 5

|∂qZJφ| ≤
ε

√
1 + s(1 + |q|)

3
2

+δ−σ
, |ZJgLL| ≤

ε(1 + |q|)
1
2
−δ+σ

(1 + s)
3
2

,

so we have

|∂js∂kq ∂lθh0| .
ε2

(1 + s)j+
1
2 (1 + |q|)k+ 3

2
+2(δ−σ)

. (7.18)

We now assume k = 0 and j ≥ 1. We obtain an estimate on ∂js∂lθh0 for q > 0 by integrating
(7.18) for k = 1 with respect to q, from the hypersurface t = 0. We obtain for j+ l ≤ N − 4, j ≥ 1,
q > 0

|∂js∂lθh0| .
ε2

(1 + s)j+
1
2 (1 + |q|)

3
2

+2(δ−σ)
. (7.19)

For q < 0, we integrate (7.17) from q = 0. We obtain for j + l ≤ N − 4, j ≥ 1,

|∂js∂lθh0| .
ε2

(1 + s)j+
1
2

. (7.20)
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We now estimate ∂lθh0 for l ≤ N − 5. Recall from Corollary 6.4 that∣∣∣∣∣∂lθ
(
b(θ) +

∫
ΣT,θ

(∂qφ)2rdr

)∣∣∣∣∣ . ε2

T
1
2

.

Moreover, we can write, thanks to the estimate (7.20)

∂r∂
l
θh0 = ∂q∂

l
θh0 + ∂s∂

l
θh0 = ∂lθ

(
−2r(∂qφ)2

)
− 2∂2

q (qχ(q))∂lθb+O

(
ε2

(1 + s)
3
2

)
.

Therefore, by integrating this on the line t = T , we have

∂lθh0(T,R, θ) =

∫ R

0
∂q∂

l
θh0dr +O

(
ε2

√
1 + T

)
,

and consequently, thanks to (7.12) we have the estimate, for l ≤ N − 4 and q < 0

|∂lθh0(T, r, θ)| . ε2

√
1 + T

+
ε2

(1 + |q|)1−4ρ
.

To have an estimate everywhere, we integrate (7.20) for j = 0 with respect to s, as shown in the
�gure 7.1. We obtain, for l ≤ N − 5

|∂lθh0| .
ε2

√
1 + s

+
ε2

(1 + |q|)1−4ρ
. (7.21)

In the region q > 0, we just integrate (7.19) from t = 0, and we obtain

|∂lθh0| .
ε2

(1 + |q|)2+2(δ−σ)
. (7.22)

In view of (7.17), (7.18), (7.12), (7.13), (7.20), (7.19), (7.21), (7.22) we conclude the proof of
Proposition 7.3.

7.2 Estimation of �Υ( r
t
)h0

Proposition 7.4. Let I ≤ N − 7 We have the estimate for q < 0∣∣∣∣∣ZI
(
�
(

Υ
(r
t

)
h0

)
−Υ

(r
t

)(
−2(∂qφ)2 − 2

b(θ)∂2
q (qχ(q))

r

))∣∣∣∣∣ . ε2

(1 + s)
3
2 (1 + |q|)

,

and for q > 0∣∣∣∣∣ZI
(
�
(

Υ
(r
t

)
h0

)
−Υ

(r
t

)(
−2(∂qφ)2 − 2

b(θ)∂2
q (qχ(q))

r

))∣∣∣∣∣ . ε2

(1 + s)
3
2 (1 + |q|)2+2(δ−σ)

.

Proof. We have in view of (4.10), (7.2) and (7.3),

�
(

Υ
(r
t

)
h0

)
=Υ

(r
t

)(
4∂s∂qh0 +

1

r
(∂sh0 + ∂qh0) +

1

r2
∂2
θh0

)
+∇Υ

(r
t

)
.∇h0 + h0�Υ

(r
t

)
=Υ

(r
t

)(
−4r∂qφ

(
�φ− 1

r
∂sφ−

1

r2
∂2
θφ

)
+

1

r

(
−2(∂qφ)2r − 2b(θ)∂2

q (qχ(q))
))

+ Υ
(r
t

)(1

r
∂sh0 +

1

r2
∂2
θh0

)
+∇Υ

(r
t

)
.∇h0 + h0�Υ

(r
t

)
=Υ

(r
t

)(
−2(∂qφ)2 − 4

b(θ)∂2
q (qχ(q))

r

)
− 4rΥ

(r
t

)
∂qφ�φ+ f(s, q, θ),
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where

f(s, q, θ) = Υ
(r
t

)(
4∂qφ

(
∂sφ+

∂2
θφ

r

)
+

1

r
∂sh0 +

1

r2
∂2
θh0

)
+∇Υ

(r
t

)
.∇h0 + h0�Υ

(r
t

)
.

We can estimate ZIf , noticing that when Υ′
(
r
t

)
6= 0 we have r ∼ t ∼ |q|. We obtain

|ZIf | . 1

(1 + s)2

∑
J≤I+2

|ZIh0|+
1

1 + s

∑
I1+I2≤I

|ZI1+2φ||∂qZI2φ|.

Proposition 7.2 yields, for I ≤ N − 7

1

(1 + s)2

∑
J≤I+2

|ZIh0| .
ε2

(1 + s)2
√

1 + |q|
,

and as usual we may estimate, thanks to (4.28) and (4.15),

|ZI1+2φ∂qZ
I2φ| . ε2

(1 + s)(1 + |q|)1−4ρ
,

therefore we obtain

|ZIf | . ε2

(1 + s)2
√

1 + |q|
.

In the region q > 0, we have the better estimate

|ZIf | . ε2

(1 + s)2(1 + |q|)2+2(δ−σ)
.

To estimate �φ we write, as before
�φ = �φ−�gφ.

It is su�cient to estimate a term of the form gLL∂
2
qφ. Therefore we write, like in estimate (7.15),

|ZI(rgLL∂qφ∂2
qφ)| . r

1 + |q|
∑

J1+J2+J3≤I
|ZJ1gLL||∂ZJ2+1φ||∂ZJ3φ| . ε3

(1 + s)
3
2 (1 + |q|)

3
2
−4ρ

.

In the region q > 0, we have the better estimate

|ZI(r∂qφ�φ)| . ε3

(1 + s)
3
2 (1 + |q|)2+2(δ−σ)

.

This concludes the proof of Proposition 7.4.

7.3 Estimation on h̃

We recall that h̃ satis�es the equation{
�h̃ = �

(
Υ
(
r
t

)
h0

)
+ Υ

(
r
t

)
gLL∂

2
qh0 + 2Υ

(
r
t

)
(∂qφ)2 − 2(Rb)qq + Υ

(
r
t

)
Q̃LL(h0, g̃),

(h̃, ∂th̃)|t=0 = (0, 0),

where Q̃LL is de�ned by (4.12).
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Proposition 7.5. h̃ satis�es, for I ≤ N − 7

|ZI h̃| . ε2

(1 + s)
1
2
−ρ
.

Proof. Proposition 7.4 gives for I ≤ N − 7 and q < 0∣∣∣ZI (�Υ
(r
t

)
h0 + 2Υ

(r
t

)
(∂qφ)2 − 2(Rb)qq

)∣∣∣ . ε2

(1 + s)
3
2 (1 + |q|)

, (7.23)

where we have used that thanks to (1.7)∣∣∣∣∣(Rb)qq − 2
b(θ)∂2

q (qχ(q))

r

∣∣∣∣∣ . 11≤q≤2ε
2

(1 + s)2
.

To estimate ZI(gLL∂
2
qh0) we use the transport equation for h0

gLL∂
2
qh0 = gLL∂q(−2r(∂qφ)2 − 2b(θ)∂2

q (qχ(q))

We estimate the �rst term as in the proof of Proposition 7.4.

|ZI(rgLL∂qφ∂2
qφ)| . ε2

(1 + s)
3
2 (1 + |q|)

3
2
−4ρ

.

To estimate the second term, we note that the terms of the form χ(j)(q) decay faster than any
power of q, so thanks to (5.11),

|ZI
(
gLLb(θ)∂

2
q (qχ(q))

)
| . ε2

s
3
2 (1 + |q|)3

.

Consequently we have proved∣∣∣Zi (Υ
(r
t

)
gLL∂

2
qh0

)∣∣∣ . ε2

(1 + s)
3
2 (1 + |q|)

3
2
−4ρ

. (7.24)

We now estimate Q̃LL(h0, g̃). We note than in the region q < 0 the only term is ∂Lg̃LL∂Lh0. We
use again the transport equation for h0

∂qgLL∂qh0 = ∂qgLL(−2r(∂qφ)2 − 2b(θ)∂2
q (qχ(q)).

Consequently, for similar reasons than for (7.24), we obtain in the region q < 0∣∣∣Zi (Υ
(r
t

)
∂qgLL∂qh0

)∣∣∣ . ε2

(1 + s)
3
2 (1 + |q|)

3
2
−4ρ

. (7.25)

Thanks to (7.23), (7.24) and (7.25), we have in the region q < 0 for I ≤ N − 7

|�ZI h̃| . ε2

(1 + s)
3
2 (1 + |q|)

. (7.26)

In the region q > 0, we have to estimate in Q̃LL(h0, g̃) the term ∂L(gb)UU∂LgLL, which is of the

form χ(q)b(θ)
r ∂qgLL. Thanks to (4.32) we have∣∣∣∣ZI (χ(q)b(θ)

r
∂qgLL

)∣∣∣∣ . ε2

(1 + s)
3
2 (1 + |q|)

3
2

+δ−σ
. (7.27)
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The other terms give contributions similar to the one of Proposition 7.4. Consequently, for q > 0
we have the better estimate for I ≤ N − 7

|�ZI h̃| . ε2

(1 + s)
3
2 (1 + |q|)

3
2

+δ−σ
. (7.28)

We now use lemma 7.6, whose proof is given at the end of this section, to conclude.

Lemma 7.6. Let β, α ≥ 0, such that β − α ≥ ρ > 0. Let u be such that

|�u| . 1

(1 + s)
3
2
−α(1 + |q|)

, for q < 0 |�u| . 1

(1 + s)
3
2
−α(1 + |q|)1+β

, for q > 0,

and (u, ∂tu)|t=0 = 0. Then we have the estimate

|u| . (1 + t)α+ρ

√
1 + s

.

Thanks to (7.26) and (7.28), the conditions of Lemma 7.6 are satis�ed with α = 0 and β =
1
2 + δ − σ. Moreover, the initial data for ZI h̃ are given by the right-hand side of (4.11) (i.e. they
are quadratic), therefore, for I ≤ N − 7 at t = 0 we have

|ZI h̃|+ (1 + r)|∂tZI h̃| .
ε2

(1 + r)1+δ
.

Consequently, Lemma 7.6 and Proposition 1.5 yield for I ≤ N − 7

|ZI h̃| . ε2(1 + t)ρ√
1 + s

.

This concludes the proof of Lemma 7.5.

Proof of Lemma 7.6. Let t0 > 0. We consider times t ≤ t0. In the region r ≤ 2t we have |q| ≤ t ≤ t0
and s ≤ 3t ≤ 3t0. Therefore

|�u| . (1 + t0)α+ρ

(1 + |q|)1+ ρ
2 (1 + s)

3
2

+ ρ
2

.

In the region r ≤ 2t, we have r
2 ≤ |q| ≤ r and r ≤ s ≤

3r
2 , therefore

|�u| . 1

(1 + r)
3
2
−α+1+β

.
(1 + t0)α+ρ

(1 + r)
5
2
−α+β

.
(1 + t0)α+ρ

(1 + |q|)1+ ρ
2 (1 + s)

3
2

+ ρ
2

,

provided 5
2 + ρ ≤ 5

2 + β −α, i.e. β −α ≥ ρ. Consequently, the L∞−L∞ estimate yields, for t ≤ t0

|u| . (1 + t0)α+ρ

√
1 + s

.

If we take t = t0 we have proved

|u| . (1 + t)α+ρ

√
1 + s

,

which concludes the proof of Lemma 7.6.
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8 Commutation with the vector �elds and L∞ estimates

8.1 Estimates for I ≤ N − 14

Proposition 8.1. We have the estimates for for I ≤ N − 14

|ZI g̃1| ≤
C0ε+ Cε2

(1 + s)
1
2
−ρ
,

|ZIφ| ≤ C0ε+ Cε2

√
1 + s(1 + |q|)

1
2
−4ρ

.

This proposition is a consequence of L∞ − L∞ estimates and the following propositions.

Proposition 8.2. We have the estimate for I ≤ N − 14

|�ZIφ| . ε2

(1 + s)2−3ρ(1 + |q|)
, q < 0,

|�ZIφ| . ε2

(1 + s)2(1 + |q|)1+δ−σ , q > 0.

Proposition 8.3. We have the estimate for I ≤ N − 14

|�ZI g̃1| .
ε2

(1 + s)
3
2 (1 + |q|)

, q < 0,

|�ZI g̃1| .
ε2

(1 + s)
3
2 (1 + |q|)

3
2

+δ−σ
, q > 0.

We �rst assume Proposition 8.2 and 8.3, and prove Proposition 8.1.

Proof of Proposition 8.1. We have

|�ZIφ| . ε2

(1 + s)2−3ρ(1 + |q|)
.

ε2

(1 + s)2−4ρ(1 + |q|)1+ρ
,

therefore the L∞ − L∞ estimate, combined with Proposition 1.5 for the contribution of the initial
data yields

|ZIφ| ≤ C0ε√
1 + s

√
1 + |q|

+
Cε2

√
1 + s(1 + |q|)

1
2
−4ρ

,

where C is a constant depending on ρ.
The estimate g̃1 follows from Lemma 7.6 with α = 0, β = 3

2 + δ− σ combined with Proposition
1.5

|ZI g̃1| ≤
C0ε√

1 + s
√

1 + |q|
+

Cε2

(1 + s)
1
2
−ρ
,

which concludes the proof of Proposition 8.1.

Proof of Proposition 8.2. We �rst estimate �ZIφ in the region q < 0

ZI�φ = ZI (�φ−�gφ) .
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In the region q < 0, thanks to Remark 2.2, it is su�cient to estimate ZI
(
gLL∂

2
qφ
)

|ZI−JgLL∂2
qZ

Jφ| . 1

(1 + |q|)2
|ZI−JgLL||ZJ+2φ|.

If J ≤ N−14
2 we have J + 2 ≤ N−14

2 + 2 ≤ N − 14 so, thanks to (4.15)

|ZJ+2φ| . ε

(1 + s)
1
2 (1 + |q|)

1
2
−4ρ

,

and since I − J ≤ N − 14 we have thanks to (5.9)

|ZI−JgLL| .
ε(1 + |q|)

(1 + s)
3
2
−2ρ

.

Therefore

|ZI−JgLL∂2
qZ

Jφ| . ε2

(1 + s)2−2ρ(1 + |q|)
3
2
−4ρ

.

If I − J ≤ N−14
2 ≤ N − 15 we have thanks to (5.8)

|ZI−JgLL| .
ε(1 + |q|)

(1 + s)
3
2
−ρ
,

and since J + 2 ≤ N − 12 we have thanks to (4.17)

|ZJ+2φ| . ε

(1 + s)
1
2
−2ρ

.

In the two cases, we have for q < 0

|ZI−JgLL∂2
qZ

Jφ| . ε2

(1 + s)2−3ρ(1 + |q|)
. (8.1)

In the region q > 0 we have the better estimate thanks to (5.12) and (4.32)

|ZI−JgLL∂2
qZ

Jφ| . ε2

(1 + s)2(1 + |q|)2+2(δ−σ)
. (8.2)

In the region q > 0 we also have to take into account the crossed term. These terms are described
by (2.13) in Section 2.5. It is su�cient to estimate

ZI
(
b(θ)

χ(q)

r
∂sφ

)
.

Since they occur only in the region q > 0, we can estimate, thanks to (4.38)

|ZIφ| . ε
√

1 + s(1 + |q|)
1
2

+δ−σ
.

Therefore ∣∣∣∣ZIb(θ)∂q(qχ(q))

r
∂sφ

∣∣∣∣ . ε2

(1 + s)
5
2 (1 + |q|)

1
2

+δ−σ
.

ε2

(1 + s)2(1 + |q|)1+δ−σ . (8.3)

Estimates (8.1), (8.2) and (8.3) conclude the proof of Proposition 8.2.
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Proof of Proposition 8.3. We write the equation for g̃1. We have, thanks to (2.4) and (2.7)

�(g̃1)µν =− 2∂µφ∂νφ+ 2(Rb)µν + (dq2)µν�Υ
(r
t

)
h0

+ Υ
(r
t

) 1

r2

(
u1
µν(θ)h0 + u2

µν(θ)∂θh0

)
+ Pµν(g)(∂g̃, ∂g̃) + P̃µν(g̃, gb),

(8.4)

and therefore �ZI(g̃1)µν = fµν , where the terms in fµν are of the forms

� the quasilinear terms : thanks to Remark 2.2 it is su�cient to study ZI(gLL∂
2
q g̃1),

� the terms coming from the non commutation of the wave operator with the null decomposi-
tion: they are calculated in (2.7) and they are of the form Υ( rt )

1
r2
∂θZ

Ih0,

� the semi-linear terms: following section the worst term is the term ZI
(
∂LgLL∂LgLL

)
appear-

ing in ZIPLL (see (2.9)).

� the crossed terms with the background metric gb: the worst term is the term ZI
(
∂L(gb)UU∂LgLL

)
appearing in ZI P̃LL (see (2.11)).

The quasilinear terms We estimate

ZI
(
gLL∂

2
q g̃1

)
=
∑
J≤I

ZI−JgLLZ
J∂2

q g̃1.

We have

|ZI−JgLL∂2
qZ

J g̃1| .
1

(1 + |q|)2
||ZI−JgLL||ZJ+2g̃1|.

If J ≤ N−14
2 we have J + 2 ≤ N−14

2 + 2 ≤ N − 14 so thanks to (4.16)

|ZJ+2g̃1| .
ε

(1 + s)
1
2
−ρ
,

and since I − J ≤ N − 14 we have thanks to (5.9)

|ZI−JgLL| .
ε(1 + |q|)

(1 + s)
3
2
−2ρ

.

If I − J ≤ N−14
2 ≤ N − 15 we have thanks to (5.8)

|ZI−JgLL| .
ε(1 + |q|)

(1 + s)
3
2
−ρ
,

and since J + 2 ≤ N − 12 we have thanks to (4.18)

|ZJ+2g̃1| .
ε

(1 + s)
1
2
−2ρ

In the two cases, we have

|ZI−JgLL∂2
qZ

J g̃1| .
ε2

(1 + s)2−3ρ(1 + |q|)
. (8.5)
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The term coming from the non commutation of the wave operator with the null struc-
ture We have to estimate

Υ
(r
t

) ∂θZIh0

r2
.

Since I ≤ N − 14, we have I + 1 ≤ N − 5 so thanks to Proposition 7.2∣∣∣∣Υ(rt) ∂θZIh0

r2

∣∣∣∣ . ε2

(1 + s)2
√

1 + |q|
.

ε2

(1 + s)
3
2 (1 + |q|)

. (8.6)

The semi-linear terms We estimate ZI
(
∂LgLL∂LgLL

)
. For this, we have to estimate, using

the decomposition (4.6)
ZI
(
∂Lh0∂LgLL

)
and ZI

(
∂Lg̃1∂LgLL

)
The �rst term has been estimated in (7.23). For the second term, we write

|ZI
(
∂Lg̃1∂LgLL

)
| . 1

1 + |q|
∑
J≤I
|ZJ+1g̃1||∂ZI−JgLL|,

and we estimate if J ≤ N−14
2 thanks to (4.16) and (5.4)

|ZJ+1g̃1| .
ε

(1 + s)
1
2
−ρ

and |∂ZI−JgLL| .
ε

(1 + s)
3
2
−2ρ

.

If I − J ≤ N−14
2 thanks to (4.18) and (5.3) we have

|ZJ+1g̃1| .
ε

(1 + s)
1
2
−2ρ

and |∂ZI−JgLL| .
ε

(1 + s)
3
2
−ρ
.

In the two cases we have

|ZI
(
∂Lg̃1∂LgLL

)
| . ε2

(1 + s)2−3ρ(1 + |q|)
.

