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Abstract

In this paper, we prove the nonlinear stability in exponential time of Minkowki space-time
with a translation space-like Killing field. In the presence of such a symmetry, the 3 + 1
vacuum Einstein equations reduce to the 2 + 1 Einstein equations with a scalar field. We
work in generalised wave coordinates. In this gauge the Einstein equations can be written as a

system of quasilinear quadratic wave equations. The main difficulty in this paper is due to the

decay in - of free solutions to the wave equation in 2 dimensions, which is weaker than in 3

Vit
dimensions. As in [21], we have to rely on the particular structure of the Einstein equations in

wave coordinates. We also have to carefully choose the behaviour of our metric in the exterior
region to enforce convergence to Minkowski space-time at time-like infinity.

1 Introduction

In this paper, we address the quasi stability of the Minkowski solution to the Einstein vacuum
equations with a translation space-like Killing field. In the presence of a translation space-like
Killing field, the 3 + 1 Einstein vacuum equations reduces to the following system in the polarized

case (see Appendix A)
{ Hgo =0, (1.1)

R,ul/ = au¢au¢

This system has been studied by Choquet-Bruhat and Moncrief in [7] (see also [6]) in the case
of a space-time of the form ¥ x S' x R, where ¥ is a compact two dimensional manifold of genus
G > 2, and R is the time axis, with a space-time metric independent of the coordinate on S'. They
prove the existence of global solutions corresponding to the perturbations of a particular expanding
universe. This symmetry has also been studied in [3], with an additional rotation symmetry.

In this paper, we consider a space-time of the form R? xR, 3 x Ry, for which 95 is a Killing vector
field. Minkowski space-time can be seen as a trivial solution of Einstein vacuum equations with
this symmetry. The question we address in this paper is the stability of the Minkowski solution in
this framework.

In the 341 vacuum case, the stability of Minkowski space-time has been proven in the celebrated
work of Christodoulou and Klainerman in |8| in the maximal foliation. It has then been proven
by Lindblad and Rodnianski using the wave coordinates in [21]. Their proof extends also to the
Einstein equations coupled to a scalar field. In this work we will use wave coordinates.

1.1 Einstein equations in wave coordinates

Wave coordinates (z) are required to satisfy Oyz® = 0. In these coordinates (1.1) reduces to the
following system of quasilinear wave equations



Lol (12)
Dgg/w = _au¢au¢ + P;w(a% 89)»

where P, is a quadratic form. To understand the difficulty, let us first recall known results in 341
dimensions. In 3 + 1 dimensions, a semi linear system of wave equations of the form

Ou® = PH(0u?, du”)

is critical in the sense that if there isn’t enough structure, the solutions might blow up in finite
time (see the counter examples by John [13]). However, if the right-hand side satisfies the null
condition, introduced by Klainerman in [14], the system admits global solutions. This condition
requires that P’ be linear combinations of the following forms

Qo(u,v) = Oudw — Vu.Vu, Qup(u,v) = 0qudgv — 0qvdgu.

In three dimensions, the Einstein equations written in wave coordinates do not satisfy the null
condition. However, this is not a necessary condition to obtain global existence. An example is

provided by the system
{ Do =0, (1.3)

D¢z = (9p¢1)*.
The non-linearity does not have the null structure, but thanks to the decoupling there is nevertheless
global existence. In [20], Lindblad and Rodnianski showed that the non linear terms in the Einstein
equations in wave coordinates consist of a linear combination of null forms with an underlying
structure of the form (1.3). They used the wave condition to obtain better decay for some coefficients
of the metric. However the decay is slower than for the solution of the wave equation. An example
of a quasilinear scalar wave equation admitting global existence without the null condition, but
with a slower decay is also studied by Lindblad in [18] in the radial case, and by Alinhac in [2]
and Lindblad in [19] in the general case. In [20], Lindblad and Rodnianski introduced the notion
of weak-null structure, which gathers all these examples.
In 2 4+ 1 dimensions, to show global existence, one has to be careful with both quadratic and
cubic terms. Quasilinear scalar wave equations in 3 + 1 dimensions have been studied by Alinhac
in [1]. He shows global existence for a quasilinear equation of the form

Ou = g*?(0u)0adsu,

if the quadratic and cubic terms in the right-hand side satisfy the null condition. Global existence
for a semi-linear wave equation with the quadratic and cubic terms satisfying the null condition
has been shown by Godin in [9] using an algebraic trick to remove the quadratic terms, which does
however not extend to systems. The global existence in the case of systems of semi-linear wave
equations with the null structure has been shown by Hoshiga in [10]. It requires the use of L> — L*>
estimates for the inhomogeneous wave equations, introduced in [16].

To show the quasi global existence for our system in wave coordinates, it will therefore be
necessary to exhibit structure in the quadratic and cubic terms. However, as for the vacuum
Einstein equations in 3 + 1 dimension in wave coordinates, our system does not satisfy the null
structure. It will in particular be important to understand what happens for a system of the form
(1.3) in 2 4+ 1 dimensions. For such a system, standard estimates only give an L® bound for ¢s,
without decay. Moreover, the growth of the energy of ¢ is like v/%.

One can easily imagine that with more intricate a coupling than for (1.3), it will be very difficult
to prove stability without decay for ¢2. To obtain a more useful estimate, the idea will be to exploit
more precisely the fact that ¢ also satisfies a wave equation. To understand how this might help,
we will look at special solutions of the vacuum Einstein equations with a translation space-like
Killing field : Einstein-Rosen waves. These solutions have been discovered by Beck (see [4], and
also |3] and 5] for a mathematical description).



1.2 Einstein-Rosen waves

Einstein-Rosen waves are solutions of the vacuum Einstein equations with two space-like orthogonal
Killing fields : 03 and dy. The 3 + 1 metric can be written

g = 2?(dz®)? + 29 (—dt? + dr?) + re 2r2d6>.
The reduced equations

R, = 0,00,9,
Ug0 =0,

can be written in this setting

Ry = 8,2,a — 8,?(1 + %ara = 2(8t¢)2, (1.4)

Ry = —0% + 0% + %&a = 2(9,¢)?,

Rur = 000 = 20,60,
The equation for ¢ can be written, since ¢ is radial

Py =~ + 076+ 106 =0,
where ¢ is the metric
g = 2%(—dt® + dr?) + r*db>.

The equation for ¢ decouples from the equations for the metric. Therefore we can solve the flat wave

equation (¢ = 0, with initial data (¢, 0;¢)|i=0 = (o, $1) and then solve the Einstein equations,
which reduce to

Ora =1 ((0,0) + (910)?) (15)
with the boundary condition ¢|,—¢ = 0 in order to have a smooth solution. Since O¢ = 0, if (¢, ¢1)
have enough decay, we have the following decay estimate for ¢

1
VIFtrr(l+t—r))2

|06(r, )| S

Therefore since

R
0= /0 r ((0:6)? + (840)?) dr

we have
1
I <t
1
- F < >t

where the energy 00
E(¢) = /0 r ((0:0)* + (0e9)?) dr

does not depend on t. For r > t, we have a ~ E() and hence is only bounded. In particular, the
metric

e*rdr? 4 r*db?
exhibits an angle at space-like infinity, that is to say the circles of radius r have a perimeter growth
of e E(@ 27y instead of 2wr. However, in the interior, the decay we get is far better than the one
we could have found with standard estimates, if we had used (1.4) instead of (1.5).



1.3 The background metric

We would like to adapt the analysis of Section 1.2 in the case where we only assume one Killing
field (i.e. in the case where 03 is Killing but not dp). Assume that

R
0= /0 r ((0:6)? + (840)?) dr

is still an approximate solution of (1.3), which will appear to be true in Section 7. As in this case
¢ also depends on 6, we will have

Aim_a(t, R,0) = /Ooor ((0,0)* + (019)?) dr = b(t, ).

Note that we have to be careful with the dependence on 6. The metric
egb(e)(—dt2 + dr?) + r2de*

is no longer a Ricci flat metric when b depends on 6. Consequently it is not a good guess for the
behavior at infinity of our metric solution g. A good candidate should be Ricci flat in the region
r > t. Indeed if we considered compactly supported initial data for ¢, by finite speed propagation,
¢ should intuitively be supported in the region r < f. Consequently, the equation

R,uzz = ;L(bazzd)

implies that g should be Ricci flat for » > t. Consequently, we are yield to consider the following
family of space-time metrics

go = —dt* + dr® + (r + x(q)b(0)q)*d0> + J(0)x(q)dqde, (1.6)

where (r,0) are polar coordinates, ¢ = r —t¢ and x is a cut-off function such that x(¢) =0 for ¢ < 1
and x(q) = 1 for ¢ > 2. In the coordinates s = r + ¢, ¢, 6, a tedious calculation yields that all the
Ricci coeflicients are zero except

(Rl = b(6)97(ax(0)) | ax(@)x'(@)J(0)db =~ JO*x(9)X' (@) X' (@) (6)
YT 1 b(@)ax(e) | (r+b@)ax(@)® A +b(0)ax(9)?  (r +b(0)ax(9) @)
b33 (ax(a)) L0 ((J(b, v, J, J’)Ill<q<2>
= - el > 7
JOX'(@) 5 (C0b )<<
(oo = =55 o =0 (T %) 9

Therefore, the metrics g, are Ricci flat in the region r > t + 2. We will see in the next section that
they are compatible with the initial data for g given by the constraint equations.

This choice of background metric will force us to work in generalized wave coordinates, instead
of usual wave coordinates. Indeed, for the metric g, defined by (1.6), the coordinates (¢, z1, z2) are
not wave coordinates, not even asymptotically. The generalized wave coordinate condition reads,
for g of the form g =g, + ¢

ng% = Hy'
where H;' is defined by
Hy = HY + F?, (1.9)
where H'g“ is defined by
H' = g,"(Th)55 (1.10)

and F'“ is defined by the sum of the crossed terms of the form ﬁ%gb in g’\ﬁf‘i‘ﬁ — H{f. The reason
of this choice for F'* will be explained in next section, in the proof of Theorem 1.3.
The form of (1.1) in generalized wave coordinates is given by (2.1).



1.4 The initial data

In this section, we will explain how to choose the initial data for ¢ and g. We will note ¢, j the
space-like indices and «, 8 the space-time indices.
We will work in weighted Sobolev spaces.

Definition 1.1. Let m € N and § € R. The weighted Sobolev space H§*(R™) is the completion of

Cg° for the norm
5+18]

lullg = D 1L+ ]2) 2 Dul| 2.
[BI<m

The weighted Holder space C§* is the complete space of m-times continuously differentiable functions
with norm 54151

2
lulley = > 11+ [2[*) 2" DPul e

|B|I<m

Let 0 < aw < 1. The Hélder space Cg”'m 15 the the complete space of m-times continuously differ-
entiable functions with norm

om —om 1 2\2
lullgmse = lullop +  sup  1274@) 70wl + |22
' ey, |r—y|<1 |z — y]

We recall the Sobolev embedding with weights (see for example [6], Appendix I).

Proposition 1.2. Let s,m € N. We assume s > 1. Let f <5+ 1 and 0 < ao < min(l,s —1).
Then, we have the continuous embedding

H7T™(R?) C CFH(R?).
Let 0 < § < 1. The initial data (¢o, ¢1) for (¢, 9¢)|¢—o are freely given in H ™' x HN | with
0 < < 1. However the initial data for (gu., 0¢g,w) cannot be chosen arbitrarily.
e The induced metric and second fundamental form (g, K') must satisfy the constraint equations.
e The generalized wave coordinates condition must be satisfied at ¢ = 0.

Moreover, we want to prescribe the asymptotic behaviour for g : we want it to be asymptotic to
gv, where b(0) is arbitrarily prescribed, except for its components in 1, cos() and sin(6).
We recall the constraint equations. First we write the metric ¢ in the form

g = —N*(dt)? + gij(dz’ + §'dt)(da’ + B dt),

where the scalar function N is called the lapse, the vector field 8 is called the shift and g is a
Riemannian metric on R2.
We consider the initial space-like surface R? = {t = 0}. We will use the notation

8o =0, — Lg,

where Lz is the Lie derivative associated to the vector field 3. With this notation, we have the
following expression for the second fundamental form of R?

1
Kij = —Waogz‘gr
We will use the notation -
T =g Kj



for the mean curvature. We also introduce the Einstein tensor
1
Gaﬁ = Raﬁ - §Rgaﬁa

where R is the scalar curvature R = g8 R,p. The constraint equations are given by

G()j = N(@ﬂ - DZK”) = Goqb@jgb, j = 1,2, (111)
N? _ 1
Goo = (R~ |K[* +7°) = (906)* — 59009 0atDs0, (1.12)

where D and R are respectively the covariant derivative and the scalar curvature associated to g.
The following result, proven in Appendix B, gives us the initial data we need.

Theorem 1.3. Let 0 < § < 1. Let (¢o,¢1) € HY TH(R?) x HY, | (R?) and b(0) € WN2(SY) such
that
/'Ede = /’Ecos(e)da = /’Esin(e)de =0.

Ioll s + Noallgy, e [Bllwna S 2
If e > 0 is small enough, there exists by, b1, by € R x R x St, J € WN2(S!) and

(908)0s (9ap)1 € HY T x HY

such that the initial data for g given by

We assume

9= 9o+ 90, Org = Ogp + 91,
where gy 1s defined by (1.6) with
b(0) = bo + by cos(0) + by sin(0) + b(6),

are such that

e gij, Kij = L3gi; satisfy the constraint equations (1.11) and (1.12).

e the following generalized wave coordinates condition is satisfied at t = 0

g’\ﬂrf\éﬁ = gz;\ﬁ(rb)f\x,ﬁ + F,
where F'“ is the sum of all the crossed term of the form go%gb mn g’\ﬁfg\yﬁ — gé‘ﬁ(Fb)i‘ﬁ,

Moreover, we have the estimates

70wy + loll s + Ly, S €2

1 )
o= 4= [ (& + Vo) do+ O,
b1 = 1/&81@11‘ + 0(54),
T
by = i/(j)@gqﬁdx + O,

Let us make a remark on the choice of F'.

Remark 1.4. The initial data 0:goo and 9¢go; are constructed so that the generalized wave coordi-
nate condition is satisfied at t = 0. The choice of F is here to prevent terms of the form goy(gp)
in this gauge condition, and therefore allows us to have

91900, Oroi € Hyy 1.

Before stating our main result, we will recall some notations and basic tools in the study of
wave equations.



1.5 Some basic tools

Coordinates and frames

e We note 2* the standard space-time coordinates, with ¢ = 2°. We note (r,6) the polar space-
like coordinates, and s = t + 7, ¢ = r — t the null coordinates. The associated one-forms
are

ds =dt+dr, dq=dr—dt,

and the associated vector fields are

1 1
05 =50 +0), 9y =50~ ).

e We note dz the Lebesgue measure with respect to the space coordinates .

e We note 0 the space-time derivatives, V the space-like derivatives, and by O the derivatives
tangent to the future directed light-cone in Minkowski, that is to say 0y + 0, and %.

e We introduce the null frame L =9, + 9,, L=0;, — 0, U = %. In this frame, the Minkowski
metric takes the form

mLL = —2, muyy = 1, mrr = m@ =mrLy = mLU =0.

The collection 7 = {U, L} denotes the vector fields of the frame tangent to the light-cone,
and the collection V = {U, L, L} denotes the full null frame.

The flat wave equation Let ¢ be a solution of

D¢ = 07
{ (0, 0¢0)lt=0 = (¢0, 1) (1.13)

The following proposition establishes decay for the solutions of the 2 + 1 dimensional flat wave
equation.

Proposition 1.5 (Proposition 2.1 in [17]). Let > 5. We have the estimate

(1+ |t —r)-H+
VITtrry1+]t—r]

()| S Mpu(do, d1)

where

My(do, d1) = S;lﬂ@(l + D) ldo(@) + (1 + [y (o1 (y)] + [Veo(y)))

and where we used the notation Aled+ = Am@x(@0) ¢ o £ 0 gnd A+ =1n(A).

Minkowski vector fields We will rely in a crucial way on the Klainerman vector field method.
We introduce the following family of vector fields

Z = {80“ Qag = —xaag + .Tgaa, S =10 + 7‘87»} ,
where z, = magazﬁ . These vector fields satisfy the commutation property

[0, 2] = C(2)0,



where
C(Z)=0,Z#S, C(S)=2.

Moreover some easy calculations give

B S+ COS(Q)QOJ + Sin(@)Qog

at + 87’ -
t+r
16 i QLQ B COS(@)Q[]’Q — SiH(G)QOJ
r 0T e t ’
at . 8r _ S — COS(Q)S:OJ - sin(@)Qog.
T

With this calculations, and the commutations properties in the region —% <r<2t
[Z7 8] ~ 87 [Z7 5] ~ 57

we obtain

1
(14 lgh)*(1 +s)

where here and in the rest of the paper, Z/u denotes any product of I of the vector fields of Z.
Estimates (1.14) and Proposition 1.5 yield

Corollary 1.6. Let ¢ be a solution of (1.13). We have the estimate

8%l < |28 ), (1.14)

(1+ |t —r|)i—n+
(L4 t+7)T2(1 4 [t —r|)Ft2

00" ¢, )| < My (00, 61)

where

M (¢o, 1) = Sup (14 [y 1V do(y)| + (1 + [y (V21 (m)] + [V o (y)]).
yER?

Weighted energy estimate We consider a weight function w(q), where ¢ = r — ¢, such that
w'(¢q) > 0 and
(1+ |g[)t*#

for some 0 < pu < %
Proposition 1.7. We assume that U¢ = f. Then we have

2
30 [ wla) (@0 + Vo) do+ 5 [w'(@ (@@2 (%) ) da

< / w(q)| fOrd|d.

For the proof of Proposition 1.7, we refer to the proof of Proposition 9.1 which is the quasilinear
equivalent of Proposition 1.7.

Weighted Klainerman-Sobolev inequality The following proposition allows us to obtain L*°
estimates from the energy estimates. It is proved in Appendix F. The proof is inspired from the
corresponding 3 + 1 dimensional proposition (Proposition 14.1 in [21]).

Proposition 1.8. We denote by v any of our weight functions. We have the inequality

1 1 1
ft,)vz(jz] =) S (.= )2 f| 2.
(.20 (el 01 % e s 3 WA =02l




Weighted Hardy inequality If u is solution of Ou = f, the energy estimate allows us to
estimate the L2 norm of Ju. To estimate the L? norm of u, we will use a weighted Hardy inequality.

Proposition 1.9. Let a <1 and > 1. We have, with q=1r —1
1
v(q)?
f

N9 < 30, f| 12,

L2

where

v(g) = (1 +|q|)*, forq <0,
v(q) = (1 +|q|)?, for g > 0.

This is proven in Appendix E. The proof is inspired from the 3 + 1 dimensional analogue
(Lemma 13.1 in [21]).

L*>® — > estimate With the condition w'(q) > 0 for the energy inequality, we are not allowed
to take weights of the form (1 + |g|)®, with o > 0 in the region ¢ < 0. Therefore, the Klainerman-
Sobolev inequality cannot give us more than the estimate

1

VIitlgvi+s

in the region ¢ < 0, for a solution of u = f. However, we know that for suitable initial data, the
solution of the wave equation Cu = 0 satisfies

|Oul S

1 1
u] ol <

< , 0ul < : :
V1+lgVi+s (1+1g)2vI+s

To recover some of this decay we will use the following proposition

Proposition 1.10. Let u be a solution of

{ Ou = F,
(u, Oru)lt=0 = (0,0).

For p > %, v > 1 we have the following L>° — L™ estimate
[ut, 2)|(1 4+t + [@])2 < Cu,v) My (F) (1 + [t — af[[) 72+,

where
My (F) = sup(l + [y| + s)*(1 + [s — |y|[)" F(y, ),

and where we used the convention Al*l+ = Amax(@0) jf o £ 0 and A0+ = In(A).

This is proven in Appendix D. This inequality has been introduced by Kubo and Kubota in
[16].



An integration lemma The following lemma will be used many times in the proof of Theorem
1.12, to obtain estimates for u when we only have estimates for Ju.

Lemma 1.11. Let o, 8,7 € R with B < —1. We assume that the function u : R*T! — R satisfies
Oul S (14 ) (1+|g))*, for g <0, [0u] S (1+5)"(1+[g])” forq >0,

and fort =0
Jul S (1+7)7*7,

Then we have the following estimates
ul S (14 5) max(1, (1+[g))*™), for ¢ <0, |ul S (1+5)7(1+[g])’*" for ¢ >0.
Proof. We assume first ¢ > 0. We integrate the estimate
|Ogul < (1+ )7 (1+q])?,
from t = 0. We obtain, since 8 < —1, for ¢ > 0
Jul S (1+ ) (1 + g+
Consequently, we have, for ¢ = 0, |u| < (14 s)?. We now assume g < 0. We integrate
|0qul S (145)7(1 + gD,

from ¢ = 0. We obtain
Jul S (1+ ) max(1, (1 +[g))**).

This concludes the proof of Lemma 1.11. O

1.6 Main Result

We introduce an other cut-off function Y : Ry — Ry such that Y(p) =0 for p < % and p > 2 and
T =1 for % <p< % Theorem 1.12 is our main result, in which we prove stability of Minkowski
space-time with a translational symmetry in exponential time 7' < exp (ﬁ) where € > 0 is the
size of the small initial data.

Theorem 1.12. Let 0 < e < 1. Let 3 <5 < 1 and N > 40. Let (¢o, ¢1) € Hy TH(R?) x HY, | (R?).
We assume

6ol + ol <e.

Let T <exp(L). Lete < p< 0 < < 8. Ife is small enough, there exists b(6), J(0) € WN-2(S!
~ NG

and there ezists a global coordinate chart (t,x1,x2) such that, fort <T, there exists a solution (¢, g)
of (1.1) that we can write

r .
g=g+7T (*) (—g@dq2 + —gUerqu) +7
t 4 2
such that we have the estimates
3 T 1 3 T 1 3 T
|aowg (9)0Z7 ¢ || 2 + laows (¢)0Z gL llre + |a2ws (¢)0Z gru | 12
V14t V14t

<N

1
T flasws <q>azﬂc7uL2) < (1410,

10



with

(1+ g%, >0

wa(q) |
wa(q) = gz 4 <0,

ws(q) = (1 + \QD?’”‘S, q>0
ws(9) = 1+ (i 4 <0,

{ az(q) = (1+1q))™°, ¢>0
aQ(Q) = ]-7 q < 07

Moreover, for all p > 0, we have the L™ estimate, for |I| < % +2andr <t

60(/))
(L+t+7)2(1+[t—r[)z%
< eC(p)
(1+[t—r)2r
eC(p)
(14t+7r)2"

276 (x,1)| <

Z grul +1279] <

and we have the estimate for b

2

S 2

o)+ [ (@u0)rar|
X1
where we have used the notation

/ (0,0)*rdr = /Oo (8,0(T, 7, 6))* rdr. (1.15)
Sre 0

Comments on Theorem 1.12

o We consider perturbations of 3 + 1 dimensional Minkowski space-time with a translational
space-like Killing field. These perturbations are not asymptotically flat in 3 + 1 dimensions,
therefore the result of Theorem 1.12 does not follow from the stability of Minkowski space-
time by Christodoulou and Klainerman [8].

e As our gauge, we choose the generalized wave coordinates, which are picked such that the
generalized wave coordinates condition is satisfied by g,. Therefore, the method we use has
a lot in common with the method of Lindblad and Rodnianski in [21] where they proved
the stability of Minkowski space-time in harmonic gauge. It is an interesting problem to
investigate the stability of Minkowski with a translation symmetry using a strategy in the
spirit of [8] or [15].

e The function J(#), and the quantities

/ b(6)do, / b(0) cos(6)do, / b(0) sin(0)do

11



are imposed by the constraint equations for the initial data (see Theorem 1.3). The quantity
[ b(0)d0 is called deficit angle, and the vector ([ b(8) cos(6)df, [ b(0) sin(0)d0) is called linear
momentum. We can make a rapprochement, of these quantities with the ADM mass and linear
momentum. The remaining Fourier coefficients of b are chosen to ensure the convergence to
Minkowski in the direction of time-like infinity, and is an essential element in the proof of
the quasi stability. In the subsequent paper [12], it is shown that these remaining Fourier
coefficient correspond actually to a gauge choice. This remark is the key ingredient in [12] to
show the full stability.

e The logarithmic growth of ||w%(q)8ZNquLz, and the condition
b(O) ~ / (9,0)? rdr, (1.16)
1.0

give the estimate [0Vb| < €2(1 + T)“c. To avoid factors of the form (1 + 7)° in all our
estimate, we are forced to assume (1 4+ 7)“® < 1. This is the only place where we need
(14 T)% < 1, and this is what prevents us to prove the stability.

e The condition (1.16) is not necessary to control the metric in the exterior region r > ¢. For
this reason we believe that the stability holds in the exterir region, without the condition

T < exp (%)

As we said in the second comment, we use a method similar than Lindblad and Rodnianski
method in [21]. Let us list some of the similarities and differences with their method.

Similarities with [21]

e We use the vector field method. The vector fields we use are the Klainerman vector fields of
Minkowski space-time.

e We use the wave coordinate condition to obtain more decay on the coefficients gy of the
metric.

e We exhibit the structure corresponding to the model problem (1.3).

Differences with [21]

e The asymptotic behaviour given by the solutions of the constraint equations prevent us to
work in wave coordinates. Instead we work in generalised wave coordinates.

e In the exterior region, our solution does not converge to Minkowski, but to a family of Ricci
flat metrics gp.

e The decay of the free wave is weaker in 2 4 1 dimension. Consequently, the coefficient grr,
of the metric does not have any decay near the light cone. We have to rely on the null
decomposition at all steps in our proof to isolate this behaviour, even in the L? estimates.

e We have to fit b(6) so that the condition (1.16) is satisfied. This leads to regularity issues for
b, which prevent us from proving the global existence.

The structure of the paper is as followed. In Section 2 we describe the structure of the equations
(1.1) in generalized wave coordinates. We exhibit the structure of our system in Section 2. We also
describe the interactions between gy and g. In Section 1.3 we outline the main issues of the proof
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by discussing some model problems. In section 4 we give our bootstrap assumptions. In section 5
we derive preliminaries estimates thanks to the wave coordinate condition. In section 6 we derive
preliminaries estimate for the angle and the linear momentum. In section 7, we will exploit the
analysis begun in section 1.2. In section 8.4 we will improve the L* estimate. In section 9 we will
derive the weighted energy estimate. In section 10 we will improve the L? estimates and in section
11 we will adjust the parameter b(#).