This estimate and (7.23) yields for I ≤ N − 14

|ZI
(
∂Lg̃1∂LgLL

)
| . ε2

(1 + s)
3
2 (1 + |q|)

3
2
−4ρ

. (8.7)

We have now estimated �ZI(g̃1)µν in the region q < 0. Thanks to (8.5), (8.6) and (8.7) we
have, for q < 0 and I ≤ N − 14

|�ZI g̃1| .
ε2

(1 + s)2−3ρ(1 + |q|)
(8.8)

The crossed terms The crossed term are only present in the region q > 0. The estimate of

ZI
(
∂q(gb)UU∂q g̃LL

)
is done in (7.27). The other terms give better contributions in the region q > 0 (see Remark 2.3).
Therefore we have for q < 0 and I ≤ N − 4

|�ZI g̃1| .
ε2

(1 + s)
3
2 (1 + |q|)

3
2

+δ−σ
. (8.9)

The estimates (8.8) and (8.9) conclude the proof of Proposition 8.3.
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8.2 Estimates for I ≤ N − 12

Proposition 8.4. We have the estimates for I ≤ N − 12

|ZIφ| ≤ C0ε+ Cε2

(1 + s)
1
2
−2ρ

,

|ZI g̃1| .
C0ε+ Cε2

(1 + s)
1
2
−2ρ

.

This proposition is a straightforward consequence of Lemma 7.6, Proposition 1.5 and the fol-
lowing propositions.

Proposition 8.5. We have the estimate for I ≤ N − 12

|�ZIφ| . ε2

(1 + s)
3
2
−ρ(1 + |q|)

, q < 0,

|�ZIφ| . ε2

(1 + s)2(1 + |q|)1+δ−σ , q > 0.

Proposition 8.6. We have the estimate for I ≤ N − 12

|�ZI g̃1| .
ε2

(1 + s)
3
2
−ρ(1 + |q|)

, q < 0,

|�ZI g̃1| .
ε2

(1 + s)
3
2 (1 + |q|)

3
2

+δ−σ
, q > 0.

Proof of Proposition 8.5. We �rst estimate φ

ZI�φ = ZI (�φ−�gφ) .

In the region q < 0, it is su�cient to estimate ZI
(
gLL∂

2
qφ
)

|ZI−JgLL∂2
qZ

Jφ| . 1

1 + |q|
|ZI−JgLL||∂qZJ+1φ|

If J ≤ N−12
2 we have J + 1 ≤ N − 14 so thanks to (4.15)

|∂ZJ+1φ| . ε

(1 + s)
1
2 (1 + |q|)

3
2
−4ρ

,

and since I − J ≤ N − 12 we have thanks to (5.10)

|ZI−JgLL| .
ε(1 + |q|)

1 + s
.

Therefore

|ZI−JgLL∂2
qZ

Jφ| . ε2

(1 + s)
3
2 (1 + |q|)

3
2
−4ρ

.

If I − J ≤ N−12
2 ≤ N − 15 we have thanks to (5.8)

|ZI−JgLL| .
ε(1 + |q|)

(1 + s)
3
2
−ρ
,
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and since J + 1 ≤ N − 12 ≤ N − 4 we have thanks to (4.28)

|∂ZJ+1φ| . ε
√

1 + s
√

(1 + |q|)
.

In the two cases, we have

|ZI−JgLL∂2
qZ

J φ̃| . ε2

(1 + s)
3
2
−ρ(1 + |q|)

.

The main contribution in the region q > 0 is like (8.3) in the proof of Proposition 8.2. This
concludes the proof of Proposition 8.5.

Proof of Proposition 8.6. We estimate g̃1. We only deal with the quasilinear and semilinear terms
in the region q < 0, as the control obtained in the proof of Proposition 8.3 is su�cient to deal with
the others (see (8.6) and (7.27)).

The semi-linear terms We estimate ZI
(
∂LgLL∂LgLL

)
. For this, we have to estimate

ZI
(
∂Lh0∂LgLL

)
and ZI

(
∂Lg̃1∂LgLL

)
The �rst term has been estimated in (7.23). For the second term, we write

|ZI
(
∂Lg̃1∂LgLL

)
| . 1

1 + |q|
∑
J≤I
|ZJ+1g̃1||∂ZI−JgLL|,

and we estimate if J ≤ N−12
2 thanks to (4.16) and (5.5)

|ZJ+1g̃1| .
ε

(1 + s)
1
2
−ρ

and |∂ZI−JgLL| .
ε
√

1 + |q|
(1 + s)

3
2

.

If I − J ≤ N−12
2 thanks to (4.44) and (5.3) we have

|ZJ+1g̃1| . ε and |∂ZI−JgLL| .
ε

(1 + s)
3
2
−ρ
.

In the two cases we have

|ZI
(
∂Lg̃1∂LgLL

)
| . ε2

(1 + s)
3
2
−ρ(1 + |q|)

.

This estimate and (7.23) yields for I ≤ N − 12

|ZI
(
∂Lg̃1∂LgLL

)
| . ε2

(1 + s)
3
2
−ρ(1 + |q|)

. (8.10)

The quasilinear terms We estimate ZI
(
gLL∂

2
q g̃1

)
. We have

|ZI−JgLL∂2
qZ

J g̃1| .
1

1 + |q|
|ZI−JgLL||∂qZJ+1g̃1|.

If J ≤ N−12
2 we have J + 2 ≤ N−12

2 + 2 ≤ N − 14 so thanks to (4.16)

|∂qZJ+1g̃1| .
ε

(1 + s)
1
2
−ρ(1 + |q|)

,
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and since |I − J | ≤ N − 12 we have thanks to (5.10)

|ZI−JgLL| .
ε(1 + |q|)

1 + s
.

If |I − J | ≤ N−12
2 ≤ N − 15 we have thanks to (5.8)

|ZI−JgLL| .
ε(1 + |q|)

(1 + s)
3
2
−ρ

and since J + 1 ≤ N − 11 we have thanks to (4.44)

|∂qZJ+1g̃1| .
ε

1 + |q|
.

In the two cases, we have

|ZI−JgLL∂2
qZ

J g̃1| .
ε2

(1 + s)
3
2
−ρ(1 + |q|)

. (8.11)

The equation (8.10) and (8.11), together with (8.6) proved during the proof of Proposition 8.3
conclude the proof of Proposition 8.6 for q < 0. The estimate for �ZI g̃1 in the region q > 0 is
given by (8.9). This concludes the proof of Proposition 8.6 for q > 0.

9 Weighted energy estimate

We consider the equation
�gu = f,

where g = gb + g̃ is our space-time metric, satisfying the bootstrap assumptions. We introduce the
energy-momentum tensor associated to �g

Qαβ = ∂αu∂βu−
1

2
gαβg

µν∂µu∂νu.

We have
DαQαβ = f∂βu.

We also note T = ∂t, and introduce the deformation tensor of T

παβ = DαTβ +DβTα

where D is the covariant derivative. We have

Dα(QαβT
β) = f∂tu+Qαβπ

αβ. (9.1)

We remark that

QTT =
1

2

(
(∂tu)2 + |∇u|2

)
+O(ε(∂u)2).

Proposition 9.1. Let w be any of our weight functions. We have the following weighted energy
estimate for u

d

dt

(∫
QTTw(q)dx

)
+C

∫
w′(q)

(
(∂su)2 +

(
∂θu

r

)2
)
dx .

ε

1 + t

∫
w(q)(∂u)2dx+

∫
w(q)|f∂tu|dx.
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Moreover, if we use the weight modulator α de�ned in (4.22), we obtain

d

dt

(∫
QTTα

2w(q)dx

)
+ C

∫
α2w′(q)

(
(∂su)2 +

(
∂θu

r

)2
)
dx

.
ε

(1 + t)1+2σ

∫
w(q)(∂u)2dx+

∫
α2w(q)|f∂tu|dx.

Proof. We multiply (9.1) by w(q) and integrate it on an hypersurface of constant t. We obtain

− d

dt

(∫
QTTw(q)dx

)
=

∫
w(q)

(
f∂tu+Qαβπ

αβ
)
dx+

∫
QTαD

αwdx. (9.2)

We have
QTαD

αu = −2w′(q)gαLQTα = w′(q)QTL + gLT w
′(q)(∂u)2.

We calculate

QTL =∂tu(∂tu+ ∂ru)− 1

2
(−(∂tu)2 + |∇u|2) + gLL(∂qu)2 + gLL(∂su)2 + s.t.

=
1

2

(
(∂su)2 +

(
∂θu

r

)2
)

+ gLL(∂qu)2 + gLL(∂su)2 + s.t.

where s.t. denotes similar terms. Consequently, with the help of the bootstrap (4.16), (4.19) and
the estimate (5.8) we have

QTαD
αu =

(
(∂su)2 +

(
∂θu

r

)2
)

(1 +O(ε))w′(q) +O

(
εw′(q)(1 + |q|)

(1 + t)
3
2
−ρ

(∂u)2

)
,

and since |w′(q)| . w(q)
1+|q|

QTαD
αu =

(
(∂su)2 +

(
∂θu

r

)2
)

(1 +O(ε))w′(q) +O

(
εw(q)

(1 + t)
3
2
−ρ

(∂u)2

)
. (9.3)

We now estimate the deformation tensor of T . We have

παβ = LT gαβ = ∂tgαβ.

We obtain

πLL = ∂T gLL = O

(
ε

(1 + t)
3
2
−ρ

)
,

πUL = ∂T gUL = O

(
ε

(1 + t)
3
2
−ρ

)
,

πLL = ∂T gLL = O

(
ε

(1 + t)
1
2
−ρ(1 + |q|)

)
,

πUL = ∂T gUL = O

(
ε

(1 + t)
1
2
−ρ(1 + |q|)

)
,

πLL = ∂T gLL = O

(
ε

(1 + |q|)
3
2
−ρ

)
,

πUU = ∂T gUU =
∂q(qχ(q))b(θ)

r
+O

(
ε

(1 + s)(1 + |q|)
1
2
−ρ

)
,
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Consequently, the terms QLLπLL and QULQUL give contributions of the form

ε

(1 + t)
3
2
−ρ

(∂u)2. (9.4)

We can calculate

QLL = ∂Lu∂Lu−
1

2
gLL

(
2gLL∂Lu∂Lu+ (∂Uu)2

)
+ gT T (∂u)2 + s.t. = (∂Uu)2 + gT T (∂u)2 + s.t.

Consequently the term QLLπLL gives contributions of the form

ε

(1 + |q|)(1 + t)
1
2
−ρ

(∂̄u)2. (9.5)

The terms QLLπLL and QLUπLU give contributions of the form

ε

(1 + |q|)
3
2
−ρ

(∂̄u)2, (9.6)

and the term QUUπUU gives contributions of the form

∂q(qχ(q))b(θ)

r
∂̄u∂u,

ε

(1 + s)(1 + |q|)
1
2
−ρ
∂̄u∂u. (9.7)

Thanks to (9.2), (9.3), (9.4), (9.5), (9.6) and (9.7) what we obtain is

d

dt

(∫
QTTw(q)dx

)
+

1

2

∫
w′(q)

(
(∂su)2 +

(
∂θu

r

)2
)
dx

.
ε

(1 + t)
3
2
−ρ

∫
w(q)(∂u)2dx+ ε

∫
w(q)

(1 + |q|)
3
2
−ρ

(∂̄u)2dx

+ ε

∫
w(q)

1q>1

r
|∂u∂̄u|dx+

∫
w(q)|f∂tu|dx.

(9.8)

In the region q > 1, we have 1
r ≤

1
t+1 . Moreover, all our weight functions satisfy

w(q)

(1 + |q|)
3
2
−ρ
. w′(q),

therefore, for ε small enough, we can subtract from our inequality the term

ε

∫
w(q)

(1 + |q|)
3
2
−ρ

(∂̄u)2,

and we obtain

d

dt

(∫
QTTw(q)dx

)
+C

∫
w′(q)

(
(∂su)2 +

(
∂θu

r

)2
)
dx .

ε

1 + t

∫
w(q)(∂u)2dx+

∫
w(q)|f∂tu|dx.

This concludes the �rst part of the proof of Proposition 9.1.
Next, we perform the estimate with the weight modulator α. If we replace w by α2w in (9.8),

and we absorb as before the term ε
∫ α2w(q)

(1+|q|)
3
2−ρ

(∂̄u)2dx we obtain

d

dt

(∫
QTTα

2w(q)dx

)
+

1

2

∫
(α2w)′(q)

(
(∂su)2 +

(
∂θu

r

)2
)
dx

.
ε

(1 + t)
3
2
−ρ

∫
α2w(q)(∂u)2dx+

∫
α2w(q)1q>1

r
|∂u∂̄u|dx+

∫
α2w(q)|f∂tu|dx.
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We write
1q>1

r
≤ 1q>1(1 + |q|)σ

(1 + t)
1
2

+σ(1 + |q|)
1
2

,

and so we estimate, since in the region q > 1 we have α(q) = (1 + |q|)−σ

ε

∫
α2(q)w(q)1q>1

r
|∂u∂̄u|dx

≤ε
∫

α(q)w(q)1q>1

(1 + t)
1
2

+σ(1 + |q|)
1
2

|∂u∂̄u|dx

≤ ε

(1 + t)1+2σ

∫
1q>1w(q)(∂u)2dx+ ε

∫
1q>1

α2(q)w(q)

1 + |q|
(∂̄u)2dx.

Moreover 1q>1
α2(q)w(q)

1+|q| . (α2w)′. Therefore

d

dt

(∫
QTTα

2w(q)dx

)
+ C

∫
(α2w)′(q)

(
(∂su)2 +

(
∂θu

r

)2
)
dx

.
ε

(1 + t)
3
2
−ρ

∫
α2w(q)(∂u)2dx+

ε

(1 + t)1+2σ

∫
1q>1w(q)(∂u)2dx

+ ε

∫
(wα2)′(q)(∂̄u)2dx+

∫
α2w(q)|f∂tu|dx.

We note that with our weight functions and the de�nition of α, we have α2w′ ∼ (α2w)′. For ε
small enough, we can absorb the term

ε

∫
w′(q)α2(q)(∂̄u)2

to obtain

d

dt

(∫
QTTα

2w(q)dx

)
+ C

∫
α2w′(q)

(
(∂su)2 +

(
∂θu

r

)2
)
dx

.
ε

(1 + t)
3
2
−ρ

∫
α2w(q)(∂u)2dx+

ε

(1 + t)1+2σ

∫
1q>1w(q)(∂u)2dx+

∫
α2w(q)|f∂tu|dx,

which concludes the proof of Proposition 9.1.

10 Commutation with the vector �elds and L2 estimate

10.1 Estimation for I ≤ N

We note for J < N

EJ =
∑
I≤J
‖w0(q)

1
2∂ZIφ‖2L2 + ‖w2(q)

1
2∂ZI g̃3‖2L2 +

1

ε(1 + t)
‖w3(q)

1
2∂ZIh‖2L2

and

EN =
∑
I≤N
‖α2w0(q)

1
2∂ZIφ‖2L2 + ‖α2w2(q)

1
2∂ZI g̃4‖2L2

+
1

ε(1 + t)
‖α2w3(q)

1
2∂ZIh‖2L2 +

1

ε(1 + t)
‖α2w3(q)

1
2∂ZIk‖2L2 .
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We also note for J < N

AJ =
∑
I≤J
‖w′0(q)

1
2 ∂̄ZIφ‖2L2 + +‖w′2(q)

1
2 ∂̄ZI g̃3‖2L2 +

1

ε(1 + t)
‖w′3(q)

1
2 ∂̄ZIh‖2L2

and

AN =
∑
I≤J
‖α2w

′
0(q)

1
2 ∂̄ZIφ‖2L2 + +‖α2w

′
2(q)

1
2 ∂̄ZI g̃4‖2L2

+
1

ε(1 + t)
‖α2w

′
3(q)

1
2 ∂̄ZIh‖2L2 +

1

ε(1 + t)
‖α2w

′
3(q)

1
2 ∂̄ZIk‖2L2 .

Remark 10.1. Because of the decompositions (4.8) and (4.9) for the metric, and the non com-
mutation of the wave operator with the null decomposition, we have to deal with terms of the form
∂θh
r2

in the equation for g̃4 or g̃3. Written like this, these terms are not quadratic. However, since
we choose for h zero initial data, and since the equation for h is quadratic, h in itself is quadratic.
To carry this information along the proof, we may divide in the energies EI the norms involving h
and k by ε. Since the initial data for h and k are zero, we have

EI(0) ≤ C2
0ε

2. (10.1)

Proposition 10.2. We have the estimates for I ≤ N ,

EI ≤ (C2
0ε

2 + ε2)(1 + t)C
√
ε,

and for κ� ε ∫ t

0

1

(1 + τ)κ
AIdτ . ε

2.

This is a straightforward consequence of the following proposition.

Proposition 10.3. We have the inequality, up to some negligible terms de�ned in Lemmas 10.4,
10.5 and 10.6 for I ≤ N

d

dt
EI +AI .

√
ε

1 + t
EI +

ε
5
2

1 + t
.

We �rst prove Proposition 10.2, admitting Proposition 10.3.

Proof of Proposition 10.2. We have proved

d

dt
EI ≤ C

√
ε

1 + t
EI + C

ε
5
2

1 + t
,

therefore, if we note EI = G(1 + t)C
√
ε, we have

d

dt
G ≤ C ε

5
2

(1 + t)1+C
√
ε
.

After integrating, we obtain

G(t) ≤ G(0) + ε2 − ε2

(1 + t)C
√
ε
,

and hence
EI ≤ (EI(0) + ε2)(1 + t)C

√
ε ≤ (C2

0ε
2 + ε2)(1 + t)C

√
ε.
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Moreover, we have

d

dt
EI +AI ≤ C

√
ε

1 + t
EI +

ε
5
2

1 + t
,

therefore if we multiply this inequality by 1
(1+t)κ we obtain

d

dt

(
EI

(1 + t)κ

)
+

AI
(1 + t)κ

≤ 1

(1 + t)κ

(
d

dt
EI +AI

)
≤ C

√
ε

(1 + t)1+κ
EI+

Cε
5
2

(1 + t)1+κ
≤ Cε

5
2

(1 + t)1+κ−C
√
ε
.

Therefore, if C
√
ε < κ, the right-hand side is integrable and so∫

1

(1 + τ)κ
AIdτ . ε

2.

This concludes the proof of Proposition 10.2.

Proposition 10.3 is a direct consequence of the three following lemmas.

Lemma 10.4. We have the inequality,

d

dt
‖α2w(q)

1
2∂Z̃Nφ‖2L2 + ‖α2w

′(q)
1
2 ∂̄Z̃Nφ‖2L2 .

ε

1 + t
EN + ε‖α2w

′
2(q)

1
2 ∂̄ZN g̃4‖2L2 +

ε3

1 + t

where Z̃Nφ− ZNφ is composed of terms of the form

χ(q)q∂φ∂N−1
θ b

gUU
,

and we have

‖α2w
1
2
0 ∂(Z̃Nφ− ZNφ)‖L2 . ε2.

For I < N we have

d

dt
‖w0(q)

1
2∂ZIφ‖2L2 + ‖w′0(q)

1
2 ∂̄ZIφ‖2L2 .

ε

1 + t
EI + ε‖w′2(q)

1
2 ∂̄ZI g̃4‖2L2 .

Lemma 10.5. We have the inequality,

d

dt

(
1

εt
‖α2w3(q)

1
2∂Z̃Nh‖2L2

)
+

1

ε(1 + t)
‖α2w

′
3(q)

1
2 ∂̄Z̃Nh‖2L2

.

√
ε

1 + t
EN +

√
ε‖α2w

′ 1
2

2 (q)∂̄Z̃Ng4‖2L2 +
ε

5
2

1 + t
,

where Z̃Nh− ZNh is composed of terms of the form

χ(q)q∂h∂N−1
θ b

gUU
,

and we have

‖α2w
1
2
0 ∂(Z̃Nh− ZNh)‖L2 . ε3

√
1 + t.

We have a similar estimate for k

d

dt

(
1

εt
‖α2w3(q)

1
2∂ZNk‖2L2

)
+

1

ε(1 + t)
‖α2w

′
3(q)

1
2 ∂̄ZNk‖2L2

.

√
ε

1 + t
EN +

√
ε‖α2w

′ 1
2

2 (q)∂̄Z̃Ig4‖2L2 .
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Moreover for I < N

d

dt

(
1

εt
‖w3(q)

1
2∂ZIh‖2L2

)
+

1

ε(1 + t)
‖w′3(q)

1
2 ∂̄ZIh‖2L2

.

√
ε

1 + t
EI +

√
ε‖w′

1
2

2 (q)∂̄Z̃Ig4‖2L2 +
ε

5
2

1 + t
,

Lemma 10.6. We have the estimate

d

dt
‖α2w2(q)

1
2∂Z̃N g̃4‖2L2 + ‖α2w

′
2(q)

1
2∂Z̃N g̃4‖2L2

.

√
ε

1 + t
EN +

√
ε

1

ε(1 + t)
(‖α2w

′
3(q)

1
2 ∂̄ZNh‖2L2 + ‖α2w

′
3(q)

1
2 ∂̄ZNk‖2L2)

where Z̃N g̃4 − ZN g̃4 is composed of terms of the form

−
χ(q)q∂g̃4∂

N−1
θ b

gUU
, hZNgLLdqds

and we have

‖α2w
1
2
0 ∂(Z̃N g̃4 − ZN g̃4)‖L2 . ε2 + ε‖α2w

1
2
2 Z

N g̃LL‖L2 .

For I < N , we have

d

dt
‖w2(q)

1
2∂ZI g̃3‖2L2 + ‖w′2(q)

1
2∂ZI g̃3‖2L2 .

√
ε

1 + t
EI +

√
ε

1

ε(1 + t)
‖w′3(q)

1
2 ∂̄ZIh‖2L2 .

We prove Proposition 10.3.

Proof of Proposition 10.3. Therefore, if we combine Lemmas 10.4, 10.5 and 10.6 we obtain

d

dt
EI +AI .

√
ε

1 + t
EI +

√
εAI +

ε
5
2

1 + t
,

and therefore
d

dt
EI + (1− C

√
ε)AI .

√
ε

1 + t
EI +

ε
5
2

1 + t
.

If ε is small enough, we have 1− C
√
ε ≥ 1

2 , which concludes the proof of Proposition 10.3.

It is su�cient to prove these three lemmas for I = N . For I < N everything work in the same
way. The weight modulator α2 is only needed to estimate a particular term for I = N and is no
longer needed for I < N .

Proof of Lemma 10.4. We start with the estimates for φ. We use the weighted energy estimate for
the equation

�gZ
Nφ =

∑
I+J≤N
J≤N−1

(
ZIgαβ

) (
ZJ∂α∂βφ

)
+

∑
I+J≤N
J≤N−1

ZIHρ
bZ

J∂ρφ. (10.2)

It yields

d

dt

(
‖α2w0(q)

1
2∂ZNφ‖2L2

)
+ ‖α2w

′
0(q)

1
2 ∂̄ZNφ‖2L2

.
∥∥α2w0�gZ

Nφ
∥∥
L2 ‖α2w0(q)

1
2∂ZNφ‖L2 +

ε

1 + t
‖α2w0(q)

1
2∂ZNφ‖2L2 .
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Estimate of the �rst term Thanks to Remark 2.2, it is su�cient to estimate∣∣∣∣∣∣∣∣
∑

I+J≤N
J≤N−1

ZIgLL∂
2
qZ

Jφ

∣∣∣∣∣∣∣∣ .
1

(1 + |q|)
∑

I+J≤N
J≤N−1

|ZIgLL∂qZJ+1φ|.

If I ≤ N
2 ≤ N − 15, we can estimate thanks to (5.8)

|ZIgLL| .
ε(1 + |q|)
(1 + t)

3
2
−ρ

so ∥∥∥∥∥∥ α2w
1
2
0

(1 + |q|)
ZIgLL∂qZ

Jφ

∥∥∥∥∥∥
L2

.
ε

(1 + t)
3
2
−ρ
‖α2w

1
2
0 ∂qZ

Jφ‖L2 . (10.3)

If J ≤ N
2 , we can estimate

|∂qφ| .
ε

(1 + |q|)
3
2
−4ρ
√

1 + t
.

Therefore,∥∥∥∥∥∥ α2w
1
2
0

(1 + |q|)
ZIgLL∂qZ

Jφ

∥∥∥∥∥∥
L2

.
ε√

1 + t

∥∥∥∥∥ α2w0(q)
1
2

(1 + |q|)
5
2
−4ρ

ZIgLL

∥∥∥∥∥
L2

.
ε√

1 + t

∥∥∥∥∥α2v(q)
1
2

1 + |q|
ZIgLL

∥∥∥∥∥
L2

,

where  v(q) = 1

(1+|q|)
5
2−4ρ

for q < 0,

v(q) = w0(q)
(1+|q|) = (1 + |q|)1+2δ for q > 0.

We do not keep all the decay in q in the region q > 0 in order to be in the range of application of
the weighted Hardy inequality and we obtain∥∥∥∥∥∥ α2w

1
2
0

(1 + |q|)
ZIgLL∂qZ

Jφ

∥∥∥∥∥∥
L2

.
ε√

1 + t
‖α2v(q)

1
2∂qZ

IgLL‖L2 .

We use Proposition 5.1, which gives

∂qZ
NgLL ∼ ∂̄ZN (g̃LL + g̃T T ). (10.4)

Consequently, thanks to Remark 4.10, we have ∂qZ
NgLL ∼ ∂̄ZN g̃4. Moreover, we calculate{

w′2(q) = 1+2µ
(1+|q|)2+2µ for q < 0,

w′2(q) = (2 + 2δ)(1 + |q|)1+2δ for q > 0.

Therefore, v . w′2 and we obtain∥∥∥∥∥∥ α2w
1
2
0

(1 + |q|)
ZIgLL∂qZ

Jφ

∥∥∥∥∥∥
L2

‖α2w0(q)
1
2∂ZNφ‖L2 .

ε

1 + t
‖α2w0(q)

1
2∂ZNφ‖2L2+ε

∥∥∥α2w
′
2(q)

1
2 ∂̄Z̃Ng4

∥∥∥2

L2
.

(10.5)
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Estimate of the second term The second term contains only the crossed term, which occur
only in the region q > 0. Thanks to the discussion of Section 2.5, it is su�cient to estimate (2.13),
which gives a contribution of the form

ZN (∂(gb)UU∂φ) .

For I ≤ N − 2 we have

|ZI∂(gb)UU | .
ε1q>0

r
and consequently

‖α2w
1
2
0 ∂Z

I(gb)UU∂Z
N−Iφ‖L2 .

ε

1 + t
‖α2w

1
2∂ZN−Iφ‖L2 . (10.6)

In ∂ZI(gb)UU∂ρZ
N−Iφ with I ≥ N − 2, we have to note the presence of terms of the form

χ(q)q∂N+1
θ b(θ)

r2
∂φ, (10.7)

which require a special treatment since ∂N+1
θ b(θ) does not belong to L2. To deal with these terms

we write∣∣∣∣∣�g
(
χ(q)q∂N−1

θ b

gUU
∂φ

)
−
χ(q)q∂N+1

θ b(θ)

r2
∂φ

∣∣∣∣∣ . χ(q)

1 + s

∑
I≤2

|∂ZIφ|

(|∂Nθ b|+ |∂N−1
θ b|

)
+ s.t.

We can estimate, thanks to the estimate (4.31) for ∂φ,∥∥∥∥w 1
2
0 ∂
(
χ(q)q∂φ∂N−1

θ b
)∥∥∥∥

L2

.

∥∥∥∥∥ ε
√

1 + s(1 + |q|)
1
2

+2σ−σ
∂Nθ b

∥∥∥∥∥
L2

. ε2. (10.8)

Therefore, we may perform the energy estimate for Z̃Nφ = ZNφ − χ(q)q∂φ∂N−1
θ b

gUU
instead of ZNφ.

We are reduced to estimate∥∥∥∥∥∥α2w
1
2
0

χ(q)

1 + s

∑
I≤2

|∂ZIφ|

(|∂Nθ b|+ |∂N−1
θ b|

)∥∥∥∥∥∥
L2

.

∥∥∥∥∥ ε

(1 + s)
3
2 (1 + |q|)

1
2

+σ

(
|∂Nθ b|+ |∂N−1

θ b|
)∥∥∥∥∥

L2

.
ε3

1 + t
.

(10.9)

The other terms in ∂ZI(gb)UU∂Z
N−Iφ with I ≥ N − 2, give contributions similar to (10.9).

Remark 10.7. We introduce the weight modulator α2 to deal with the term (10.7) which is only

present for I = N . It is no longer needed for I < N . To see this, let us estimate
χ(q)q∂Nθ b(θ)

r2
∂φ

which is the analogue of (10.7) for I = N − 1.∥∥∥∥w 1
2
0

χ(q)q∂Nθ b(θ)

r2
∂φ

∥∥∥∥
L2

.
∑
I≤2

‖w
1
2
0 ∂Z

Iφ‖L2

∥∥∥∥∥ χ(q)q∂Nθ b

r2
√

1 + s
√

1 + |q|

∥∥∥∥∥
L2

.
1

1 + t

√
E2‖∂Nθ b‖L2(S1),

where we have used the weighted Klainerman-Sobolev inequality

|w
1
2
0 ∂φ| .

1
√

1 + s
√

1 + |q|

∑
I≤2

‖w
1
2
0 ∂Z

Iφ‖L2 ,

and consequently ∥∥∥∥w 1
2
0

χ(q)q∂Nθ b(θ)

r2
∂φ

∥∥∥∥
L2

.
ε2

1 + t

√
E2. (10.10)
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Thanks to (10.3), (10.5), (10.6), (10.9) we obtain

d

dt

(
‖α2w0(q)

1
2∂Z̃Nφ‖2L2

)
+ ‖αw′(q)

1
2 ∂̄Z̃Nφ‖2L2 .

ε

1 + t
EN + ε‖α2w

′
2(q)

1
2 ∂̄g̃4‖2L2 +

ε3

1 + t
, (10.11)

which, with the estimate (10.8) for Z̃Nφ− ZNφ concludes the proof of Lemma 10.4.

Proof of Lemma 10.5. We now estimate h. The equation for ZNh writes

�gZ
Ih =

∑
I+J≤N
J≤N−1

(
ZIgαβ

) (
ZJ∂α∂βh

)
+

∑
I+J≤N
J≤N−1

ZIHρZJ∂ρh

+ ZI((∂qφ)2 + (Rb)qq +QLL(h, g̃)).

(10.12)

Estimate of the �rst term Following Remark 2.2, it is su�cient to estimate ZIgLL∂
2
qZ

Jh. For

I ≤ N
2 , similarly than (10.3) we have∥∥∥∥∥α2w3(q)

1
2

(1 + |q|)
ZIgLL∂qZ

Jh

∥∥∥∥∥
L2

.
ε

(1 + t)
3
2
−ρ
‖α2w3(q)

1
2∂qZ

Jh‖L2 . (10.13)

For J ≤ N
2 , we have the estimate, thanks to (4.42),

|∂qZJh| .
ε

(1 + |q|)
3
2
−ρ
,

so ∥∥∥∥∥α2w3(q)
1
2

(1 + |q|)
ZIgLL∂qZ

Jh

∥∥∥∥∥
L2

.

∥∥∥∥∥ α2

1 + |q|

(
w3(q)

(1 + |q|)3−2ρ

) 1
2

ZIgLL

∥∥∥∥∥
L2

.

We have
w3(q)

(1 + |q|)3−2ρ
≤

{
1

(1+|q|)3−2ρ for q < 0,

(1 + |q|)2δ−2ρ ≤ (1 + |q|)1+2δ for q > 0.

This yields
w3(q)

(1 + |q|)3−2ρ
. w′2(q).

Therefore the weighted Hardy inequality and the wave coordinate condition give, similarly than for
(10.5), ∥∥∥∥∥α2w3(q)

1
2

(1 + |q|)
ZIgLL∂qZ

Jh

∥∥∥∥∥
L2

. ε‖α2w
′
2(q)

1
2∂qZ

IgLL‖L2 . ε‖α2w
′ 1
2

2 (q)∂̄g̃4‖L2 . (10.14)

Estimate of the second term The second term contains crossed terms, which can be studied
exactly in the same way than for φ. Similarly than (10.6), we have for I ≤ N − 2

‖α2w
1
2
3 ∂Z

I(gb)UU∂Z
N−Ih‖L2 .

ε

1 + t
‖α2w

1
2∂ZN−Ih‖L2 . (10.15)

Like for φ the following term require a special treatment :

χ(q)q∂N+1
θ b(θ)

r2
∂h. (10.16)

69



We have∣∣∣∣∣�g
(
χ(q)q∂φ∂N−1

θ b

gUU
∂h

)
−
χ(q)q∂N+1

θ b(θ)

r2
∂h

∣∣∣∣∣ . χ(q)

1 + s

∑
I≤2

|∂ZIh|

(|∂Nθ b|+ |∂N−1
θ b|

)
+ s.t.

We can estimate, thanks to the estimate (4.33) for ∂h,∥∥∥∥α2w
1
2
3 ∂
(
χ(q)q∂h∂N−1

θ b
)∥∥∥∥

L2

.

∥∥∥∥ ε

(1 + |q|)1+2σ−σ ∂
N
θ b

∥∥∥∥
L2

. ε2
√

1 + t. (10.17)

Therefore, we may perform the energy estimate for Z̃Nh = ZNh − χ(q)q∂h∂N−1
θ b

gUU
instead of ZNh.

We are reduced to estimate∥∥∥∥∥∥α2w
1
2
3

χ(q)

1 + s

∑
I≤2

|∂ZIh|

(|∂Nθ b|+ |∂N−1
θ b|

)∥∥∥∥∥∥
L2

.

∥∥∥∥ ε

(1 + s)(1 + |q|)1+σ

(
|∂Nθ b|+ |∂N−1

θ b|
)∥∥∥∥

L2

.
ε3

√
1 + t

.

(10.18)

The other terms in ∂ZI(gb)UU∂Z
N−Ih with I ≥ N − 2, give contributions similar to (10.18).

Estimate of ZN (∂qφ)2 We have

‖α2w3(q)
1
2ZN

(
(∂qφ)2

)
‖L2 .

∑
I+J≤N

‖α2w3(q)
1
2∂qZ

Iφ∂qZ
Jφ‖L2 .

We can assume I ≤ N
2 and estimate thanks to (4.28)

|∂qZIφ| .
ε√

1 + |q|
√

1 + t
.

Then, since

w
1
2
3√

1 + |q|
≤ w

1
2
0 ,

we obtain
‖α2w3(q)

1
2ZN (∂qφ)2‖L2 .

ε√
1 + t

∑
I≤N
‖α2w0(q)

1
2∂qZ

Jφ‖L2 . (10.19)

Estimate of ZN (Rb)qq Thanks to (1.7), the main contribution in (Rb)qq is

∂2
q (qχ(q))b(θ)

r
,

which is supported in 1 ≤ q ≤ 2. We estimate∥∥∥∥∥α2w3(q)
1
2ZN

(
b(θ)∂2

q (qχ(q))

r

)∥∥∥∥∥
L2

.
1√

1 + t

∑
I≤N
‖∂Iθ b‖L2(S1) .

ε2

√
1 + t

. (10.20)
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Estimate of ZNQLL(h, g̃) We recall from (2.12) that

QLL(h, g̃) = ∂LgLL∂Lh+ ∂LgLL∂Lh+ ∂L(gb)UU∂LgLL.

The terms ZN (∂LgLL∂Lh) and ZN (∂LgLL∂Lh) may be treated in a similar way than the quasilinear
term, giving contributions similar to (10.13) and (10.14). The term ZN (∂L(gb)UU∂LgLL) is a crossed
term, hence it is supported only in the region q > 0. It is su�cient to estimate ∂L(gb)UU∂LZ

NgLL.
We have

|∂q(gb)UU | .
ε1q>0

r
.

ε1q>0√
1 + t

√
1 + |q|

.

so we can estimate

‖α2w
1
2
3 ∂q(gb)UU∂Z

NgLL‖L2 .
ε√

1 + t

∥∥∥∥∥∥α2w
1
2
3 1q>0√

1 + |q|
∂ZNgLL

∥∥∥∥∥∥
L2

.
ε√

1 + t

∥∥∥∥α2w
1
2
2 ∂Z

NgLL

∥∥∥∥
L2

,

and consequently, since g̃LL = (g̃4)LL we have

‖α2w
1
2
3 ∂q(gb)UU∂Z

NgLL‖L2 .
ε√

1 + t

∥∥∥∥α2w
1
2
2 ∂Z

N g̃4

∥∥∥∥
L2

. (10.21)

In view of (10.13), (10.14), (10.15), (10.18), (10.19), (10.20), (10.21), the energy inequality
yields

d

dt
‖α2w3(q)

1
2∂Z̃Nh‖2L2 + ‖α2w

′
3(q)

1
2 ∂̄Z̃Nh‖2L2

.

(
ε

1 + t
‖α2w

1
2
3 ∂Z

Nh‖L2 + ε‖α2w
′
2(q)

1
2 ∂̄ZN g̃4‖L2

+
ε√

1 + t

(
‖α2w

1
2
0 ∂qZ

Jφ‖L2 + ‖α2w
1
2
2 ∂qZ

J g̃4‖L2

)
+

ε2

√
1 + t

)
‖α2w

1
2
3 ∂qZ

Nh‖L2 + s.t.

We note that
d

dt

(
1

ε(1 + t)
‖α2w

1
2
3 ∂Z

Nh‖2L2

)
≤ 1

ε(1 + t)

d

dt
‖α2w

1
2
3 ∂Z

Nh‖2L2

and we calculate

ε

ε(1 + t)2
‖α2w

1
2
3 ∂qZ

Nh‖2L2 ≤
ε

1 + t

‖α2w
1
2
3 ∂qZ

Jh‖2L2

ε(1 + t)
,

ε

ε(1 + t)
‖α2w

′ 1
2

2 (q)∂̄ZN g̃4‖L2‖α2w
1
2
3 ∂qZ

Nh‖L2 ≤
√
ε‖α2w

′ 1
2

2 (q)∂̄Z̃Ig4‖2L2 +
1√

ε(1 + t)2
‖α2w

1
2
3 ∂qZ

Nh‖2L2 ,

ε

ε(1 + t)
3
2

‖α2w
1
2
0 ∂qZ

Jφ‖L2‖α2w
1
2
3 ∂qZ

Nh‖L2 ≤
√
ε

1 + t
‖α2w

1
2∂qZ

Jφ‖2L2 +
1√

ε(1 + t)2
‖α2w

1
2
3 ∂qZ

Nh‖2L2 .

This yields

d

dt

(
1

ε(1 + t)
‖α2w3(q)

1
2∂Z̃Nh‖2L2

)
+

1

ε(1 + t)
‖α2w

′
3(q)

1
2 ∂̄Z̃Nh‖2L2

.

√
ε

1 + t
EN +

√
ε‖α2w

′ 1
2

2 (q)∂̄Z̃Ig4‖2L2 +
ε

5
2

1 + t
.

(10.22)

The estimate for ZNk is totally similar. This, with the estimate (10.17) concludes the proof of
Lemma 10.5.
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Proof of Lemma 10.6. We now go to the estimate for ZN g̃4. We write �gZN g̃4 = fµν . The energy
estimate writes

d

dt

(
‖α2w2(q)

1
2∂ZN g̃4‖2L2

)
+ ‖α2w

′
2(q)

1
2 ∂̄ZN g̃4‖2L2 .‖α2w2(q)

1
2 fµν‖L2‖α2w2(q)

1
2∂ZN g̃4‖L2

+
ε

(1 + t)
‖α2w2(q)

1
2∂ZN g̃4‖2L2

We recall that the terms in fµν consist of

� the quasilinear terms,

� the terms coming from the non commutation of the wave operator with the null decomposi-
tion: it will be su�cient to study the term Υ( rt )

1
r2
∂θZ

Nh,

� the semi-linear terms: it is su�cient to study the term ZN (gLL∂LgLL∂Lh). We note that
thanks to our decomposition, the term ZN (∂UgLL∂Lh) is absent,

� The crossed terms: their analysis is similar to the one for φ.

The quasilinear terms We consider∣∣∣∣∣∣∣∣
∑

I+J≤N
J≤N−1

ZIgLL∂
2
qZ

J g̃4

∣∣∣∣∣∣∣∣ .
1

(1 + |q|)
∑

I+J≤N
J≤N−1

ZIgLL∂qZ
J+1g̃4|.