2 Structure of the equations

In this section, we provide a discussion of the specific features of the structure of the equations,
which will be relevant for the proof of Theorem 1.12. For sake of simplicity, we assume the result
of Proposition 6.1, and we will go backward in Section ?7.

2.1 The generalized wave coordinates

Wave coordinates allow to recast Einstein equations as a system of non-linear wave equations. The
wave coordinates condition, which consists in choosing coordinates such that [lyjz® = 0 can be
rewritten as

9IS =0.

However, for the metric g, defined by (1.6), the coordinates (¢, z1, 22) are not wave coordinates, not
even asymptotically. We will therefore work with generalized wave coordinates. We will impose

that our metric satisfies
g’\ﬁl“ig = Hy
where H}' is defined by (1.9)
Hy = (g5)(To)%5 + F*,

with F'“ of the form
~qx(q)0eb
g 3 .
r
The role of F* was explained in section 1.4. In generalized wave coordinates, the expression (C.4)
of Appendix C allows us to write the system (1.1) under the form

Hg0 =0 (2.1)
Dgg;w = _28u¢81/¢ + P/w(aga ag) + gupaqu + ngaquv .

where

1 1
P}W(Q)(aga 89) :igapgﬁg <augp08agﬁu + augpaaagﬁu - 8Bgupaocgm7 - 2augaﬁaugpa>

. (2.2)
+ §gaﬁgApaagupaﬁgup-
Remark 2.1. In generalized wave coordinates, the wave operator can be expressed as
Oy = %040, — H0,.
The expression (C.4) yields also
1 1 1 = o
(Rb)m/ = _§ng(9b)/w + ipuV(gb)(agba 8.%) + ) ((gb)upaqu + (gb)upa,qu) . (2-3)
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Therefore, subtracting twice the equation (2.3) to the second equation of (2.1) we obtain
e (2.4
Dggmx = _28u¢au¢ + Q(Rb);w + P;w(g)(aga 85) + Puu(ga gb)a .

where P,,(9)(0g,09) is defined by (2.2) and

ﬁ,uu(§7 gb) = (gl?ﬁ - gaﬁ) aaaﬁ(gb),uy + Fp@p(Qb)uu
+ Pun(9)(99.0) — Pu(9)(9, 07) — P (96) (Ogv Ogs) (2.5)
+ (gb)upava + (gb)vpaqu + %,;&/Hf + gwaquf'

Let us note that ]3,“, (g, 9p) contains only crossed terms between g, and g.

2.2 The weak null structure

To exhibit the main terms in the structure of (2.4), let us neglect for a moment P, ﬁuw Hy. We
will see in the next section that this approximation is relevant. Let us also neglect the nonlinear
terms involving d derivatives. Then we obtain the following approximate system

O¢ + g0z =0,
Ogrv + 9100, 97y = 0,

)

82
Qovs + 900090 = 4 (—2@@2 - 2b<9>‘w>

where we also have used the approximation

5(9)33((1)((61)) L0 <C(b, v, J, J,)]]-1<q<2>

r r2

(Rb)gq ~ —

as shown in (1.7). In 2+ 1 dimensions, a term of the form gLLagqb is impossible to handle if one only
relies on the decay for gr;, provided by the fact of being a solution of a wave equation. However, as
in [21], we can exploit the wave condition to obtain better decay for some coefficients of the metric.
More precisely, we have roughly
dgrT ~ 09.

This is done properly in Proposition 5.1 for the coefficient gr; and in Proposition 5.2 for the
coefficients gry and gyy. Therefore, the g7 coefficients have a better decay in ¢ than the solutions
of the wave equation (the challenges of the quasilinear terms of the form gLL8q2d>, gLLaggTV are
presented in Section 3.4).

Remark 2.2. The other quasilinear terms are of the form
grvordve, grvordyvg.

Consequently, they involved at least one "good derivative” of ¢, g. Thus, they are easier to estimate,
and we can always focus on the terms

9LLOd,  gLro:g.
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Assuming that we can also neglect the terms involving g1y, we are reduced to the following
system

O =0,
{ Ogrr =4 (~2(0,0)2 — 2b(0 )L(Xr(q)q)), (26)

which is a system of the form (1.3) and displays the weak null structure.

The second component of the solution of (1.3) does not have any decay near the light cone in
2+1 dimensions (see Section 1.2 for the radial case). Therefore, the coefficient gz, will not display
any decay at all near the light cone (see the estimates of Theorem 1.12). To obtain decay for grr
in the ¢ variable, we will approximate gLL by the solution hg of the following transport equation

Ogho = —2r(9,9)” — 2b(0)9; (ax(q))-

The ideas of this approximation are presented in Section 3.2, and are exploited in Section 7.

2.3 Non-commutation of the wave operator with the null frame

The structure of Einstein equations can only be seen in the null frame. However it is well known that
the wave operator does not commute with the null frame. In Theorem 1.12 we have decomposed
our metric in the following way

g—gb+g+T( )(QL—Ld +gU—erqd9)

The problems of non-commutation induced by g1 and gy are totally similar. Consequently, we
can neglect the second one. We expressed the 2-forms dg? in the coordinate (¢, 21, 12)

dq* = (dr — dt)? = (cos(0)dz' + sin(0)dz? — dt)?

Therefore, we will have, in the coordinates x1, 2o

o(7 (3) g@dqQ)W ~0(7 (3) o) () = (3) :2 (ub (O)grr + 2, (0)dpgrL)  (2.7)

where ulll and “;w are some trigonometric functions. The challenges of the terms involving ullw

and ufw are explained in Section 3.3.

2.4 The semi linear term P,,(g)(9dg, 99).
Recall the form of the term P,,(¢g)(9g, 0g).

~ ~ ~ ~ ~ ~ 1, . ~
( )(897 8’? = g 96 (8u9paaagﬁy + 8I/ngaO¢gﬁ,u - aﬂgupaagua - 28uga,88ugpa)
1 ~ ~
+ 5979 00Gups G-

The quadratic terms In the null frame (L, L, U) the only non zero coefficients of the Minkowski
LL — —% and mYY = 1. Thanks to this remark, we can describe the terms appearing
in the different components of P,

metric are m

e In Pr7(g)(0g,07), there can not be strictly more than 2 occurrences of the vector field L.
Therefore, the quadratic terms are of one of these form

NTOTITT, OTIWOTITT, (2.8)
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where we have used the fact, proved in Section 5 that

OvgrT ~ OTgVV-

These terms all have the classical null structure. How this structure can be used to show
global existence is explained in Section 3.1. Since they are by far easier to handle than the
one we will describe in the following, they will be neglected in the proof of Theorem 1.12.

e In Pry(9)(0g,09), there can not be strictly more than 3 occurrences of the vector field L.
Therefore, the quadratic terms are of one of these form

MNgrvoTgrv, howdrgrr, OrgwovgrT, OrgTvioTgvy
where we have used the fact, proved in Section 5 that
NgrT ~ OTgVy.

These terms all have the null structure. However, since grz does not decay at all in ¢ (see
the estimates of Theorem 1.12), one has to be more careful with the terms of the form

Or9770LILL

These terms have a good structure since g7 is a "good derivative" of a "good component".
However, one needs two steps to exploit this structure, which can be difficult to achieve if
there is no regularity left. Thankfully, these terms have three occurrences of L, therefore they
can only intervene in Prr,.

— In Pp;, we will have to be careful with
OLgLLOLILL-
This term can be converted in drgrr.0rgrr with the help of the algebraic trick
O(uv) = ubOv + vOu + dpudpv + Or,vdpu + Oyudyv.

This fact will be used only in the proof of Lemma 10.6.

— In Ppy we will have to be careful with

OugrrLoLgrL-

This term can not be removed with the previous trick. We will have to single out its
influence thanks to the decomposition

g=g+x (%) hdg® + x (%) krdgdf + g1,

where k satisfies
ng‘ = 8U§LL8L§@-
This will also be used only in the proof of Lemma 10.6.
e The terms in Py, which are not of the previous form can be written
OL91.0L9rL, OL9LLOLYLL. (2.9)
We note the crucial cancellation of terms of the form (dpgrr)? in Prr. The contributions

(2.9) will be singled out in (2.12).
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The cubic terms In two dimensions, cubic terms could be troublesome. However, in the form
Py7, if there are 4 occurrences of the vector field L, or in Ppr, if there are 5 occurrences of the
vector field L, then we have a factor ¢g&&, which has a decay equivalent to grr. Therefore we can
neglect the cubic terms in this nonlinearity.

2.5 The crossed terms

In this section, we discuss the structure of the crossed terms between b and (g, ¢).

The crossed terms involving two derivatives of b are absent In the expression
Uggpw — (g,tp&,H{: + QVpauH{:) )

there could be terms involving two derivatives of b(f), which would be troublesome since they
would lead to a loss of a derivative (recall that we only have the regularity b € W2). However,
the terms involving two derivatives of b in this expression, are the same than the terms involving
two derivatives of b in Ry, (¢g). Thus, these terms cancel in the expression

(9?6 - 9a6> 0a08(96) uw + (96) upOu F* + (96)vpOuF" + GupOy HY + Gup0 HY .

which appears in ]5,“, (g, gp) defined by (2.5). These cancellations can be checked for example with
Mathematica.

The crossed terms in ﬁw We recall from (1.6) that
g = dsdg + (r + x(q)qb(6))*d6* + J(0) x(q)dqdf.
Therefore in ﬁ/w we can find terms involving

x(q)qb(0)

r

J(O)x(a)

r

2

(g)vv = <1 + > and (gp)uL = —2
Since (gp)r L decays faster than (g)yp let us focus on the crossed terms between (g)yy and g. The
problem with the term (gp)py is that far from the light cone, it does not decay at all. This is one
of the causes of the logarithmic growth of the energy in the statement of Theorem 1.12. However,
these terms are present only in the exterior region. Moreover they display also a special structure.
Since the terms involving two derivatives of b are absent, and the terms involving two derivatives
of g are only present in [,g, the terms in ]SW are of the form

g 0 (gp)vvo-g——.

e In ﬁTV the crossed terms involving 91,(gp)yr can not contain more than two occurrences of
L. They must be of the following form

oL(gp)vvoTgTy, O7(9)uvuOvgTy, OT(98)UUOTGVY,

where we have used the wave coordinates condition dygry ~ Orgry. We have the following
inequalities, thanks to (1.14)

_ Lg>o(0] + 196b]) (, ~ Lg>o(0] + 196b)) | 1~
0L (gs)vuO7g7Tv| S = T+ 0rg71v| S q>(1+r)2 1Z gyl
o+ DB+ 186B) -~ Taso(Ib] + 196b]) i
107 (90)vuOvgTy| S >0 (lfg)fj i |)|3v97v| S q>0((1‘J’rr)|29 ‘)lzlgfrvl.
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These two contributions are therefore quite similar. In the following, it will be sufficient to
study the term

oL(9p)vvOTgT Y- (2.10)

The challenges of this term will be discussed in Section 3.5
o In ﬁ@ , we may have three occurrences of L. Therefore there are terms of the form

IL(90)vvOrgLL,  OL(9)vvOLgrr,  OrguudLgLL.
We have the following inequalities, thanks to (1.14)

1g>0(|b] + |08b])
1+7r
Lg>0(|b] + [Opb])
1+r
Lg>0(1 + [q])(|b] + |Opb])
(1+7)?

Tg=o([] + 96D]) |, 1~
A
Loso([b] +196D]) |, 1~
7
L+ 2 Pt
Loso([b] +196D]) |, 1~
7 .
(1+T)2 | gLL‘

10L(95)vvO7T9LL| S 019LL] <

10L(96)vvOLgrr| < EIXTARS

|07 (96)vvOrgLL| S [IRIAARS

Consequently, the worst term is
IL(9v)vuOLYLL- (2.11)

We introduce the following notation, to single out the contributions of (2.11) and (2.9)
Qrr(h,9) = Orgrrdrh + 0rgrLdrh + 9r(gs)uvILgLr- (2.12)

The crossed terms involving two derivatives of ¢ With our choice of coordinates, these
terms only appear in [gg. They are of the form

b(1 +|q|)
147

Their contribution is most of the time similar than the one of (2.10), except in the energy estimate,
where they require a special treatment because of their lack of decay far from the light cone (see
Section 9).

]]_q>0 aUE/

The crossed terms in [;¢ The crossed terms between g, and d¢ are of the form

9 0—(9p)vv0-9.
Consequently, they must be of the following form

N(g)uvoT9,  OT(98)UUOVe.
Like for ]31;7, it will be sufficient to study

N () vvOT . (2.13)
The crossed terms between g, and 9%¢ are of the form
b(1 + |q])
>0 +7r

As for g, their contribution is most of the time similar than the one of (2.13), except in the energy
estimate, where they require a special treatment because of their lack of decay far from the light
cone (see Section 9).

.

Remark 2.3. In the region q > 0 it is generally sufficient to study the crossed terms. Indeed, the
crossed terms are the one presenting the less decay far from light cone.
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3 Model problems
The proof relies on a bootstrap scheme. Roughly speaking, we will assume some estimates on the
coefficients Z1¢, ZIQ@ and Zlgry :

o L estimates for I < %,
e L2 estimates for I < N.

We rewrite the bootstrap assumptions in the condensed form
[Plx, <2Coe, |glx, < 2Cqe,

where Cj is a constant depending only on the quantities p, o, u, 3, N introduced in the statement
of Theorem 1.12 and such that at t =0

[¢lx, < Coe,  glx, < Coe.
Thanks to the L — L™ estimate and the energy estimate, we will be able to prove
|p|x, < Coe+Ce?,  |glx, < Coe + Ce>.

Therefore, for € chosen small enough so that Ce < %, this improves the bootstrap assumptions.
We will first consider a toy model, which exhibits some of the mechanisms involved in the proof.

3.1 Global well posedness for a semi linear wave equation with the null struc-
ture

We consider the following 2 + 1 dimensional semi-linear wave equation

Ou = dudu
’ 3.1
{ (u, Opu) t=0 = (uo, u1). (3.1)

Note that the nonlinearity satisfies the null condition. Consequently, this model will show us how
to treat the terms of the form (2.8). The following result is proved in [10]. We will give a proof of
it for sake of completeness, and because it exhibits some of the mechanisms involved in the proof
of Theorem 1.12.

Proposition 3.1. Let 0 < § < % Let N > 8. Let ug,u; € XHiV;ig X Hé\jrl such that
2 2

[woll grsr +lurllgy | <e.
-3+ 5+3

If e > 0 is small enough, the equation (3.1) has a global solution u.
Proof. Let 0 < pu < i. We introduce the weight function

w(q) = (1+ |g[)'*2 ¢ > 0.

Let 0 < p < %. To prove global existence for equation (3.1), we consider a time 7' > 0 such that,
on0<t<T

3

N
Zhu| < 2C LI <=, 3.2
|27l < CVI+s(l+]g)® 2 32
N
1ZTu| < 2C, ° _I< T4, (3.3)
VITs(l+]q))? 2
w282 u| 2 < 2Co(1 + t)Pe, I < N. (3.4)
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Thanks to the Klainerman-Sobolev inequality, the assumption (3.4) yields, for I < N — 2

(1 +t) T 6(1+t)p
, forq< 0, |0Z°u|l<
V1+sy/1+]q fora | | 1+ s(1+|q])

and consequently, thanks to Lemma 1.11
v/1
|ZIU|§67+1’C]‘7 fOT’q<0, |Zlu|§ 1
(L4s)27° (1+s)277(1+q])°

We use the L>° — L™ estimate to improve the estimates (3.2) and (3.3). We write

02| <

5 for g > 0. (3.5)

9

, forqg>0. (3.6)

0Z'w= Y 0Z"udz"u. (3.7)
L +12<I

We first treat the case I < % We assume [; < % (the case Iy < % can be treated in the same
way). Therefore, we can estimate thanks to (1.14)

072110 < | Z11H Ly,

1
1+ |ql

Since & +1 < & we obtain thanks to (3.2)

02| <

(1+ !ql)HWl +s

To estimate 0Z™u we use (1.14) and the bootstrap assumption (3.3) to obtain

3

(1+8)2(1+]ql)?

07" § — 17" ] £

This yields
62
0zl <

RUEDKE ey
We can now use the L°°— L estimate of Proposition 1.10, together with the estimate of Proposition
1.5 and the Sobolev injection of Proposition 1.2, which gives

Coe L Cen(1+ 1)
VI+s(l+a)?  VI+sy/1+]q

This implies, since In(1 + |q]) < (1 + \q])%_‘s

]Zlu\ <

2
21| < Coe =+ Ce - (3.8)
VI+s(l+]g))°  V1+s(1+]q])
We now treat the case I = 5 N1, We assume L < NIQ < % so we have the same estimate as
before for Z1u. To estimate 0Z"2u, since & +2 < N — 2 we use (3.6). We obtain
075 < —L |y g IENL
1+s (1 + s)§ P
Therefore we obtain
2 2
02| < c < c

49
2

(1+8)27P(1+]g))7H ™ (148)3T3(1+|g) 2"
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Therefore, like for (3.8), the L — L™ estimate yields

Coe N Ce?
VI+s(+lg)’  Ts(1+]q)?

|ZIu| <

(3.9)

We now use the weighted energy estimate to imrpove (3.4). Let I < N. In view of (3.7), it implies

d _ _
Zlw@20z" e + |w'(@)202"ulf. £ Y |wi0z"udzu| 2 |w0z ullz. (3.10)
Li+1<I
We first assume Iy < % Then we estimate
|5Zl2u] < 5 =
(1+s)2(1+]ql)2

This yields

w292 udz"2y 2 S w3 dzhu L2
~ 3
(1+1)2
We now assume I[; < % Then, we estimate
1021 < c

VITs(1+|g))+3

Therefore we obtain

1
w2 82N udZ 2 s < —= N /25
L+t (1+g)) 2 2
Since )
w?2 1
< ul(g)h
5 — )
(1+g))'*2
we infer

_ — £ _
w202 udZ"ul 2l w202 ull 2 < {5 w02l +<lw’(q)2 02" ul 2.

Therefore (3.10) writes

d 1 1, = € 1 1=
T lw(@20Z% 7, + /(@202 ul T2 < mllﬁU?@ZIUII%z +ellw'(q)202"ull7s,
so for € small enough

d 1 1 1= 5 1
D@07 a3 + Sl (@392 ul3s < T fwd 02 ]

We obtain )
lw(q)20Z" u|| 2 < Cos(1+ ). (3.11)

For € small enough so that

ce< D aan<luty,

N W
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we have proved, in view of (3.8), (3.9) and (3.11) that for ¢ < T we have

3 € N
Zhu| < Z¢ I < =,
= S 1 2

3 N
|ZIU’§§CO ¢ 5 ’I|§7+17

VI+s(1+|q))2 2
3
lw202"ull 2 < SCo(1+ )%z, |1 < N,
which concludes the proof. O

Remark 3.2. Actually, only the highest order energy Hw%GZNuHLz grows in t. To see this, we
estimate .
w202 udZ2u) 12

for I < % and Is < N —1. Since
571 L ot
|02 2| < ——| 2727,
1+s
we obtain, together with the weighted Hardy inequality

(141

< w2zl ..

1
w2 VACRRY) S
12 (1+1)

(1+1ql)

w282 ud 2%l 2 <

3
2

Nl

Therefore, the weighted energy estimate yields, for |[I| < N —1

52

d, 1
—|w2dZtu|?y < —————

and hence )
w202 ul| 2 < e.

Remark 3.3. The use of the term Hw’(q)%éZIuH%Q to exploit the structure in the energy estimate
has been introduced by Alinhac in [1] and is sometimes called Alinhac ghost weight method. It has
also been used in the case of Einstein equations in wave coordinales in [21].

Unfortunately, the Einstein equations in wave coordinates do not have the null structure, but
only a weak form of it. In the next sections, we will see what problems this creates and the method
we used to tackle them. We will be less precise than in this first example, since full details will be
provided when we proceed with the proof of Theorem 1.12.

3.2 The coefficient g,

To understand how to deal with g1, let us consider the question of global existence for the following
system, which is of the form (2.6)

0¢ =0,
Oh = —2(8,¢)2 — 220%(ax(a) (3.12)
- } (@xt9)

with initial data for ¢ of size € and zero initial data for h. We recall [|b|z2(s1) S £2. We have the
following estimates for ¢

g
L+ s(1+[g)t*o

lw2dg|| 2 Se,  06] S
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Therefore, the energy estimate for h can be written

d, 1 1 1 0(0)02(qx(q)) 1
%Hw@h\liz S <||w2(5q¢)2||/:2 + wz% |[w20h|| 2,
L2
and thus p ) )
1 € 1 € €
—Nw20h|;2 < 20 < )
PTLAUEERS <m”“’2 Pz + V1 +t> ~VIrt
We infer

|w2dhl[e < e2VI+ ¢ (3.13)

This estimate is not sufficient. To obtain more information on h, we will approximate it by the
solution hg of the following transport equation (this procedure will be made more precise in Section
7)

Ogho = —2r(99)* — 2b(6)9; (ax(q)), (3.14)

with initial data hg = 0 at t = 0. The L estimate for ¢, and the fact that x’ is supported in [1, 2]

yield

52

O ho| < ——mM8M———.
Gulol = T3 g

To estimate hg we write

Q
ho(Q.5.0) = / (~2(840)%r — 26(0)52 (ax(0))) da,

s

S0 we obtain

52

1 +1QpH+

ho(5,Qu0) = [ (=200, — 200)03ax()) da + O (

ho(s,Q,e):0< >,Q>0,

2

£
i+ rQDH%) @0

Therefore, since
—S

2
95(ax(q))dqg = —1, for s >2

S

to maximize the decay in g for hg (and hence for h, provided one has a suitable control over h — hg)
we will choose b such that

b(O) ~ / T (0,0)%rdq. (3.15)
Remark 3.4. b(0) is a free parameter, except from [b(0), [b(0)cos(0) and [ b(#)sin(0) which

are prescribed by the resolution of the constraint equations, and correspond intuitively to the ADM
angle (energy) and linear momentum. Let 11 be the projection defined by

IT: W2V (S = {u e W2V (sh, /u = /cos(@)u = /sin(@)u = 0}. (3.16)

Then .
o) =11 ( [ (0,07rda)
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will be forced in the course of the bootstrap procedure. On the other hand, the fact that

Juor= [ [ @o2raas

/b(@) cos(6) N// (0,6)? cos(0)rdqds,
/ b(6) sin(#) ~ / / (0,6)? sin(6)rdqd,
will be obtained by integrating the constraint equations at any time t (see Section 7).

3.3 Non commutation of the wave operator with the null frame

In this section, we will discuss the influence of the terms appearing in (2.7). We have seen in the
previous section that hg does not decay at all with respect to the s variable. In turn, we will show
that this is also the case for h, and finally for the coefficient gr,. We do not want this behavior to
propagate to the other coefficients of the metric. To this end, we will rely on a decomposition of

the type

™\ 9LL
— g+ (1) L
g=20v+ 7)1

However, since the wave operator does not commute with the null decomposition, we have to control
the solution g; of an equation of the form

dg* + ;.

- oh
g = () =,
t/ r
where h is the solution of (3.12). The term T (%) 57}1 has the form of the terms appearing in (2.7).
Provided that we can approximate h by the solution hg of the transport equation (3.14), we
obtain decay with respect to ¢ for h. The decay we will be able to get is

82

h| S ——.
V1+ gl

With this decay we infer

62

(1+43)2/1+q|’

and therefore, with the L — L estimate, we deduce

0gi| <

3

9] S ————
' (1+s)27°

-

for all p > 0.

On the other hand, assume we are only allowed to use the energy estimate for h, which is the
case when deriving L? type estimates for g; at the level of the highest energy. When applying the
weighted energy estimate for g;, we obtain

1.9 1 r\ Oh 1.
- . < i Rt .
@il < Ju@ir (5) 5| jwion
We estimate o 9
1 r 1 1 €
Y (D)2 < —Jlw(g)20h] 2 < 3.17

24



where we have used the estimate (3.13) of the previous section for h. This yields

d 1, g2
— 200; < .
Hloa) 205l < ——

So
lw(q)2 05 2 < e2VITE,

which is precisely the behaviour we are trying to avoid with this decomposition ! However we have
not been able to exploit all the structure in (3.17). In order to do so, we will use different weight
functions for g; and for h. If we set

w(q) = (1 + |g) " w(q),

with 0 < p < % and we assume that we have

|@(q)20h| 2 S VT +1,

then we can estimate

7\ Oh 1 1 (T oh
2Y (=) — — lw(g)2Y (=) —F—
Hw<q>2 <t) ol T L+t o <t> (1+ gz 2
We write ) )
ohl S T 17hl S —— — |71,
s (14 s)z (1 + |g))2™"
so we obtain
Oh 1 Zh 1
i ()2 s i T s awteznl,
t)or ™ (1)t Ltlglflz ™ (14¢)2te

where we used the weighted Hardy inequality. Consequently, the energy inequality for g; yields

52

1
390 < ___ -

an

and therefore )
lw(q)2 83| 2 < £°.

Recall that the weighted energy inequality forbids weights of the form (1 + |g|)® with a > 0 in the
region g < 0. Therefore we are forced to make the following choice in the region ¢ < 0

#a) = O, wle) = e

Thus, for g;, the v/t loss has been replaced by a loss in (1 + |q|)%+“.

3.4 The quasilinear structure

In this section we will discuss the challenges of the quasilinear structure. We will take as an example
the equation for ¢, [1;¢ = 0. Following Remark 2.2, we can focus on the terms of the form gLLﬁqu.
The wave coordinates condition yields

dgrr ~ 59 .
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If g satisfied Olg = 0, the L estimates for g given by Corollary 1.6 for suitable initial data would

imply
€

(1+s)3/1+q]
1

We would like to keep this decay in Y after integrating with respect to q. However, we are not
1+s)2

in the range of application of Lemma 1.11. To this end, we will assume more decay on the initial

data. As stated in Theorem 1.12, we take (g, 0rg) € HéVH X Hé\j_l with % < § < 1. Then, with the

weight wy stated in Theorem 1.12; the weighted energy inequality yields

10gr1| <

|wo(q)0Zgl| 2 S e,

and consequently, for ¢ > 0, the weighted Klainerman-Sobolev inequality yields

g
VITs(l+]|q))3te

If we integrate from ¢ = 0, we obtain for ¢ > 0

0Zg| <

€

1291 < s
V1+s(1+]q])2

By writing |dg| < %Jrs|Zg|, we obtain
0911 : forq<0, |9grr| S - forg>0
JLL| E , Jor q 5 grLrL| S E , Jor q .
(1+5)2(1+|q|)2 (1+8)2(1+ql)2+

Since § > % we can apply Lemma 1.11, which yields

V1+lql €

g
|gLL‘§737 f07’q<0, ’gLL|§ 3 s_1
2(1+q[)°2

0.
(1+s)} (11s) fora=

Consequently we easily estimate
€
+1)2

This strong decay in the region ¢ > 0 is also needed when estimating

1 1
lw2grrd22' ¢ 12 < w28 Z" | 2.