If I ≤ N
2 , we can estimate

|ZIgLL| .
ε(1 + |q|)
(1 + t)

3
2
−ρ
,

so ∥∥∥∥∥∥ α2w
1
2
2

(1 + |q|)
ZIgLL∂qZ

J g̃4

∥∥∥∥∥∥
L2

.
ε

(1 + t)
3
2
−ρ
‖α2w

1
2
2 ∂qZ

J g̃4‖L2 . (10.23)

If J ≤ N
2 , we can estimate, thanks to Proposition 4.8 and since the di�erence between g̃4 and g̃3 is

contained in g̃LU , which is equal to (g̃3)LU ,

|∂qZJ g̃4| .
ε√

1 + |q|
√

1 + t
. (10.24)

Therefore, if we apply Hardy inequality we obtain∥∥∥∥∥∥ α2w
1
2
2

(1 + |q|)
ZIgLL∂qZ

J g̃4

∥∥∥∥∥∥
L2

.
ε√

1 + t

∥∥∥∥∥∥ α2w
1
2
2

(1 + |q|)
1
2

∂qZ
IgLL

∥∥∥∥∥∥
L2

.

Thanks to (10.4) and the fact that
w

1
2
2

(1+|q|)
1
2
. w′2(q)

1
2 we obtain

∥∥∥∥∥∥ α2w
1
2
2

(1 + |q|)
ZIgLL∂qZ

J g̃4

∥∥∥∥∥∥
L2

‖α2w2(q)
1
2∂ZN g̃4‖L2 .

ε

1 + t
‖w2(q)

1
2∂ZN g̃4‖2L2 + ε‖α2w

′
2

1
2 ∂̄g̃4‖2L2 .

(10.25)
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The term coming from the non commutation of the wave operator with the null de-
composition We note that ∂θh

r is a tangential derivative ∂̄h. Therefore∥∥∥∥α2w
1
2
2 (q)Υ

(r
t

) 1

r2
∂θZ

Nh

∥∥∥∥
L2

.
1

1 + t
‖α2w

1
2
2 ∂̄Z

Nh‖L2

We calculate {
w′3(q) = 2µ 1

(1+|q|)1+2µ for q < 0,

w′3(q) = (3 + 2δ)(1 + |q|)2+2δ for q > 0.

Therefore w2 . w′3 and we obtain∥∥∥∥w 1
2
2 (q)Υ

(r
t

) 1

r2
∂θZ

Nh

∥∥∥∥
L2

.
1

1 + t
‖α2w

′
3(q)

1
2 ∂̄ZNh‖L2 .

This yields ∥∥∥∥α2w
1
2
2 (q)Υ

(r
t

) 1

r2
∂θZ

Nh

∥∥∥∥
L2

‖α2w2(q)∂ZN g̃4‖L2

.
1√

ε(1 + t)
‖α2w

′
3(q)

1
2 ∂̄ZNh‖2L2 +

√
ε

1 + t
‖α2w2(q)

1
2∂ZN g̃4‖2L2 .

(10.26)

The semi-linear terms We now estimate ZN (gLL∂LgLL∂Lh). We �rst estimate

‖w2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2

for I1 + I2 ≤ N and I1 ≤ N − 1. If I1 ≤ N
2 we estimate

|∂̄ZI1gLL| .
1

1 + s
|ZI1+1gLL| .

ε(1 + |q|)
(1 + s)

5
2
−ρ
.

(1 + |q|)ρ

(1 + t)
3
2

.

Therefore

‖α2w2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .
ε

(1 + t)
3
2

‖α2w2(q)
1
2 (1 + |q|)ρ∂ZI2h‖L2

.
ε

(1 + t)
3
2

‖α2w3(q)
1
2∂ZI2h‖L2 .

If I2 ≤ N
2 we estimate, thanks to (4.42)

|∂ZI2h| ≤ ε

(1 + |q|)
3
2
−ρ
,

therefore

‖α2w2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 . ε

∥∥∥∥∥∥ α2w
1
2
2

(1 + |q|)
3
2
−ρ
∂̄ZI1gLL

∥∥∥∥∥∥
L2

.
ε

1 + t

∥∥∥∥∥∥ α2w
1
2
2

(1 + |q|)
3
2
−ρ
ZI1+1gLL

∥∥∥∥∥∥
L2

.
ε

1 + t

∥∥∥∥∥∥ α2w
1
2
2

(1 + |q|)
1
2
−ρ
∂ZI1+1gLL

∥∥∥∥∥∥
L2

73



where in the third inequality we have used the weighted Hardy inequality. Consequently

‖α2w2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .
ε

1 + t
‖α2w2(q)

1
2∂ZI1+1g̃4‖L2 . (10.27)

It is not possible to do the same reasoning for I1 = N . To treat the term gLL∂LZ
NgLL∂Lh,

which appears only in PLL we will write

�g(hZ
NgLL) = DαDα(hZNgLL) = h�gZ

NgLL + ZN (gLL)�gh+ gαβ∂αh∂βZ
NgLL.

We estimate
‖w2(q)

1
2∂(hZNgLL)‖L2 . ε‖w2(q)

1
2∂ZNgLL‖L2 , (10.28)

therefore, we can perform the energy estimate for Z̃N g̃4 = ZN g̃4−hZNgLL−
χ(q)q∂g̃4∂

N−1
θ b

gUU
instead of

ZN g̃4, where the last term is here to deal with the troublesome crossed term which is the equivalent
of (10.7). We have now to estimate h�gZNgLL + ZN (gLL)�gh+ ∂ZNgLL∂̄h. We estimate �rst

‖α2w2(q)
1
2∂ZNgLL∂̄h‖L2 .

ε

1 + t
‖w2(q)

1
2∂ZNgLL‖L2 . (10.29)

We have �gh = −2(∂qφ)2 + ∂qh∂qgLL + ... therefore

|�gh| .
ε2

(1 + t)(1 + |q|)

and

‖α2w2(q)
1
2ZNgLL�gh‖L2 .

ε

1 + t

∥∥∥∥∥α2w2(q)
1
2

(1 + |q|)
ZNgLL

∥∥∥∥∥ . ε

1 + t
‖w2(q)

1
2∂ZN g̃4‖L2 . (10.30)

To estimate the last term, we have to note that since gLL∂LZ
NgLL∂Lh appears only in PLL, it is

absent from �gZNgLL. However, we have terms appearing from the non commutation of the wave
operator with the null decomposition. They are of the form 1

rh∂̄Z
NgLL. We estimate∥∥∥∥α2w2(q)

1
2

1

r
h∂̄ZNgLL

∥∥∥∥
L2

.
ε

1 + t
‖α2w2(q)

1
2∂ZN g̃4‖L2 (10.31)

The other terms in �gZNgLL have already been estimated.

Remark 10.8. This reasoning would not have been possible to treat terms of the form ∂UgLL∂qh.
It is why we have introduced the function k, which is allowed to decay less.

Thanks to (10.23), (10.25), (10.26), (10.27), (10.29), (10.30), (10.31) the energy estimate yields

d

dt

(
‖α2w2(q)

1
2∂Z̃N g̃4‖2L2

)
+ ‖α2w

′
2(q)

1
2 ∂̄Z̃N g̃4‖2L2

.

√
ε

1 + t

(
‖α2w2(q)

1
2∂ZN g̃4‖2L2 +

1

ε(1 + t)
‖α2w

1
2
3 ∂h‖

2
L2

)
+
√
ε

(
1

ε(1 + t)
‖α2w

′
3(q)

1
2 ∂̄ZNh‖2L2 + ‖α2w

′
2(q)

1
2 ∂̄ZN g̃4‖2L2

)
+ s.t.

(10.32)

This, together with the estimates (10.28) concludes the proof of Lemma 10.6.
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10.2 Estimates for I ≤ N − 2

Proposition 10.9. Let I ≤ N − 2. We have the estimates

‖αw0(q)
1
2∂ZIφ‖L2 ≤ C0ε+ Cε

3
2 ,

‖αw(q)
1
2∂ZIh‖L2 ≤ Cε

3
2 (1 + t),

‖αw2(q)
1
2∂ZI g̃3‖L2 ≤ C0ε+ Cε

5
4 .

Moreover ∫ t

0
‖αw′2(q)

1
2 ∂̄ZI g̃3‖2L2 . ε2.

We prove the proposition by using the energy estimate for φ, h and g̃3.

Proposition 10.10. Let I ≤ N − 2. We have

d

dt

∑
J≤I
‖αw0(q)

1
2∂ZJφ‖2L2 +

∑
J≤I
‖αw′0(q)

1
2 ∂̄ZJφ‖2L2

. ε3 1

(1 + t)1+σ−C
√
ε

+
ε

(1 + t)σ

∑
J≤I

∥∥∥w′0(q)
1
2 ∂̄ZJφ

∥∥∥2

L2
.

Proposition 10.11. Let I ≤ N − 2. We have the estimate

d

dt

∑
J≤I
‖αw3(q)

1
2∂ZJh‖2L2 +

∑
J≤I
‖αw′3(q)∂̄ZJh‖2L2 . ε3.

Proposition 10.12. Let I ≤ N − 2. We have

d

dt

∑
J≤I
‖αw2(q)

1
2∂ZJ g̃3‖2L2 +

∑
J≤I
‖αw′2(q)

1
2 ∂̄ZJ g̃3‖2L2 .

ε
5
2

(1 + t)1+σ
+

ε

(1 + t)σ
‖w′2(q)

1
2 ∂̄ZI+1g̃3‖2L2 .

We admit for the moment Propositions 10.10, 10.11 and 10.12 and prove Proposition 10.9.

Proof of Proposition 10.9. We estimate φ. Since σ > C
√
ε for ε > 0 small enough, by integrating

the inequality of Proposition 10.10 with respect to t we obtain∑
J≤I
‖αw0(q)

1
2∂ZJφ‖2L2 +

∫ t

0

∑
J≤I
‖αw′0(q)

1
2 ∂̄ZJφ‖2L2dτ

≤
∑
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1
2∂ZIφ(0)‖2L2 + Cε3 + C

∫ t

0

ε

(1 + τ)σ

∑
J≤I

∥∥∥w′0(q)
1
2 ∂̄ZJφ

∥∥∥2

L2
dτ.

Thanks to Proposition 10.2, we have∫ t

0

ε

(1 + τ)σ

∑
J≤I

∥∥∥w′0(q)
1
2 ∂̄ZJφ

∥∥∥2

L2
dτ . ε2,

and therefore ∑
J≤I
‖αw0(q)

1
2∂ZJφ‖2L2 . C2

0ε
2 + Cε3.
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We now estimate h. We integrate the inequality of Proposition 10.11 with respect to t. We obtain,
since we take zero initial data for h, and therefore, initial data for ZIh of size ε2

∑
J≤I
‖αw3(q)

1
2∂ZJh‖2L2 +

∫ t

0

∑
J≤I
‖αw′3(q)∂̄ZJh‖2L2dτ . ε3(1 + t).

We now integrate the inequality of Proposition 10.12 to estimate g̃3. We obtain∑
J≤I
‖αw2(q)

1
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1
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1
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5
2 +
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0

ε
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1
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Proposition 10.2 yields ∫ t

0

1

(1 + τ)σ
‖w′2(q)

1
2 ∂̄ZI+1g̃4‖2L2dτ . ε2,

Therefore ∑
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1
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1
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0ε
2 + Cε

5
2 .

This concludes the proof of Proposition 10.9.

Proof of Proposition 10.10. We follow the proof of Lemma 10.4. Let I ≤ N − 1. We use the
weighted energy estimate for the equation (10.2). It yields

d

dt

(
‖αw(q)

1
2∂ZIφ‖2L2

)
+ ‖αw′(q)

1
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1
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(10.33)

We �rst estimate ∣∣∣∣∣∣∣∣
∑
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2
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I2φ

∣∣∣∣∣∣∣∣ .
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∑
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1
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I2φ‖L2 . (10.34)

If I2 ≤ N
2 , we can estimate

|∂qZI2φ| .
ε

(1 + |q|)
3
2
−4ρ
√

1 + t
, for q < 0, |∂qZI2φ| .

ε

(1 + |q|)
3
2

+δ−σ√1 + t
, for q > 0.
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We apply the weighted Hardy inequality, but in order to be in its range, we cannot keep all the
decay in q in the region q > 0.∥∥∥∥∥αw0(q)

1
2

(1 + |q|)
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∥∥∥∥∥
L2

.
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where {
v(q) = 1

(1+|q|)3−4ρ for q < 0,

v(q) = w0(q)
(1+|q|)1+δ = (1 + |q|)1+δ for q > 0.

(10.35)

We use (10.4), which gives ∂qZ
I1gLL ∼ ∂̄ZI1 g̃4 so

|∂qZI1gLL| .
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1 + s
|ZI1+1g̃4| .

1

(1 + t)
1
2

+σ(1 + |q|)
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2
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|ZI1+1g̃4|. (10.36)

Therefore, we obtain∥∥∥∥∥αw0(q)
1
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where we have used again the weighted Hardy inequality. We calculate{
v(q)(1 + |q|)1+2σ = 1

(1+|q|)2−4ρ−2σ for q < 0,

v(q)(1 + |q|)1+2σ = (1 + |q|)2+δ+2σ for q > 0.

Therefore if 1− 4ρ− 2σ ≥ µ and δ+ 2σ < 2δ we have v(q)(1 + |q|)1+2σ ≤ w2 so we obtain, together
with Proposition 10.2,∥∥∥∥∥αw0(q)
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√
ε
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(10.37)

We now estimate the crossed terms, for which the weight modulator α has been introduced. They
are of the form (2.13). It is su�cient to estimate, for I ≤ N − 1∥∥∥∥ε1q>0

r
α(q)w0(q)

1
2 ∂̄ZIφ

∥∥∥∥
L2

.

We obtain ∥∥∥∥ε1q>0

r
α(q)w0(q)

1
2 ∂̄ZN−1φ

∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ

∥∥∥∥∥ 1q>0

(1 + |q|)
1
2

w0(q)
1
2 ∂̄ZN−1φ

∥∥∥∥∥
L2

.

and consequently, since in the region q > 0 we have w0(q)
1
2√

1+|q|
. w′0(q)

1
2 ,

∥∥∥∥ε1q>0

r
α(q)w0(q)

1
2 ∂̄ZN−1φ

∥∥∥∥
L2

‖αw
1
2
0 ∂Z

Iφ‖2L2

.
ε

(1 + t)1+σ
‖αw

1
2
0 ∂Z

Iφ‖2L2 +
ε

(1 + t)σ
‖w′0(q)

1
2 ∂̄ZN−1φ‖2L2 .

(10.38)
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The last term which appears in (10.33) can be estimated thanks to Proposition 10.2

ε

(1 + t)1+σ
‖w

1
2
0 ∂Z

Iφ‖2L2 .
ε3

(1 + t)1+σ−C
√
ε
. (10.39)

The estimates (10.33), (10.34), (10.37), (10.38) and (10.39), together with the bootstrap assumption
(4.25) which imply

‖αw0(q)
1
2∂ZIφ‖L2 . ε,

conclude the proof of Proposition 10.10.

We now estimate h

Proof of 10.11. The equation for ZIh is given by (10.12). We estimate �rst∥∥∥∥∥∥∥∥αw
1
2
3

∑
I1+I2≤I
I2≤I−1

(
ZI1gαβ

) (
ZI2∂α∂βh

)∥∥∥∥∥∥∥∥
L2

.

As before, we can estimate, for I1 ≤ N
2 , thanks to the bootstrap assumption (4.25),∥∥∥∥∥∥ αw

1
2
3

(1 + |q|)
ZI1gLL∂qZ

I2h

∥∥∥∥∥∥
L2

.
ε

(1 + t)
3
2
−ρ
‖αw

1
2
3 ∂qZ

I2h‖L2 .
ε2

(1 + t)1−ρ . (10.40)

For I2 ≤ N
2 , we have the estimate

|∂qZI2h| .
ε

(1 + |q|)
3
2
−ρ
, for q < 0, |∂qZI2h| .

ε

(1 + |q|)2+δ−σ , for q < 0,

so ∥∥∥∥∥∥ αw
1
2
3

(1 + |q|)
ZI1gLL∂qZ

I2h

∥∥∥∥∥∥
L2

.

∥∥∥∥∥ αv
1
2

(1 + |q|)
ZI1gLL

∥∥∥∥∥
L2

.

where v is de�ned by (10.35) and with Hardy inequality and the same reasoning than for φ∥∥∥∥∥∥ αw
1
2
3

(1 + |q|)
ZI1gLL∂qZ

I2h

∥∥∥∥∥∥
L2

. ε‖v
1
2∂qZ

I1gLL‖L2 . ε
1

(1 + t)
1
2

+σ
‖w2(q)

1
2∂ZI1+1g̃4‖L2 ,

and thanks to Proposition 10.2 we obtain∥∥∥∥∥∥ αw
1
2
3

(1 + |q|)
ZI1gLL∂qZ

I2h

∥∥∥∥∥∥
L2

.
ε2(1 + t)C

√
ε

(1 + t)
1
2

+σ
. (10.41)

We estimate the second term∥∥∥∥αw 1
2
3 Z

I(∂qφ)2

∥∥∥∥
L2

.
∑

I1+I2≤I
‖αw

1
2
3 ∂qZ

I1φ∂qZ
I2φ‖L2 .

ε√
1 + t

∑
J≤I
‖αw

1
2
0 ∂qZ

Iφ‖L2

so thanks to (4.25) we obtain ∥∥∥∥αw 1
2
3 Z

I(∂qφ)2

∥∥∥∥
L2

.
ε2

√
1 + t

. (10.42)
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The semi-linear term ∂LgLL∂Lh, appearing in QLL can be estimated in the same way as the �rst.
The crossed term ∂L(gb)UU∂LgLL appearing in QLL and the term (Rb)qq can be estimated in the
same way than in the case I ≤ N . The crossed terms of Hρ

b ∂ρh can be estimated in the following
way ∥∥∥∥ε1q>0

r
αw

1
2
3 ∂Z

Ih

∥∥∥∥
L2

.
ε√

1 + t
‖αw

1
2
3 ∂Z

Ih‖ . ε2

√
1 + t

. (10.43)

Thanks to (10.40), (10.41), (10.42) and (10.43), and the bootstrap assumption (4.25), the energy
inequality yields (we use here the �rst inequality of Proposition 9.1)

d

dt
‖αw

1
2
3 ∂Z

Ih‖2L2 + ‖αw′3(q)
1
2 ∂̄ZIh‖2L2 .

ε2

√
1 + t

‖αw
1
2
3 ∂qZ

Ih‖L2 +
ε

1 + t
‖αw

1
2
3 ∂qZ

Ih‖2L2 . ε3,

which concludes the proof of Proposition 10.11.

We now estimate g̃3

Proof of Proposition 10.12. We write �gZI g̃3 = fµν . The energy estimate yields

d

dt

(
‖αw2(q)

1
2∂ZI g̃3‖2L2

)
+ ‖αw′(q)

1
2 ∂̄ZI g̃3‖2L2 .‖αw2(q)fµν‖L2‖αw2(q)∂ZI g̃3‖L2

+
ε

(1 + t)σ
‖w2(q)

1
2∂ZI g̃3‖2L2 .

We recall that the terms in fµν are

� the quasilinear terms,

� the terms coming from the non commutation of the wave operator with the null decomposi-
tion: it will be su�cient to study the term χ( rt )

1
r2
∂θZ

Nh,

� the semi-linear terms: it is su�cient to study the term ZI∂UgLL∂Lh,

� the crossed term: their analysis is the same than for φ.

We �rst estimate the quasilinear term.∣∣∣∣∣∣∣∣
∑

I1+I2≤I
I2≤I−1

ZI1gLL∂
2
qZ

I2 g̃4

∣∣∣∣∣∣∣∣ .
1

(1 + |q|)
∑

I1+I2≤I
|ZI1gLL∂qZI2 g̃4|

If I1 ≤ N
2 , we can estimate

|ZI1gLL| .
ε(1 + |q|)
(1 + t)

3
2
−ρ

so ∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)
ZI1gLL∂qZ

I2 g̃4

∥∥∥∥∥∥
L2

.
ε

(1 + t)
3
2
−ρ
‖αw

1
2
2 ∂qZ

I2 g̃4‖L2 (10.44)

If I2 ≤ N
2 , we can estimate, thanks (10.24) and (4.42)

|∂qZI2 g̃4| .

(
ε

√
1 + t

√
1 + |q|

) 1
2
(

ε

(1 + |q|)
3
2
−ρ

) 1
2

.
ε

(1 + t)
1
4 (1 + |q|)1− ρ

2
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Therefore,∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)
ZI1gLL∂qZ

I2 g̃4

∥∥∥∥∥∥
L2

.
ε

t
1
4

∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)2− ρ
2

ZI1gLL

∥∥∥∥∥∥
L2

.
ε

t
1
4

∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)1− ρ
2

∂ZI1gLL

∥∥∥∥∥∥
L2

,

where we have used the weighted Hardy inequality, noting that in the region q > 0

α2w2

(1 + |q|)2−ρ = (1 + |q|)2δ−2σ−ρ,

so the condition δ > σ + ρ + 1
2 ensure that we can apply the weighted Hardy inequality. We use

the wave coordinate condition, (10.4) which gives ∂qZ
I1gLL ∼ ∂̄ZI1 g̃4. We obtain

|∂qZI1gLL| .
1

1 + s
|ZI1+1g̃4|

1

(1 + t)
3
4

+σ(1 + |q|)
1
4
−σ
|ZI1+1g̃4|.

It yields, by using Hardy inequality again∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)
ZI1gLL∂qZ

I2 g̃4

∥∥∥∥∥∥
L2

.
ε

(1 + t)1+σ

∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)
5
4
− ρ

2
−σ
ZI1+1g̃4

∥∥∥∥∥∥
L2

.
ε

(1 + t)1+σ
‖ αw

1
2
2

(1 + |q|)
1
4
− ρ

2
−σ
ZI1+1g̃4‖L2 .

Consequently, since 1
4 −

ρ
2 − σ > 0 we have∥∥∥∥∥∥ αw

1
2
2

(1 + |q|)
ZI1gLL∂qZ

I2 g̃4

∥∥∥∥∥∥
L2

.
ε

(1 + t)1+σ
‖w

1
2
2 ∂Z

I+1g̃4‖L2 .
ε2(1 + t)C

√
ε

(1 + t)1+σ
, (10.45)

where we have used Proposition 10.2. We now estimate the term coming from the non commutation

with the wave operator ‖αw
1
2
2 (q)Υ

(
r
t

)
1
r2
∂θZ

Ih‖L2 . On the support of Υ
(
r
t

)
, we have r ∼ t and

hence
1

r2
.

1

(1 + t)
3
2

+σ(1 + |q|)
1
2
−σ
.

Therefore ∥∥∥∥αw 1
2
2 (q)Υ

(r
t

) 1

r2
∂θZ

Ih

∥∥∥∥
L2

.
1

(1 + t)
3
2

+σ

∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)
1
2
−σ
ZI+1h

∥∥∥∥∥∥
L2

.
1

(1 + t)
3
2

+σ

∥∥∥∥αw 1
2
2 (1 + |q|)

1
2

+σ∂ZI+1h

∥∥∥∥
L2

,

where we have applied the weighted Hardy inequality. We calculate

α2w2(1 + |q|)1+2σ =

{
(1 + |q|)2σ−2µ for q < 0,
(1 + |q|)3+2δ for q > 0.

If σ < µ we have α2w2(1 + |q|)1+2σ ≤ w3 and∥∥∥∥αw 1
2
2 (q)χ

(r
t

) 1

r2
∂θZ

Ih

∥∥∥∥
L2

.
1

(1 + t)
3
2

+σ
‖w3(q)

1
2∂ZI+1h‖L2 .

ε
3
2 (1 + t)C

√
ε

(1 + t)1+σ
, (10.46)

80



where we have used Proposition 10.2 which yields, for I ≤ N − 2

‖w3(q)
1
2∂ZI+1h‖L2 . ε

3

2
(1 + t)

1
2

+C
√
ε.

We now estimate ZI(∂UgLL∂Lh). We have

‖αw2(q)
1
2ZI(∂UgLL∂Lh)‖L2 .

∑
I1+I2≤I

‖αw2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .

If I1 ≤ N
2 we estimate

|∂̄ZI1gLL| .
1

1 + s
|ZI1+1gLL| .

ε(1 + |q|)
(1 + t)

5
2
−ρ
.

(1 + |q|)ρ+σ

(1 + t)
3
2

+σ
.

Therefore

‖αw2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .
ε

(1 + t)
3
2

+σ
‖αw

1
2
2 (1 + |q|)ρ+σ∂ZI2h‖L2 .

ε

t
3
2

+σ
‖αw3(q)

1
2∂ZI2h‖L2 ,

and consequently

‖αw2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 ..
ε2

t1+σ
. (10.47)

If I2 ≤ N
2 thanks to (4.42) we estimate

|∂ZI2h| ≤ ε

(1 + |q|)
3
2
−ρ
,

therefore

‖αw2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 . ε

∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)
3
2
−ρ
∂̄ZI1gLL

∥∥∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ

∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)2−ρ−σZ
I1+1gLL

∥∥∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ

∥∥∥∥∥∥ αw
1
2
2

(1 + |q|)1−ρ−σ ∂Z
I1+1gLL

∥∥∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ
‖αw′2(q)

1
2 ∂̄ZI1+1g̃4‖L2

where in the last inequality we have used the wave coordinate condition. Therefore

‖αw2(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2‖αw2(q)
1
2∂ZI g̃3‖ .

ε

(1 + t)σ
‖αw′2(q)

1
2 ∂̄ZI1+1g̃4‖2L2 +

ε3

(1 + t)1+σ
.

(10.48)
The estimates (10.44),(10.45), (10.46), (10.47) and (10.48) conclude the proof of Proposition 10.12.
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10.3 Estimates for I ≤ N − 8

Proposition 10.13. We have for I ≤ N − 8

‖w1(q)
1
2∂ZI g̃2‖L2 ≤ C0ε(1 + t)Cε, (10.49)

‖αw1(q)
1
2∂ZI g̃2‖L2 ≤ C0ε+ Cε

3
2 , (10.50)

and for I ≤ N − 9

‖w(q)
1
2∂ZI g̃2‖L2 ≤ C0ε(1 + t)Cε, (10.51)

‖αw(q)
1
2∂ZI g̃2‖L2 ≤ C0ε+ Cε

3
2 . (10.52)

This is a consequence of the following two propositions.

Proposition 10.14. We have for I ≤ N − 8

d

dt

∑
J≤I
‖w1(q)

1
2∂ZJ g̃2‖2L2 +

∑
J≤I
‖w′1(q)

1
2 ∂̄ZJ g̃2‖2L2 .

ε3

(1 + t)1+σ
+

ε

1 + t

∑
J≤I
‖w1(q)

1
2∂ZJ g̃2‖2L2 ,

(10.53)
and

d

dt

∑
J≤I
‖αw1(q)

1
2∂ZJ g̃2‖2L2 +

∑
J≤I
‖αw′1(q)

1
2 ∂̄ZJ g̃2‖2L2 .

ε3

(1 + t)1+σ
+ ε‖αw′2(q)

1
2 ∂̄ZI+1g̃3‖2L2 .

(10.54)

Proposition 10.15. We have for I ≤ N − 9

d

dt

∑
J≤I
‖w0(q)

1
2∂ZJ g̃2‖2L2 +

∑
J≤I
‖w′0(q)

1
2 ∂̄ZJ g̃2‖2L2 .

ε3

(1 + t)1+σ
+ +

ε

1 + t

∑
J≤I
‖w0(q)

1
2∂ZJ g̃2‖2L2 ,

(10.55)
and

d

dt

∑
J≤I
‖αw0(q)

1
2∂ZJ g̃2‖2L2 +

∑
J≤I
‖αw′0(q)

1
2 ∂̄ZJ g̃2‖2L2 .

ε3

(1 + t)1+σ
+ ε‖αw′1(q)

1
2 ∂̄ZI+1g̃2‖2L2 .

(10.56)

We assume Proposition 10.14 and 10.15 and prove Proposition 10.13.

Proof of Proposition 10.13. The inequalities (10.49) and (10.51) are straightforward consequences
of (10.53) and (10.55). To prove (10.50), we integrate (10.54). We obtain

∑
J≤I
‖αw1(q)

1
2∂ZJ g̃2‖2L2 +

∫ t

0

∑
J≤I
‖αw′1(q)

1
2 ∂̄ZJ g̃2‖2L2dτ

≤
∑
J≤I
‖αw1(q)

1
2∂ZJ g̃2(0)‖2L2 + Cε3 + Cε

∫ t

0
‖αw′2(q)

1
2 ∂̄ZI+1g̃3‖2L2dτ.

Thanks to Proposition 10.9, we have∫ t

0
‖αw′2(q)

1
2 ∂̄ZI+1g̃3‖2L2 . ε2,

82



and consequently∑
J≤I
‖αw1(q)

1
2∂ZJ g̃2‖2L2 +

∫ t

0

∑
J≤I
‖αw′1(q)

1
2 ∂̄ZJ g̃2‖2L2dτ ≤ C2

0ε
2 + Cε3, (10.57)

which proves (10.50). To prove (10.52), we integrate (10.56)∑
J≤I
‖αw0(q)

1
2∂ZJ g̃2‖2L2 +

∫ ∑
J≤I
‖αw′0(q)

1
2 ∂̄ZJ g̃2‖2L2dτ

≤
∑
J≤I
‖αw0(q)

1
2∂ZJ g̃2(0)‖2L2 + Cε3 + Cε

∫ t

0
‖αw′1(q)

1
2 ∂̄ZI+1g̃2‖2L2dτ.

Thanks to (10.57), we have for I ≤ N − 9∫ t

0
‖αw′1(q)

1
2 ∂̄ZI+1g̃2‖2L2dτ . ε2,

and consequently ∑
J≤I
‖αw0(q)

1
2∂ZJ g̃2‖2L2 ≤ C2

0ε
2 + Cε3,

which concludes the proof of Proposition 10.13.

Proof of Proposition 10.14. It is su�cient to estimate the terms in the region q < 0, since in the
region q > 0, we have w0 = w1 = w2 so the estimates are strictly the same than in the previous
section. Once again, the weight modulator α is used to tackle the crossed terms, which create a
logarithmic loss in the estimates. However, in the region q < 0, since α = 1, we write everything
with the weight w1, and do everything as if no terms were present in the region q > 0, since the
in�uence of these terms have already been tackled.

We �rst estimate the term coming from the non commutation of the wave operator with the
null decomposition,

Υ
(r
t

) 1

r2
∂θZ

I(h0 + h̃).

Since I + 1 ≤ N − 7, we can use the Propositions 7.2 for ZI+1h0 and Proposition 7.5 for ZI+1h̃.
We obtain

|ZI+1(h0 + h̃)| . ε2

(1 + |q|)
1
2
−ρ
.

Therefore∥∥∥∥Υ
(r
t

) 1

r2
∂θZ

I(h0 + h̃)

∥∥∥∥
L2

.
ε2

(1 + t)1+σ

∥∥∥∥∥Υ
(r
t

) 1

(1 + |q|)
1
2
−ρr1−σ

∥∥∥∥∥
L2

.
ε2

(1 + t)1+σ
, (10.58)

where we have used the calculation∥∥∥∥∥Υ
(r
t

) 1

(1 + |q|)
1
2
−ρr1−σ

∥∥∥∥∥
2

L2

≤ 2π

∫
Υ
(r
t

)2 1

(1 + |q|)1−2ρr2−2σ
rdr

≤ 2π

∫
dq

(1 + |q|)2−2ρ−2σ
< +∞,

if ρ+ σ < 1
2 .
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We now estimate ZI(∂UgLL∂Lh). We have

‖1q<0w1(q)
1
2ZI(∂UgLL∂Lh)‖L2 .

∑
I1+I2≤I

‖1q<0w1(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2

If I1 ≤ N
2 we estimate

|∂̄ZI1gLL| .
1

1 + s
|ZI1+1gLL| .

ε(1 + |q|)
(1 + s)

5
2
−ρ
.

(1 + |q|)ρ+σ

(1 + t)
3
2

+σ
.

Therefore

‖1q<0w1(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .
ε

(1 + t)
3
2

+σ

∥∥∥∥∥1q<0
(1 + |q|)ρ+σ

(1 + |q|)
1
4

∂ZI2h

∥∥∥∥∥
L2

.
ε

(1 + t)
3
2

+σ
‖1q<0w3(q)

1
2∂ZI2h‖L2

if ρ+ σ ≤ 1
4 , and consequently

‖1q<0w1(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .
ε2

(1 + t)1+σ
. (10.59)

If I2 ≤ N
2 we estimate, thanks to (4.42)

|∂ZI2h| ≤ ε

(1 + |q|)
3
2
−ρ

therefore

‖1q<0w1(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 . ε

∥∥∥∥∥ 1q<0

(1 + |q|)
1
4

+ 3
2
−ρ
∂̄ZI1gLL

∥∥∥∥∥
L2

.

We estimate

|∂̄ZI1gLL| .
1

1 + s
|ZI1+1gLL| .

1

(1 + t)
1
2

+σ(1 + |q|)
1
2
−σ
|ZI1+1gLL|.

We obtain

‖1q<0w1(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .
ε

(1 + t)
1
2

+σ

∥∥∥∥∥ 1q<0

(1 + |q|)2+ 1
4
−ρ−σ

ZI1+1gLL

∥∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ

∥∥∥∥∥ 1q<0

(1 + |q|)1+ 1
4
−ρ−σ

∂ZI1+1gLL

∥∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ

∥∥∥1q<0w
′
2(q)

1
2 ∂̄ZI1+1g̃3

∥∥∥
L2

where in the last inequality we have used the wave coordinate condition, and the fact that, since
for q < 0

w′2(q) =
1 + 2µ

(1 + |q|)2+2µ
,

we have
1

(1 + |q|)1+ 1
4
−ρ−σ

≤ w′2(q)
1
2
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if σ + ρ+ µ ≤ 1
4 . Therefore

‖1q<0w1(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2‖w1(q)
1
2∂ZI g̃2‖ .

ε

(1 + t)σ
‖1q<0w

′
2(q)

1
2 ∂̄ZI1+1g̃3‖2L2 +

ε3

(1 + t)1+σ
.

(10.60)
In view of (10.58), (10.59) and (10.60), we conclude the proof of Proposition 10.14.

Proof of Proposition 10.15. We have already proved∥∥∥∥w(q)
1
2 Υ
(r
t

) 1

r2
∂θZ

I(h0 + h̃)

∥∥∥∥
L2

.
ε2

(1 + t)1+σ
. (10.61)

We now estimate ZI(∂UgLL∂Lh). We have

‖w(q)
1
2ZI(∂UgLL∂Lh)‖L2 .

∑
I1+I2≤I

‖w(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .

If I1 ≤ N
2 we use the estimate

|∂̄ZI1gLL| .
1

1 + s
|ZI1+1gLL| .

ε(1 + |q|)
(1 + s)

5
2
−ρ
. ε

(1 + |q|)ρ+σ

(1 + t)
3
2

+σ
.

Instead of estimating ‖w(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 we estimate

‖w(q)
1
2 ∂̄ZI1gLL∂Z

I2(h0 + h̃)‖L2 and ‖w(q)
1
2 ∂̄ZI1gLL∂Z

I2 g̃2|L2 .

We can also estimate since I2 + 1 ≤ N − 7, thanks to (4.19) and (4.21)∣∣∣∂ZI2(h0 + h̃)
∣∣∣ . ε

(1 + |q|)
3
2
−ρ
.

Therefore

‖1q<0w0(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 . ε2

∥∥∥∥∥1q<0Υ
(r
t

) (1 + |q|)ρ+σ

(1 + s)
3
2

+σ(1 + |q|)
3
2
−ρ

∥∥∥∥∥
L2

.
ε2

(1 + t)1+σ

∥∥∥∥∥1q<0
1

√
1 + s(1 + |q|)

3
2
−2ρ−σ

∥∥∥∥∥
L2

and consequently

‖w0(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 .
ε2

(1 + t)1+σ
. (10.62)

We estimate also

‖w0(q)
1
2 ∂̄ZI1gLL∂Z

I2 g̃2‖L2 .
ε

(1 + t)
3
2
−ρ
‖w0(q)

1
2∂ZI2 g̃2‖L2 .

ε2

(1 + t)
3
2
−ρ
. (10.63)

If I2 ≤ N
2 we estimate, thanks to (4.42)

|∂ZI2h| ≤ ε

(1 + |q|)
3
2
−ρ
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therefore

‖1q<0w0(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2 . ε

∥∥∥∥∥ 1q<0

(1 + |q|)
3
2
−ρ
∂̄ZI1gLL

∥∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ

∥∥∥∥ 1q<0

(1 + |q|)2−ρ−σZ
I1+1gLL

∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ

∥∥∥∥ 1q<0

(1 + |q|)1−ρ−σ ∂Z
I1+1gLL

∥∥∥∥
L2

.
ε

(1 + t)
1
2

+σ
‖w′1(q)

1
2 ∂̄ZI1+1g̃2‖L2

where in the last inequality we have used the wave coordinate condition, and the fact that, since
for q < 0

w′1(q) =
1

2(1 + |q|)
3
2

,

we have
1

(1 + |q|)1−ρ−σ . w
′
1(q)

1
2 ,

if σ + ρ ≤ 1
4 . and q < 0. Therefore

‖1q<0w0(q)
1
2 ∂̄ZI1gLL∂Z

I2h‖L2‖w0(q)
1
2∂ZI g̃2‖ . ε‖1q<0w

′
1(q)

1
2 ∂̄ZI1+1g̃2‖2L2 +

ε3

(1 + t)1+2σ
.

(10.64)
The estimates (10.61), (10.62), (10.63) and (10.64) conclude the proof of Proposition 10.15.

11 Improvement of the estimates for Πb

In order to conclude the proof of Theorem 1.12, it still remains to imrpove the bootstrap assump-
tions (4.4) and (4.5). To this end, we will set

b̃(2)(θ) = Π

∫
ΣT,θ

(∂qφ)2rdq. (11.1)

Proposition 11.1. We assume that the time T satis�es

T ≤ exp

(
C√
ε

)
.

There exists (φ(2), g(2)) solution of (1.1) in [0, T ] in the generalized wave coordinates Hb(2) , such
that, if we write g(2) = gb2 + g̃, then (φ(2), g̃(2)) satis�es the same estimate as (φ, g̃), and we have
the estimates for b(2)∥∥∥∥∥∂Iθ

(
Πb(2)(θ) + Π

∫
ΣT,θ

(∂qφ
(2))2rdq

)∥∥∥∥∥
L2

≤ C ε4

√
T
, for I ≤ N − 4,

‖∂Iθ b(θ)‖L2 ≤ 2C2
0ε

2, for I ≤ N.

The rest of this section is devoted to the proof of Proposition 11.1.
We solve the constraint equations with parameter b̃(2). The initial data we obtain, constructed

in Theorem 1.3 are of the form
g = gb(2) + g̃(2)
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where we write
b(2) = b̃(2) + b

(2)
0 + b

(2)
1 cos(θ) + b

(2)
2 sin(θ),

with b
(2)
0 , b

(2)
1 , b

(2)
2 given by Theorem 1.3. We have the following estimates for the initial data at

t = 0

‖g̃ − g̃(2)‖HN−3
δ

+ ‖∂tg̃ − ∂tg̃(2)‖HN−4
δ+1
. ‖b̃− b̃(2)‖WN−4,2 ≤ C ′0

ε2

√
T
,

thanks to (4.4), and
‖g̃ − g̃(2)‖HN+1

δ
+ ‖∂tg̃ − ∂tg̃(2)‖HN

δ+1
. ε2.

We solve, on an interval [0, T2], the system (2.4) in generalized coordinates given by gb(2) . We note
(φ(2), g̃(2)) the solution.

We want to estimate the di�erence between (φ(2), g̃(2)) and (φ, g̃). However, it will not be
possible to estimate the di�erence with the same norms than when we estimated φ and g̃. When
we estimated h0 we were able to use the condition∣∣∣∣∣̃b+ Π

∫
ΣT,θ

(∂qφ)2

∣∣∣∣∣ . ε2

√
T
,

to obtain decay in 1√
1+|q|

for h0. However we want to keep the factor 1√
T
in the estimates of the

di�erence. To this end, we will loose the decay of h0 − h(2)
0 in 1√

1+|q|
and consequently in g̃ − g̃(2).