1
lwg 2" grL0; 8|2
The idea will be first to use the weighted Hardy inequality to derive

1
2
9 Wy

T+t (1+]q])?

9 w

<
L+ |[(1+]q])
L2 L2

1
lwg Z"grLdoll 2 < Z'grL

Then we rely on the wave coordinates condition, which yields

I 51 L
102" gLel $102791 < 7127 gl;
and then use the weighted Hardy inequality again. However, one has to be careful when using the
weighted Hardy inequality. In the region ¢ > 0 the weight must be sufficiently large to allow to
perform it twice. This is an other reason why we work with initial data in H év with § > %, which
is more than the decay which is necessary to prove the global well posedness of a semi linear wave
equation with null structure.
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3.5 Interaction with the metric g,

In this section we want to discuss the influence of the crossed terms between g, and ¢,g. We will
take as an example the equation for ¢, y¢ = 0. As discussed in Section 2.5, we can focus on the
term (2.13). We may look at the following model problem

€
D6 = —x()9¢-
If we perform the weighted energy estimate, we obtain
d 1.7 .12 reNsa 2« € 3000 112
ano(q)w?Z olI" + lwo(9)20Z7 ¢||72 < m”wo 0Z P|7--
Therefore )
lwo(q)2027 ¢|| 12 < Cos(1 + )

and for all 0 > 0

T L
/0 WHW{J(Q)QC?Z%H%Mt <én (3.18)

To avoid this logarithmic loss, we need to exploit more the structure of the equation. To this
end we introduce the weight modulator

OZ(q):Wv q>07
alg) =1, ¢ <0,

for0 <o < % Then the energy inequality yields

1
5 —
f‘fosazf(ﬁ lawo(q)2 021 || 2.
L2

d 1
Zllowo(@)202 8|7 <& || Tg50

We estimate, for ¢ > 0
alg) 1
Lts ™ (140)277(1 + |ql)?

And therefore, we obtain

1

d 1 € we = 1
—llawo(@)202' 9|72 S ———— |[lmo——===02"0| |lawo(q)?20Z ¢
dt ~ s+o
(1+1)> 1+ q| L
€ 15 € 1
s 1+ t)a’|W€>(Q)232[¢HL2 + WH@WO(Q)QGZI¢HL2-

and consequently in view of (3.18) we obtain
lawo(q)20Z% | 12 < Coe + Ce2.

With this technique, the logarithmic loss in ¢ has been replaced by a small loss in q.
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4 Bootstrap assumptions and proof of Theorem 1.12

4.1 Bootstrap assumptions

Let % < 6 < 1. In view of the assumptions of Theorem 1.12, the initial data (¢g, ¢1) for ¢ are given
in Y +i(]R2) x HY | (R?).
For b € W2% such that

/gdﬁ—/ Ecos(@)d&-/ bsin(6)df = 0,
St St St

Bllw=n S 2Coe%,

and

Theorem 1.3 allows us to find initial data g and 0;g such that
e g;j, K;; satisfy the constraint equations,
e g and 0;g are compatible with the decomposition g = gp + g, where
b(0) = b(6) + by + by cos() + by sin(h) (4.1)
with by, b, be, J(0) given by Theorem 1.3,
e the generalized wave coordinate condition given by Hj is satisfied at ¢t = 0.

The system 2.1 being a standard quasilinear system of wave equations, we know that there exists
a solution until a time 7. Moreover with our conditions on the initial data, our solution (g, ¢) is
solution of the Einstein equations (1.1), and the wave coordinate condition is satisfied for ¢t < T
(see Appendix C).

Remark 4.1. Our choice of generalized wave coordinates does not change the hyperbolic structure
because Hy does not contain derivatives of g.

We take three parameters p, o, u such that

EXPpK oK Ko, (4.2)
1
a+p<5—§. (4.3)

We consider a time T' > 0 such that there exists b() € W-2(S!) and a solution (¢, g) of (2.4) on
[0, T, associated to initial data for g. We assume that on [0, 7], the following estimates hold.

Bootstrap assumptions for b
&2

o (Hb(e) + 11 / (8q¢)2rdq>
| X7 L2(SY) \/T
105b(0) | r2s1y < Be®, for I < N (4.5)

<B——, for I<N—4 (4.4)

where II is the projection defined by (3.16), fZT , is defined by (1.15) and B is a constant depending
on p,o, i, 0, N. 7
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We introduce four decomposition of the metric g
g=gp+7T (%) hodg® + g1,
g=gp+7T (%) (ho + h)dg® + G2,
g=gp+7T (%) hdq”® + g,
g=g+7T (%) hdg® + T (%) krdqdf + g,

where hg is the solution of the transport equation

{ Agho = —2r(949)* — 2b(0)92 (x(9)q),
holi=o = 0,

h is solution of the linear wave equation

{ Oh=0(Y (§) ho) + 7 () gr03ho +27 (5) (946) = 2(Rb)gq + T (5) Qrr(ho,9).

(B, 0 |1—0 = (0,0),

where B
Qrr(ho,9) = 0rgrr.0Lho + OL(9v)vvOLILL-

{ Ugh = _2(&1(75)2 + 2(Rb)qq + Q@(hv 5),
(k’ 8tk)’t:0 = (07 0)7

and k is the solution of
{ ng = 8UgLL8qh,
(h, O¢h)|i=0 = (0,0).

L*°-based bootstrap assumptions For I < N — 14 we assume
2005

VITs(l+|g)z %
20{)6

(1+s)%_p’

1ZT¢| <

1Z7g1| <

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

where here and in the following, Cj is a constant depending on p, o, i1, §, N such that the inequalities

are satisfied at ¢t = 0 with 2C replaced by Cy. For I < N — 12 we assume
2CHe

(1+s)77%
2Che

(14s)272

We assume the following estimate for hg for I < N — 7 and ¢ <0

2Ce 2Cpe
(1+s)z  (L+]g)i=4

1ZT¢| <

1Z7g1| <

1Z ho| <

and for ¢ > 0
2006

(1 + la226-o)
We also assume the following for hand I <N —7
~ 2C,
1ZTh| < — 220
(1+lq))z™"

|ZThg| <
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(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



L?-based bootstrap assumptions We introduce four weight functions

{ wo(q) = (1 +g))*%, ¢ >0,

(
wo(q) =1+ (1+‘1]|)2u7 q<0,

wi(q) = (1+[q))**%, ¢ >0,
1(Q) = q < 07

1
(1+lg)2’

1

wa(g) = (1 +1g])*™, ¢ > 0,
wa(q) = gtz 4 <0,

{ ws(q) = (1 + |q|)*t%, ¢ >0,

S
w
—
K
~—
I
—_
+
—
e
=
S
N
)

We also introduce weight modulators

(4.22)

All the L? norms are taken with respect to the Lebesgue measure. We assume the following estimate

for I <N

1 1 ~
lazwo(q) 2027 ¢l 2 + [lazwa(q) 202" gl 2

1
laz(q) 202 Rl 12 + ——— [lagws(q) 202 k| 12 < 2Coe(1 + t)P.

+
VAR

1
VIt
for I<N-1

lwo(q)2 027 6|12 + |[wa(q)? 027 sl 12 + (q)20Z7h|| 2 < 2C0e(1 +t)”

1
—||W
i
and for I < N —2
1

la(@)wo(q) 202" | 12 + [|a(q)wa(q) 202 Gs| 2 + —— [|la(q)ws(q)2 02" h|| 12 < 2Cpe.

v1+t

In addition, for I < N — 8 we assume
lw1(9)202" Ga| 12 < 2Coe(1 +4)7,  alq)wi(q)202 G| 2 < 2Coz
and for I < N — 9 we assume

lwo(q)20Z" G| 12 < 2Coe(1 + 1), [lq)wolq)? 02! G2 12 < 2Cie.

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

Let us do two remarks to justify our different decompositions of the metric, and our different

weight functions.
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Remark 4.2. We use the decomposition (4.6) instead of (4.7) to avoid a logarithmic loss when
we want to improve (4.16) and (4.18) with the L>° — L estimate. This loss would have been due
to the terms coming from the non commutation of the wave operator with the null decomposition
(4.7). However, we use the decomposition (4.7) instead of (4.6) to avoid a logarithmic loss in the
energy estimate due to the term Qv@

When hgy is a good approzimation for h, we use the decomposition (4.7) instead of (4.8) in
the energy estimate. This allows us to have a better control on the terms coming from the non
commutation of the wave operator with the null decomposition. When hg is no longer a good
approzimation for h, we use the decomposition (4.8). Finally, the decomposition (4.9) allows us to
isolate the term ZNaUgLLaégLL on which we do not have a good control.

Remark 4.3. The weight wo is introduced to deal with the non commutation of the wave operator
with the null decomposition (see Section 3.8). The weight w1 is a transition weight between wy and
wa. The weight wz allows us to compensate the loss in \/1+1t for grr by an additional decay in

1+ |q| in the exterior region.

The weight modulators a1 and oo are introduced to transform the logarithmic loss due to the
interaction with the metric gy in a small loss in q (see Section 3.5).

4.2 Proof of Theorem 1.12

We have the following improvement for the bootstrap assumptions. The constant C' will denote a
constant depending only on p, o, i, d, N. The proof of Proposition 4.4 is the object of Section 7.

Proposition 4.4. Let I < N — 5. We have the estimates

Ce?
(1 + 1ol 2207

Ce? Ce?

Z ho| < +
2l = = (1+ |q|)t—2

, forq<0, |ZIh0| <

) for g > 0.

Let I < N — 7. We have the estimate

Ce?

R —
(1+s)2°

The proof of Proposition 4.5 is the object of Section 8.

Proposition 4.5. Let I < N — 14. We have the estimates

2 2
(1+s)277 VI+s(l+]g))27

Let I < N —12. We have the estimates

Coe + Ce?

(1+s)272

Coe + Ce?

VAGIRS :
(14 5)z720

1Z"¢| <

The proof of Proposition 4.6 is the object of Section 10.
Proposition 4.6. We have the estimates for I < N
lagwo(q)2027 6|12 + fazws() 202 Gall 2 < (Coe +€)(1+ 1V,

oo (q)20Z R 12 + [|asws(q)20Z k| 12 < Ce2(1 + £)2TOVE,
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for I < N —1
lwo(q) 2027 || 2 + [lwa(q) 202 G5 12 < (Coe + €)(1 + 1)V,
[ws(q) 202 h|| 2 < Ce(1+ )2 HOVE,

for I < N —2
1 1 ~ 5
(@) wo(q)20Z" || 12 + |la(q)we(q) 2027 g3 12 < Coe + Cet,

la(q)ws(q) 202 R 12 < Ce2,
forI < N -7
le(q)%f)ZIg“QHLg < Coe(l —|-t)0ﬁ +e, Ha(q)w1(q)%0ZIg~2||Lz < Coe + C,e%’
and for < N —8
lwo(q)202 G2l 12 < Coc(1+8)°VE + &, |lalq)wo(q)20Z G2 < Coe + Cet.
The proof of Proposition 4.7 is the object of Section 11

Proposition 4.7. We assume that the time T satisfies

T < exp (\C/jg) .
There exists b (0) € WN-2(SY) and (4(2), 9¥) solution of (1.1) in the generalized wave coordinates

Hy), such that, if we write g = g2 + 7, then (¢(2),3?) satisfies the same estimate as (¢,q),
and we have the estimates for b2

o} (Hb<2>(9) + 11 / (8q¢)27“dq>
X160

1056(0)]| 2 < 2C2e2, for I < N.

4
€
<C—=, forI <N —4,

L2

We may now prove Theorem 1.12.

Proof of Theorem 1.12. We may choose Cy such that Cy > 2, and B such that B > 408. We take
€ small enough so that

1 Cy B

Ce1 g?, Cve < p, C’egg.

Then Propositions 4.4, 4.5, 4.6 imply that the bootstrap assumptions for (¢, g) are true with the
constant 2C, replaced by % Moreover Proposition 4.7 yields the existence of b@ and ¢, g(z) =
p2) + 7@ solution of (1.1), such that the bootstrap assumptions are satisfied by (45(2),5(2)) with
the constant 2Cy replaced by %, and b® satisfy

2

3
<B—-—_, for <N —4,
<B 7= /

ol <Hb<2>(9) ! / (8q¢(2))2rdq>
3710

L2

B
105b(0) |12 < 562, for I < N.
This concludes the proof of Theorem 1.12. -

Let us note that the only place where we use the assumption T < exp (%) is in the proof of
Proposition 4.7.
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4.3 First consequences of the bootstrap assumptions

Thanks to the weighted Klainerman-Sobolev inequality the bootstrap assumptions immediately
imply the following proposition.

Proposition 4.8. We assume I < N — 4 we have the estimates, for ¢ <0

€
071 ¢(t,2)| < : (4.28)
V1+lgvV1+s
~ e(1+[q)”
071 Ga(t, z)| < ——22 4.29
070 < —— (4.30)
1+ |q]
and for g >0
€
027 (¢, )| S ) (4.31)
(|3 oVT s
~ €
02" g3(t, )| < : (4.32)
(1+ g2 VT Ts
€
o7'h| < —— . 4.33
OZ M S Ty pgeree (433)
Moreover, for I < N — 11 we have for ¢ <0
021G, (t, )| < : . (4.34)
V14 lgvV1i+s
Thanks to Lemma 1.11 we deduce the following corollary.
Corollary 4.9. We assume I < N — 4 we have the estimates, for ¢ <0
1
Z1g(t,2)] 5 VAN (4.35)
1+s
- e(1+ gt
Z g3t x)| < , 4.36
2 gitt0)] £ S (1.36)
|ZTh| < ev/1+ |ql. (4.37)
and for ¢ >0
€
127 p(t, )| < : (4.38)
(1+ g2tV +s
€
12" gt 2)| < , (4.39)
(1+[g) 277V Hs
€
Z'n 4.40
S A A0
Moreover, for I < N — 11 we have for ¢ <0
~ 1
205 (1, 2)) < V1L (4.41)
v1+s

The following remark allow us to compare the different decompositions of the metric g.
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Remark 4.10. We have the following relations

917 = (91)77 = (92)77 = (93)77 = (94) 7T
gL = (91)rL = (92)rL = (93)LL = (94)LL,

gur = ()L = (92)vr = (93)uL-

The following corollary allow us to estimate g, independently of the chosen decomposition (4.6),

(4.7),

(4.8) or (4.9).
Corollary 4.11. We have the following estimates

2| S ———, for <N - 14, (4.42)

(1+lq)2"
2| S ————, for ISN - 12, (4.43)

(1+ gl
27§ <e, 0275 S ———, for IS N —11, (4.44)

1+ q|

127G S e +a))=**, 027G S e(1+1q)) "=, for I < N -4, (4.45)
(4.46)

Moreover, for ¢ > 0 we have the following estimate

s for SN — 4. (4.47)

2" S i
(1+1lql)

Proof. Estimate (4.42) is obtained by using the decomposition (4.6) and taking the maximum of
the bounds given by (4.19) and (4.16). Estimate (4.43) is obtained by using the decomposition (4.6)
and taking the maximum of the bounds given by (4.19) and (4.18). Estimate (4.44) is obtained
by using the decomposition (4.7) and taking the maximum of the bounds given by (4.19), (4.21)
and (4.40). Estimate (4.45) is obtained by using the decomposition (4.8) and taking the maximum
of the bounds given by (4.37) and (4.36). Estimate (4.47) is obtained by using the decomposition
(4.8) and taking the maximum of the bounds given by (4.40) and (4.39). O

The rest of the paper is as followed

In Section 5, we use the wave coordinates condition to obtain better decay on the coefficients
g77 of the metric. The strategy is similar to the one introduced in [21].

In Section 6, we obtain the missing estimates for the angle and linear momentum, namely
the three first Fourier coefficient of b which correspond to b — I1b, in order to get

52
9

b(6) + /E (9,6(a, s = T,0))°rdq| <

N

by relying in particular on the constraint equations.

In Section 7, we improve the estimates for hg, and show that it is indeed a good approximation
for the coefficient gr,. We also obtain estimates for h. We prove Proposition 4.4.

In Section 8 we prove Proposition 4.5 thanks to the L> — L estimate.

In Section 9 we derive a weighted energy estimate for an equation of the form [ju = f, where
g satisfies the bootstrap assumptions.

In Section 10, we prove Proposition 4.6 thanks to the weighted energy estimate.

In Section 11, we prove Proposition 4.7 by picking the right b = IIb.
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5 The wave coordinates condition

The wave coordinates condition yields better decay properties in ¢ for some components of the
metric. Since far from a conical neighborhoud of the light cone, we have |g| ~ s, this condition will
only be relevant near the light cone. It is given by

R Sy
Hy = ‘det(g”@u(g | det(g)])-

Proposition 5.1. We have the following estimate, in the region % <r <2t

o - 1 _ _
002" gLl S (1027 G0l + 1027 Gr71) + 5 > (12l + 12 g7r1) -
J<I 5I<1

Proof. The wave coordinate condition implies

-L Hf =L, (d;)au(g“a det(s])))

———L,0,\/de Ou( gt
\/detug‘\ vdstle) + (L)

Ly 1
J —————0\/det(g) + I,( — ngU
det(|g])
LL LT
=———0vd ) + ———=07+/det(g) + 8LgLL + OygtY + opgtt
det \g\ (Igl)
1 1
+ gttt ——g"Y,
T T

where we have denoted by R the vector field 0,, and used the following calculations

9" 0u(Lo) = — 9" 0u(Ra)
= — ¢'19; cos(8) — ¢'2(ds cos(8) — Dy sin(h)) — g*2dy sin(8)

Dug™ =00g™® + 01" + Dag™
=090 + OrgLR + Ay gt + ¢ET(81 cos(0) + Oy sin(6)) + g=V (—8; sin(0) + 0 cos(6))
LR
—8Lg + OygtY + opgtt + gT
Consequently

L1 (me ey 9E v S P
dpgtL = — L, (Hg + F*) det(’g’)%\/d t9) = — e Daﬂ/d t(g) o)

1 1
— gl — apgtt — ;QLR —~ ;gUU,

where we have used (1.9). Also we have

det(9) = gr(9rLgvv — (9uL)?) — 9rLl9rLgvu — grugLu) + 9ou(9LLgur — gLLgou)-
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Therefore

[V/det(g) — v/det(go)| < gLzl + [g77]-
We can express

1 1_ -
9@ = det(g) (9rL9vv — (QUL)Q) = —ZQLL + O(g771)0(9),
1 1 ~
9=l = det(g) (9Lr91v — 9uLgrr) = J9LU + O(g771)0(9),
1 1
LL _ — == g
g det(a) (9rrgvv — gurgur) = 4 (g)vvgre + OGrT),

where we have used the notation O(g) = O(g — m) where m is the Minkowski metric. Since in
(5.1), by definition of H* (see (1.10)) the terms involving only g, compensate, we have

- — — 1 - ~
1049rL] S (199LL| + [0g77]) + m(\gLQ + [g77|) + 8.t

where s.t denotes similar terms (here these terms are quadratic terms with a better or similar
decay), and we have used the fact that in the region £ <r < 2t, we have r ~ s. Since [Z,9,] ~ &,
and [Z,0] ~ 0 we have

~ ~ . S 1 ~ ~
1002 G20l S D 127G0L + 102" gLl + 102 g7 + 113 > 127G0Ll +127gr71).
J<I-1 J<I

This concludes the proof of Proposition 5.1. O

The other two contractions of the wave condition yield better decay on a conical neighbourhood
of the light cone for g1 and gyy.

Proposition 5.2. We have the following property

022" gLl £ Y1027 Gv| + Z 127 g7l
J<I J<I

10,2 Guul S 102773 1 Zl ’gl.
J<I J<I

Proof. To obtain the first estimate, we contract the wave coordinate condition with the vector field
U.

1
—UaHf = —==—==Ua0u(g"")/det(g)

m

|d |Ua\/|dT+a (Uagh®) + g"“0u(Ua)
maw\det )+ Ou( TUR
det

1
——Z 9| det(g)| + —=2—=07/| det(g)| + ApgUL + gVl + apgUE + —gUF
\/ﬁ \/7 r
Therefore
UL
- 1
dLgUL = U He — —L—9;\/|det 9 g /Tdet(g)] — dugPl — dpgUE — 1gUR
L9 ; ol | det(g)] — \/W /| det(g)| — dug rg”t ~ g
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and arguing as in Proposition 5.1 we infer

— 1
0.1 < |5 |z .
10,9uL] < | gTv\+1+SlgTv|+S

Commuting with the vector fields Z as before, we obtain the desired estimate. To obtain the second
one, we contract the wave coordinate condition with L

a 1 o' e
LoHp —mLaau(g’” )V det(g)]- )

1 1
e 0 (VIdetlolg™) + —or (VIt@ls ™) 9" 0u(La)

/| det g|

We note that

| det(g)lg™* =

1
———(9LL9UU — gULYUL)
V| det(g)]

= +0(r7)0(9)
\/QLLQUU + O(g77)0(9)

=guu + +0(GrT)0(9).

Therefore (5.2) yields
= 1
0401 < |0g| + —I|q]|.
10a9uu| < 10g] + 119l
We commute with the vector fields Z to conclude. O
Thanks to the bootstrap assumptions, we obtain the following corollary.

Corollary 5.3. We have the estimates for ¢ < 0

02 G| < —, 107717 S S forI<N-15 (5.3)
14s)27° (L4 s)(1+q))z™7
~ 3 ~ £
’8Z19L7| 5 3 9,7 |8ZIgUU| ,S 1_5.7 fO?" I<N- 137 (54)
+5)27% (1+s)(1+|q[)22"
N V1 N
02711 < Eiﬂf’, 02100 < =, for I <N —12, (5.5)
+ )2 L+
_ 1 14+p _ 1 I4u
927G < S T g g < SO N s, (5.6)
+ 3) 2 145
and for g > 0
g g
102 G17| < , 02" guu| < - , forI <N -—5.
1+ gz (1 + )3 (1 + g0 (1 + s)

Proof. As mentioned in Remark 4.10, the metric coefficients gy do not depend on the choice of
decomposition between (4.6), (4.7) and (4.8). Thanks to Proposition 5.1 and 5.2, and the fact that

- 1
|Ou| < ?\ZUL
S

we may write

027G <

S 12 (57)
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The bootstrap assumptions (4.16) and (4.18) in the region ¢ < 0 yield

2ol S ——, for J<N-14,
(145

Z75m9| S —————,  for J< N —12.

(14s)27%

Therefore we obtain, in view of (5.7)

|8ZI?]L7" < c —, forl <N —15,

1+4s)2"
025G17] < ¢ 5 for I < N —13.

+5)27%

Corollary 4.9 yields the following estimate for ¢ < 0

~ V1
|Z‘]97'v|,§7E —|—|q\’ for J <N —11,
1+s
~ (L + |gh"**
127g7v] < , for J<N -4
~ V1l+s
Therefore we obtain in view of (5.7)
1
02717 < A o r e N,
(1497
- 1 Tu
0277 < L ™ N
(1+5)F
For ¢ > 0 and I < N — 4, we have in view of Corollary 4.9
- £
12" 4] S

VIFs(1+|g)3 07
which together with (5.7) yields

~ 9
102" 917 <

for I < N —5.
(1+1g)zH=7(1 + 5)%

We now estimate Z/gyp. As for ZIgr+, Proposition 5.2 yields
1
aszv < - ZI+1~ )
02 guul < 71279l

Therefore, the estimates of Corollary 5.3 are a direct consequence of the estimates of Corollary
4.11. O

Thanks to Lemma 1.11, since § — o > % we obtain the following corollary

Corollary 5.4. We have the estimates for ¢ < 0

!Thﬂ5$:£%,MWMSdﬁffﬂ,ﬁﬂéN—w, 5:5)

|ﬂmﬂs€fi?;|f§Us““ﬂﬂf%,fmfsw—w, 5.9)
S

|Tmﬂsfiﬁfwﬁwsdﬁim for 1< N 12 (5.10)
)

12" g07| S W 1Z 00| S W for I <N -5, (5.11)
RE
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and for g > 0

_e(1+ gzt

_ €
Z' g7 <
(1+5s)

14 s)(14|g|)°=°’

VA TS ( forI <N —5. (5.12)

[SI[3Y)

6 Angle and linear momentum

We call angle and linear momentum the three first coefficients of b, by, b1,b2. These coefficients
can not be prescribed arbitrarily, they are given by the resolution of the constraint equations (see
Theorem 1.3). We need b to satisfy

oL [ b(h) + / (0,0)*rdq <&
’ Y70 ! L2 ~ \/T

This is used crucially to estimate hg in the proof of Proposition 7.2. The heuristic of it is discussed in
Section 3.2 (see (3.15)). The estimate (6.1) is satisfied with b replaced by IIb thanks to the bootstrap
assumption (4.4) (II is the projection defined by (3.16)). For the angle and linear momentum,
this is the object of the following proposition, which says that the relations of Theorem B.1 are
asymptotically conserved by the flow of the Einstein equations.

, forI < N —4. (6.1)

Proposition 6.1. We have

1 €

b(6)do + = 0:)? + |Vo|?) (t,z)dx| < ,

e+ [ 0w+ 9 rajis| < g
2
€

b(0) cos(0)do — Oy 0 t,x)dr| < ,

[0rcostan — [ @ro00) u00e] 5
2

' / b(0) sin(0)d6 — / (0,6020) (£, 2)dr| < —— .

R2 14+t

To prove this proposition, we need the following lemma.
Lemma 6.2. The equation for g,, can be written under the form
~ 93 (x(9)q) g2
OGu = —20,60,¢ — 2b(0) M, + O 3 | (6.2)
r (1+t)2(1+q)2~

where the tensor M, corresponds to dq>.