We will prove Proposition 11.1 with a bootstrap argument.

11.1 Bootstrap assumptions for φ(2) − φ and g̃(2) − g̃

L∞ estimates First some L∞ estimates on φ− φ(2).

|ZI(φ− φ(2))| ≤ 2C0ε
2

√
T
√

1 + s(1 + q)
1
2
−2κ−5ρ

, for I ≤ N − 20, (11.2)

|ZI(φ− φ(2))| ≤ 2C0ε
2

√
T (1 + s)

1
2
−2κ−2ρ

, for I ≤ N − 18. (11.3)

We use the decompositions

g(2) = gb(2) + Υ
(r
t

)
(h

(2)
0 + h̃(2))dq2 + g̃

(2)
2 , (11.4)

where h
(2)
0 satis�es the transport equation{

∂qh
(2)
0 = −2r

(
∂qφ

(2)
)2 − 2b(2)(θ)∂2

q (χ(q)q),

h
(2)
0 |t=0 = 0,

and h̃(2) satis�es the linear wave equation{
�h̃(2) = �h(2)

0 + g
(2)
LL∂

2
qh

(2)
0 + 2

(
∂qφ

(2)
)2 − 2(Rb(2))qq + Q̃LL(h

(2)
0 , g̃(2)),

(h̃(2), ∂th̃
(2))|t=0 = (0, 0),

We assume the following estimates on h0 − h(2)
0 for I ≤ N − 12

|ZI(h0 − h(2)
0 )| ≤ 2C0

ε2

√
T
. (11.5)
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We introduce the two weight modulators{
β1(q) = 1, q > 0,
β1(q) = 1

(1+|q|)κ , q < 0,

and {
β2(q) = 1, q > 0,
β2(q) = 1

(1+|q|)2κ , q < 0,

with 0 < κ� 1. We assume for I ≤ N − 15

∥∥∥∥β1w
1
2
0 ∂Z

I(g̃2 − g̃(2)
2 )

∥∥∥∥
L2

≤ 2C0ε
2

√
T

(1 + t)ρ (11.6)∥∥∥αβ1w
1
2∂ZI(g̃2 − g̃(2)

2 )
∥∥∥
L2
≤ 2C0ε

2

√
T

(11.7)

and ∥∥∥∥β2w
1
2
1 ∂Z

N−14
(
g̃2 − g̃(2)

2

)∥∥∥∥
L2

≤ 2C0ε
2

√
T

(1 + t)ρ (11.8)∥∥∥∥αβ2w
1
2
1 ∂Z

N−14
(
g̃2 − g̃(2)

2

)∥∥∥∥
L2

≤ 2C0ε
2

√
T

. (11.9)

We use the decomposition

g(2) = gb(2) + Υ
(r
t

)
h(2)dq2 + g̃

(2)
3 , (11.10)

where h(2) is the solution of{
�g(2)h

(2) = −2(∂qφ
(2))2 + 2(Rb(2))qq +QLL(h(2), g̃(2)),

(h(2), ∂th
(2))|t=0 = (0, 0).

We assume for I ≤ N − 6∥∥∥∥αβ2w
1
2
0 ∂Z

I
(
φ− φ(2)

)∥∥∥∥
L2

+

∥∥∥∥αβ2w
1
2
2 ∂Z

I
(
g̃3 − g̃(2)

3

)∥∥∥∥
L2

+
1√

1 + t

∥∥∥∥αβ2w
1
2
3 ∂Z

I
(
h− h(2)

)∥∥∥∥
L2

≤ 2C0ε
2

√
T

,

(11.11)

and for I ≤ N − 5∥∥∥∥αβ2w
1
2
0 ∂Z

I
(
φ− φ(2)

)∥∥∥∥
L2

+

∥∥∥∥αβ2w
1
2
2 ∂Z

I
(
g̃3 − g̃(2)

3

)∥∥∥∥
L2

+
1√

1 + t

∥∥∥∥αβ2w
1
2
3 ∂Z

I
(
h− h(2)

)∥∥∥∥
L2

≤ 2C0ε
2

√
T

(1 + t)ρ.

(11.12)

We use the decomposition

g(2) = gb(2) + Υ
(r
t

)
h(2)dq2 + Υ

(r
t

)
k(2)rdqdθ + g̃

(2)
4 ,
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where k(2) is the solution of {
�gk(2) = ∂Ug

(2)
LL∂qh

(2),

(h(2), ∂th
(2))|t=0 = (0, 0).

We assume for I ≤ N − 4∥∥∥∥α2β2w
1
2
0 ∂Z

I
(
φ− φ(2)

)∥∥∥∥
L2

+

∥∥∥∥α2β2w
1
2
2 ∂Z

I
(
g̃3 − g̃(2)

3

)∥∥∥∥
L2

+
1√

1 + t

∥∥∥∥α2β2w
1
2
3 ∂Z

I
(
h− h(2)

)∥∥∥∥
L2

+
1√

1 + t

∥∥∥∥α2β2w
1
2
3 ∂Z

I
(
k − k(2)

)∥∥∥∥
L2

≤ 2C0ε
2

√
T

(1 + t)ρ.

(11.13)

To improve the estimates, we follow the same steps than when we imrpoved the bootstrap
assumptions of Section 4. The di�erence of our new bootstrap assumptions compared with the

estimates of Section 4 is at worse a factor
ε
√

1+|q|√
T

in the region q < 0. In the region q > 0 the

decay is the same and we have won a factor ε√
T
. Therefore we can restrict our study to the region

q < 0: we will perform our estimates as if no term was present in the region q > 0. We will follow
the same steps as before, but with much less details since the mechanisms are the same.

Remark 11.2. As long as the bootstrap estimates for φ(2) − φ and g̃(2) − g̃ are satis�ed, φ(2) and
g̃(2) satisfy the same estimates as φ and g̃.

L∞ estimates using the weighted Klainerman-Sobolev inequality The following estimates
are a direct consequence of the bootstrap assumptions and the weighted Klainerman-Sobolev in-
equality. For I ≤ N − 8 we have∣∣∣∂ZI (φ(2) − φ

)∣∣∣ . ε2

√
T
√

1 + t(1 + |q|)
1
2
−2κ

, (11.14)

∣∣∣∂ZI (g̃(2)
3 − g̃3

)∣∣∣ . ε2(1 + |q|)
1
2

+µ+2κ

√
T
√

1 + s
, (11.15)∣∣∣∂ZI (h(2) − h

)∣∣∣ . ε2

√
T (1 + |q|)

1
2
−2κ

, (11.16)

and for I ≤ N − 17 ∣∣∣∂ZI (g̃(2)
2 − g̃2

)∣∣∣ . ε2(1 + |q|)κ√
T
√

1 + s
√

1 + |q|
. (11.17)

11.2 Improvement of the estimate of h0 − h(2)
0 and h̃(2) − h̃0

Estimate of h0 − h(2)
0 The quantity h0 − h(2)

0 satis�es the transport equation{
∂q

(
h

(2)
0 − h0

)
= −2r

((
∂qφ

(2)
)2 − (∂qφ)2

)
− 2

(
b(2)(θ)− b(θ)

)
∂2
q (χ(q)q),

(h
(2)
0 − h0)|t=0 = 0.

We write this equation under the form

∂q

(
h

(2)
0 − h0

)
= −2r

(
∂qφ

(2) + ∂qφ
)(

∂qφ
(2) − ∂qφ

)
− 2

(
b(2)(θ)− b(θ)

)
∂2
q (χ(q)q).
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For k + l ≤ N − 7, k ≥ 1, the equivalent of estimate (7.12), that we obtain using (11.2) and
(11.14) to estimate ∂(φ−φ(2)) and (4.15) and (4.28) to estimate ∂(φ+φ(2)) corresponds to (7.12)

multiplied by
ε
√

1+|q|√
T

. ∣∣∣∂kq ∂lθ (h0 − h(2)
0

)∣∣∣ . ε3

√
T (1 + |q|)k+ 1

2
−4ρ

.

We obtain the estimate for k = 0 by integrating the previous one with respect to q. We obtain, for
l ≤ N − 8

|∂lθh0| .
ε3

√
T
.

For k + l + j ≤ N − 8, k ≥ 1 and j ≥ 1 the equivalent of (7.17) is∣∣∣∂js∂kq ∂lθ (h0 − h(2)
0

)∣∣∣ . ε3

√
T (1 + s)j+

1
2 (1 + |q|)k−4ρ

.

Consequently we have proved that for I ≤ N − 8 we have∣∣∣ZI (h0 − h(2)
0

)∣∣∣ . ε3

√
T
. (11.18)

Estimation of h̃(2) − h̃0 The quantity h̃(2) − h̃0 satis�es the linear equation
�
(
h̃(2) − h̃

)
=�

(
h

(2)
0 − h0

)
+ 2

((
∂qφ

(2)
)2
− (∂qφ)2

)
− 2(Rb(2))qq + 2(Rb)qq

+ g
(2)
LL∂

2
qh

(2)
0 − gLL∂

2
qh0 + Q̃LL(h

(2)
0 , g̃(2))− Q̃LL(h0, g̃),(

h̃(2) − h̃, ∂t
(
h̃(2) − h̃

))
|t=0 = (0, 0).

Proceeding as for the estimate of (7.26), and in view of the bootstrap assumptions for φ−φ(2) and

g̃− g̃(2) we obtain the analogue of (7.26) for �
(
ZI h̃(2) − ZI h̃

)
, where the corresponding right-hand

side gets multiplied by
ε
√

1+|q|√
T

. We obtain, for I ≤ N − 10 and q < 0

∣∣∣�(ZI h̃(2) − ZI h̃
)∣∣∣ . ε3

√
T (1 + s)

3
2 (1 + |q|)

1
2

.

Therefore if we perform the weighted energy estimate we obtain

d

dt

∥∥∥w 1
2∂
(
ZI h̃(2) − ZI h̃

)∥∥∥
L2
.

∥∥∥∥∥ ε3

√
T (1 + s)

3
2 (1 + |q|)

1
2

∥∥∥∥∥
L2

.
ε3 ln(1 + t)√
T (1 + t)

,

and therefore for I ≤ N − 10 we have∥∥∥∥w 1
2
0 ∂
(
ZI h̃(2) − ZI h̃

)∥∥∥∥
L2

.
ε3

√
T

(1 + t)ρ. (11.19)

The weighted Klainerman-Sobolev inequality yields, for I ≤ N − 12∣∣∣∂ (ZI h̃(2) − ZI h̃
)∣∣∣ . ε3(1 + t)ρ√

T
√

1 + s
√

1 + |q|
. (11.20)
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11.3 Improvement of the L∞ estimate for φ− φ(2)

We write the equation satis�ed by φ(2) − φ

�g
(
φ− φ(2)

)
=

((
g(2)
)αβ
− gαβ

)
∂α∂βφ

(2) + (Hb(2) −Hb)
ρ ∂ρφ

(2).

We limit ourselves to the region q < 0. We estimate for I + J ≤ N − 20

ZI
(
g

(2)
LL − gLL

)
ZJ∂2φ.

With the wave coordinate condition and the estimate (11.17), we obtain, for I ≤ N − 17∣∣∣ZI (g(2)
LL − gLL

)∣∣∣ . ε2(1 + |q|)
3
2

+κ

(1 + s)
3
2

. (11.21)

Moreover we have, for J ≤ N − 20 thanks to (4.15)

|ZJ∂2φ| . 1

(1 + |q|)2
|ZJ+2φ| . ε2

√
T
√

1 + s(1 + |q|)
5
2
−4ρ

.

Consequently∣∣∣ZI (g(2)
LL − gLL

)
ZJ∂2φ

∣∣∣ . ε3

√
T (1 + s)2(1 + |q|)1−4ρ−κ

.
ε3

√
T (1 + s)2−5ρ−κ(1 + |q|)1+ρ

.

We now estimate for I + J ≤ N − 20

ZIgLLZ
J∂2

(
φ− φ(2)

)
.

We have, thanks to (5.8) and (11.3)

|ZIgLL| .
ε(1 + |q|)

(1 + s)
3
2
−ρ
,

∣∣∣ZJ∂2
(
φ− φ(2)

)∣∣∣ . 1

(1 + |q|)2

∣∣∣ZJ+2
(
φ− φ(2)

)∣∣∣ . ε2

√
T (1 + s)

1
2
−2ρ−2κ(1 + |q|)2

.

Consequently ∣∣∣ZIgLLZJ∂2
(
φ− φ(2)

)∣∣∣ . ε3

(1 + s)2−5ρ−2κ(1 + |q|)1+ρ

and the L∞ − L∞ estimate yields for I ≤ N − 20, since the initial data for φ− φ(2) are zero :∣∣∣ZI (φ− φ(2)
)∣∣∣ ≤ Cε3

√
T (1 + s)

1
2 (1 + |q|)

1
2
−5ρ−2κ

. (11.22)

We now estimate for I + J ≤ N − 18, thanks to (11.21) an (4.15) for the �rst inequality, and (5.8)
and (11.14) for the second inequality∣∣∣ZI (g(2)

LL − gLL
)
ZJ∂2φ

∣∣∣ . (ε2(1 + |q|)
3
2

+κ

√
T (1 + s)

3
2

)(
ε

(1 + |q|)
5
2
−4ρ(1 + s)

1
2

)

.
ε3

√
T (1 + s)2−5ρ−κ(1 + |q|)1+ρ

,
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∣∣∣ZIgLLZJ∂2
(
φ− φ(2)

)∣∣∣ . ( ε(1 + |q|)
(1 + s)

3
2
−ρ

)(
ε2(1 + |q|)2κ

√
T (1 + |q|)

3
2
√

1 + s

)

.
ε3

√
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Consequently, for I ≤ N − 18 and q < 0 we have∣∣∣�ZI (φ− φ(2)
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11.4 L2 estimates

L2 estimate for ∂ZI
(
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(2)
2 − g̃2

)
with I ≤ N − 15 We have
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where the terms in fµν are
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r
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)
1
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� the crossed terms: they do not occur in the region q < 0.
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We now estimate the semi-linear terms. For I ≤ N − 13, we have, thanks to (4.43)
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Therefore we can estimate, for I + J ≤ N − 15 in the region q < 0∥∥∥∥β1w
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where we have used the wave coordinate condition and the fact that, for q < 0
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For I ≤ N − 14 thanks to Proposition 8.6, we have
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thanks to (11.19)∥∥∥∥β1w
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Consequently, we have∥∥∥∥β1w
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The other terms are similar to estimate. Thanks to (11.24), (11.25) and (11.26), the energy
inequality yields for I ≤ N − 15
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L2 estimate for ∂ZI
(
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with I ≤ N − 14. We follow the same steps as in the previous

paragraph. First we still have∥∥∥∥β2w
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We estimate the second terms for I + J ≤ N − 14∥∥∥∥β2w
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where we have used the wave coordinate condition and the fact that

β2w
′
2(q)

1
2 =

1

(1 + |q|)1+2κ+µ
≥ 1

(1 + |q|)
5
4
−2ρ+2κ−σ

.

The other terms are similar to estimate than for I ≤ N − 15. The energy inequality yields for
I ≤ N − 14
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L2 estimates for ∂ZI
(
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)
with I ≤ N − 6. We estimate for I + J ≤ N − 6, J ≤ N − 7,∥∥∥∥β2w
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The case J ≤ N−6
2 can be treated as in Section 10.2.
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The case I ≤ N−6
2 can be treated similarly than in Section 10.2. The weighted energy estimate

yields
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Consequently, since the initial data for φ
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L2 estimates for ∂ZI
(
h(2) − h

)
with I ≤ N − 6. We write the equation satis�ed by h(2) − h
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The other terms can be treated as in the proof of Proposition 10.11. The energy inequality yields
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L2 estimates for ∂ZI
(
g̃(2) − g̃

)
with I ≤ N − 6. As usual we estimate the following contribu-

tions

� the terms coming from the non commutation of the null decomposition with the wave oper-
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We estimate the �rst term. We recall that we restrict all the quantities to q < 0.∥∥∥∥β2w
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The other terms are treated as in the proof of Proposition 10.12. We have proved, when we restrict
ourselves to q < 0

d

dt

∥∥∥∥β2w
1
2
2 ∂Z

I
(
g̃

(2)
3 − g̃3

)∥∥∥∥2

L2

+
∥∥∥β2w

′
2(q)

1
2 ∂̄ZI

(
g̃

(2)
3 − g̃3

)∥∥∥2

L2

.

(
ε3

√
T (1 + t)1+σ

+
ε

(1 + t)
1
2

+σ

∥∥∥β2w
′
2(q)

1
2 ∂̄ZJ+1

(
g̃4 − g̃(2)

4

)∥∥∥
L2

+
1

(1 + t)
3
2

+σ

∥∥∥β2w
1
2∂ZI+1

(
h(2) − h

)∥∥∥
L2

)∥∥∥∥β2w
1
2
2 ∂Z

I
(
g̃

(2)
3 − g̃3

)∥∥∥∥
L2

.

(11.32)

97



L2 estimates for I ≤ N − 4 We can prove, following Section 10.1 that, since we do as if no
quantity was present for q > 0,
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L2

+
1

ε(1 + t)

∥∥∥∥β2w
1
2
3 ∂Z

I
(
k − k(2)

)∥∥∥∥2

L2

)
+
∥∥∥β2w

′
0(q)

1
2 ∂̄ZI

(
φ− φ(2)

)∥∥∥2

L2
+
∥∥∥β2w

′
2(q)

1
2 (q)′∂̄ZI

(
g̃4 − g̃(2)

4

)∥∥∥2

L2

+
1

ε(1 + t)

∥∥∥β2w
′
3(q)

1
2 ∂̄ZI

(
h− h(2)

)∥∥∥2

L2
+

1

ε(1 + t)

∥∥∥β2w
′
3(q)

1
2 ∂̄ZI

(
k − k(2)

)∥∥∥2

L2
.

.

√
ε

1 + t

(∥∥∥β2w
1
2∂ZI

(
φ− φ(2)

)∥∥∥2

L2
+

∥∥∥∥β2w
1
2
2 ∂Z

I
(
g̃4 − g̃(2)

4

)∥∥∥∥2

L2

+
1

ε(1 + t)

∥∥∥∥β2w
1
2
3 ∂Z

I
(
h− h(2)

)∥∥∥∥2

L2

+
1

ε(1 + t)

∥∥∥∥β2w
1
2
3 ∂Z

I
(
k − k(2)

)∥∥∥∥2

L2

)
+O

(
ε

9
2

T (1 + t)

)
(11.33)

11.5 Conclusion of the proof of Proposition 11.1

Estimate (11.18) gives us for I ≤ N − 8∣∣∣ZI (h0 − h(2)
0

)∣∣∣ ≤ Cε3

√
T
.

Estimate (11.22) gives us for I ≤ N − 18∣∣∣ZI (φ− φ(2)
)∣∣∣ ≤ Cε3

√
T (1 + s)

1
2 (1 + |q|)

1
2
−5ρ−2κ

.

Estimate (11.23) gives us for I ≤ N − 16∣∣∣ZI (φ− φ(2)
)∣∣∣ ≤ Cε3

√
T (1 + s)

1
2
−2ρ−2κ

.

Therefore, if Cε ≤ C0 we have imrpoved the L∞ estimates (11.5), (11.2) and (11.3). Estimate
(11.33) implies, following the proof of Proposition 10.2,∥∥∥β2w

1
2∂ZI

(
φ− φ(2)

)∥∥∥
L2

+

∥∥∥∥β2w
1
2
2 ∂Z

I
(
g̃3 − g̃(2)

3

)∥∥∥∥
L2

+
1√

ε(1 + t)

∥∥∥∥β2w
1
2
3 ∂Z

I
(
h− h(2)

)∥∥∥∥
L2

+
1√

ε(1 + t)

∥∥∥∥β2w
1
2
3 ∂Z

I
(
k − k(2)

)∥∥∥∥
L2

≤ 1√
T

(
C0ε

2 + ε2
)

(1 + t)C
√
ε.