Proof of Lemma 6.2. We recall the quasilinear equation for g, (see (2.4))

gaﬁaaaﬁguu - Hfapguu - _2au¢au¢ + 2(Rb);w + le(ag, 8&) + RLV(§7 gb)‘

The worst term in
gaﬁaaaﬁg/w - ngx
is, according to Remark 2.2,
9LL0; G-

We distinguish two kinds of contributions :

9rLd2g1 and  grLd:ho.
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To estimate the first term, we use (5.8) of Corollary 5.4, which gives

< )
~ 3

lgLL -
(1+5)37

We estimate then

1
103911 < 3 > 12" qul,

and we use the bootstrap assumption (4.16) for I < N — 14

1Z7g1| <

)

(14s)27°

to obtain

82

L+ s)>720(1+ ql)

We now estimate the second term. To estimate 92hg, we recall (4.19) for I < N —6

9007 51| S (

3

g
+ .
VIits  (1+|g)t=

1Z ho| <

Consequently
€ €

(+IDVTFs (L [P

The first contribution can be estimated like 6.3. To tackle the second contribution we need to use
the estimate for gy which gives the most decay in s : we use (5.10) of Corollary 5.4, which yields

02ho| <

3
el £
Y1+t

This, together with the estimate (6.3), yields

g2 g2

9.0z ho| S + — :
‘ (1+8)3(1+g)2~% (1+5)272(1+q|)

(6.4)

The semi linear terms P, (0g,0dg) are estimated similarly. We now turn to the crossed terms.
Thanks to Section 2.5, the worst contribution is (2.11), which gives a contribution of the form
£0grL in the region ¢ > 0. We estimate thanks to (4.32) of Corollary 4.9 in the region ¢ > 0

g
(1+5)2(1+[g))2 07

19gLL| S

Therefore we obtain

£ £
1y0-001c| S . (6.5)
-0 95 (14 8)2(1+ [q])2 70~
We now estimate (Rp),,. Thanks to (1.7) and (1.8), we may write
5(9)83@)((@) T1<q<2e?
= —— N, === :
(o) P, v 0 () (6:6)
Thanks to (6.3), (6.4), (6.5) and (6.6) we conclude the proof of Lemma 6.2. O
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Proof of Proposition 6.1. We want to integrate equation (6.2) for (u,v) = 0,0 over the space-like
hypersurfaces of ¢ constant. To deal with the term 92ggg, we use the wave coordinate condition

1
9795900 = 59“’8(9::%5 + (Hp)o-
We can rewrite it, by definition of (Hp)o

«a 1 « «Q 1 (87
(9°7 ~ (90)**) 93900 + 95" (95900 — Dp(a)a0) = 5(9™ — 63")Ogas + 593" (D190 — Du(gn)ap) + Fo.

By definition, F' contains only terms of the form gdygs, so we can estimate

elg>o(1 +gl) e
ZF| < =22 T BV 75] < , 6.7
RS TS e o0
where we have used (4.47) to estimate |Zg|. We note
afn ~ L aga~ 1 ~ ~ ~ ~ ~
m*95Ga0 — om 0tGap = 5(—@900 — Otg11 — 0¢g22) + 01901 + 02902,
and we estimate
(9°" = (95)*")989a0 = (g™ — m"2)0Lgr0 + f1,
1 ~
5(9043 — 0001 gap = (g"F — m* )G + fo,
(m*” — 65795500 = f1
(m*? = g57)0iGas = f5.
where the f; contain terms of the form
U - bx(q) . -
grLogvy,  gwoTgrv, X7E>3U9Uv>
They satisfy the following estimate
&2
1Zfil S (6.8)

(1+5)2(1+q))a2"
We note 20;g1.1, = 0rgrr + Orgrr and 2910 = g1 + gr.- Consequently

LL

(9" — m"E)(OLgr0 — grL) = O (GLLoLgrL + GrLoLgrr)

satisfies the same estimate (6.8) than the f;. Therefore the wave coordinate condition gives

1 - - - - -
5(—@900 — 0tg11 — 0:g22) + 01901 + 02902 = f5

where f5 satisfies (6.8). Therefore, differentiating this equation with respect to ¢, and using (6.2)
for (u,v) = (0,0),(1,1),(2,2) we obtain

Agoo + Agi1 + Agaa — 2010:g01 — 2020:902

——2<<ao¢>2+<al¢>2+<a2¢>2>—4b<9>83(x@“’)+0< N )
r T+ 1+ )i
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Integrating on the space-like hypersurface ¢ constant we obtain, since fooo 0?(qx(q))dr =1,

~5 [ (@07 +Voids = [we)as+ 0 (\/f%) (6.9)

To obtain the next relation we do the same reasoning but with (6.2) for (u,v) = (0,1) and (u,v) =
(0,2). We only detail the case (p,v) = (0,1) as the other one is treated in the same way. Recall
the wave coordinates condition

1
9705901 = 59‘” O19ap + (Hp)1.

We can rewrite it, by definition of (Hp);
1 1
(9°% = (96)*")Dpgar + 9?6(359(11 —03(gb)a1) = 5(90"3 = g?ﬁ)awag + §gfﬁ(31gaﬁ —01(gv)ap) + Fi

We note

- 1 - ~ " - 1 -
M 9ga1 — §ma6319a5 = —0go1 + 01911 + O2g12 — §ma6319a5

and we estimate

(97 = (96)*)pgar = (9™ — m"E)dLg1 + fo,
S0 — 0 )hgs = (9~ m )G + fr
(m*? — ")05da1 = Js,
(m®? = 65)01Gap = fo,
where the quantities f; satisfy (6.8). We note 201G, = — cos(0)drgrr + 09 and 201g11 =
—0r(cos(0)grr) + gr7- Therefore we obtain

- - - 1 ~
—0¢go1 + 01911 + 02912 — imaﬁalgaﬁ = fio,

where fig satisfies (6.8). Differentiating with respect to ¢ and using (6.2) for (u,v) = (0,1) we
obtain

~ ~ ~ 1 ~
Agor + 0101911 + 020G12 — Ema’gaﬁtgaﬁ

— 20,6006 + 2b(0) cos(e)M 40 < 352 ; ) -
" (14 5)2(1+[q])2

Integrating on the space-like hypersurface ¢ constant we obtain

2
/ath@lqbdx = /b(9) cos(0)df + O <\/167+t) , (6.10)
and similarly
2
/ Bpdoipde = / b(8) sin(8)dé + O ( \/1€Tt> . (6.11)
Estimates (6.9), (6.10) and (6.11) conclude the proof of Proposition 6.1 O
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Corollary 6.3. We have the estimates

N

3%y

‘ / b(0)do + /Z (0,0)*rdrdo

AN

‘/b(@) cos(@)d@—i—/ET cos(0)(9,6)*rdrdo

AN

‘ / b(6) sin(0)db + /E ) sin(0)(0,¢)*rdrdo

Proof. We may write

¢ = —0q¢ + 959,
01¢ = cos(0)0y¢ + cos(0)0s¢ — sin(6)0y ¢,
01¢ = sin(6)0y¢ + sin(0)ds¢ + cos(0) 0y ¢.

Moreover, thanks to the bootstrap assumption (4.15)

82

T+ P+ 1) ™

_ 1 )
|000¢| < mw@ S

and consequently

52

1+t

IS

’ / (9606) (t,)da

Therefore

62

< )
~M1+T

2 o 2 2 T
) /E s /E (@) + 199y

g2

1+7T’
9
147

/ cos(0)(0,¢)*dx + OPpO1pdz| S
S

X

S

/ sin(0)(9,0)%dx + [ OypOpdx
X

X

This concludes the proof of Corollary 6.3.
Corollary 6.3 and the bootstrap assumption 4.4 directly imply the following corollary.

Corollary 6.4. We have, for | < N —4

o} (b(0)+ /E (8q(;5)2rdq>

7 The transport equation (4.10)

S

&
T

In this section we will estimate hg, [Jhy and h.
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7.1 Estimations on hg
We recall the equation (4.10)
{ dgho = —2r(94¢)* — 2b(0)93 (x(9)a),
holi=o = 0.
The solution of this equation is

ho(s, Q,0) = /Q (-2(aq¢)2 - 21)(9)%2(%((;))) rdq. (7.1)

r

All the estimates we will perform in this section take place in the region r > % since we will always
apply the cut-off function T (%) to hyg.

Proposition 7.1. In the region r > % we have the estimates on hg, for ¢ <0

’ L | < 32 ’h ‘ < 22 52
0 0] ~ ) 0 ~ _
s 1+g)% Vi+s  (1+]g)*>?%

and for ¢ > 0
2 2

€ 5
ho| < .
[hol < (1 + [q)2r20—0)

19shol < . . ,
(14 5)2(1+|g|)220—)

Proof. We write the wave operator in coordinates (s, g, 6)
1 1 5
O = 4950, + ;(88 +0,) + r—zag. (7.2)

We calculate

1

0.0k = 0u(~20(0,9)%) = ~r0y (10.0,0-+ 10,0) = 0y (Do~ J06— 080) . (139

where we have used
d5(—2b(0)93 (9x(q))) = 0.

Therefore we have

Q 1 1 2
Osho = / <—D¢> + ;6s¢> + 7,283¢> Oqprdq + O ((1—&—2)3“5) ) (7.4)

where we have used

52
Oululi-0 = ~holo = (2040 + 200 x(0)0) L0 = O (v )

The bootstrap assumption (4.15) gives

1
(1+s)2

e

1220 < ,
(1+8)3(1+ |gl)z*

- <

1 1.,
‘rasd) 747269525

and 1
9
1040| < Zo| S :
! 1+ |q| (1+8)2(1+ |g)2 %
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Therefore
&2

1 1

=050+ — 050 | 0gr| < : 75
‘(T’ 8¢+ r2 9¢> quT ~ (1—|—8)2(1+ |q|)2,8p ( )
To estimate O¢ we write (¢ = (O—0gy)¢. Thanks to Remark 2.2, in the region ¢ < 0 it is sufficient
to estimate gLL(?gczﬁ. We start with the region ¢ < 0. To obtain all the possible decay in s, we use

the estimate (5.10) of Corollary 5.4 for I < N — 11, which gives, for ¢ < 0

3
lgrLl S e+ la)>
T (1+9)2

The bootstrap assumption (4.15) imply

3

(1+ )3 *vT+s

2
001 S

therefore .
(1 + |q])2

(1+5)3 (1 + [g))+=30

90105049 <

and we obtain

e3

Og)o 0r| < . 7.
(O S g (79)

Thanks to (7.5) and (7.6), in the region ¢ < 0 we have

e3

1 1
—O¢ + ~0s¢ + — 03 >8 ’5 . —. 7.7
‘< ¢+7’ ¢+r2 09 ) Oor (1+s)§(1+\q|)§—8p (7.7)

We now estimate the integrand in the region ¢ > 0. Estimate (4.38) yields, for ¢ > 0and I < N—3

3

1Z¢] < o
VIFs(l+ g™

and estimate (5.12) yields for ¢ > 0

1.,
< (¥

IQLL
(1+ s)%

In the region ¢ > 0, O¢p—0y¢ contains also terms of the form Eﬁﬁ&b (see (2.13) in the discussion of
Section 2.5). We can neglect them since we already take into account terms of the form %(%d)—i— r%@g 1)
in (7.3). Consequently for ¢ > 0

1 1 e?
—0¢ + =050 + 02¢> Oypr| < . (7.8)
‘( P ) Y (L ) (14 gl 3
Therefore, (7.4) and (7.8) yield for ¢ > 0
< ¢
dsho| < , 7.9
S e i
and (7.4), (7.7) and (7.8) yield for ¢ < 0, since $ is integrable,
&2
0sho| < RET (7.10)
s
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Integration path for q<0

~

t=T

v

/

Y

4

Integration path for q>0

4
7

Figure 1: Integration of hg

Thanks to Corollary 6.4 we have

2
b(h) + / (0y0)*rdr| < —.
1.0 T2
Moreover 0,hg = Oqho + Osho and therefore (7.10) and (7.9) yield
2
Orho = —2r(8,0)* — 2b(0)0 (x(9)q) + O | —— | - (7.11)
(1497

Therefore, on the line ¢ = T, with fixed # we obtain the following estimate for hg in the region
r < t by integrating (7.11)

ho(T, R, 6) = — /: <—2r(aq¢)2 +0 (&)) + 2b(6)

_ /OR 2 (9y0)2dr + O <¢%>

62 82
- ((1 +T)é> o ((1 +q)”f’) '

To estimate hg elsewhere in the region r < t, we can integrate the estimate (7.10), at fixed ¢, as
shown in the left of the figure 7.1. To estimate hg in the region r > ¢ we integrate the transport
equation from ¢ = 0, as shown in the right of the figure 7.1 : we rely on formula (7.1) and the

estimate for ¢ > 0
€

VITs(l+ gzt

10401 <
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We obtain
£2
ho = O <(1 + q>2+2(5a)) , g > 0,

ho=o(_< 0 e 0
=0|——|+0(—5=% ], a<0.
’ (1+s)2 ((1+q)2‘8”> !

Next we derive an estimate for Z1hyg.

Proposition 7.2. Let I < N — 5. We have the estimate for g <0

Zhol € e S 0ZTho| S — ) (0,2 h| S
VIi+ts  (1+|g)t= 1+5)2 (1+ |g[)2=2r
(1+s)
and for g > 0
2 2
1Z ho| < c 10521 ho| < °

~ (1 |g|)2r20-0) (1+ 8)%(1 + |q)1+2(5—a)'

Observe that
S = s05+q0q, Q12 = Oy, Qo1 = cos(#)(s0s—q0y) — ; sin(0)0p, Qo2 = Sin(9>(585—q8q)+;COS(G)@@.

Hence Proposition 7.2 is an immediate consequence of Proposition (7.3).

Proposition 7.3. We assume Let j+k+1 < N —5 then in the region r > % we have the estimates
on ho, forq <0, if j,k>1

52

$T43 (14 g1

10405 0o <

and ) )
1 1 . €
9 hho| < — < + ) Hobho| < — .
%ol S e \Vies P i) R o
For ¢ > 0 we have, with j > 1
52 52

0205 0pho| < 1 105 0hhol <

STHE (L g a0 (1+ Jg 2200’

Proof. We assume first j = 0 and k£ > 1. We assume [ + k < N — 3. Then we can write
0y Opho = —205 0y (1(949)* + 97 (ax(a))b(8)) -

Therefore we can estimate
T 1

BFdbho| < — 727 (8,6)%| + ————|9ba|.
’ q“0 ’ (1+|q’)k_1 JSRZ—H—I‘ ( q ) ’ (1_’_|q‘)k+1‘ 0 ’

The terms in ZJ(6q<Z>)2 are of the form an‘h ¢8qZJ2¢, where J; < % < N — 15 therefore we can
estimate, thanks to the bootstrap assumption (4.15)

3

(1+]g)2*VIFs
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and we estimate 9,Z72¢ thanks to (4.28) of Proposition 4.8 since Jo <I+k—1< N —4

9
0,272¢| S :
I V1t lgvI+s

Consequently we have shown that for k+1 < N -3, k> 1

52

k ql <
‘aanhO‘ ~(1+ ’q|)k’+1—4p'

(7.12)

In the region g > 0 we have the better estimate for i = 1,2 thanks to (4.31) of Proposition 4.8

3
10,27 ¢ < :
! (1+g))2 "I +s
SO 9
0k dbhol < ° (7.13)

(1 + |q’)k+2+25—20 '

We now assume k > 1, j > 1 and estimate Gﬁﬁé“aého, for j+k+1< N —4. Thanks to (7.3),
we can write

&0k dhhg = —0I 190} <r8q<z> <D¢ - %ascb - 7}283¢>>> :

We estimate

- _ 1 1
oI tok1o, <raq¢> <7~85¢+ T26§¢>>‘

1 ‘ B . .
S 2 <Taq¢ (rasw ﬂ83¢>>'

1
< ' E ZJ1+2 ZJ2+1

(L [g)R(L A+ [s])! | ¢ 7
Ji1+J2

<jtk+i—2

We can assume J; < W In the region g < 0, (4.15) and (4.35) yield

T VTH S+ g TVt

Consequently, for g < 0

52

T )=+ sy (7.14)

. 1 1
oo 10h (vaus (Lo.0+ o) )| <

To estimate the contribution of ¢, we write as before O¢ = (O —Oy)¢. Following Remark 2.2, it
is sufficient to estimate

. 1 .
—1ak—149l 2 k+j+1-2 2
%00 (TgLL8q¢aq¢)‘ S Tl sy ‘Z ’ (TgLLaqwqd’)‘
1
< : |27 g1 10,272 0, 272 ¢)|.
(L+1gD*(1 + |s[)i—2 JH%:HB ! !
<jtk+1—2

We have J1 + Jo+ J3 < j+k+1—2< N —5 We separate in two cases
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e J; <& —2and J, <4 —2: then we have thanks to (5.10), (4.15) and (4.28)

3
‘ZJlgLL‘ < 8(1 + !Cl\)Q
~ 3 )
(1+s)2
10,271 ¢| < 10,279 S 2 .
VIFs(1+ gz V1+lglvV1+s

The case J; < % —2and J3 < % — 2 can be treated in the same way.

o Jo < %—2 and J3 < %—2 then, since |J1| < j+k+1—2 < N — 4 we have thanks to (5.11)
and (4.15)

e

VIts(l+|q))?

e(1 + [q)>+
(1+s)2

In the first case we obtain

1Z7 L) < 10,27 ¢| < = JorJ =T+ 15

&3

127 g11,0,27 T 60,2759 < :
! ! (148)3(1+|g))2*

(7.15)

and in the last case we obtain

g3

|21 g1 10,272 0,272 ¢| < )
! ! (14 8)3 (1 + |q|)1-30n

We have u+ 4p < % Consequently, we have in the region ¢ < 0

&3

(1+ [g)Fr2=% (1 + |s])i~2

Estimates (7.14) and (7.16) yield, in the region ¢ <0 for j+k+1< N —4, 5,k > 1

(7.16)

~

017050 (rg100,0076)|

62

(1+5)7t2(1 4 |g|)Fta—%

In the region ¢ > 0, thanks to (4.31) and (5.12) we have the better estimate, for J < N — 5

040 95ho| < (7.17)

1

1 =—0+o
0,279] < | |Zlgl < DY
VI+s(1+ g2+ (1+s)2

so we have

g2

(1 +s)j+%(1 + ’q‘)k+%+2(6—0)‘

090k dhho| < (7.18)

We now assume k = 0 and j > 1. We obtain an estimate on 8§8éh0 for ¢ > 0 by integrating
(7.18) for k = 1 with respect to ¢, from the hypersurface ¢ = 0. We obtain for j+1 < N —4, j > 1,
qg>0

52

& hho| < : 7.19
9:0phol = (14 s)7F3(1 4 |g])2 720~ (7.19)

For ¢ < 0, we integrate (7.17) from ¢ = 0. We obtain for j + [ < N —4, 5 > 1,
|0J0hho| S ————— (7.20)

(1+ s)”%
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We now estimate %ho for I < N — 5. Recall from Corollary 6.4 that

o <b(9) + / (8q¢>)2rdr>
X7

Moreover, we can write, thanks to the estimate (7.20)

82

T

<

N[

2
0rOyho = 040hho + 9s0hho = 0p (—27(99)?) — 202(ax(q))9hb + O (( ¢ ) .

Therefore, by integrating this on the line ¢t = T', we have

R 62
dhho(T, R, 6) = / d,0hhodr 4 O < > :
0

v14+T
and consequently, thanks to (7.12) we have the estimate, for | < N — 4 and ¢ <0
2 2

Ohho(T,7,0)| S o
‘ 0 0( r )‘ ~ m (1+|q|)1_4p

To have an estimate everywhere, we integrate (7.20) for j = 0 with respect to s, as shown in the
figure 7.1. We obtain, for / < N —5

2 2
|Bbhol < \/f? T \eql)l—‘lp' (7.21)
In the region ¢ > 0, we just integrate (7.19) from ¢ = 0, and we obtain
2
|0 ho| < T e (7.22)

In view of (7.17), (7.18), (7.12), (7.13), (7.20), (7.19), (7.21), (7.22) we conclude the proof of
Proposition 7.3. O

7.2 Estimation of O (])ho
Proposition 7.4. Let I < N — 7 We have the estimate for ¢ <0

(o (Im) -1 ;) (oo 2200

and for g >0

(5 () -1 ;) (oo 2400

Proof. We have in view of (4.10), (7.2) and (7.3),

2

(1+1ql)

24N
wlw| m

(1+5s)

52

(1+ |q|)2+2(6fa).

<

3
2

(1+5s)
O <T (%) (4@ Ogho + L (0uho + Byho) + 69h0> + VT (%) Vho + heOY (g)

_T<T 16 (06 - 200 S350) + 1 (~200,00 ~ 2O%(0x(a) )

2(0 — 4T (%) 8,606 + f(s,q,0),

) (-~

w1 (%) (ia ho + agh()) + 97 (3) ho + b0 ()
r (9)32(qx( )

-1 () (-t 422D
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where
F(s,4,0) =T (f) 49,6 | D50 + —2= d) + Xoshe + L o2ho ) + VY (f) Vho + hoOT (f) .
Y t I r r? t t
We can estimate Zlf, noticing that when Y’ (%) # 0 we have r ~ t ~ |g|. We obtain

1 1
12| S (ESSE > |Zlh0’+? > 128 2¢)0,2" ).

J<I+2 I1+1>,<I

Proposition 7.2 yields, for I < N -7

2
I g
E hO‘ S ;
1+ 2J<]+2 (14 5)2\/1+q|

and as usual we may estimate, thanks to (4.28) and (4.15),

2
720209, 74| < < ,
2002 S T T

therefore we obtain

62

(14 3)2/1+ g

In the region ¢ > 0, we have the better estimate

21| 5

2
7zir < c )
e

To estimate [l¢ we write, as before
O¢ = O¢ — Oyo.

It is sufficient to estimate a term of the form gLL6q2<;5. Therefore we write, like in estimate (7.15),

2ot S Y\ lz oz S
T+ s+ Js<I q))?
In the region ¢ > 0, we have the better estimate
120,000 § ———— .
(1+5)2(1+ [g])>+20=7)
This concludes the proof of Proposition 7.4. O

7.3 Estimation on h

We recall that h satisfies the equation

Oh =0 (Y (5) ho) + Y (5) 91.203h0 + 27T (5) (046)* = 2(R)gq + Y () Qre(ho,9),
(h, Bih)]1=0 = (0,0),

where @@ is defined by (4.12).

o1



Proposition 7.5. h satisfies, for | < N —7

62

(1+s)27"
Proof. Proposition 7.4 gives for I < N —7 and ¢ <0

1Z'h| <

2

, 7.23
(L +lql) 729

’Z[ (o (;) ho + 27 (%) (040)" — Q(Rb)qq)‘ < (1+ s)g

where we have used that thanks to (1.7)

b(0)97 (ax(q))

r

< 11§q§252‘
~ (14 s)?

(Rb)qq —2

To estimate ZI(gLLﬁgho) we use the transport equation for hg

9rL07ho = grre(—2r(99)* — 2b(60)0; (ax(q))

We estimate the first term as in the proof of Proposition 7.4.

<C:2

(1+5)7(1+|gl)>

|21 (rgr10g0039)| <

To estimate the second term, we note that the terms of the form x)(q) decay faster than any
power of ¢, so thanks to (5.11),

52

12" (gLeb(0)0; (ax(0))) | S -
( (XONE
Consequently we have proved

82

(1+]g))2~%

’Zi (T (g) gLLagho)] < (7.24)

3
2

(1+s)

We now estimate @@(ho,gj). We note than in the region ¢ < 0 the only term is dpgr,,0rho. We
use again the transport equation for hg

Oqg1L0gho = 0q9LL(—2r(040)* — 2b(0)07 (ax(a)).-

Consequently, for similar reasons than for (7.24), we obtain in the region ¢ < 0

82

. T
Z (7 (L) 8,91.0.0,h0 ] < . (7.25)
(0 (0) ounstto) (L5)2 (L4 Jg) 2
Thanks to (7.23), (7.24) and (7.25), we have in the region ¢ <0 for I < N —7
0z1h| < ) . (7.26)

(1+5)2(1+lg])

In the region ¢ > 0, we have to estimate in @Q(ho,ﬁ) the term Or(gp)vvOLgrr, which is of the
form M&;g&u Thanks to (4.32) we have

o (020

82

S— 7.27
(1+lgho e

8quL) ’ S

3
2

(1+5s)
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The other terms give contributions similar to the one of Proposition 7.4. Consequently, for ¢ > 0
we have the better estimate for I < N — 7

82

(1+8)2(1+ g2 07

0z'h| < (7.28)

We now use lemma 7.6, whose proof is given at the end of this section, to conclude.
Lemma 7.6. Let 5, > 0, such that 5 —a > p > 0. Let u be such that

1 1

Dul < g , forqg <0 |Oul S g
(T+s)27%(1+q]) (14 s)27%(L+[q])+7

, forq >0,

and (u, Opu)|t=0 = 0. Then we have the estimate

] < (14t)*tr
~oV1+s

Thanks to (7.26) and (7.28), the conditions of Lemma 7.6 are satisfied with a = 0 and 8 =
2+ 6 — 0. Moreover, the initial data for Z'h are given by the right-hand side of (4.11) (i.e. they
are quadratic), therefore, for I < N — 7 at t = 0 we have

82

Z'h) + (1 +1)0:27h) < ————.
‘ ’+( +T>‘ t ‘N(1+T)1+6
Consequently, Lemma 7.6 and Proposition 1.5 yield for I < N — 7

e2(1+1t)r
Vits

This concludes the proof of Lemma 7.5. O

1Z'h| <

Proof of Lemma 7.6. Let tg > 0. We consider times t < tg. In the region r < 2t we have |q| <t <ty

and s < 3t < 3tg. Therefore
(1 + to)oH-p

(1+[g)'T5(1+5)2t5

Bl S

In the region r < 2¢, we have § <|[¢| <randr <s< %T, therefore

1 14 tg)et? 14 tg)et?
Oy s — g UHT o Udh)
2

(L2t (1 )3t (L fg) R (14 5)2

)

provided % +p < % + 6 —a,ie. f—a > p. Consequently, the L — L estimate yields, for t < tg

o < AT 0
Yo Vl+s
If we take t =ty we have proved
lu| < (RN
ST Ars
which concludes the proof of Lemma 7.6. 0
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8 Commutation with the vector fields and L*° estimates

8.1 Estimates for I < N — 14
Proposition 8.1. We have the estimates for for I < N — 14
Coe + Ce?
(1+s)2F
2
\Zlqb\ < Coe + Ce —
V1+s(l+]g))z™

This proposition is a consequence of L — L estimates and the following propositions.

1ZTg| <

Proposition 8.2. We have the estimate for I < N — 14

2
g
0z1¢| < :
D201 S T s+ 1)
2

, 4 <0,

3

0z%1¢| < , q>0.
D201 S Trspa gy 4

Proposition 8.3. We have the estimate for I < N — 14

2
021G, < - g <0,
(1+s)2(1+[q])

52

(145)2(1+lgl) 707

0z

, q>0.

We first assume Proposition 8.2 and 8.3, and prove Proposition 8.1.

Proof of Proposition 8.1. We have

g2 g2

0z < < ,
BZ9 S Ao i) © Txs7 o+ q)

therefore the L — L* estimate, combined with Proposition 1.5 for the contribution of the initial

data yields
Coe Ce?

- Vit+sy1+]ql m +lg))z =%

where C is a constant depending on p.
The estimate g1 follows from Lemma 7.6 with a =0, 8 = % + 6 — o combined with Proposition
1.5

1Z"¢| <

12'g1] < ce
11 > )
\/1+s\/1+|q —|—S%p
which concludes the proof of Proposition 8.1. O

Proof of Proposition 8.2. We first estimate (0Z1¢ in the region ¢ < 0

Z'0¢ = Z' (O¢ — O,9).
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In the region ¢ < 0, thanks to Remark 2.2, it is sufficient to estimate Z! (gLL&?qS)

‘ZI_JQLLQ?ZJ@ s \ZT gri||1 2712 ¢).

(1+1q))?
IfJ< % we have J +2 < ¥+2§N—14 so, thanks to (4.15)

9
(1+5)7(1+ |gl)z~*’

12729 S

and since I —J < N — 14 we have thanks to (5.9)

e(1+1ql)

’ZI_JQLL‘ S————s -
(1+s)2%

~

Therefore

62

(14 5)22(1 4 Jgl) 2~
fr—-J< % < N — 15 we have thanks to (5.8)

12" 9100727 9| S

e(1+lql)

12" gr1| < ;
(1+s)27"

~

and since J + 2 < N — 12 we have thanks to (4.17)

€

2720 S .
(1+5)272%

In the two cases, we have for ¢ < 0

62

2" 9110727 ¢| < : 8.1
In the region ¢ > 0 we have the better estimate thanks to (5.12) and (4.32)
1-J 2 7] e?
1Z° 7 gL00, 27 ¢ < (8.2)

(14 8)%(1 + |g[)2+20=o)

In the region ¢ > 0 we also have to take into account the crossed term. These terms are described
by (2.13) in Section 2.5. Tt is sufficient to estimate

zt (bw)xiq)@@ .
Since they occur only in the region g > 0, we can estimate, thanks to (4.38)
£
|ZI¢| 5 l_;,_(s_ :
V1+s(l+q))2™7°
Therefore
9y (ax(q)) e? e?
Z'0(0) 040 S < : (8.3)
r (1+8)3(1+|q)zto—o ~ (1+ )21+ [g]) 0
Estimates (8.1), (8.2) and (8.3) conclude the proof of Proposition 8.2. O
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Proof of Proposition 8.3. We write the equation for g;. We have, thanks to (2.4) and (2.7)

O(G0) i = = 20400 + 2(Ro) s + (dg*) 0T (%) ho

+71(%) %2 (ks (0)ho + 1i2,(0)Bho) (8.4)

+ PHV(g)(aga ag) + ﬁ,w/(§7 gb)7

and therefore DZI(§1)W = fuv, where the terms in f,,, are of the forms

The

the quasilinear terms : thanks to Remark 2.2 it is sufficient to study ZI(gLLﬁqzﬁl),

the terms coming from the non commutation of the wave operator with the null decomposi-
tion: they are calculated in (2.7) and they are of the form T(%)%QB@ZIhO,

the semi-linear terms: following section the worst term is the term Z! (aéggaéguz) appear-
ing in Z1 Pyy (see (2.9)).

the crossed terms with the background metric g;: the worst term is the term z! (6L(gb)UU8LgLL)

appearing in Zlﬁ@ (see (2.11)).

quasilinear terms We estimate

ZI (gLL8§§1) = Z ZI_JgLLZJaggl-
J<I

We have

12" 9100 27 51| S 2" grLl| 27 g1,

1
T+

If J < &34 we have J +2 < 514 42 < N — 14 so thanks to (4.16)

~ 3
|ZJ+291| 5 1
(I+s)27°

9

and since I —J < N — 14 we have thanks to (5.9)

(1 +lql)

12" g1l S :
(145)272%

~

If I —J <854 < N — 15 we have thanks to (5.8)

_ e(l+
12" gl S (7@)7
+s)27°

and since J + 2 < N — 12 we have thanks to (4.18)

~ €
|ZJ+291| 5 T 19,
(1+5)72%

In the two cases, we have

82

1+ 5)2730(1+ |q])

12" 9100727 1| S (
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The term coming from the non commutation of the wave operator with the null struc-
ture We have to estimate

" (f) 99 Z ho
t r2
Since I < N — 14, we have [ +1 < N — 5 so thanks to Proposition 7.2

() 250 s 2

3 9
<
3

(L+8)2y/1+]g] ~ (1+s)2(1+]q|)

S (8.6)

t 72

The semi-linear terms We estimate Z! (E)LQQEJLQLL). For this, we have to estimate, using
the decomposition (4.6)
Z" (0LhodLgrr) and Z' (0L510L91L)

The first term has been estimated in (7.23). For the second term, we write

1
\Z7 102 g,
1+ |q| ;

12" (0L910L91L) | S

and we estimate if J < 5! thanks to (4.16) and (5.4)

~ _ g
‘ZJ+191| S 1 and \aZI JQLL\ S T 3 9,
(1+s)277 (14+5)272
If I — J < ¥ thanks to (4.18) and (5.3) we have
1270 § ———— and |02 9| § ———.
(1+s)2% (1+5)27°

In the two cases we have

52

(14 5)>7% (1 +q])

12" (0L910L91L) | S

This estimate and (7.23) yields for I < N — 14

62

(1+5)7(1+[g))2%

12" (0.910L9rL) | S (8.7)
We have now estimated [0Z7(g;),, in the region ¢ < 0. Thanks to (8.5), (8.6) and (8.7) we
have, forg <Oand I < N —14

62

(14 5)2737(1 + |q])

02751 < (8.8)

The crossed terms The crossed term are only present in the region ¢ > 0. The estimate of

Z" (9q(gp)uv0q9LL)

is done in (7.27). The other terms give better contributions in the region g > 0 (see Remark 2.3).
Therefore we have for g <0 and I < N — 4

2

5
02| : (8.9)
(L4 8)2(L+ [q])2
The estimates (8.8) and (8.9) conclude the proof of Proposition 8.3. O
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8.2 Estimates for /] < N — 12

Proposition 8.4. We have the estimates for I < N — 12
Coe + Ce?
215 < Coe + Ce?

~(14s)z %

1Z1¢| <

This proposition is a straightforward consequence of Lemma 7.6, Proposition 1.5 and the fol-
lowing propositions.

Proposition 8.5. We have the estimate for I < N — 12

2
027¢| < ~ g <0,
(1+ )5 7(1+|q))
2
g
0z1¢| <
D29 S Trara+ 1D

Proposition 8.6. We have the estimate for I < N — 12

1+6—0c’ q> 0.

62

||:|ZIgl|< ' ) q<0a
(1+5)27°(1 + |q|)

62

021G, <

S , ¢>0.
(1+5)2(1+ [g))2 07

Proof of Proposition 8.5. We first estimate ¢
Z'0¢ = 2" (O¢ — O,9) .

In the region ¢ < 0, it is sufficient to estimate Z' (gLLﬁgqb)

12 90227 | < Z17 g1)10,27 11 ¢

1+H

If J < Y12 we have J + 1 < N — 14 so thanks to (4.15)

£
(L4 5)3(1+ g2~
and since I —J < N — 12 we have thanks to (5.10)

027 ¢| <

_ e(1+q|)
72" g § ———=.
| grrl S s

Therefore

82

(1+ g2~

VATV ALIRS
(1+s)

If I —J < %512 < N — 15 we have thanks to (5.8)

3
2

‘ZI?JQLL| < 5(1 + |q,)
~ (1+s)%_”

o8



and since J +1 < N — 12 < N — 4 we have thanks to (4.28)

0271 ¢| <

€
VIF+sy/(+]a)
In the two cases, we have

g2

12177 g1.00227 | < :
‘ (1+5)27"(1+|ql)

The main contribution in the region ¢ > 0 is like (8.3) in the proof of Proposition 8.2. This
concludes the proof of Proposition 8.5. O

Proof of Proposition 8.6. We estimate g1. We only deal with the quasilinear and semilinear terms
in the region ¢ < 0, as the control obtained in the proof of Proposition 8.3 is sufficient to deal with
the others (see (8.6) and (7.27)).

The semi-linear terms We estimate Z/ ((9 9O gLL). For this, we have to estimate

ZI (8Lh08LgLL) and ZI (8L§18L9LL)

The first term has been estimated in (7.23). For the second term, we write

Z |27 (1027 grl,
J<I

1

Z (0pg10r91L) | <

and we estimate if J < 2512 thanks to (4.16) and (5.5)

g4/1
and 1021 grr] < 7_‘_”

|ZJ+1
1
(1t 97 (1t 9)

SIVTIY

il <
If I — J < Y512 thanks to (4.44) and (5.3) we have

\ZJ+1§1\55 and |8ZI*JgLL\§

e

(1+5s)
In the two cases we have

82

1Z" (0310L91L) | < .
( ) (1+5)277(1+q])

This estimate and (7.23) yields for I < N — 12

g2

(14 8)272(1+|qgl)

12" (81,G10L91L) | S (8.10)

The quasilinear terms We estimate Z/ (gLLagﬁl). We have

2" 902271 S 12" 910,27 1.

1+ q|

IfJ< % we have J + 2 < ¥+2§N—14 so thanks to (4.16)
£
(1+8)2 (1 +[g])

10,271 G1] <
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and since |I — J| < N — 12 we have thanks to (5.10)

~ e(1+q|)
ZI J < 2= T HE
| grrl S s

If |I — J| < %512 < N — 15 we have thanks to (5.8)

(1 + lql)

12" gu0] <
(145)2"

~

and since J +1 < N — 11 we have thanks to (4.44)

€

0,27 1| < :
I 1+ |q|

In the two cases, we have

62

(1+8)27P(1+|ql)

12" 910227 51| S (8.11)

The equation (8.10) and (8.11), together with (8.6) proved during the proof of Proposition 8.3
conclude the proof of Proposition 8.6 for ¢ < 0. The estimate for 0Z7g; in the region ¢ > 0 is
given by (8.9). This concludes the proof of Proposition 8.6 for ¢ > 0. O
9 Weighted energy estimate

We consider the equation
Ogu = f,

where g = g + ¢ is our space-time metric, satisfying the bootstrap assumptions. We introduce the
energy-momentum tensor associated to L,

1
Qap = Oquipu — §ga5g’””8“u&,u.

We have
DaQaB = f@gu

We also note T' = 0%, and introduce the deformation tensor of T'
Tap = DoTs + DgTy,
where D is the covariant derivative. We have
D*(QapT’) = fou+ Qapm®”. (9.1)

We remark that 1
Qrr = 5 ((@u)2 + \Vu|2) + O(s(@u)2).

Proposition 9.1. Let w be any of our weight functions. We have the following weighted energy
estimate for u

< ( / @TTw<q>da:>+c / w'(q) ((asuﬁ + (M)) R / w(g)(du)?da+ / w(q)| fopulde.
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Moreover, if we use the weight modulator o defined in (4.22), we obtain

- ( / QTTaQw(q)dx> e / o?u!(g) <(88u)2 + <3Z“>2> i

5(1_i_t)1+20/w(q)(ﬁu)2d$+/a2w(q)|f8tu|dx,

Proof. We multiply (9.1) by w(q) and integrate it on an hypersurface of constant t. We obtain

i ([ @rrv@ir) = [w@ (f0+ Qusnt®) do+ [Qraruwde. 02

We have
QraDu = —20'(q)g"LQr0 = W' (q)QrL + g7 () (Ou).
We calculate
1

Qrr, =0wu(du + Opu) — 5(—(6tu)2 + !Vu\Q) + gLL(aqu)2 + g@(asu)2 + s.t.

1 o 2
2 <(8s“)2 + (f) ) + grL(0qu)® + gL (Osu)® + s.t.

where s.t. denotes similar terms. Consequently, with the help of the bootstrap (4.16), (4.19) and
the estimate (5.8) we have

QraDu = ((C%U)Q + (8’;“)2> 1+ 0()w'(q) + O (WWH’QD(@U)?) ,

(1+8)3"
and since |w'(q)] < %
a. 2 Ogu 2 / ew(q) 2
QroaD = | (Osu)* + | — (1+0(E)w'(q) + O | ——5—(0u)* ] . (9.3)
T (1 +t)§—P
We now estimate the deformation tensor of 7. We have
TaB = L79ap = 019as-
We obtain
€
mrrL = Orgr, = O T
(140
€
myL = Orgur = O 3
1+ i
€
Ty = Orgrr = O T
(L+¢)277(1+1ql)
7r org O c
UL = 0rguL =
- B (I+8)277(1+1q])
€
7TLL—aTgLL=O< 3_>
(1+1[q)2~"
0, b(6
S S a(ax(@)b(®) | £
r (I+s)(1+]q))27"



Consequently, the terms QY7 and QUVFQur, give contributions of the form

S (u)>. (9.4)

(L+1t)27°

We can calculate
1 LL 2 2 2 2
Qrr = drudpu — J9IL (2¢"0rudru + (Ouu)?) + g7 (0uw)* + s.t. = (Oyu)® + g77(0u)* + s.t.

Consequently the term QLny, 1 gives contributions of the form
g —
(Ou)?, (9.5)
(1+ lgh(1 +1)2 7

The terms QELr and QEVmp give contributions of the form

I —

—————(0u)?, (9.6)
(L+1gl)2™*
and the term QYUYnyy gives contributions of the form
Méu@u, ¢ —Oudu (9.7)
r (L+s)(1+q))z™7

Thanks to (9.2), (9.3), (9.4), (9.5), (9.6) and (9.7) what we obtain is

% (/ QTTw(q)dx> + % /w/(Q) <(83U)2 n <ailb>2> N

o wontde e [ P9 5020 (9.8)
S [ @t se [t ou

+ 6/w(q) ﬂq;l |Oudu|dx + /w(q)fatu|dx.

In the region ¢ > 1, we have % <

H%l. Moreover, all our weight functions satisfy

w(q) <
iyt =

therefore, for € small enough, we can subtract from our inequality the term

€ / Lq)g(éu)?
(T+1q))27"
and we obtain

- ( / QTTw<q>dx) +c [wi (<asu>2 n (6’9“>) i 5 1= [wla@widss [ wlolsoulds

This concludes the first part of the proof of Proposition 9.1.
Next, we perform the estimate with the weight modulator . If we replace w by o?w in (9.8),

and we absorb as before the term ¢ [ ﬂ@(éuﬁdw we obtain
(1+lgh)27"

g ( / QTTa2w<q>dx) +5 [@hr@ <(8su)2 " (‘99“)2> &

2
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We write
Lg>1 < To>1(1+ |q])?

T (140214 g2

and so we estimate, since in the region ¢ > 1 we have a(q) = (1 + |q|)™°

s/ Mmuauwm

<5/ (q)lw( )11 - |Oudu|dz
S A+ g))?

9

c a?(Quw(q) 5
§(1_|_t)1+2o/1q>1w(Q)(8u)2dl‘+€/lq>1H_q|(au)Qd:ﬁ.

2

Moreover ]Lq>1M < (a?w)’. Therefore

1+1ql
i </QTTa w( dm) +C/ a’w) ((6 u)? + (aiu>2> dx
S @t s g [l

+6/(wa2)’(q)((§u)2dx—i—/aQw(q)\fatu]dm.

2

We note that with our weight functions and the definition of a, we have a?w’ ~ (a?w)’. For ¢

small enough, we can absorb the term

- [ W@

to obtain

o </QTTa w(g dm)—i-(]/ ( >2+<5iU>2> o

S ] e s s [tew@E s el o

which concludes the proof of Proposition 9.1. 0

10 Commutation with the vector fields and L? estimate

10.1 Estimation for I/ < N

We note for J < N
1 1
Ey= 3971 207155020 + ——— 3977 h)2
s = X ol 2020l + foala) 02 Gl + -y st 02 hE
and

1 ~
Eny =) |laswo(q V2027 8||2 + anwa(q) 2027 G412
I<N
1 1
+ ————loaws(q) 202" h||72 +

1
207k|2,.
=y |oows(q)20Z k|| 72

1
e(1+1)
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We also note for J < N

1= 1= 7~ 1 1=
Ay = Z lwh(q)20Z7 |72 + +llws(q)2 02" G372 + m”wé(@?azlh|@2
1<J

and

1 = 1 — -
Ay = llazw(a)202' 6|72 + +llazw)(e) 2024 7
I<J

1 1= 13
+ ———[lagw}(q)202"h||7. + oo’y (q)20Z k|| 72

1
eI+ 1) e(1+1)

Remark 10.1. Because of the decompositions (4.8) and (4.9) for the metric, and the non com-
mutation of the wave operator with the null decomposition, we have to deal with terms of the form
% in the equation for gy or gs. Written like this, these terms are not quadratic. However, since
we choose for h zero initial data, and since the equation for h is quadratic, h in itself is quadratic.
To carry this information along the proof, we may divide in the energies Ey the norms involving h

and k by €. Since the initial data for h and k are zero, we have
E1(0) < C2&% (10.1)
Proposition 10.2. We have the estimates for I < N,
Er < (C32 + &%) (1 +1)°V5,
and for k> ¢ .
/0 (1+17_),$A1d7' < €2,
This is a straightforward consequence of the following proposition.

Proposition 10.3. We have the inequality, up to some negligible terms defined in Lemmas 10.4,
10.5 and 10.6 for I < N

5
3

d NG £
ZE+A <Y E .
g TS T M T T

We first prove Proposition 10.2, admitting Proposition 10.3.

Proof of Proposition 10.2. We have proved

d NG 2
B <cNYE +C
a =T YT

therefore, if we note E; = G(1 + t)°VE, we have

5
£2

<(————.
dt _C(1+t)1+0ﬁ

After integrating, we obtain

62

G(t) < G(0) + &% — g

and hence
Er < (Er(0) +&)(1 + t)°VE < (C3e? + &) (1 + t)CVe.
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Moreover, we have

d f e3

—FEr+ A; < C E

Pl +Ar < T+ 1+0
therefore if we multiply this inequality by W we obtain

5

d [ E; Ay 1 d NG Ces Ce?
— < A E < .
dt ((1+t)"”~>+(1+t)“ S dtor (dt 1+ f) STrom T A i S (T 1l Ove

Therefore, if C\/e < k, the right-hand side is integrable and so

1
/(1-|—7')"‘€A]d7— S 52.

This concludes the proof of Proposition 10.2. 0

Proposition 10.3 is a direct consequence of the three following lemmas.

Lemma 10.4. We have the inequality,

&3

141t

d 1T ;—
%Ilazw(Q)QaZNch%z + [logw'(q)20ZN |72 < 2(q)20ZNGul22 + ——

€
141
where % — ZN ¢ is composed of terms of the form

x(¢)qd$3; b

guu ’
and we have L
laawid(ZN¢ — ZN¢)| 2 S 2.

For I < N we have

d 1 1=, 7
L (@207 6132 + (@) 202" 6130 S T i + el IZ 5l

Lemma 10.5. We have the inequality,

d (1 1 1
el 3 Npl2 -
dt ( Ha2w5( )28Z h||L2> + 5(1 +t)

5

\[ c2
En + « 8Z + —

1 f N \[H 2w2 () 94||L2 1+¢

where 27\7/]1 — ZNh is composed of terms of the form

x(q)qohd, ~'b
quu ’
and we have L
Hagwga(ZNh — ZNh)HLz < V1 +t.

We have a similar estimate for k

d (1 1 1=
% (Blloaus@02 kI ) + s llavui) oz ki

<\/g

~M1+t

1
e(1+1)

N
Ey + Vellazwy® (0)02 gal |7
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Moreover for I < N

d (1 1 1
o (Blhus@lozni ) + s boz nit:

dt 1+1)

\f A5T 112 5%
FE o0z —_

S B+ Vel @02 il + 1

Lemma 10.6. We have the estimate
d Lo N~ (12 1AL AN~ 2
—|laswa(q)20Z 94||L2 + [Jaowsy (q)20ZN g4 72

it
_|_
~ 1+ Ev+ Ve ity (1+t)

1= 1=
(lazws()2 0ZV 72 + llazws (@) 2027 k| 72)

P

where ZNgy — ZNGy is composed of terms of the form

~ x(9)99g109; b
guu ’

hZN grrdqds
and we have L .
loowg D(ZNgs — ZNga) |12 S €% + ellaowd ZVgrp | 2.

For I < N, we have

N1+ 1+\f( )

d 1 ~ . 1
%sz(Q)ﬂZI%Hé + |wh(q)702' G522 < lws(q)20Z" b7

We prove Proposition 10.3.

Proof of Proposition 10.3. Therefore, if we combine Lemmas 10.4, 10.5 and 10.6 we obtain

5
€2

d
*EI—I-AINLEI—F\[ A+

dt 1+ 1+t
and therefore ;
d NG ez
—F 1-CyVe)A E
7 T+ ( Ve)Ar S T+1 I+1+t
If ¢ is small enough, we have 1 — Cy/e > %, which concludes the proof of Proposition 10.3. 0

It is sufficient to prove these three lemmas for I = N. For I < N everything work in the same
way. The weight modulator g is only needed to estimate a particular term for I = N and is no
longer needed for I < N.

Proof of Lemma 10.4. We start with the estimates for ¢. We use the weighted energy estimate for
the equation

O,2% = > (279°7) (270a050) + > Z'H{Z' 9,0, (10.2)
I+J<N I+J<N
J<N-1 J<N-1
It yields
d 1 1=
= (lazwo(@)20276|%2) + lazwh(@) 202V 6] %

1 9 1
S [laowoBy 20| 2 lloawo(a) 202N 8l 12 + 1 lloawo(a) 202N ..
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Estimate of the first term Thanks to Remark 2.2, it is sufficient to estimate

1
> 2790} 77¢| S A+1a) > 127 91L0,27 ).
I+J<N W <N
J<N—1 J<N-1

If I <4 <N —15, we can estimate thanks to (5.8)

|Z]gLL| 5 (1+’q|)
(1 —|—t) —-r
SO
1
QoW €
ﬂzfguaqz% < 7§Ha2w0 8,27 | 12 (10.3)
(1+1d]) PRETIE
ftJ< %, we can estimate
€
10,0] S : :
(1+ gz vI+1t
Therefore,
: (@)} ()}

O[Qwo I J g CYQ'LUO q 2 I & CVQ'U q 2 I
——=7"911.04Z7 || S Z'grr|| S grr|l
(1+1al) S I e LTV 1+l o

where
v = or q <0,
(‘J) (HAQD% f q
wo

v(g) = {12 = (1+ )2 for ¢ > 0.

We do not keep all the decay in ¢ in the region ¢ > 0 in order to be in the range of application of
the weighted Hardy inequality and we obtain

1

QW

(1+lal)

1
29100427 Sﬁ!\azv( 0)20,7" gri |12

We use Proposition 5.1, which gives
032" grr, ~ 0ZN (grr + g17)- (10.4)
Consequently, thanks to Remark 4.10, we have 9,2 Ngrr ~ 0ZNgy. Moreover, we calculate

{wé(q)z(lﬁjwlforq<0

wh(q) = (24 20)(1+ |q)*+* for ¢ > 0.

Therefore, v < w), and we obtain

1

- ’LU 1
20721 9100,27 9| llaawo(q)2 02" 6|12

13 1 1 -~ 2
a+ld) S —— |laowo(q)20ZN @) +e “azwlz(Q)?aZNg4’

~M14t L2’

LQ
(10.5)
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Estimate of the second term The second term contains only the crossed term, which occur
only in the region ¢ > 0. Thanks to the discussion of Section 2.5, it is sufficient to estimate (2.13),
which gives a contribution of the form

ZN (0(go)vv09) -

For I < N — 2 we have
€ﬂq>0

\Z10(gn)vu| S

and consequently

laswg 02" (g)oudZY 612 < T Haawzé‘ZN T L. (10.6)
In 0Z%(gp)uv9pZN~1¢p with I > N — 2, we have to note the presence of terms of the form
8N+1b 0
x(9)q 1 ( )&;s, (10.7)

which require a special treatment since 8év+1b(0) does not belong to L?. To deal with these terms
we write

0, (»dqm@év—lb%) <>8ij“6<>@¢, XD (S~ az161) (1030 + 0 10]) + st

guu I+s <
We can estimate, thanks to the estimate (4.31) for d¢,
3 €
wi d (x(q)qi?dﬁN‘lb) < Vbl <& (10.8)
‘0 S P Ve CR P EEE e

—_—~— N—-1
Therefore, we may perform the energy estimate for ZN¢ = ZN¢ — % instead of ZN¢.
We are reduced to estimate

1 x(q) I N N-1 3 N N-1
o2 027 > 1027¢| | (105701 + 105" b) S 3 — (190 + [0y b
L+ 1<2 ( ) 12 (1+5)2(1+|Q|)2+U( ) 12
3
&
<
~M14t
(10.9)

The other terms in 02! (gp)yy0ZN !¢ with I > N — 2, give contributions similar to (10.9).

Remark 10.7. We introduce the weight modulator aa to deal with the term (10.7) which is only

N
present for I = N. It is no longer needed for I < N. To see this, let us estimate Mﬁ(ﬁ
T

which is the analogue of (10.7) for I = N — 1.

1 x(q)q0) b(0) 1.1 X(q)qd)b
w2 X\ 9% W) o < ST w2 oz sl b
Jud M D 00 5 3 b i | A | S VB e

where we have used the weighted Klainerman-Sobolev inequality

1 1
w06] < lwg 02" 2,
0 \/1—1—5\/1—|—|q|§ 0

and consequently
2

< /B, (10.10)

LQ 1+t

FRCIL LOP
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Thanks to (10.3), (10.5), (10.6), (10.9) we obtain

d Lo N A2 1z € APLY e
i (loxwo(@?0256]22) + llow'(0) 2027 0l172 S (@)205l72 + 7+ (10.11)
which, with the estimate (10.8) for % — ZN ¢ concludes the proof of Lemma 10.4. O
Proof of Lemma 10.5. We now estimate h. The equation for ZVh writes
O, 2'h = Y (279°7) (270.05m) + Y Z'HCZ0,h
52{\;1\1/ 521]\7?\17 (10.12)

+ Z((040)° + (Rb)gq + Qrr(h, 7))

Estimate of the first term Following Remark 2.2, it is sufficient to estimate ngLLangh. For
I < &, similarly than (10.3) we have

g 1
< — o Jlasws(q)20,27h 2. (10.13)

Z1 110,27 h
B e

)

aws3(q)?
(1+ gl

For J < &, we have the estimate, thanks to (4.42),

10,271 S ———5
(1+ gz
SO L )
042“)3( )2 1 J a2 ws3(q) 2
Z gLL6 Z h Z grL
+al) B e RN ES L
We have

_wy(g) Wy—a for g <0, 6
(T+0g))32 = | (A+|gh*~ 2 <1+ |g)'™® forg>o0.