Therefore, if we had chosen C0 ≥ 2 and C
√
ε ≤ ρ we have imrpoved this estimate (11.13) and

(11.12). Moreover we have∥∥∥∥β2w
1
2
3 ∂Z

I
(
h− h(2)

)∥∥∥∥
L2

.
ε

5
2

√
T

(1 + t)
1
2

+C
√
ε.
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Estimate (11.33) also implies∫ t

0

1

(1 + t)σ

∥∥∥β2w
′
2(q)

1
2 ∂̄ZI

(
g̃4 − g̃(2)

4

)∥∥∥2

L2
.
ε4

T

and consequently, estimate (11.32), together with the bootstrap assumption (11.11) yields

d

dt

∥∥∥∥β2w
1
2
2 ∂Z

I
(
g̃

(2)
3 − g̃3

)∥∥∥∥2

L2

+
∥∥∥β2w

′
2(q)

1
2 ∂̄ZI

(
g̃

(2)
3 − g̃3

)∥∥∥2

L2

.
ε

9
2

T (1 + t)1+σ
+

ε

(1 + t)σ

∥∥∥∥(β2w
1
2
2 )′∂̄ZJ+1

(
g̃4 − g̃(2)

4

)∥∥∥∥2

L2

,

Therefore, when we integrate we obtain∥∥∥∥β2w
1
2
2 ∂Z

I
(
g̃

(2)
3 − g̃3

)∥∥∥∥2

L2

+

∫ t

0

∥∥∥∥(β2w
1
2
2

)′
∂̄ZI

(
g̃

(2)
3 − g̃3

)∥∥∥∥2

L2

.
C2

0ε
4

T
+ C2 ε

9
2

T
.

Therefore, for Cε
1
2 ≤ C0

2 , this, together with (11.31) and (11.30) improve the estimate (11.11). We
proceed in the same way to imrpove the remaining estimates, using (11.28) and (11.27). Conse-
quently, the solution (φ(2), g̃(2)) exists in [0, T ] and we have the following estimate for φ− φ(2)

|ZI(φ− φ(2))| ≤ Cε3

√
T
√

1 + s(1 + q)
1
2
−2κ−5ρ

, for I ≤ N − 20 (11.34)

‖α2w
1
2
0 ∂Z

I(φ− φ(2))‖ ≤ Cε3(1 + t)C
√
ε

√
T

, for I ≤ N − 4. (11.35)

We now go to the amelioration of the estimate for b̃. In view of the de�nition (11.1) of b̃(2) we
have for I ≤ N − 4.

∂Iθ

(
b̃(2)(θ)−Π

∫
ΣT,θ

(∂qφ
(2))2rdr

)

=∂IθΠ

∫
ΣT,θ

(
(∂qφ)2 − (∂qφ

(2))2
)
rdr

=
∑

I1+I2≤J
Π

∫
ΣT,θ

∂I1θ (∂qφ+ ∂qφ
(2))∂I2θ (∂qφ− ∂qφ(2))rdr.

We estimate, for I1 ≤ N
2∥∥∥∥∥

∫
ΣT,θ

∂I1θ (∂qφ+ ∂qφ
(2))∂I2θ (∂qφ− ∂qφ(2))rdr

∥∥∥∥∥
L2(S1)

.
∫

ΣT,θ

ε
√

1 + s(1 + |q|)
3
2
−4ρ

∥∥∥∂I2θ (∂qφ− ∂qφ(2))
∥∥∥
L2(S1)

rdr

.

(∫ ∞
0

ε2

(1 + s)(1 + |q|)3−8ρ−4κ
rdr

) 1
2 ∥∥∥β2∂

I2
θ (∂qφ− ∂qφ(2))

∥∥∥
L2
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Then the estimate (11.35), with the condition (1 + T )C
√
ε ≤ 1 yields for I ≤ N − 4∣∣∣∣∣∂Iθ

(
b̃(2)(θ)−Π

∫
ΣT,θ

(∂qφ
(2))2rdr

)∣∣∣∣∣
L2(S1)

.
ε4

√
T
. (11.36)

The case I2 ≤ N
2 can be treated similarly thanks to (11.34). To conclude, we estimate

∥∥∥∂Iθ b̃(2)
∥∥∥
L2(S2)

=

∥∥∥∥∥∥
∫ ∞

0

∑
I1+I2=I

∂q∂
I1
θ φ∂q∂

I2
θ φrdr

∥∥∥∥∥∥
L2(S1)

≤
∫ ∞

0

C0ε√
1 + s(1 + |q|)

3
2
−4ρ
‖∂q∂I2θ φ‖L2(S1)rdr

≤
(∫

C2
0ε

2

(1 + s)(1 + |q|)3−8ρ
rdr

) 1
2

‖∂q∂I2θ φ‖L2

≤ 2C2
0ε

2

where we have used again (1 + T )C
√
ε ≤ 1. This concludes the proof of Proposition 11.1, and the

proof of Theorem 1.12.

A Reduction of the Einstein equations

We recall the form of the Einstein equations in the presence of a space-like translational Killing
�eld. We follow here the exposition in [6]. A metric (4)g on R2 × R× R admitting ∂3 as a Killing
�eld can be written

(4)g = g̃ + e2γ(dx3 +Aαdx
α)2,

where g̃ is a Lorentzian metric on R1+2, γ is a scalar function on R1+2, A is a 1-form on R1+2 and
xα, α = 0, 1, 2, are the coordinates on R1+2. Since ∂3 is a Killing �eld, g, γ and A do not depend
on x3. The polarized case consists in choosing A = 0. Let (4)Rµν denote the Ricci tensor associated

to (4)g. R̃αβ and D̃ are respectively the Ricci tensor and the covariant derivative associated to g̃.
With this metric, the vacuum Einstein equations

(4)Rµν = 0, µ, ν = 0, 1, 2, 3

can be written in the basis (dxα, dx3 +Aαdx
α) (see [6] appendix VII)

0 =(4) Rαβ = R̃αβ − D̃α∂βγ − ∂αγ∂βγ, (A.1)

0 =(4) R33 = −e−2γ
(
g̃αβ∂αγ∂βγ + g̃αβD̃α∂βγ

)
, (A.2)

and the equation 0 =(4) Rα3 is automatically satis�ed. By doing the conformal change of metric
g̃ = e−2γg, (A.1) and (A.2), yield the following system,

�gγ = 0,

Rαβ = 2∂αγ∂βγ α, β = 0, 1, 2.

By setting φ =
√

2γ we obtain the system 1.1.
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B Construction of the initial data

Theorem 1.3 is a consequence of the following result on the constraint equations, proved in [11].
The method of solving is inspired from the conformal method in three dimension. We look for
space-like metrics ḡ of the form ḡ = e2λδ. We introduce the traceless part of K,

Hij = Kij −
1

2
τ ḡij ,

and the following rescaling

φ̇ =
eλ

N
∂0u, H̆ = e−λH, τ̆ = eλτ.

We also introduce the notation

Mθ =

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
, Nθ =

(
− sin(2θ) cos(2θ)
cos(2θ) sin(2θ)

)
.

Theorem B.1. Let 0 < δ < 1. Let φ̇2, |∇φ|2 ∈ HN−1
δ+2 and b̄ ∈WN,2(S1) such that∫

S1
b̄(θ) cos(θ)dθ =

∫
S1
b̄(θ) sin(θ)dθ = 0.

We note

ε2 =

∫
φ̇2 + |∇φ|2.

We assume
‖φ̇2‖HN−1

δ+2
+ ‖|∇φ|2‖HN−1

δ+2
+ ‖b̄‖WN,2 . ε2.

Let B ∈WN,2(S1). We assume
‖B‖WN,2 . ε4.

Let Ψ ∈ HN+1
δ+1 be such that

∫
Ψ = 2π. If ε > 0 is small enough, there exist α, ρ, η, A, J, c1, c2 in R,

a scalar function λ̃ ∈ HN+1
δ and a symmetric traceless tensor H̃ ∈ HN

δ+1 such that, if r, θ are the
polar coordinates centered in c1, c2, and if we note

λ = −αχ(r) ln(r) + λ̃,

H̆ = −(b̄(θ) + ρ cos(θ − η))
χ(r)

2r
Mθ + e−λ

χ(r)

r2

(
(J − (1− α)B(θ))Nθ −

B′(θ)

2
Mθ

)
+ H̃,

then λ, eλH̆ are solutions of the constraint equations with

τ̆ = (b̄(θ) + ρ cos(θ − η))
χ(r)

r
+ e−λB′(θ)

χ(r)

r2
+Aψ.
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Moreover we have the estimates

α =
1

4π

∫ (
φ̇2 + |∇φ|2

)
+O(ε4),

ρ cos(η) =
1

π

∫
φ̇∂1φ+O(ε4),

ρ sin(η) =
1

π

∫
φ̇∂2φ+O(ε4),

c1 = − 1

4π

∫
x1

(
φ̇2 + |∇φ|2

)
+O(ε4),

c2 = − 1

4π

∫
x2

(
φ̇2 + |∇φ|2

)
+O(ε4),

J = − 1

2π

∫
φ̇∂θφ+

ρ

α
(c2 cos(η)− c1 sin(η)) +O(ε4),

A = − 1

2π

∫
φ̇r∂rφ+

1

2π

(∫
χ′(r)rdr

)∫
b̄(θ)dθ +O(ε4),

and
‖λ̃‖HN+1

δ
+ ‖H̃‖HN

δ+1
. ε2.

We will use the notation
b(1) = ρ cos(θ − η) + b̄(θ). (B.1)

The end of this section is devoted to the proof of Theorem 1.3.

Lemma B.2. The second fundamental form of the space-time metric

ga = −dt2 − 2Jdtdθ + r−2α(dr2 + (r − b(1)(θ)rαt)2dθ2)− 2B′(θ)tdθ2 + 4(1− α)B(θ)
t

r
drdθ (B.2)

is given at t = 0 by

Kij = Hij +
1

2
(ga)ijτ,

with

τ = rα
b(1)(θ)

r
+ r2αB

′(θ)

r
,

H = −r−αb(1)(θ)
χ(r)

2r
Mθ + (J − (1− α)B(θ))

χ(r)

r2
Nθ −B′(θ)

χ(r)

2r2
Mθ.

Proof of Lemma B.2. The metric induced by ga on the space-like hypersurface t = 0 is r−2αδ. The
shift is given by βθ = −J and the lapse is given by N = 1. Therefore we calculate

Kij = − 1

2N
(∂tḡij − ∂iβj − ∂jβi).
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We infer

K11 =− 1

2

(
−

(
2r−αb(1)(θ)

r
+

2B′(θ)

r2

)
sin2(θ)− 4(1− α)B(θ)

r2
cos(θ) sin(θ) +

2J

r2
cos(θ) sin(θ)

)
,

K22 =− 1

2

(
−

(
2r−αb(1)(θ)

r
+

2B′(θ)

r2

)
cos2(θ) +

4(1− α)B(θ)

r2
cos(θ) sin(θ)− 2J

r2
cos(θ) sin(θ)

)
,

K12 =− 1

2

((
2r−αb(1)(θ)

r
+

2B′(θ)

r2

)
cos(θ) sin(θ) +

4(1− α)B(θ)

2r2
(cos2(θ)− sin2(θ))

− 2J

r2
(cos2(θ)− sin2(θ))

)
.

We calculate

τ = ḡijKij = rα
b(1)(θ)

r
+ r2αB

′(θ)

r2

so we obtain exactly

H = −r−αb(1)(θ)
χ(r)

2r
Mθ + (J − (1− α)B(θ))

χ(r)

r2
Nθ −B′(θ)

χ(r)

2r2
Mθ.

Lemma B.3. The metric ga, de�ned by (B.2) is isometric to gb + g(1) where at t = 0 we have

g(1) = O

(
1

r2

)
, ∂tg

(1) = O

(
1

r2

)
,

and gb is de�ned by (1.6), where

b(θ) =
b(1)(F (θ))

1− α− b(1)(F (θ))
, (B.3)

J(θ) = 2JF ′(θ), (B.4)

with F the inverse function of

θ 7→ θ +

∫ θ

0
(α− b(1)(θ′)dθ′;

provided the following relations hold

α = −
∫
b̄(θ)dθ, (B.5)

B(θ) =
Jb(1)(θ)

1− α
. (B.6)

Proof. During all the proof, the notation g ∼ g′ stands for g is isometric to g′+ g̃ where g̃ = O
(

1
r

)
and ∂tg̃ = O

(
1
r3

)
. In polar coordinate r, θ, this means neglecting the metric terms of the form

dr2

r2
,

dθdr

r
, dθ2,

tdr2

r3
,

tdθdr

r2
,

tdθ2

r
.
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We perform some changes of variable in gas. First of all we introduce r
′ such that

r′ =
r1−α

1− α
, dr′ = r−αdr.

The metric ga becomes

ga ∼ −dt2 − 2Jdtdθ + (dr)2 + (r(1− α)− b(1)(θ)t)2dθ2 − 2B′(θ)tdθ2 + 4B(θ)
t

r
drdθ,

where we keep writing r instead of r′. We now make the change of variable

θ = θ′ − J

(1− α)2r
, dθ = dθ′ +

J

(1− α)2r2
.

Since we will neglect the contributions to the metric decaying like 1
r2

we obtain

dθ2 ∼ (dθ′)2 + 2
J

(1− α)2r2
dθ′dr, b(1)(θ) ∼ b(θ′)− b′(θ′) J

r(1− α)2
.

We keep also writing θ instead of θ′. We infer

ga ∼− dt2 − 2J(dt− dr)dθ + dr2 + (r(1− α)− b(1)(θ)t)2dθ2

+

(
2
Jb′(θ)

(1− α)
− 2B′(θ)

)
tdθ2 +

(
−4b(1)(θ)

J

1− α
+ 4B(θ)

)
t

r
drdθ.

We choose

B(θ) =
Jb(1)(θ)

1− α
.

With this choice we obtain

ga ∼− dt2 − 2J(dt− dr)dθ + dr2 + (r(1− α)− b(1)(θ)t)2dθ2

∼− dt2 − 2J(dt− dr)dθ + dr2 + (r − (b(1)(θ) + α)r + b(1)(θ)(r − t))2dθ2.

We impose

α = −
∫
b(1)(θ)dθ = −

∫
b̄(θ)dθ.

Therefore we can �nd f(θ) such that

f ′(θ) = −(b(1)(θ) + α).

We perform the change of variable
θ′ = θ + f(θ).

We note F the inverse function of
θ 7→ θ + f(θ),

so that θ = F (θ′). Then ga becomes

ga ∼ −dt2 − 2JF ′(θ′)(dt− dr)dθ′ + dr2 +

(
r +

b(1)(F (θ′))

1− α− b(1)(F (θ′))
(r − t)

)2

d(θ′)2.

We set

b(θ′) =
b(1)(F (θ′))

1− α− b(1)(F (θ′))
,

J(θ′) = 2JF ′(θ′).

Let us note that J is at the same level of regularity than b.
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We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We consider the map

Φ : b̄ 7→ Πb,

where

� b̄ ∈WN,2 is such that∫
b̄ cos(θ)dθ =

∫
b̄ sin(θ)dθ = 0, α = −

∫
b̄(θ)dθ,

where α is given by Theorem B.1,

� b is given by formula (B.3), where b(1) = ρ cos(θ− η) + b̄, and ρ, η are given by Theorem B.1.

� Π is the projection

Π : W 2,N (S1)→ {u ∈W 2,N (S1),

∫
u =

∫
cos(θ)u =

∫
sin(θ)u = 0}.

It is easy to see that Φ is invertible for ε small enough. Therefore, for b̃ ∈W 2,N such that∫
b̃dθ =

∫
b̃ cos(θ)dθ =

∫
b̃ sin(θ)dθ = 0,

we apply Theorem B.1 to Φ−1(̃b). Thanks to Lemma B.2 and B.3 we can �nd (g0)ij ∈ HN+1
δ and

(K0)ij ∈ HN
δ+1 such that (gb)ij + (g0)ij and (Kb)ij + (K0)ij satisfy the constraint equations, where

we have noted Kb the second fundamental form associated to gb. We complete the initial data as
follow. We write our metric in the form g = gb + g̃. The initial data for g̃ are the following

� g̃ij is given by g̃ij = (g̃0)ij ,

� g̃00 and g̃0i are taken to be 01

� ∂tg̃ij is given by the relation ∂0gij = −2NKij and Kij = (Kb)ij + (K0)ij .

� ∂tg̃00 and ∂tg̃0i are chosen such that the generalized wave coordinate condition is satis�ed at
t = 0.

Let us describe the last point. The generalized wave coordinate condition can be written

gλβΓαλβ = Hα
b = (gb)

λβ(Γb)
α
λβ + Fα,

Therefore, if we write it for α = i we obtain a relation for ∂tg0i and if we write it for α = 0, we
obtain a relation for ∂tg00. However, if we write g = gb + g̃, the term

gλβΓαλβ − (gb)
λβ(Γb)

α
λβ

contains crossed terms of the form

g̃∂Ugb ∼ g̃
∂θb(θ)

r
.

which do not belong to HN
δ+1 because we are missing a derivative on b, since b ∈W 2,N . Therefore,

we will take Fα as de�ned in (1.9). With this choice, the generalized wave coordinate condition
imply that ∂tg̃00 and ∂tg̃0i are given by a sum of terms the form

K0, ∇g0, gbK0, gb∇g0,
χ(r)gb
r

g0.

With this choice, ∂tg̃0i and ∂tg̃00 belong to HN
δ+1.

1The lapse ans shift are given by gb: we have N = 1 and βr = 0 and βθ = −J .
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C The generalised wave coordinates

In a coordinate system, the Ricci tensor is given by

Rµν = ∂αΓαµν − ∂µΓααν + ΓαµνΓλαλ − ΓαµλΓλνα, (C.1)

where the Γλαβ are the Christo�el symbols given by

Γλαβ =
1

2
gλρ (∂αgρβ + ∂βgρα − ∂ρgαβ) . (C.2)

Rµν is an operator of order two for g. In order to single out the hyperbolic part, we will write

Hα = gλβΓαλβ, (C.3)

which can also be written

Hα = −∂λgλα −
1

2
gλµ∂αgλµ.

We compute Rµν in terms of g and H.

Rµν =
1

2
∂α (gαρ(∂µgρν + ∂νgρµ − ∂ρgµν))− 1

2
∂µ (gαρ(∂νgρα + ∂αgρν − ∂ρgνα))

+
1

4
gαρgλβ(∂µgρν + ∂νgρµ − ∂ρgµν)(∂λgβα + ∂αgβλ − ∂βgαλ)

− 1

4
gαρgλβ(∂νgρλ + ∂λgρν − ∂ρgνλ)(∂µgαβ + ∂αgβµ − ∂βgαµ),

Rµν = −1

2
gαρ∂α∂ρgµν +

1

2
Hρ∂ρgµν +

1

2
(gµρ∂νH

ρ + gνρ∂µH
ρ) +

1

2
Pµν(g)(∂g, ∂g), (C.4)

with

Pµν(g)(∂g, ∂g) =
1

2
gαρgβσ

(
∂µgρσ∂αgβν + ∂νgρσ∂αgβµ − ∂βgµρ∂αgνσ −

1

2
∂µgαβ∂νgρσ

)
+

1

2
gαβgλρ∂αgνρ∂βgµρ

(C.5)

Proposition C.1. If the coupled system of equations{
−1

2g
αρ∂α∂ρgµν + 1

2F
ρ∂ρgµν + 1

2 (gµρ∂νF
ρ + gνρ∂µF

ρ) + 1
2Pµν(g)(∂g, ∂g) = ∂µφ∂νφ

gαρ∂α∂ρφ− F ρ∂ρφ = 0

with F a function which may depend on φ, g, is satis�ed on a time interval [0, T ] with T > 0, if
the initial induced Riemannian metric and second fundamental form (ḡ,K) satisfy the constraint
equations, and if the initial compatibility condition

Fα|t=0 = Hα|t=0, (C.6)

is satis�ed, then for all time, the equations (1.1) are satis�ed on [0, T ], together with the wave
coordinate condition

Fα = Hα.
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Proof. We use the twice contracted Bianchi Identity

Dµ

(
Rµν −

1

2
Rgµν

)
= 0.

with H de�ned by (C.3). Since in [0, T ], we have

−1

2
gαρ∂α∂ρgµν +

1

2
F ρ∂ρgµν +

1

2
(gµρ∂νF

ρ + gνρ∂µF
ρ) + Pµν(g)(∂g, ∂g) = ∂µφ∂νφ.

Thanks to (C.4) we obtain

1

2
(F ρ −Hρ)∂ρgµν +

1

2
(gµρ∂ν(F ρ −Hρ) + gνρ∂µ(F ρ −Hρ)) = ∂µφ∂νφ−Rµν .