This yields
'U)3(q) < o
——a— S wh(q).
(T jayr2 = 20
Therefore the weighted Hardy inequality and the wave coordinate condition give, similarly than for
(10.5),

1 PN
S ellagwh(q)20,27 grrlr2 S ellonwsy? (q)9gal 2. (10.14)

1
QoW 2
2 3(T Z'9100,27 h

(1 +a])

L2

Estimate of the second term The second term contains crossed terms, which can be studied
exactly in the same way than for ¢. Similarly than (10.6), we have for I < N — 2

Ha2w§82 (gb)UUaZN IhHLQ ST Ha2w28ZN IhHLQ (10.15)
Like for ¢ the following term require a special treatment :
8N+1b 0
x(@)a% " b(0) fQ ©) o, (10.16)
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We have

N-1 N+1
o, (x(Q)q&bag b8h> _ x(9)ad " b(0) <

x(q) I N N-1
el D2 (|ae bl + (0} b|)+s.t.

2
r
guu =2

We can estimate, thanks to the estimate (4.33) for dh,

3

1
aaw?d (x(q)qah@éV ‘lb) W‘% b

<e?V1+t. (10.17)

L2 L2

—_~— N-—1
Therefore, we may perform the energy estimate for ZNh = ZNh — X(@a0h% b g stead of ZVh.

guu
We are reduced to estimate
1 x(q) I N N-1 € N N-1
agwi X VAL (8b+8 b) < (ab+a b)
231—|—S Iz<;| ‘ ’9 | |9 | (1+8)(1+|q|)1+g |9 | ‘0 | 12
> L2
3
<_ £
RRVAE
(10.18)
The other terms in 0Z7(gy)yy0Z™N~'h with I > N — 2, give contributions similar to (10.18).
Estimate of ZV(9,6)> We have
1 1
lazws(@)2 2N ((040)*) 2 S Y llaows(9)20,2" $9,27 ¢ 2.
I+J<N
We can assume I < % and estimate thanks to (4.28)
5
10,27 9| S :
I 1+ |gvT+t
Then, since
1
wi o
T+]g =
we obtain )
lazws(@)2 2N (940)? (|2 S Z vwo(q)? 8y 27 8| - (10.19)
<N
Estimate of ZV(R}),, Thanks to (1.7), the main contribution in (Rp)4q is
9; (ax(q))b(0)
r )
which is supported in 1 < ¢ < 2. We estimate
. b(0)97 (ax(q)) €2
N | b : 10.20
o) ( . WKZN‘ Bblliae) S —— (10.20)
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Estimate of ZV¥Qp(h,g) We recall from (2.12) that

Qrr(h,9) = OrgrrLOLh + OLgrLorh + OL(9s)vvOLILL-

The terms ZN (99.0Lh) and ZN (01,g1,L01h) may be treated in a similar way than the quasilinear
term, giving contributions similar to (10.13) and (10.14). The term Z™ (91,(gs)vuOLgLr) is a crossed
term, hence it is supported only in the region ¢ > 0. It is sufficient to estimate 91 (gs)vvOLZ™ gLL-
We have

elg>o é‘]lq>()
0q(gp)vv] S —= < :
! VIFt/1+]q|

S0 we can estimate

1

1 € 01271)3 >0 N €
awd 0y(gn)vvdZN grolle S 0Z%rL|| S aw 8Z grL||
o230, (1) B Wearacks fbvest S0 .
and consequently, since g1, = (g4)rr we have
1 €
w3 9y (g)vr0Z grpll 2 < AT aQwQaZ G4 (10.21)
L2

In view of (10.13), (10.14), (10.15), (10.18), (10.19), (10.20), (10.21), the energy inequality
yields

d 1, TN 1=
llaaws(@)20ZVhR. + lazwh(0):0ZV R,

€ 1 1s, N~
< (WHCWW?? aZNhHH —+ 5“()42105(‘1)2621\794”9
2

€ 30 o 59 775 °
+ iy (g0, 22l + 0,275l ) + o

v1+t

We note that

1
> w3 Dy ZN h| 2 + s.t.

1
~e(1+1t)dt

1
dt <€(1+t)

Jazufoz nlE. ) < Jasw} 02 b2,
and we calculate

1
e lloow; 9,77 h|2,

9
3 0, ZNh|)3, <
e(1+1)? Ha2w3 72 < 1+t  e(1+t)
9 1L N N s S5 9 1 1 N )
muang (102 94||L2Ha2w 0gZ" |2 < Vel agwy® (q)0Z 9all72 + m”a2w§8qZ hl72,
e 1 J 1 N S 1 ) N
m”azwé&ﬂ Ollizllazws 027 hll gz < 37 llaww?0,27 112 +m||a2w§aqz h))2..

This yields

d 1 1.7 1=
4 (g loan @2V ) + w202V,

1
e(l+1) e(1+1)
_VE 51 g

E YA
< 205 By VRl @007 gl +

(10.22)

The estimate for ZVk is totally similar. This, with the estimate (10.17) concludes the proof of
Lemma 10.5. U
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Proof of Lemma 10.6. We now go to the estimate for ZV g;. We write DgZN§4 = fuv- The energy
estimate writes

d 1 ~ 1 N~ 1 1 -
= (la2wa(0) 202V Gul132 ) + llaowh(@) 292V Gals Sllazwa(a)? fuwll 2 llaows(@) 202V Gal

€ Lo N~ 12
—_— 207
+ =) w2 (q) 94|72
We recall that the terms in f,, consist of

e the quasilinear terms,

e the terms coming from the non commutation of the wave operator with the null decomposi-
tion: it will be sufficient to study the term T(%)T%E)@ZNh,

the semi-linear terms: it is sufficient to study the term ZV(¢*£0.gr0Lh). We note that
thanks to our decomposition, the term Z™ (9 grdLh) is absent,

e The crossed terms: their analysis is similar to the one for ¢.

The quasilinear terms We consider

~ 1 ~
S 291002275 5m S° Z9110,27 1G],
I+J<N q I+J<N
J<N—-1 J<N—-1

tr< %, we can estimate

SO

l ~
1D Z'9100,27Ga)| S ———5—|laow3 9,27 Gul| 2 (10.23)
2

IfJ< %, we can estimate, thanks to Proposition 4.8 and since the difference between g4 and g3 is
contained in gry, which is equal to (g3)rv,

9
VItlgvitt

Therefore, if we apply Hardy inequality we obtain

1042794l < (10.24)

1 1

W5 7 T~ € ows I
——==7'911.0sZ" ga|| S 042" gLL
(1+lal) L VIR e L

1

Thanks to (10.4) and the fact that . w|22|)l S wé(q)% we obtain
+lq|) 2

1
a+ian? %2 oW 202 S T llw 207 + ||aewy20 )
(1+1q]) 9gLLOq4 " g4 B H 2 2((1) 94HL2 ~ 1+tH 2(CI) 94HL2 ” 2W9y 94”L2

(10.25)
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The term coming from the non commutation of the wave operator with the null de-

composition We note that @ is a tangential derivative Oh. Therefore

r

1 1 1
a2w22 (Q)T <¥> ﬁaGZNh < ?HOZZU)Q 8Z hHLQ

L2

We calculate
wi(q) = 2MW for g <0,
wh(q) = (3+20)(1+ |g[)*™ for ¢ > 0.

Therefore we < wf and we obtain

1 1=
S —— laauw(q)20Z" hl| 2.

1 ry 1
bt (7) pourn| < 15

This yields

1 ry\ 1 -
awi (@) (5) ﬂaezNhH Nz (002G

(10.26)

NMX g1 92 hIs + L5 a2Vl

The semi-linear terms We now estimate ZN(gLL(?LgLL(?Lh). We first estimate
1 —
lwa(q)202" grLdZ"hl| -
for 1 +I; < Nand Iy <N — 1. If I; < & we estimate

_ cltla) (1t lg)?

‘aZII ~ 5 ~ 3 -
(I+s)277  (1+1)2

|Zh+1

gl S —— T3S

Therefore
(1+1q))?02"h| 12

[NIES

1= &
lazwa(q)2 02" 910022 h 1 S ——— [lazwa(q)
1+1t)2

S o ppllean(@ozblzs
If I, < § we estimate, thanks to (4.42)
]8212h| <—5—,
(I+lg))>""
therefore
1
— 2 -
lows(q)2 02" 91102 h| 2 S € | — 22— 82" gy,
(1+1q))27"
L2
1
€ aows
ST 1 S, 2
(1 + la)? ,
1
S : j—t 042w22l7paZ11+19LL
(1 + la))? ,
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where in the third inequality we have used the weighted Hardy inequality. Consequently

1= &
laowa(q)20 2 g1, 0 Z2 R 2 < m”ozgwg( q)2 azfl+1g4||L2 (10.27)

It is not possible to do the same reasoning for I; = N. To treat the term g“29,Z" g11.0Lh,
which appears only in Pr; we will write

Oy(hZNgrr) = DDy (hZN grr) = hO,ZN grr + ZN (gr.0)Ogh 4 g% 0ahds 2" g11.

We estimate ) )
lwa(q)20(hZN grr)llr2 S ellwa(q)20ZN grillre, (10.28)

P

~ AN—1
therefore, we can perform the energy estimate for ZNg, = ZNg,—hZNgr1, % instead of

ZNG4, where the last term is here to deal with the troublesome crossed term which is the equivalent
of (10.7). We have now to estimate hDgZNgLL + ZN(gLL)Dgh + 02N gr1,0h. We estimate first

1 = g 1
loaowa(q)20ZN grLOR|| 2 S mllwz(Q)QazNgLLlle- (10.29)

We have (gh = —2(0,0)? + 9,;hd,gLL + ... therefore

2

g
Oh < —o——
Bahl = Ty @+ 1D
and
()2
g QW2 2 _N e 1 N~
ZN Dh 7 < — A . 10.30
lazwa(q)? ZN grrOghl 12 S TG 2o S Ty lee (@202l (10.30)

To estimate the last term, we have to note that since gLLGLZNgLLaéh appears only in Prr, it is
absent from [, 7 Ngr 1. However, we have terms appearing from the non commutation of the wave
operator with the null decomposition. They are of the form %haZ Ngrr. We estimate

1 € 1 ~
- S llaowa(9)2 02" gul| 2 (10.31)

hozN
gLL 1+t

agws(q)?

The other terms in [y, Z Ngr 1, have already been estimated.

Remark 10.8. This reasoning would not have been possible to treat terms of the form Oygrrozh.
It is why we have introduced the function k, which is allowed to decay less.

Thanks to (10.23), (10.25), (10.26), (10.27), (10.29), (10.30), (10.31) the energy estimate yields
d 1N LN 2
= (la2wa(q) 202V gul132 ) + llaaw(a) 292N gal 3
\/

Nl—i—t

+vE (o

1 . 1
(\a2wz<q>QazNg4rr%2 n lagw? ah||%2> (10.32)

1
e(1+1)

1= 1 — —
i lasuh@302 Vbl + ||a2w§<q>zazNg4r%2) Tt

This, together with the estimates (10.28) concludes the proof of Lemma 10.6. O
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10.2 Estimates for / < N — 2
Proposition 10.9. Let I < N — 2. We have the estimates

llowo(q)20Z || 2 < Coe + Ce2,
lonw(q) 2027 h| 2 < Ce2(1+1),
lows(q)202 G312 < Coe + Cet.

Moreover .
s 7~
[ lawsta202'gl3. < 2
0
We prove the proposition by using the energy estimate for ¢, h and gs.

Proposition 10.10. Let I < N — 2. We have

d 1 1=
72 llowo(@)2027 |17z + Y _ llowy(a)2027 6|17
J<I J<I

1
< Juota
S A peovE T Tt oe Z wiolg
Proposition 10.11. Let I < N — 2. We have the estimate

d s i
7 2 llows(@)202 hl[x + Y llowh ()02 h|72 < <
J<I J<I

Proposition 10.12. Let I < N — 2. We have

5
~ €2 € 1= ~
dat Z laws(q) 2027 G372 + 3 laws(@)2027Gs 7 Aro @ +t)o||w§(CI)28ZI+lgslli2-
J<I J<I

We admit for the moment Propositions 10.10, 10.11 and 10.12 and prove Proposition 10.9.

Proof of Proposition 10.9. We estimate ¢. Since o > Cy/e for £ > 0 small enough, by integrating
the inequality of Proposition 10.10 with respect to ¢ we obtain

> llaawg(q) 2BZJ¢||L2+/ S llawh(q)2 027 ¢l dr

J<I 0 J<r1
<3 llawo(q) 2027 $(0)[|2. + C +0/ Tror ZHwO 282J¢H dr.
J<I

Thanks to Proposition 10.2, we have

[ o] <.

and therefore

> llawo(q)2027 ¢lf2> < C3e* + CE®.
J<I
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We now estimate h. We integrate the inequality of Proposition 10.11 with respect to t. We obtain,
since we take zero initial data for h, and therefore, initial data for Zh of size &2

S lous(@02 nl3s + [ lau (@32 s 00
J<I J<I
We now integrate the inequality of Proposition 10.12 to estimate g3. We obtain

> llaws(q) ZJ§3||L2+/ > llawh(q)7027 g5 | 22dr

J<I J<I

t
J=~ 2 5 € I+1% 112
<D w0 POz RO + 0 + [l 102" il .

Proposition 10.2 yields
t
1
/ T (@02 s < 2,

1+7)°
Therefore
~ 5
S Jlaws(q)2 02752 +/ S llawh(q)2027Gs)|22dr < C2e% + Ccs.
I<N-1 ISN-1
This concludes the proof of Proposition 10.9. O

Proof of Proposition 10.10. We follow the proof of Lemma 10.4. Let I < N — 1. We use the
weighted energy estimate for the equation (10.2). It yields

d 1 1= 1
= (low(@02 6|22 ) + law'()2927 6|32 S |[By2 | low(@) 2027612

10.33)

€ 1 (

+ g e w0z 9l

We first estimate
1

> Zhgpaize| < ariD N 1Z2hgr0,2"9).
h+I1><I ILi+12<I
Io<i=1

IfL < %, we can estimate

e(l+
VAXTTARS £+l |§q‘_)

(Lt 1)5

S0 .

ow € 1
e e e U S (10.34)
L2
If L < %, we can estimate
€ I €
AR , forq<0, |0,2%¢| < , forqg>0.
q (L4 la) 3=V +1 ' (Lt la) 2+ VI +1
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We apply the weighted Hardy inequality, but in order to be in its range, we cannot keep all the
decay in ¢ in the region ¢ > 0.

1

awo(q)? g I € I € 1 I
O 21 g110,220| S Zgr|| = 1v(q)204Z 7 gLl 12
T+ laD L S VI || S
where
v(q) = W forq<O, (10.35)
I .
v(q) = W = (1+q))** for ¢ > 0.
We use (10.4), which gives 0,211 gr;, ~ 02" gy so
1 < 1 L+l < 1 IL+1~
10,2 gLl S ——1Z" | < T ~[Z277 gul. (10.36)
145 (L+ )27 (1 +|q])2 "
Therefore, we obtain
(q)7 (q)7
awp I I € vig)?2 L+1~
20D 7 Y910 29| S s
(1+ql) A e IC T Ead 1

1 ag
o2 (1+ |al) 270,27 G | 1.

where we have used again the weighted Hardy inequality. We calculate

v(g)(1+ |g))t %7 = W for g <Q,
v(q)(1+1a)' 27 = (14 [q])***+> for q > 0.

Therefore if 1 —4p —20 > pand § + 20 < 26 we have v(q)(1+ |g|)' 27 < wy so we obtain, together
with Proposition 10.2,

awy(q)?

2 Cye
1 - e“(1+41t)
FERPIIY S s w2 (@)28,21 g 12 <
(1+1ql) !

ZMg1,1,0,2" —_—
gLL ol S 1+ 1)+ STt )te

(10.37)

L2

We now estimate the crossed terms, for which the weight modulator a has been introduced. They
are of the form (2.13). Tt is sufficient to estimate, for I < N — 1

el =
—a(q)wo(q)292"9

L2
We obtain
elg>o 13 _ € 1,50 1 _
—a(quwo()202V 10|l S s 122 wo(q)202N e
r 2 (1+1t)2 (1+q])2 12
1
and consequently, since in the region ¢ > 0 we have wol(j_)ﬁ < w()(q)%7
q
E]]-q>0 Ll N—-1 I
TQ(Q)WO(Q)“?Z <Z5 Hawo 0Z'¢||7»
£ 1 (10.38)
397l 12 / L5,N—-1 2
S W”awg 02 91> + m”wo@wz 72
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The last term which appears in (10.33) can be estimated thanks to Proposition 10.2

e3

1
2 I2 <
lwi0Z° 6l S T pyieeve: (10.39)

£
(14t)tte

The estimates (10.33), (10.34), (10.37), (10.38) and (10.39), together with the bootstrap assumption
(4.25) which imply
lonwo(a)202" 612 < e,

conclude the proof of Proposition 10.10. 0

We now estimate h

Proof of 10.11. The equation for Z'h is given by (10.12). We estimate first

1

aws; Z (Zhgaﬁ> (Z[28a85h)
L+1x<I
<11 L2

As before, we can estimate, for I; < %, thanks to the bootstrap assumption (4.25),

1
1 2

%ZthLanbh 2 < Myawgaqu2h||L2 < (ng (10.40)
L
For I, < %, we have the estimate
10,212h| < ax |(;)§p, forq<0, 18,2"h| < W, for q <0,
S0 , )
%Zhgmaqzbh < QQTULDZIIQLL ,

where v is defined by (10.35) and with Hardy inequality and the same reasoning than for ¢
1
aws

I I 1 I 1 1 I 1~
mZ Yor0sZ%h||  Sellv2dgZ grre S €7l4_an2(q)28Z Ay

., (1+1)3
and thanks to Proposition 10.2 we obtain

1

2 2 c
LU);ZIlgLLanIQh 5 M (10.41)
(1+1q)) L (Lt
We estimate the second term
1 1 1
3 I 2 3 I I € 3 I
aw: Z' (0,0 S D low30,Z2"¢0,2%¢) 12 S ——= > lowid,Z ¢l
L? [ iD<I 1+t J<I
so thanks to (4.25) we obtain
1 52
2719,0)%| < . 10.42
awg Z* (049) LY VTt ( )
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The semi-linear term Orgr1,0rh, appearing in Qrr can be estimated in the same way as the first.
The crossed term O (gs)vrOLgrr appearing in Qrz and the term (Rp)4q can be estimated in the
same way than in the case I < N. The crossed terms of H}d,h can be estimated in the following

way
£2

elg>o Lo 0 € Iy,
aw20Z'h < aw 8Z 10.43
Sauoz'h| < i lewozh) 5 (1043

Thanks to (10.40), (10.41), (10.42) and (10.43), and the bootstrap assumption (4.25), the energy
inequality yields (we use here the first inequality of Proposition 9.1)

e2
N\/i

which concludes the proof of Proposition 10.11. O

Hozw?fa ZIh||L2 + —

d 1 1
—lawi 02" Rl + [lows(q )202"hl13: S laws 0,2" h|[7: < €°,

€
14+t
We now estimate g3

Proof of Proposition 10.12. We write DgZI§3 = fuv- The energy estimate yields

d ~
2 (lawa(a)20215)12: ) + llow'(0) 2021 Gal12: Sllewa(a) fullz2 lonwa(@)07 Gl 2

Lo~ 12
+m”w2(Q)282 g3ll72-

We recall that the terms in f,,, are
e the quasilinear terms,

e the terms coming from the non commutation of the wave operator with the null decomposi-
tion: it will be sufficient to study the term x(%)50yZh,

e the semi-linear terms: it is sufficient to study the term ZIGUgLLOLh,
e the crossed term: their analysis is the same than for ¢.

We first estimate the quasilinear term.

~ 1
2 Pt ZN S gy 2 12 on
(=5 R
oyl
Ifrn < %, we can estimate
|ZflgLL| < 8(1 + ’q‘)
Y14t
S0
1
awyg I~ €
2 g0, 2% gs|| S 7”0&0 0,72 G4 | 2 (10.44)
(1+1al) ! LT i 2

If I, < &, we can estimate, thanks (10.24) and (4.42)

<

9 2 9 % 9
mw) ((1+!q)3‘f’> Y g E

1042"254] < (
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Therefore,
1 1
aws - aws
27N g11.0,7"2G| < ——2__zh 0ZMgrr|| .

— Z%grL|| S 7
1 272 ~ 1—£
(1+1ql) Lt la)T Lo (1+1ql) 2 L2

1 1
2
aw,

| o

el
~
N»—" ™

where we have used the weighted Hardy inequality, noting that in the region ¢ > 0

042’LU2

_ 20—20—
Oxlarr (1 +lal) 7

so the condition § > o + p + % ensure that we can apply the weighted Hardy inequality. We use
the wave coordinate condition, (10.4) which gives 0,271 g, ~ 0Z'1 gy. We obtain

1
(1+6)TH7(1 + |g])7°

032" g1l < |z

ZI1+1~
St |

gal.
It yields, by using Hardy inequality again

1
2
Qws

(1+1lql)

3 aw Z]1+1~
L+ 1+ [ql)

—p_ g4

2

ZMgr10,72"254) <

L2

Nv\ DN o=

L2

€ 2% I +1
| g Z T gal| 2
4

<
(L7 (1 4 g5
Consequently, since  — £ — o > 0 we have

1
2
Qws

Tt (10.45)

1 . 521+tc\@
lwi oz G| < LD

ZMg110,2"7. T
9gLLOq4 ~ g4 ~ T+

<
~ (14 t)tte
L2
where we have used Proposition 10.2. We now estimate the term coming from the non commutation
1
with the wave operator [|aw3 (¢)Y (%) r%aethum. On the support of T (%), we have r ~ t and
hence

1 < 1
2T (L)t (L4 g)i e
Therefore
1
1 1 1 2
awi ()T (1) 502"h| < . e A
b L (Ht)?*” (T+lah=7 L

)

1
H w3 (1+ |q])2 stogzI+iy

(1+t

1.2
where we have applied the weighted Hardy inequality. We calculate
2 1420 _ [ (L41]g))** =% for ¢ <0,
a*wa (1 + |q|) = { (1+ |q|)3+26 forq> 0.
If o < pu we have a?ws(1 + |g])1T2% < w3 and
3
1 r 1 1 1 e2(1+1)CVe
oaw} <7) —Z'h|| < ————|lws(q)20Z T h —_ 10.46
Hox () w2 | 5 et e S S gt (1046
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where we have used Proposition 10.2 which yields, for I < N — 2
3
lws(@)202" Al 2 S 51+ 1) V5,
We now estimate Z!(0ygr0ph). We have

1 1 —
laws(9)2 Z"(Ougredrh)llie S Y llowa(q)202" grL0Z"hl| .
Li+1><I

Ifn < % we estimate

= 1 e(1+ 1+ |q|)P*t
‘aZthL‘ < |Z[1+1gLL’ < ( ‘QD < ( ‘q,) )

Mt T4 T (14t)Ete
Therefore
1= 1 1
Hawg(q)E@ZthL@ZI?hHLg < N t)§+a l|laws (1 + \q’)p+a€)ZI2hHL2 < s Hawg(q)iathHLz,
2 2
and consequently
2
laws(q)202" gLL0Z"h] 12 S5 s (10.47)
If I, < % thanks to (4.42) we estimate
92" h £ ————,
(L+lgl)27"
therefore
1
_ 2
lowa(q) 202" 9002 Rz S e | 22— 07" gy,
(1+1al)2 L2
1
€ oaws
< 2 41
~ (1 N t)%JrO. (1 4 ‘q’)2—p—o gLL
L2
1
€ aws;
< 2 I1+1
S gt || lghire gL
L2
€ 1 ~
S T @0z s
2
where in the last inequality we have used the wave coordinate condition. Therefore
3
1 1.0~ € 1= - €
lows(q) 2021 grLdZ"h| 2]l 0ws(q) 2027 gs|| < a +t)gHOéw/Q(Q)ZaZhH%H%? A
(10.48)
The estimates (10.44),(10.45), (10.46), (10.47) and (10.48) conclude the proof of Proposition 10.12.
]
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10.3 Estimates for / < N —8
Proposition 10.13. We have for < N —8

lwi(q)2027 sl 2 < Coe(1 + 1), (10.49)

law:(q)20Z G| 12 < Coe + Ce2, (10.50)
and for < N —9

lw(q)202" G2l 12 < Coe(1 + 1), (10.51)

loaw(q)20Z G| 2 < Coe + Ces. (10.52)

This is a consequence of the following two propositions.
Proposition 10.14. We have for < N — 8

3
& ~
& S (@202 Gl + 3 0k (@002 Rl S s + 1y 2 (@027l
J<LI J<LI J<I

(10.53)
and

3
e
Jawr @027l % + 3 lowh (04027l € S + ellauh(@) 021 G 2
dt 1+ o)t

J<I J<I
(10.54)
Proposition 10.15. We have for [ < N —9
d 1 - a7 g3 ~
72 Nwo(@)2027 5172 + Y lwh(9)2027 5o 72 < (EECRAS +t 3 llwo(9)2027 322,
J<I J<I J<I
(10.55)

and

3

g
lelawl( q)? 29711 2|72

a Z [|awo(q aZJ§2HL2 + Z lawg(q)? aZJQQHLz S
J<I J<I
(10.56)
We assume Proposition 10.14 and 10.15 and prove Proposition 10.13.

Proof of Proposition 10.13. The inequalities (10.49) and (10.51) are straightforward consequences
of (10.53) and (10.55). To prove (10.50), we integrate (10.54). We obtain

S llawi(a) 027 5l12: + / S Jlawh (q) 0275l 2.dr

J<I J<I

< lawn(g)20275:(0)|2: + & +C’5/ llaawh(q) 5827+ G5 2 dr
J<I

Thanks to Proposition 10.9, we have

t
1= ~
/0 lawh(a)} 82" g% < <2,
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and consequently

S llaws ()2 027 g2 +/ S llaw) (9)2027 gl 22dr < C3e? + Ce?,
J<I 0 J<r1
which proves (10.50). To prove (10.52), we integrate (10.56)

~ l J~
> lawn@) 0275l + [ Y lawh(0) 2027l fadr

J<I J<I

<3 Jlawn(q) 102750 2, + C&° —|—C’5/ o) (q)582+15, 2 dr.

J<I

Thanks to (10.57), we have for I < N —9
[ @202 galfaar 5 2,

and consequently
> llawo(g )2027Ga||2, < C3e? + O,
J<I

which concludes the proof of Proposition 10.13.

(10.57)

O

Proof of Proposition 10.14. Tt is sufficient to estimate the terms in the region ¢ < 0, since in the
region ¢ > 0, we have wg = w; = wy so the estimates are strictly the same than in the previous
section. Once again, the weight modulator « is used to tackle the crossed terms, which create a
logarithmic loss in the estimates. However, in the region ¢ < 0, since @ = 1, we write everything
with the weight wi, and do everything as if no terms were present in the region ¢ > 0, since the

influence of these terms have already been tackled.

We first estimate the term coming from the non commutation of the wave operator with the

null decomposition,
T ]. I >

Since I +1 < N — 7, we can use the Propositions 7.2 for Z/™1hg and Proposition 7.5 for Z/™1h.

We obtain ,
25 (ho + 1) § —————.
(I+1q))27"
Therefore
ry 1 ~ g2 r 1 g2
T (7) 0 Z (o + 1) < —S T (7) <
H t/) r? 2~ (L4t)tte t/ (14 |q))z Pri-o L (1+t)tte

where we have used the calculation

r 1 7\ 2 1
T(- §27T/T rdr
H <t>u++mﬁ%40 2 &) e

<2 dg
= Wl ST

ifp+a<%.
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We now estimate Z1(9ygrrdph). We have

1 1z
1g<owi(@)2 2" (Ougrrorh)lle S D [g<owi(q)202" grr0Z"h] 12

I1+12<I
Ifn < % we estimate
pto
|5ZthL| 5 1 |Zh+1gLL| S 5(1 + ‘g’) 5 (1 + ’q‘l )
L+s (1+s)27" " (1+t)2t°
Therefore
_ 1+ gt
||]lq<0w1(q)%8ZIIgLL8Z]2hHL2 = % 0%321%
1+1¢t)2t 1+ |g)3
* q 2
€ 1
<= 39712
S o [1g<ows(q)2 02 2h]| 2
if p+o < i, and consequently
2
L7 T e
[Lg<ow1(q)20Z7 gL0Zh|| 2 < A+ (10.59)
If Ir < % we estimate, thanks to (4.42)
02" < ———
(1+[q)2""
therefore
_ 1 _
lgcowi (q)202"gL102 R 2 S e || ——22 82" gy,
(1+ghata=r 12
We estimate
_ 1 1
02" gLl S ——1Z" gr] S 1Z" g
L+s (1+1)247(1+ |g])2
We obtain
1= € 14<0
Lycowi(q)2021 g1 102%2h| 12 < a< zh+t
1Lg<owi(q) gLL [FERS RERE e e grL ,
€ 1
S; 1 q<01 8ZII+19LL
(1405 || (14 Jq) 500 1
5 1=
< - 1 / §8Z11+1~ H
~ +t)%+‘7 g<0ws(q) 93| 2

where in the last inequality we have used the wave coordinate condition, and the fact that, since

for g <0
142p
/ _
WQ(Q) - (1 + ]q\)2+2“’

we have
1 ,
< w

(Lt Jg) a7 =
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ifo+p+u< i. Therefore

&3

(14 t)lte
(10.60)
In view of (10.58), (10.59) and (10.60), we conclude the proof of Proposition 10.14. O

15 ~ 13 ~
|Tg<owi () 202" 002" hl| 2 wn (9) 2027 55| < 1Lg<ow)(q)2 02" 5572 +

(1+t)

Proof of Proposition 10.15. We have already proved

82

Hw(q)%r (%) r%angmo +7)

We now estimate Z!(9ygr,0ph). We have

lw(@)2 Z QgL S Y Ilw(q)282" grL82%h]| 2.
L +1x<I

Ifrn < % we use the estimate

(1+ \q!)”“’

1 1
|8Z119LL| < - |Zh+19LL‘ < 8( + ’CI‘) <e
~ 5_
L+s (1+s)27° (141t)2+

Instead of estimating Hw(q)%éZthL@ZI?hHLz we estimate
lw(q)202" 002" (ho + )| 2 and |[w(q)202" 91,0 2" Go| 2.

We can also estimate since Iy +1 < N — 7, thanks to (4.19) and (4.21)

3

02" (ho +1)| S T
q

Therefore

1 g<owo(q)202 g1 02 2h|| 2 S €2 |[1

L2

(1+ [gl)*
Q<0T( >(1+8) +a(1+‘q’)% p

1
gq<0
VIFs(1+|q)272%7

62

<
~ (14 t)tte

L2

and consequently

52

a1 I
|lwo(q)20Z7 grr0Z2h|| 12 S At

(10.62)

We estimate also

g 1 ~ S

[wo(q)20Z" |12 <

1 —
|wo(q)20Z" g1.0L0Z"Gs| 12 < —.
+t)27P (1+1t)27°

(10.63)

If Ihb < % we estimate, thanks to (4.42)

02%2h| <
(1+q]):

N\u

—p
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therefore

i3 1 0 _
[ Lg<owo(q)202" grL0Z"h|| 2 S e||—"5—0Z"g11

(1+1ql)z=* 12
€ 1
< q<0 I+1
~ P gLL
(1+¢)+ | (1+g))2—r7 L2
5 1
N " aZIIHQLL
Y4t [T+ ]a)tee %
£ L i~
S —— 1 Wi (@)2 02" gl

(1+1)2

where in the last inequality we have used the wave coordinate condition, and the fact that, since
for g <0

1
wi(q) = ——,
2(1+ lql)2
we have
1 ;a1
Swi(q)z,

(1+lgpt=r ™~
ifo+p< i. and g < 0. Therefore

&3

(1 + t)1+2cr ’
(10.64)
The estimates (10.61), (10.62), (10.63) and (10.64) conclude the proof of Proposition 10.15. O

1 — 1 . 1= ~
ITg<owo(q)? 02" gr.rdZ"hl| p2]|wo(q)2 02" Gol| S | Lg<ow)(@)20Z2" G272 +

11 Improvement of the estimates for 11D

In order to conclude the proof of Theorem 1.12, it still remains to imrpove the bootstrap assump-
tions (4.4) and (4.5). To this end, we will set

5 (0) =11 /Z (9,6)*rda. (11.1)

Proposition 11.1. We assume that the time T satisfies

T < exp (55)

There ezists (), g?) solution of (1.1) in [0,T] in the generalized wave coordinates Hy ), such
that, if we write ¢ = g2 + G, then (02,53 satisfies the same estimate as (¢,§), and we have
the estimates for b2

o) (nb@)(e) L /

X7

gl

<C
T VT

, for I < N —4,

(8q¢(2))2TdQ>

1050(8) |12 < 2C2<%, for I < N.

L2

The rest of this section is devoted to the proof of Proposition 11.1.
We solve the constraint equations with parameter b2, The initial data we obtain, constructed
in Theorem 1.3 are of the form

9= gy +3?
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where we write

b =5 4 b5 + 1 cos(6) + b5 sin(0),

with bgf), ng), bgz) given by Theorem 1.3. We have the following estimates for the initial data at

t=20
2

~ (2 ~ ~(2 772 €
15 =5 s + 1968 = 0g® e S N = 6P hww-a < G =,
thanks to (4.4), and

1G9 = G gves + 105 — 0Pl < 2.

We solve, on an interval [0, T3], the system (2.4) in generalized coordinates given by g,2). We note
(¢®),§@) the solution.

We want to estimate the difference between (¢®),§®) and (¢,§). However, it will not be
possible to estimate the difference with the same norms than when we estimated ¢ and g. When
we estimated hg we were able to use the condition

82

57

\/T’

b+ 11 /Z (0,0)?

1
v/ 1+]q|

difference. To this end, we will loose the decay of hg — h(()Q) in

for ho. However we want to keep the factor —= in the estimates of the

VT

and consequently in § — g®.

to obtain decay in

1
1+|q|
We will prove Proposition 11.1 with a bootstrap argument.

11.1 Bootstrap assumptions for ¢ — ¢ and g® — g

L™ estimates First some L™ estimates on ¢ — ¢(2).

2
26— ¢1?)| < o , for I <N =20, (11.2)
VTVT+ s(1+q)27 275
’Z (¢_¢ )’ < \/T(]_+ )l*2lfu*2p’ fOTISN—lS (113)
s)2
We use the decompositions

r ~ ~

9@ =gy + T (¥> (b2 + T D)ag? + 32, (11.4)

where héz) satisfies the transport equation

2
0 h? = —2r (9,6?)° — 26 (0)92(x(q)),
h(2)‘ A= 0
o It=0 )

and h(® satisfies the linear wave equation

~ 2 ~ ~
Oh® = Ohg? + g7 020 +2 (0,62) = 2(Ry@))gq + Quo(h, 52),
(W), 00 |;—0 = (0,0),

We assume the following estimates on hg — h(()2) for I <N —-12

2
Z (hy — BN < 20— 115
|Z"(ho — hy)| < T (11.5)
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We introduce the two weight modulators

and

B2(q) =1, ¢> 0,
Ba(q) = ez 4 <0,

with 0 < kK < 1. We assume for I < N — 15

DO
.
)
N

1
207G — 3| < 14 )P 11.6
piori@-a)| <*0=ay 119
1o 0~  ~(2) 2C)e?
HaﬁﬂUQaZ Qh-gQ)jLQg = (11.7)
and
2
2 N—14 [~ _N(Q) < 2605 p
Bow? 92871 (g, — g >L2_ (1) (11.8)
1 2
5 N—14 [~ _~(2) < 2008
afowi 0z (g 95 ) LS (11.9)
We use the decomposition
r ~
g@>::gww_%x-(;);gmdq24_gg), (11.10)

where h(?) is the solution of

Oy h®) = =2(0,6®)° + 2(Ry2)gq + Qrr(h®,5),
(h(2)7 ath@))’t:o = (0,0).

We assume for I < N — 6

(m%ué8Z1<¢——¢@0 +—cuzw§azf(@g—§fv - cmbwéazf(h-h@ﬂ
L2 L2 vV ]. + t L2
< 20082’
VT
(11.11)
and for I <N -5
1 1 1
ool (o (2 ool (~  ~(2) 1 Yool (1 12
apuwg 02" (6— ¢ >zﬂ+ apw3 02" (55— 35 PRvie=d (e (n—n®) B
20()82
14 1)
(11.12)

We use the decomposition

9% =gy + T (%) hPdg? + 1 (%) k®rdgdo + 512,
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where k2 is the solution of
0,k® = g™ o,n®),
(h®,0;h?)|— = (0,0).

We assume for I < N —4

agﬁgwéﬁzl <¢ _ ¢(2)> + aﬁgwé@Z] (53 — §§2))

L2 L2

20052
<
o AT

anBowioz! (h K >) (1+1)°.

(11.13)

_l’_

1
. oz (k — k®
ot 7 [0zt (k=)

1
I
v+t

To improve the estimates, we follow the same steps than when we imrpoved the bootstrap
assumptions of Section 4. The difference of our new bootstrap assumptions compared with the

ey/1+]q|
VT
decay is the same and we have won a factor % Therefore we can restrict our study to the region

estimates of Section 4 is at worse a factor in the region ¢ < 0. In the region ¢ > 0 the

q < 0: we will perform our estimates as if no term was present in the region ¢ > 0. We will follow
the same steps as before, but with much less details since the mechanisms are the same.

Remark 11.2. As long as the bootstrap estimates for ¢ — ¢ and 3@ — G are satisfied, 32 and
7@ satisfy the same estimates as ¢ and .

L™ estimates using the weighted Klainerman-Sobolev inequality The following estimates
are a direct consequence of the bootstrap assumptions and the weighted Klainerman-Sobolev in-
equality. For I < N — 8 we have

62

02" (¢® - ¢)| < — (11.14)
oz ) VIVI+H(1+[q)2 7%
) _ 2| < L gt
o771 (3 < = : 11.15
02 (35 - 3)| < e (11.15)
62
’azl (h<2>—h) < — (11.16)
VT(1+ [g))z72"
and for I < N — 17
~ e*(1+ |a)"
oz% (¥ — 11.17
o7 (@ ~%)| = rarea .

11.2 Improvement of the estimate of hy — hé2) and h® — ﬁo

Estimate of hg — h(()Q) The quantity hg — h(()Q) satisfies the transport equation

{ 0y (1§ = ho) = =2r ((9,62)" = (9,0)*) = 2 (V2 (9) — b(9)) B (x(0)a),
(h§ = ho)le=o = 0.

We write this equation under the form

0y (h = ho) = =21 (2,62 +0,6) (0,6 = 0,6) =2 (b2 (6) = b(9)) D2 (x(a)a).
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For k+1 < N —7, k > 1, the equivalent of estimate (7.12), that we obtain using (11.2) and
(11.14) to estimate 9(¢ — ¢(2)) and (4.15) and (4.28) to estimate d(¢p+ ¢(2)) corresponds to (7.12)

ey/1+|q|

multiplied by N

&3

VT (1 + |g))Fta—

We obtain the estimate for £ = 0 by integrating the previous one with respect to g. We obtain, for
I<N-8

)agag (ho — hff))] <

~

3

€
ho| S —=.
| 0 O‘N \/T
For k4+1+4j <N —8,k>1and j > 1 the equivalent of (7.17) is
&3

810kl (hg — BV)| < : .
! 9( v >’ VT(1+ )73 (1 + || )k~

Consequently we have proved that for I < N — 8 we have

‘ZI (ho - hff))‘ < \j; (11.18)

Estimation of h(?) — Eo The quantity h2 7L0 satisfies the linear equation

0 (E@) _ ﬁ) —0 (hgf) _ ho) 42 ((aq¢(2>)2 . (8q¢>)2> — 2Ry )gq + 2(Ry)aq

+ g2z = g1102ho + Qro(h$, §®) = Qri(ho, §),
(h<2> _h.a, (h<2> _ h)) lieo = (0,0).

Proceeding as for the estimate of (7.26), and in view of the bootstrap assumptions for ¢ — ¢ and
G—9® we obtain the analogue of (7.26) for (ZIEQ) - Z%), where the corresponding right-hand

side gets multiplied by z V\};lql. We obtain, for I < N —10 and ¢ < 0

&3

VI(L+5)2(1+1]a)>

‘D (ZIiNL(Q) — ZIE)‘ <

Therefore if we perform the weighted energy estimate we obtain

w

- ~ 3
inéa (Z]h(Q)*ZIh>‘ S 53 . 5 € ln(1+t)’
dt L2 VT +8)2 (14 g2 || .~ VT(1+1)
and therefore for I < N — 10 we have
1 _ _ 3
29 (20 — 2R < =1+ 11.19
Jut )| =0 (1119

The weighted Klainerman-Sobolev inequality yields, for I < N — 12

. . 3
‘a (th<2> _ th) ( < \/T\;(%F\%)Tm

(11.20)
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11.3 Improvement of the L™ estimate for ¢ — ¢(®
We write the equation satisfied by ¢(2) — ¢

ap
Oy (60— 0?) = ((g<2>) - gaﬁ) 00036 + (Hyz) — Hy)? 0y,
We limit ourselves to the region ¢ < 0. We estimate for I +J < N — 20
2" () — g11) 276%.

With the wave coordinate condition and the estimate (11.17), we obtain, for I < N — 17

2 24k
‘ZI (Q(LQL) - gLL)‘ <t la)ET (11.21)

~ 3
2

(1+9)
Moreover we have, for J < N — 20 thanks to (4.15)

1 g2

127 29| < —.
VTV Fs(1+ |g))2=%

20 < — L
270 S T

Consequently

3 3
) ZJ62¢’ < c < c .
VI(1+ )21+ g)1=4=r ™ VT (14 5)275=(1 + |q])1+7

We now estimate for I +J < N — 20

291,275 (6 - 9).

‘Z ! (9(LZL) —9gLL

We have, thanks to (5.8) and (11.3)

‘ZIQLL| < 5(1+|Q|)
~ (1 + S)%_p7
1 g2
ZJ82 b — ¢(2) 5 - ZJ+2 ¢ — ¢(2) S .
‘ ( )‘ (1+q|)? ‘ ( )‘ VT(1+ 3)5_2”_2"(1 + |q|)2

Consequently
3

’ZIgLLZJ82 <¢—¢<2))’ S (1+S>2_5p_;<1+‘q|)1+p

and the L>® — L™ estimate yields for I < N — 20, since the initial data for ¢ — ¢(?) are zero :

7 (-4

Ced
VT(1+8)3(1 + |q|)2 %2

We now estimate for  +J < N — 18, thanks to (11.21) an (4.15) for the first inequality, and (5.8)
and (11.14) for the second inequality

2 34k
71 (4@ _ gie2g| < (A1) £
‘ (gL gLL) ¢‘ - ( VT(1+s)? (1+]g))2 (1 +5)7

3

(11.22)

9
<
T VT(L A+ )25 (L gyt
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L (s 0| < 5(1+|g|)>< e2(1+ g )
ZgLnZ <¢ ¢ >‘N<(1+3)3—P VT(1+|q))2vI+s

83

VI (1+5)270(1+[g])2 >

A

Consequently, for I < N — 18 and ¢ < 0 we have

e3

VT(1+5)277727(1 + |q|)

o2 (o-0)]

and Lemma 7.6 yields, for I < N — 18, since the initial data for ¢ — ¢ are zero.

‘ZI (¢ - ¢(2)) ‘ < VT _f:;_gp_%. (11.23)

11.4 L? estimates

L? estimate for 02! (@’52) — §2) with I < N —15 We have

o (@~ (3),) = fu

where the terms in f,, are
e the terms coming from the non commutation of the null decomposition with the wave oper-
ator: it is sufficient to study the term T (?) %269 (h[()Q) — ho+h® — h),

e the semi-linear terms: it is sufficient to study Jr(h)0y (gLL - g(L2L)> and Oy gr0L (h(2) — h),

e the quasilinear terms: it is sufficient to study the terms gy, Lﬁz (§(2) — g) and (g(LQL) — gLL> 077,

e the crossed terms: they do not occur in the region ¢ < 0.
We estimate the first term. Thanks to (11.20) and (11.18) we have, for I < N — 15
@) _T S+ lal)?
07" (1§ = o+ 1 —R)| ===,
) 0 0 0 ~ \/T

Therefore, we can estimate in the region ¢ < 0,

3

1./m\ 1 2) ~ ~ T €
wiY (2) =0p2" (hY) — ho+h® —h <HT -
Prwg (t) 29 < 0 0 ) 2™ (t> VT(1+38)2(1+ g+l ;2
and consequently
1 ™\ 1 ~ ~ g3
2 Yy = 1 (2 2 _ <
BleT(t) 502" (h = ho+h® ~ 1) by, vwreer=t (11.24)

We now estimate the semi-linear terms. For I < N — 13, we have, thanks to (4.43)
€

L2 )] § ———,

(1+lghz==

92



Therefore we can estimate, for I + J < N — 15 in the region ¢ < 0

1 € (2)
BrwE 2o (h) 270y (grr — g3 < Z7 (gL — g
’ U (ous—al2)], (1+ lg))2 72 +7(1 + 5) (our = 32) I
€ 2)
< 827 (grr — g(
(1+ g3~ (1+ s) ( i) L2
15 1

< 7
(1 + t)g-‘ro

77+ <,§2 _ §§2)>

(14 [gf)t—2rtr=e L2

and consequently

where we have used the wave coordinate condition and the fact that, for ¢ <0

< 3

1
wg Z 0y (h) 279 — g —
Brwg Z° 0L (h)Z” dy (gLL 9LL> 02 (1+t)%+o

1= ~ ~(2
Bow (q)3827+1 (92 3 )) HL2 . (11.25)

1 1
= > .
AT+ )7 = T a2

N

Bowy (q)

For I < N — 14 thanks to Proposition 8.6, we have

e(1+lql)

Z'ovgrr| < :
| | + 3)%_2"

In order to estimate
1
Brwi 8y 2! gLL0,2” (h<2> _ h)

’ L2
we will perform the estimates with (h(2) — h) replaced by (héQ) — ho), (TL(Q) — E) and (§§2) — §2>.
We estimate, in the region ¢ < 0, thanks to (11.18),

3
< 3

LQNﬁ

e(1+ |g)t—*
(1+5)572(1+|q])
3
< g

~VT(1+1)?

1
ﬁﬂUOZ 6UZIgLL8LZJ (h(()Q) — h(])

L2

)

thanks to (11.19)

1 ~ ~ 1 1-x = "
BrwgouZ' gLro,2’ (h(z) - h) <e %&Z‘] (h(2) — h)
- L2 (145272 — 12
3
S - 3 ’
VT(1+ )22
and thanks to (11.6)
54 o1 J(~2)  ~ e(L+1aD"" . 7 (~2)  ~
prwguZ grLoLZ (92 - g2> Sell-—550LZ (g — g>
L? (1 + 8)2 P L2
3
< £

Y VT 4ty
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Consequently, we have

3
L — (11.26)
2 VT(1+t)z27°

The other terms are similar to estimate. Thanks to (11.24), (11.25) and (11.26), the energy
inequality yields for I < N — 15

Brwidy 2! 9110027 (h<2> _ h)

2

/Blw(% (5&2) - 52) 2

+ |[Brb@207" (3 - 3))|

L2

3

€ € 2
< 27l (+2) _ ~ I+1 ~(2)
~VT(1+t)He frw 062 ( gz) L2+ (I+1¢) 1lg )262 ( — % )HL2 (11.27)
2
€
+ ——— |f1wd 8ZI 32 g0
(1+t)l+e 0 ( ) 12

L? estimate for 07! (552) — @'2) with I < N —14. We follow the same steps as in the previous
paragraph. First we still have

1 r 1 (2) ~(2) ~ T 53
Bow? Y (7) —0y7! (h — ho + 2@ — h) <|r (7)
‘ ! t/) r? 0 L2 t/ T(1 4 5)2(1 + \ql)i””“_p 12
< e’
~ VT4 )i
We estimate the second terms for I +J < N — 14
3 £ (2)
Bow? Z1dr(h) Z” dy (gLL — g% S z7+ <9LL -9
‘ ! - LL) 12 (1+‘q|) —2p+; +2n(1+s) LL) 2
13 2)
< i aZJ-i—l (gLL _g( )
(1+|g)122%(1 + 5) e
€ 1 A ~ (2
< Hz7+1 <93 —g( )
(L+1)777 || (1 + |g]) i 2020 S
< €

)

Bawhy(q)2027+! (53 - 55,2)))

L2

Y+ t)%-i—a

where we have used the wave coordinate condition and the fact that

1 1
62wl2(q) = 1+2r+ >
(1 + ‘q’) iz (1 + ‘q|) —2p+2k—0

D=

The other terms are similar to estimate than for I < N — 15. The energy inequality yields for
I<N-14

i [prtor @ =) +|miwtor @ -2,
’Sxﬁ(lit)HU BleéaZI (552) — §2) Lt ﬁ L(q)202Z1 <§3 - §§2)) H; (11.28)
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L? estimates for 07! (gb(z) — gb) with I < N —6. We estimatefor [ +J <N -6, J <N -7,

If I < =T we can estimate, thanks to (11.21)

‘ZI (Q(LQL) - 9LL>‘ < %;
VT(1+ s)2

1
Bowg Z" (95;22 - gLL) 02727 ¢

L2

and therefore, if we restrict our quantities to ¢ < 0

1 2 1 3tk
boud 2 (o) —gnn) 27| 5| = SO g0y
2 |[VT(1+s)2(1 +|q|)t+2= 2
&2
: VT + oy 1Y
&3
N \F( +t)1+m
The case J < % can be treated as in Section 10.2.
We now evaluate
1
Bows 219100227 (6 = )
L2
for I+J <N — 6andJ<N . We have, smce——i—2<N—20
&2
0227 (62 - 6)| 5 —
VTVT+5(1+ g])272072"
Therefore we can estimate
‘ B %ZI 8QZJ ¢(2) b < e A
2Wy 4 gLL ( - ) ~ grr
‘ 2 T VTVT+s(1+ |q)2 % L2
2
€
S 3 5 aZ[gLL
VTVI+s(1+ |q])27% L2
2
€ -
S 3 3_5 ZI+193
VT(1+s)2(1+ |g))2~% L2
2
S 35 1 aZIJrlgS
VT(1+s)2(1+ g2~ 12
2 3
5 2 3 wzl aZI+1§3 S 2 3 .
VT(1+t)27%H 2 VT(1+t)2 5k

The case I < % can be treated similarly than in Section 10.2. The weighted energy estimate
yields
2 3

d e ’ Lo NE A (2 < ¢ I
pn ’52“’0 0z (¢ ¢) L2+H52UJO(Q)28Z (¢2 ¢)‘ 12~ W Pow2dZ (¢2 ¢)‘ s
(11.29)
Consequently, since the initial data for qﬁg) — ¢ are zero we have
1 3
29071 ((2) _ <&
’ BywldZ (¢2 ¢) LS (11.30)
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L? estimates for 07! (h(z) — h) with I < N —6. We write the equation satisfied by h(?) — h
g (h B h(2)) - 2(8q¢(2))2 - 2(3ng)2 + 2(Rb)qq — 2(Rp2) )gq + QLL(h, g) — Q@(h@)a 5(2))-

We first estimate for I +J < N —6 and I < N— We recall that we restrict all the quantities to
q < 0 (therefore w3 = wyp).

1 2
29 71 (6 — @) 0,27 = VAl
’52“}0 i (o= o) ae], fmaﬁqw"”’p q ¢L2
3
<67 8Z

We now estimate the quasilinear term

5210% ( @ _ QLL> 227h

L2

forI+J§N—6andI§¥. We have

L@ 2,7 2(1+ |q))7 " 41
Bowi 2" (o) — g) 0227h|| < : 927+
L? VT(1+s)2(1+|q|)t+2s 12
g2 %aZJHh
S VT o |10 2
3
< g

Y VT(14t)2ts

The other terms can be treated as in the proof of Proposition 10.11. The energy inequality yields

d 1ol (12 150 (1) 2 e’ o0 (3@
< 07" (h? —n | oz' (1) =n)| | s —=—— |Bawgoz’ () —n
7 Hﬁzwo ( 5 ) +||B2wp (q)2 ( ) > PN T Pawg ( 2 > L
Consequently, since the initial data for hg2) — h are zero, we have
1 31+t
‘ BywidZ <h§2) - h) S (11.31)
L

L? estimates for 07! (§(2) —g) with I < N —6. As usual we estimate the following contribu-
tions

e the terms coming from the non commutation of the null decomposition with the wave oper-
ator: it is sufficient to study the term T (%) %2(99 (h(g) — h),

e the semi-linear terms: it is sufficient to study 9z (h)0y (gLL — g(L2L)> and OygrroL (h(Q) — h),

e the quasilinear terms: it is sufficient to study the terms g, L82 ( @ — ) and (g(LzL) - gLL) 322]’.
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We estimate the first term. We recall that we restrict all the quantities to ¢ < 0.