Consequently, since Dµ
(
Rµν − 1

2Rgµν
)

= 0 and Dµ
(
∂µφ∂νφ− 1

2gµν∂
αφ∂αφ

)
= 0 and we obtain

the following equation on F ρ −Hρ

0 =Dµ

(
1

2
(gµρ∂ν(F ρ −Hρ) + gνρ∂µ(F ρ −Hρ))− 1

4
gµνg

αβ (gαρ∂β(F ρ −Hρ) + gαρ∂β(F ρ −Hρ))

+
1

2

(
∂ρgµν −

1

2
gαβ∂ρgαβ

)
(Fα −Hα)

)
Multiplying by gνα we obtain

�g(F
α −Hα) +Bα,β

ρ ∂β(F ρ −Hρ) + Cαρ (F ρ −Hρ) = 0,

with Bα,β
ρ , Cαρ coe�cients depending on g, φ, well de�ned in [0, T ]. This is an equation in hyperbolic

form, therefore if the initial data (Fα −Hα)|t=0 and ∂t(F
α −Hα)|t=0 are zero, then the solution

is identically zero on [0, T ]. Since we assume (C.6), we only have to check

∂t(F
α −Hα)|t=0 = 0.

Since the constraint equations are satis�ed, we have

R0i = ∂0φ∂iφ,

R00 −
1

2
g00R = ∂0φ∂0φ−

1

2
g00∂

µφ∂µφ.

Therefore, using once again equation (C.4) and (C.6) we obtain

0 =giρ∂t(F
ρ −Hρ),

0 =2g0ρ∂t(F
ρ −Hρ)− g00∂t(F

0 −H0).

This system can be written as g00 2g01 2g02

g01 g11 g12

g02 g12 g22

 ∂t(F
0 −H0)

∂t(F
1 −H1)

∂t(F
2 −H2)

 = 0.

It is invertible so ∂t(F
ρ − Hρ)t=0 = 0. Therefore in [0, T ] we have F ρ = Hρ and equation (C.4)

implies that the Einstein Equations (1.1) are satis�ed.
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D The L∞ − L∞ estimate

For the sake of completeness, we give here the proof of the L∞−L∞ estimate by Kubo and Kubota
(see [16]).

Proposition D.1. Let u be a solution of{
�u = F,
(u, ∂tu)|t=0 = (0, 0),

The L∞ − L∞ estimate reads : for µ > 3
2 , ν > 1

|u(t, x)|(1 + t+ |x|)
1
2 ≤ C(µ, ν)Mµ,ν(f)(1 + |t− |x|||)−

1
2

+[2−µ]+ ,

where
Mµ,ν(f) = sup(1 + |y|+ s)µ(1 + |s− |y||)ν |F (y, s)|,

and we have the convention A[0]+ = ln(A).

Proof. We write the solution u of {
�u = F,
(u, ∂tu)|t=0 = (0, 0),

with the representation formula

u(x, t) =

∫ t

0

∫
|y|≤t−s

1√
(t− s)2 − |y|2

F (s, x− y)dyds.

With Mµ,ν(f) = sup(1 + |y|+ s)µ(1 + |s− |y||)ν |F (y, s)|, we can write

|u(x, t)| ≤Mµ,ν(f)

∫ t

0

∫
|y|≤t−s

1√
(t− s)2 − |y|2

1

(1 + |x− y|+ s)µ(1 + |s− |x− y||)ν
dyds.

It is therefore su�cient to study the quantity

I(x, t) =

∫ t

0

∫
|y|≤t−s

1√
(t− s)2 − |y|2

1

(1 + |x− y|+ s)µ(1 + |s− |x− y||)ν
dyds.

We begin with a lemma on spherical means.

Lemma D.2. Let b ∈ C0(R2). We have the following equality for ρ ≥ 0∫
|ω|=1

b(|x+ ρω|)dω = 4

∫ ρ+r

|ρ−r|
λb(λ)h(λ, ρ, r)dλ,

where we note r = |x| and

h(λ, ρ, r) =
(
λ2 − (ρ− r)2

)− 1
2
(
(ρ+ r)2 − λ2

)− 1
2

=
(
(λ+ r)2 − ρ2

)− 1
2
(
ρ2 − (λ− r)2

)− 1
2 .
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Proof. By eventually rotating the axis, we can assume x = (r, 0) in (x1, x2) coordinates. Therefore
we have∫
|ω|=1

b(|x+ ρω|)dω =

∫ 2π

0
b
(

(r2 + ρ2 + 2rρ cos(θ))
1
2

)
dθ = 2

∫ π

0
b
(

(r2 + ρ2 + 2rρ cos(θ))
1
2

)
dθ.

We make the change of variable λ = (r2 + ρ2 + 2ρr cos(θ))
1
2 , for θ ∈ [0, π[. Then we have

dλ = − 1

λ
ρr sin(θ)dθ

= − 1

λ
ρr

(
1− (λ2 − r2 − ρ2)2

(2ρr)2

) 1
2

dθ

= − 1

2λ

(
(2ρr)2 − (λ2 − r2 − ρ2)2

) 1
2 dθ

= − 1

2λ

(
2ρr − λ2 + r2 + ρ2

) 1
2
(
2ρr + λ2 − ρ2 − r2

) 1
2 dθ.

We have therefore dθ = −2λh(λ, ρ, r)dλ, which concludes the proof of Lemma D.2.

We use Lemma D.2 to calculate I

I(x, t) =

∫ t

0

∫
ρ≤t−s

ρ√
(t− s)2 − ρ2

∫
|ω|=1

1

(1 + |x+ ρω|+ s)µ(1 + |s− |x+ ρω||)ν
dωdρds

= 4

∫ t

0

∫
ρ≤t−s

ρ√
(t− s)2 − ρ2

∫ ρ+r

|ρ−r|

h(λ, ρ, r)

(1 + λ+ s)µ(1 + |s− λ|)ν
λdλdρds.

We exchange the integration in ρ with the integration in λ, noticing that

11|ρ−r|≤λ≤ρ+r = 11|λ−r|≤ρ≤λ+r,

and we make the decomposition I = I1 + I2, separating the region λ+ r ≤ t− s from λ+ r ≥ t− s.

I1 =

∫ t−r

0

∫ t−s−r

λ=0

λ

z(s, λ)

∫ λ+r

|λ−r|

h(λ, ρ, r)√
(t− s)2 − ρ2

ρdρdλds,

I2 =

∫ t

0

∫ t−s+r

λ=max(t−s−r,0)

λ

z(s, λ)

∫ t−s

|λ−r|

h(λ, ρ, r)√
(t− s)2 − ρ2

ρdρdλds,

where z(s, λ) = (1 + λ+ s)µ(1 + |s− λ|)ν .

D.1 Estimate of I1

We write∫ λ+r

|λ−r|

h(λ, ρ, r)√
(t− s)2 − ρ2

ρdρ =

∫ λ+r

|λ−r|

1√
(t− s)2 − ρ2

√
(λ+ r)2 − ρ2

√
ρ2 − (λ− r)2

ρdρ

=
1

2

∫ b

a

du√
d− u

√
b− u

√
u− a

,

with a = (λ − r)2, b = (λ + r)2 and d = (t − s)2. Recall that in the integration region of I1, we
have λ+ r ≤ t− s so b ≤ d. This yields∫ b

a

du√
d− u

√
b− u

√
u− a

≤ 1√
d− b

∫ b

a

du√
b− u

√
u− a

≤ 1√
d− b

∫ 1

0

dv
√
v
√

1− v
≤ π√

d− b
.

(D.1)
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Consequently we have

I1 .
∫ t−r

0

∫ t−s−r

0

λ√
(t− s)2 − (λ+ r)2(1 + λ+ s)µ(1 + |s− λ|)ν

dλds.

We make the change of variable α = s− λ, β = λ+ s. We obtain

I1 .

(∫ t−r

0

βdβ√
t− r − β(1 + β)µ

)(∫ t−r

r−t

dα√
t+ r − α(1 + |α|)ν

)
.

We estimate the �rst factor. We note that if t − r ≤ 1, this factor is bounded. We assume
therefore that t− r ≥ 1.∫ t−r

0

βdβ√
t− r − β(1 + β)µ

=

∫ t−r
2

0

βdβ√
t− r − β(1 + β)µ

+

∫ t−r

t−r
2

βdβ√
t− r − β(1 + β)µ

.
1√
t− r

∫ t−r
2

0

βdβ

(1 + β)µ
+ (t− r)1−µ

∫ t−r

t−r
2

dβ√
t− r − β

.
(t− r)[2−µ]+
√
t− r

.

We estimate the second factor∫ t−r

r−t

dα√
t+ r − α(1 + |α|)ν

=

∫ min( t+r
2
,t−r)

r−t

dα√
t+ r − α(1 + |α|)ν

+

∫ t−r

min( t+r
2
,t−r)

dα√
t+ r − α(1 + |α|)ν

.
1√
t+ r

∫ min( t+r
2
,t−r)

r−t

dα

(1 + |α|)ν
+

1

(1 + t+ r)ν

∫ t−r

min( t+r
2
,t−r)

dα√
t+ r − α

.
1√
t+ r

,

where we have used in the last inequality the fact that ν > 1. We have proved

I1 .
(1 + |t− r|)[2−µ]+

√
1 + t+ r

√
|t− r|

.

D.2 Estimate of I2

As in the estimate of I1, we write∫ t−s

|λ−r|

h(λ, ρ, r)√
(t− s)2 − ρ2

ρdρ =
1

2

∫ d

a

du√
d− u

√
b− u

√
u− a

,

with a = (λ − r)2, b = (λ + r)2 and d = (t − s)2. In the region λ + r ≥ t − s, we have b ≥ d,
therefore as for (D.1) we get

1

2

∫ d

a

du√
d− u

√
b− u

√
u− a

.
1√
b− d

∫ d

a

du√
d− u

√
u− a

and so ∫ t−s

|λ−r|

h(λ, ρ, r)√
(t− s)2 − ρ2

ρdρ .
1√

(λ+ r)2 − (t− s)2
.
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Therefore we have

I2 .
∫ t

0

∫ t−s+r

λ=max(t−s−r,0)

λ√
(λ+ r)2 − (t− s)2(1 + λ+ s)µ(1 + |s− λ|)ν

dλds.

We make the same change of variable α = s− λ, β = λ+ s. We obtain

I2 .

(∫ t+r

max(0,t−r)

βdβ√
β − (t− r)(1 + β)µ

)(∫ t

−r−t

dα√
t+ r − α(1 + |α|)ν

)
.

We estimate the �rst factor. We �rst assume t− r > 0.∫ t+r

t−r

βdβ√
β − (t− r)(1 + β)µ

.
∫ 2r

0

(ρ+ 1 + t− r)1−µ
√
ρ

dρ

. (1 + |t− r|)
3
2
−µ
∫ 2r

1+t−r

0

(1 + u)1−µ
√
u

du

. (1 + |t− r|)
3
2
−µ,

where we have made consecutively the changes of variable ρ = β − |t − r| and u = ρ
1+|t−r| , and

where we use in the last inequality the fact that (1+u)1−µ√
u

is integrable.

We now assume t− r < −1. Then∫ t+r

0

βdβ√
β + |t− r|(1 + β)µ

. |t− r|
3
2

∫ t+r
|t−r|

0

ρ√
1 + ρ(1 + |t− r|ρ)µ

dρ

. (1 + |t− r|)
3
2
−µ
∫ t+r
|t−r|

0

ρ
√
ρ
(

1
|t−r| + ρ

)µdρ
. (1 + |t− r|)−

1
2

+[2−µ]+ ,

where we have made the change of variable ρ = β
|t−r| , and also used the fact that µ > 3

2 .
We estimate the second factor∫ t

−r−t

dα√
t+ r − α(1 + |α|)ν

.
∫ min(t, t+r

2
)

−r−t

dα√
t+ r − α(1 + |α|)ν

+

∫ t

min(t, t+r
2

)

dα√
t+ r − α(1 + |α|)ν

.
1√
t+ r

∫ min(t, t+r
2

)

−r−t

dα

(1 + |α|)ν
+

1

(1 + t+ r)ν

∫ t

min(t, t+r
2

)

dα√
t+ r − α

.
1√
t+ r

,

where we have used the fact that ν > 1. We have proved therefore that

I2 .
(1 + |t− r|)−

1
2

+[2−µ]+

√
1 + t+ r

,

so

I ≤ I1 + I2 .
(1 + |t− r|)[2−µ]+

√
1 + t+ r

√
1 + |t− r|

The proof of the L∞ − L∞ estimate is now complete.
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E Hardy inequality with weight

Proposition E.1. Let α < 1 and β > 1. We have, with q = r − t,∫
u2f(q)rdrdθ ≤ C(α, ρ)

∫
(∂ru)2g(q)rdrdθ

where

f(q) = (1 + |q|)β−2, q > 0

= (1 + |q|)α−2, q < 0

g(q) = (1 + |q|)β, q > 0

= (1 + |q|)α, q < 0

Proof. We look �rst at the region r > t. We can assume, by a density argument that u is compactly
supported. We calculate

∂r

(
r(1 + r − t)β−1

)
= (1+r− t)β−1 +(β−1)r(1+r− t)β−2 = r(1+r− t)β−2

(
1 + r − t

r
+ β − 1

)
We want to �nd c > 0 such that

1 + r − t
r

+ β − 1 > c.

This condition is satis�ed if
t < 1 + r(β − c)

which is the case if β − c > 1. Since β > 1 we can �nd such a c > 0. Therefore∫ ∞
t

∫ 2π

0
u2(1 + r − t)β−2rdrdθ

≤1

c

∫ ∞
t

∫ 2π

0
u2∂r

(
r(1 + r − t)β−1

)
drdθ

≤1

c

(
−
∫ ∞
t

∫ 2π

0
(∂ru

2)(1 + r − t)β−1rdrdθ +

[∫ 2π

0
u2(r, θ)(1 + r − t)β−1rdθ

]∞
t

)
.

Since u is compactly supported,[∫ 2π

0
u2(r, θ)(1 + r − t)β−1rdθ

]∞
t

≤ 0

therefore ∫ ∞
t

∫ 2π

0
u2(1 + r − t)β−2rdrdθ

≤2

c

∫ ∞
t

∫ 2π

0
|u∂ru|(1 + r − t)β−1rdrdθ

≤2

c

(∫ ∞
t

∫ 2π

0
u2(1 + r − t)β−2rdrdθ

) 1
2
(∫ ∞

t

∫ 2π

0
(∂ru)2(1 + r − t)βrdrdθ

) 1
2

We have proved∫ ∞
t

∫ 2π

0
u2(1 + r − t)β−2rdrdθ ≤ C(α)

∫ ∞
t

∫ 2π

0
(∂ru)2(1 + r − t)βrdrdθ. (E.1)
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We now look at the region r < t. We calculate

∂r
(
r(1 + t− r)α−1

)
= (1 + t− r)α−1 + (1− α)r(1 + t− r)α−2.

Therefore ∫ t

0

∫ 2π

0
u2(1 + t− r)α−2rdrdθ

≤ 1

1− α

∫ t

0

∫ 2π

0
u2∂r

(
r(1 + t− r)α−1

)
drdθ

≤ 1

1− α

(∫ t

0

∫ 2π

0
−
(
∂ru

2
)

(1 + t− r)α−1rdrdθ +

[∫ 2π

0
u2(1 + t− r)−ρr

]t
0

)

≤ 1

1− α

(
2

∫ t

0

∫ 2π

0
|u∂ru|(1 + t− r)α−1rdrdθ + t

∫ 2π

0
u2(t, θ)dθ

)
.

We have ∫ t

0

∫ 2π

0
|u∂ru|(1 + t− r)α−1rdrdθ

≤
(∫ t

0

∫ 2π

0
u2(1 + t− r)α−2rdrdθ

) 1
2
(∫ t

0

∫ 2π

0
(∂ru)2(1 + t− r)αrdrdθ

) 1
2

and

t

∫ 2π

0
u2(t, θ)dθ ≤ t

∫ ∞
t

∫ 2π

0
|∂r(u2)|drdθ

≤ 2t

∫ ∞
t

∫ 2π

0
|u∂ru|

(1 + t− r)
β
2

(1 + t− r)
β
2

r

t
drdθ

≤ 2

(∫ ∞
t

∫ 2π

0
u2(1 + r − t)−βrdrdθ

) 1
2
(∫ ∞

t

∫ 2π

0
(∂ru)2(1 + r − t)βrdrdθ

) 1
2

.

Since β > 1, we have β > 2− β. Thanks to the estimate (E.1) in the region r > t, we obtain∫ t

0

∫ 2π

0
u2(1 + t− r)α−2rdrdθ

≤C(ρ, α)

(∫ t

0

∫ 2π

0
(∂ru)2(1 + t− r)αrdrdθ +

∫ ∞
t

∫ 2π

0
(∂ru)2(1 + r − t)βrdrdθ

)
This concludes the proof of Proposition E.1.

F Weighted Klainerman-Sobolev inequality

Proposition F.1. We have the inequality

|f(t, x)v
1
2 (|x| − t)| . 1√

1 + t+ |x|
√

1 + ||x| − t|

∑
I≤2

‖v
1
2 (.− t)ZIf‖L2 .

Proof. We introduce the decomposition

f = f1 + f2,
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where
f1 = χ

(r
t

)
f, f2 =

(
1− χ

(r
t

))
f,

and χ is a cut-o� such that χ(ρ) = 1 for ρ ≤ 1
2 and χ(ρ) = 0 for ρ ≥ 2

3 . Since the quantities Z
Iχ

are bounded, it is su�cient to prove the proposition for f1 and f2.
For f1, we introduce the function ft = f1(t, tx). The Sobolev embedding H2 ↪→ L∞ gives

‖ft‖L∞ .
∑
|α|≤2

‖∇αft‖L2

.
1

t

∑
|α|≤2

‖tα∇αf1‖L2 .

In the region r ≤ 2t
3 we have −t ≤ r − t ≤ − t

3 , therefore

|t∇φ| . |(r − t)∇φ| .
∑
Z∈Z
|Zφ|.

Moreover, in this region v(|x| − t) ∼ v(t), so

|f1(t, x)v
1
2 (|x| − t)| . 1

t

∑
I≤2

‖v
1
2 (t)ZIf1‖L2

.
1√

1 + t+ |x|
√

1 + ||x| − t|

∑
I≤2

‖v
1
2 (.− t)ZIf1‖L2 .

For f2 we write

(1 + t+ r)(1 + |t− r|)v(r − t)(f2(t, r, θ))2

.
∫ r

t
2

∂ρ
(
(1 + t+ ρ)(1 + |t− ρ|)v(ρ− t)f2(t, ρ, θ)2

)
dρ

.
∑

0≤α≤1

∫ r

t
2

∫ 2π

0
|∂αθ ∂ρ

(
(1 + t+ ρ)(1 + |t− ρ|)v(ρ− t)f2(t, ρ, θ)2

)
|dρdθ

where we have used the Sobolev embeddingW 1,1(S1) ↪→ L∞(S1) . We estimate the terms appearing
when we distribute the derivation ∂ρ from left to right.

|(1 + |t− ρ|)v(ρ− t)∂αθ f2
2 | . ρ|v(ρ− t)∂αθ f2

2 |,
|(1 + t+ ρ)v(ρ− t)∂αθ f2

2 | . ρ|v(ρ− t)∂αθ f2
2 |,

|(1 + t+ ρ)(1 + |t− ρ|)v′(ρ− t)∂αθ f2
2 | . ρ|(1 + |t− ρ|)v′(ρ− t)||∂αθ f2

2 | . ρ|v(ρ− t)∂αθ f2
2 |,

|(1 + t+ ρ)v(ρ− t)(1 + |t− ρ|)∂ρ∂αθ f2
2 | . ρ|v(ρ− t)|

∑
Z∈Z
|Z∂αθ f2

2 |,

where we have used in the third inequality |sv′(s)| ≤ v(s). Therefore

|(1 + t+ r)(1 + |t− r|)v(r − t)(f2(t, r, θ))2| .
∑

0≤α≤1

∑
Z∈Z
‖v

1
2∂αθ Zf2‖2L2 .

∑
I≤2

‖v
1
2ZIf2‖2L2 .

This concludes the proof of Proposition F.1.
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