Loy 1 1
b () 3 1 -0)| 2 09 -)
r L2 (1+8)2(1 +g[)z™* L2
<l ()
(1+5)277(1+ [g|)n— 2
1 1
<— | Bowg oz (h<2> - h)
(L+t)z+ L2
We estimate the second term
3 ol 7 (2)
5211)1 VA 8L(h)Z 8(] <gLL — gLL>
L2
forI+J <N —6and J < %. We have, thanks to (11.21)
3
1 2\ | ~ €2 (1+]g))2*"
779 C) ‘< ‘ZJ“ _ gt ‘< ,
‘ U (gLL gLL) ~ 11 <9LL gLL) ~ ﬁ(l—i—s)g
Therefore we can estimate
] e2(1+ )2 ;
52w2ZI(9L(h)ZJ8U (gLL - 9(2)> ,S 8LZ h
T Pl TIVT 4 s)E fghae
2
< SRR’ WA
VT(14s)ztete = |,
52 1 5‘3
< w20r ZTh|l ;2 < )
S e s e S e

The other terms are treated as in the proof of Proposition 10.12. We have proved, when we restrict

ourselves to ¢ < 0

2

i [pdoz (@2 -3+ |omaioioz (@ -a)]",
S(\/T(lit)lw " +i>;+o Boui(a) 2027+ (4 - 37) |
N m;;w Hﬁ2wéazl+1 (h(2) _ h)‘ L2> ’ 52102%021 (§§2) — 53) L2
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L? estimates for ] < N —4 We can prove, following Section 10.1 that, since we do as if no

quantity was present for g > 0,

4wtz (o),

LZ

/32w2 oz! (94 - @9) 2

i Byw 07! (k: k2 >)

2

_l’_

1
_|_ P
.2 5(1+t) ‘

Bow: 07" (h—n®)

]
+piotac oo

Hﬁm @30z" (h—h?)|

| CTAGHE >’5Zf (31 -3)]

2

2
L2
L2

+ ﬁ |ot@)20z" (k1)

2

2’

2 9
o "="
L2> <T<1+

_|_

5(1

m(uww ),

2 L
2 e(l+1)

52102582[ <§4 - 54(12)) 2

L2

1
Ty

Bywidz! (k - k:(2))

Bywiaz! (n—n®)

11.5 Conclusion of the proof of Proposition 11.1

Estimate (11.18) gives us for I < N — 8

#0187 <

3/

Estimate (11.22) gives us for I < N — 18

27 (- 0?)| < ce’

VT (14 8)2 (1 + |q)2 52

Estimate (11.23) gives us for I < N — 16
3
o) <

\/T(l—i-s) —2p=2%

Therefore, if Ce < Cy we have imrpoved the L> estimates (11.5), (11.2) and (11.3).
(11.33) implies, following the proof of Proposition 10.2,

Estimate

52w2 A (93 - 5:(32)) L

|awtozt (o= o). +

1 1 1 1
—_ 297 (h — B® —_ 29 k—k®
D prus 02 ( ). ol ) ).
< \F(Cog +e2) (1+1)OVE.

Therefore, if we had chosen Cy > 2 and C'v/e < p we have imrpoved this estimate (11.13) and
(11.12). Moreover we have

2971 2)
zH(h—h
07! ( ) 2 VT




Estimate (11.33) also implies

/Ot (1 —it)"

and consequently, estimate (11.32), together with the bootstrap assumption (11.11) yields

4
<&

2~ T

w0207 (53|

[mwto (6 -5

¢ b 6] H

9
< g2 + 9
YT+t (1+¢t)°

i

2
l =~ ~ o~
(Bow3 ) 077+ (94 - 94(12)>
L2

Therefore, when we integrate we obtain

Jp-tor 5 -)

C2et 5%
S+ 0P
~ T + T

2

2 t
)
L2 0

<ng§> aZI <~(2) _ gg)

L2

Therefore, for Cet < %, this, together with (11.31) and (11.30) improve the estimate (11.11). We
proceed in the same way to imrpove the remaining estimates, using (11.28) and (11.27). Conse-
quently, the solution (¢(?), §()) exists in [0, 7] and we have the following estimate for ¢ — $(2

Ce3

z! , I <N-20 11.34
127 (¢ — )| < VIVIT st i forI < ( )

) CVE
laawg dZ! (¢ — 6?)|| < 05(1\;;) for I < N —4. (11.35)

We now go to the amelioration of the estimate for b. In view of the definition (11.1) of b® we

have for I < N — 4.
b 6@ (9) —11 / (8,0 2rdr
YT

o4 / (0467 — (2,62)?) rar
Y70

= 30 [ 000+ 0,00 0y — 0,0
11+IQ<J 7,0

We estimate, for I; < %

H/z O 0y + 0,022 9y — DydP)rdr
T,0

L2(S1)
g

S
Sro V1+ S(l + Iq\ 34

< /oo - rdr 5“/3812(%—8&2))]
~\Jo (L4 s)(1+g])Ptetn 200 T L

rdr
L2(S1)

i 00

2
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Then the estimate (11.35), with the condition (1 + T)“Ve < 1 yields for I < N — 4

oy (’5<2>(9) —1I /Z (8q¢(2))2rdr>

The case I < % can be treated similarly thanks to (11.34). To conclude, we estimate

54

<= (11.36)
L2(St) \/T

)

_ * I I
. /0 > 0,051 60,05 drdr
I+1x=1 LQ(Sl)

Coe
s 4pH3qa§2¢HL2(s1)7“d7'

= /0 VIts(l+|g)3™

1
C2e? 2
= (/ (1+s)(10+\q|)3—8p7“d7”> 104058 2

< 2032e?

where we have used again (1 + T)C\/E < 1. This concludes the proof of Proposition 11.1, and the
proof of Theorem 1.12.

A Reduction of the Einstein equations

We recall the form of the Finstein equations in the presence of a space-like translational Killing
field. We follow here the exposition in [6]. A metric g on R? x R x R admitting d3 as a Killing
field can be written

Wg = g+ 2V (da® + Andz®)?,

where g is a Lorentzian metric on R'*2, ~ is a scalar function on R'*2, A is a 1-form on R'*2 and
% o =0,1,2, are the coordinates on R'*2. Since 05 is a Killing field, g, v and A do not depend
on 3. The polarized case consists in choosing A = 0. Let (4)RW denote the Ricci tensor associated

to Wg. f{ag and D are respectively the Ricci tensor and the covariant derivative associated to g.
With this metric, the vacuum Einstein equations

@Ry, =0, p,v=0,1,2,3
can be written in the basis (dz®, da?® + A,dz®) (see [6] appendix VII)
0 =" Raps = Rug — Dadsy — 3a7957, (A.1)

0= Rygz = -2 (gaﬁaafyam + Eaﬂf)aag’y) ) (A.2)

and the equation 0 =*) R,3 is automatically satisfied. By doing the conformal change of metric
g =e g, (A.1) and (A.2), yield the following system,

Ugy =0,
R, = 20,7057 o, 3 =0, 1, 2.

By setting ¢ = v/2y we obtain the system 1.1.
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B Construction of the initial data

Theorem 1.3 is a consequence of the following result on the constraint equations, proved in [11].
The method of solving is inspired from the conformal method in three dimension. We look for
space-like metrics g of the form g = e?*¢. We introduce the traceless part of K,

1
Hij = Kij — 57945,

and the following rescaling

We also introduce the notation

_( cos(26) sin(26) [ —sin(20) cos(20)
Mo = < sin(20) — cos(26) > » No= < cos(20)  sin(20) ) '

Theorem B.1. Let 0 < § < 1. Let ¢2,|V¢|? € Hé\i—zl and b € WN-2(SY) such that

/ 5(0) cos(8)d0 — / 5(0) sin(0)d0 = 0.
St St

We note
e? = /¢2 +|Vo|?.

We assume
2 2 7 < 2
1" g1 + VOl g1+ Nbllwve S €.

Let B € WN2(SY). We assume
1Bllw~z < €.

Let ¥ € Hé\_ﬁl be such that [ W = 2m. If e > 0 is small enough, there exist a, p,n, A, J,c1, ¢ in R,

a scalar function Xe H§v+1 and a symmetric traceless tensor He Hé\j_l such that, if r,0 are the
polar coordinates centered in c1,co, and if we note

A= —ax(r)In(r) + \,

B'(9)
2

H = —(b(8) + pcos( — 77))X2(:)M9 + eAXg) <(J — (1 —a)B(#))Ny —

Mg) + FI,
then \,e*H are solutions of the constraint equations with

# = (b(#) + pcos(f — n))XS‘) + e_’\B'(H)Xg) + A
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Moreover we have the estimates
o= [ (#+1VoF) + 0,
peos(i) = 1 [ 9016+ O(H),
psin(n) = - [ 600+ 0(&"),
cr == [ o1 (& + Vo) + O
=1 /:CQ (82 + 19912) + ("),

7= [ 6006 + L (cacostn) - exsin(m)) + O

A= —;ﬂ/érarm % (/ X’(r)rdr) /b(e)de +0(eY),

and ~ B
Rlges + 1Ny, S 2

We will use the notation B
b = pcos(d — 1) + b(6). (B.1)

The end of this section is devoted to the proof of Theorem 1.3.
Lemma B.2. The second fundamental form of the space-time metric

Ja = —dt> — 2Jdtd0 + r=2%(dr?® + (r — bV (0)r)2d6%) — 2B’ (0)td6? + 4(1 — a)B(G);drde (B.2)

1s given at t =0 by
1
Kij = Hij + 5(9a)ij T,

2
with
e AIC) L2 B'(6)
H= —r%(U(e)XQ(:)Mg +(J - (1~ a)B(H))Xg)Nﬂ - B'(‘)));(TZ)M"'

Proof of Lemma B.2. The metric induced by g, on the space-like hypersurface ¢t = 0 is r~2%§. The
shift is given by B9 = —J and the lapse is given by N = 1. Therefore we calculate

1

=yt

0:Gij — 0iBj — 0;i).

102



We infer

—————cos(f) sin(f) + % cos(6) Sin(0)> )

Koy — — 1 ( <2r—% ) 2B’(9)> cos?(0) + wm(@) sin(f) — 2J cos(6) sin(@)) ,

r2

A(1 - a)B(6)

5,2 (cos?(#) — sin?(h))

r r2

<2T—ocb(1 (0) n 2B’ (9)> COS(H) sln(e) +

We calculate

bO(0) | 20 B'(0)

TGy =t
so we obtain exactly
r r
H = —r—pM(9) 2( )M +(J-( —a)B(Q))X;)Ng — B’(@)éSnQ)M@.
O
Lemma B.3. The metric g,, defined by (B.2) is isometric to gy + gV where at t =0 we have
1 1
gV =0 <2> , gV =0 (2> :
r r
and gy is defined by (1.6), where
W(F(®))
b(0 B.3
J(0) =2JF'(0), (B.4)
with F' the inverse function of
0
01— 60+ / (a — b (0")do';
0
provided the following relations hold
A / b(0)do), (B.5)
JoM(6)
Bo) = " (B.6)

Proof. During all the proof, the notation g ~ ¢’ stands for g is isometric to ¢’ + ¢ where g = O (%)
and dyg = O (r%) . In polar coordinate r, 6, this means neglecting the metric terms of the form

dr? dod

%’ Ja d027
T T
tdr?>  tdfdr  td6?
r3’ r2 ’ ro
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We perform some changes of variable in g,s. First of all we introduce 7’ such that

rlfa
r = . dr =r%dr.

The metric g, becomes
t
Ga ~ —dt? — 2Jdtd0 + (dr)? + (r(1 — a) — b (0)1)2d6* — 2B’ (0)td0* + 4B(0)—drdo,
T
where we keep writing r instead of . We now make the change of variable

J do = do’ + J

J— /_7 -
=6 (1—a)?r’ (1—a)2r?

Since we will neglect the contributions to the metric decaying like %2 we obtain

7Y (1) N7
(1_a)2r2d9dr, bV (9) ~ b(¢) b(e)r(l_a)Q.

de* ~ (do')* + 2
We keep also writing 6 instead of . We infer
Ga ~ — dt? = 2J(dt — dr)df + dr® + (r(1 — a) — bV (0)t)%de?

JV(©O) 2> () J
+<2(1_a) 23(0))1&(19 +< H0(0)

+ 4B(9)> ;drde.

We choose

With this choice we obtain
Ja ~ — dt* — 2J(dt — dr)d + dr® + (r(1 — «) — bV ()t)%dh?
~ —dt? — 2J(dt — dr)d0 + dr® + (r — (b (0) + a)r + b () (r — t))2d6>.
We impose
o= —/b<1>(9)d9 = —/E(e)de.
Therefore we can find f(6) such that
'(6) = =W (6) + a).

We perform the change of variable

0 =0+ f(0).
We note F' the inverse function of

0— 0+ f(0),

so that # = F(#’). Then g, becomes

b (F(8"))
1—a—bD(F(@))

2
Ga ~ —dt* — 2JF'(0')(dt — dr)df’ + dr? + <1“ + (r— t)) ICAR

We set

_ bI(F(@e)

C 1—a—bM(F(9))’
J(0") =2JF'(¢).

Let us note that J is at the same level of regularity than b.

b(¢)
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We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. We consider the map
O : b IIb,

where

e b e W2 g such that
/Ecos(@)d@ = /Esin(@)d@ =0, a= /B(O)d@,

where « is given by Theorem B.1,
e bis given by formula (B.3), where b") = pcos(6 —n) + b, and p,n are given by Theorem B.1.

e Il is the projection
IT: W2N(SY = {u e W2N(Sh, /u = /COS(@)U = /sin(&)u =0}.

It is easy to see that ® is invertible for € small enough. Therefore, for b e W2V such that

/ bdf = / beos(0)do = / bsin(6)dd = 0,

we apply Theorem B.1 to @‘1(5). Thanks to Lemma B.2 and B.3 we can find (go0)s; € HéVH and
(Ko)ij € Hé\j_l such that (gp)i; + (90)i; and (K3)i; + (Ko)qj satisfy the constraint equations, where
we have noted K3 the second fundamental form associated to g,. We complete the initial data as
follow. We write our metric in the form g = g, + ¢g. The initial data for g are the following

* gij s given by gi; = (go)ij
e goo and go; are taken to be 0
e 0.gi; is given by the relation dyg;; = —2NK;; and K;; = (Kp)i; + (Ko)ij-
e 0:goo and 9:go; are chosen such that the generalized wave coordinate condition is satisfied at
t=0.
Let us describe the last point. The generalized wave coordinate condition can be written
9T = Hy = (g) (T0)55 + F°,

Therefore, if we write it for o« = ¢ we obtain a relation for 0;go; and if we write it for a = 0, we
obtain a relation for 0;gog. However, if we write g = g, + ¢, the term

TS5 = (90)M (T0)35
contains crossed terms of the form

- _Opb(0
GOugy ~ G— (6)

.
which do not belong to H [;YH because we are missing a derivative on b, since b € W2 . Therefore,
we will take F'* as defined in (1.9). With this choice, the generalized wave coordinate condition
imply that 0:gop and 0:go; are given by a sum of terms the form

X(r)ge
(r)go

KOa v907 gbK07 gbv.g()a

With this choice, 0:go; and 0;ggo belong to H (‘;YH. O

!The lapse ans shift are given by gy: we have N =1 and 8, = 0 and 8o = —J.
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C The generalised wave coordinates
In a coordinate system, the Ricci tensor is given by

Ry = 015, — 0,05, +T9, 0y — 0,0, (C.1)

where the Fg‘(ﬁ are the Christoffel symbols given by

1
Tap = 59" (90908 + Op9pa — Opgas) - (C.2)

R, is an operator of order two for g. In order to single out the hyperbolic part, we will write
H* = g™Tg, (C3)

which can also be written

1
H® = =0)g™ = 5™ 0%

We compute R, in terms of g and H.

1 « 1 o
Ry :iaoz (9" (Ougpv + OvGpu — Opguv)) — §au (9% (Ovgpa + Oagpr — Opgua))

1 o

+ Zg pg)\ﬁ(augpu + 8ugpu - 8pgpu>(a)\gﬁa + 8&9,6’/\ - 8,6’904)\)
1 o

-9 g (8 gpx + Ongpr — 0p9u2) (Ouas + Oalsy — OaGan):

1 ap 1 o 1 o o 1
Ryw = =59 0a0pgu + 5 H Opguv + 5 (9000 H” + 90p0uH") + 5 P (9)(99, 09), (C4)

with

1 1
Pm,(g)(c'?g, dg) :igapgﬁa <augpcraa9,8u + 0190000981 — 9391p0ave — 28p9a58v9p0> (©5)

1
+ igaﬁgkpaagupgﬁgup
Proposition C.1. If the coupled system of equations

_%gapaaapg;w + %Fpapg;w + % (gupaqu + gl/paqu) + %le(g)(ag, 89) = 8u¢au¢
9000, — FPO,p =0

with F' a function which may depend on ¢, g, is satisfied on a time interval [0,T] with T > 0, if
the initial induced Riemannian metric and second fundamental form (g, K) satisfy the constraint
equations, and if the initial compatibility condition

F%l=o = H|i=0, (C.6)

is satisfied, then for all time, the equations (1.1) are satisfied on [0,T], together with the wave

coordinate condition
F*=H%,
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Proof. We use the twice contracted Bianchi Identity

1
D+ <RW — 2Rg,w> =0.
with H defined by (C.3). Since in [0, 7], we have

1, 1 1
*59 paaapg;w + inapg/w + 9 (gupaqu + gl/paqu) + P;w(g)(aga 89) = 8u¢au¢

Thanks to (C.4) we obtain

1 1
S(EP = H?)0pguw + 5 (9up0u (F* — HP) + g1,p0u(F* — HP)) = 0,00,¢ — Ry
2 2

Consequently, since D* (RW — %Rgm,) = 0 and D# (8M<;58,,<z5 — %gwaaqﬁaaqﬁ) = 0 and we obtain

the following equation on F? — H?

1 1 o
0=DH| 5 <9up‘9V(Fp - Hp) + 9V08;A<Fp - Hp)) - 79wy A (gapaﬂ(Fp - Hp) + gapaﬂ(Fp - Hp))
2 4

1

1
+ 5 <8pg;w - 2go‘ﬁapgag> (Fa — Ha)>

Multiplying by ¢”“ we obtain

Og(F* — H*) + BYP9(F* — H?) + CS(F? — HP) = 0,

with Bg"ﬂ , Cy coefficients depending on g, ¢, well defined in [0, T]. This is an equation in hyperbolic
form, therefore if the initial data (F'“ — H%)|;=o and 0;(F* — HY)|¢=0 are zero, then the solution
is identically zero on [0,7]. Since we assume (C.6), we only have to check

O(F* — H*)|4=o = 0.
Since the constraint equations are satisfied, we have
Roi = 0005,
Roo — %QOOR = 0opdo — %9008%58#@5-
Therefore, using once again equation (C.4) and (C.6) we obtain

0 :gi,ﬁt(Fp — H"),
0 =2g0,0,(F* — H?) — goo0y(F° — HY).

This system can be written as

goo 2901 2902 O (F° — H?)

gor gu  Gi2 OH(F'—H') | =0.

go2 912 922 Oy (F* — H?)
It is invertible so O,(F” — H?);—9 = 0. Therefore in [0,7] we have F = H” and equation (C.4)
implies that the Einstein Equations (1.1) are satisfied. O
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D The L — L*° estimate

For the sake of completeness, we give here the proof of the L — L°° estimate by Kubo and Kubota
(see [16]).

Proposition D.1. Let u be a solution of

{ Uu = F,
(U, atu)’t:() - (07 0)7

The L>® — L*° estimate reads : for pu > %, v>1

u(t, 2)| (14t + |2))2 < Cu, )My, ()1 + [t — |a||) "2 T4

where
My (f) =sup(1 + [y + )" (1 + s — [y[[)"|F(y, s)],

and we have the convention A%+ =1n(A).
Proof. We write the solution u of

{ Ou = F,
(u7 atu)|t=0 - (07 0)7

with the representation formula

t
1
u(x,t) = / / F(s,z —y)dyds.
0 Jlyi<t—s /(t = 5)* = [y[?

With M, (f) = sup(1+ y| + $)*(1 + |s — [yl])*| F(y, )|, we can write

t 1
fule, )l < M, ’V(f)/o yi<t—s /(t — )2 — [y2 (L + [z —y[ + s)*(1 + |s — |z — y||)

—dyds.

It is therefore sufficient to study the quantity

) /t !
3:', =
0 Jyl<t—s A/ (t —5)2 — [y|2 A+ |z —y| + s)*(1 + [s — |z — y[])”

I( dyds.

We begin with a lemma on spherical means.
Lemma D.2. Let b € C°(R?). We have the following equality for p > 0
ptr
/ b(| + pw|)dw = 4/ AR, p. ),
|w|=1 lo—|

where we note r = |x| and

[SIE
ST

((p+71)* =X~
(* = (A =7))"

h()‘7pa 71) = (AQ - (p - T)2>_
=((A+ r)? — p2)_

N|=
[
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Proof. By eventually rotating the axis, we can assume x = (7,0) in (z1, z2) coordinates. Therefore
we have

/|w|:1 b(|l’+PW|)dw:/02wb<(r2+p2+2rpcos(9))%) da:Q/Wb<(r2+,02+27“pcos(¢9))é)dg.

0

We make the change of variable A = (r2 + p% + 2pr cos(@))%, for 6 € [0, 7[. Then we have

1
d\ = 3P sin(6)do

1
1 ()\2 o 7“2 o p2)2 2

= ——pr{1-"— ") 4
" ( (2r)? >

1 1
= 5 (20r) = (N =r? = p*)?)2 df
2\
1 1 1
= o (2,07“ )\2+r2+p2)2 (2pr+)\2 —p —r2)2 do.
We have therefore df = —2Ah(\, p, 7)d\, which concludes the proof of Lemma D.2. O

We use Lemma D.2 to calculate I

1

t
P
I(x,t —// /
(@) <tsﬁ_32_p2 P G P e ey Py P

dwdpds

AdMdpds.

_4// /’HT h(X, p,7)
p<ts\/ t—S —,0 |[p—r| 1+)‘+8) (1+|S_A|)V

We exchange the integration in p with the integration in A, noticing that

1L rj<r<ptr = L prj<p<ntr

and we make the decomposition I = I + I, separating the region A+ <t —sfrom A+r >t —s.

t—r t—s—r A+r
I = / / MAPT) s,
A=

Al ==
- / /t s+r A /t s h()\, X ) pdpd)\ds
A=max(t—s—r,0) 7)‘) [A—r] \/ (t — 8)2 — p2 ’

where z(s,\) = (L+ A+ s)*(1 + |s — A|)”.

D.1 Estimate of [;
We write

/A-i-r h()\,p,r) 0 Ar 1
prl V=52 Ar|\/t*8 — PPV A+ )2 =22 = (A=)
du
o Vd—uvb—uyu—a’

with a = (A — )%, b= (A+7)? and d = (¢t — 5)2. Recall that in the integration region of I, we
have A +7r <t — s so b <d. This yields

Pdﬂ

du

b 1 b u 1 1 v T
< < < .
/a \/d—u\/b—u\/u—a_\/d—b/a \/b—u\/u—a_\/d—b/o ﬁ\/l—v_/d—l() )
D.1
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Consequently we have

t—r t—s—r
hs/ / A d\ds.
o Jo V== F A+ A+ )L+ s — A

We make the change of variable « = s — A\, 8 = XA 4+ 5. We obtain

h= </o T \/ﬁfdﬁﬁ(ﬂrﬁ)“) ( ¢t+r——do7<1+ \al)”)’

We estimate the first factor. We note that if ¢ — r < 1, this factor is bounded. We assume
therefore that t —r > 1.

/t ' 8dp _ / 8ds [ 843
o VIETBRAN " TRy e VTR
Bdﬁ v [ dp
Nm u+(t_r) a o Vi—r—8
< (t_r)[2—u]+
S ier
We estimate the second factor
t=r do
vt VEET—a(l+]a])”

t
mln( Lt—r) do /t—r dov
= +
—t Vi+r—a(l+|a) min( 457 t—r) Vit+r—a(l+ o)

- 1 /mm( 7; =) do N 1 /-t r da

~ Vi+r Jr—t (1+|a|)u (1+t+r)y min(HTT,tfr) Vi+r—a
< 1 ,

~Vt+r

where we have used in the last inequality the fact that v > 1. We have proved

< (1—Ht—7'])[2_“]+
M VIF -]

D.2 Estimate of [,
As in the estimate of I, we write
/H h(\, p,7) d7;<f du
—r| /(t —8)? —p2p P=3 o Vd—uvb—uu—a’

witha = (A —7)%, b= (A +7)? and d = (t — s)?. In the region A +r >t — s, we have b > d,
therefore as for (D.1) we get

/ du <
2 J)o Vd—uvb—uvu—a~ Vb—d ), Vd—uyu—a

and so

/” h@@) i 1
A—r| \/(t — 5)? Y VOFTE—(t—s)?2
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Therefore we have

t—s+r A
L < / / dAds.
A=max(t—s—7,0) ()\+7")2— (t—8)2(1+)\+8)“(1+|8—)\|)y

We make the same change of variable a = s — X\, § = A+ s. We obtain

IS / o Bds ( da )
2 Umax(0in) VB -t 1)1+ B ) \Joy VEF T —a(1+ [a])”

We estimate the first factor. We first assume ¢t — r > 0.
t+r Bdﬂ - /27“ (p—‘,—l—i—t-?")l_‘u
0

tr VB (E—T) A+ BT VP

2r
= (1 1—p
5(1+\t—r!)3“/1“ (D
0 \/a

dp

SA+[t—r)2

where we have made consecutively the changes of variable p = 8 — [t — r| and u = ﬁ, and
where we use in the last inequality the fact that % is integrable.
We now assume t —r < —1. Then
o Bdp <|t—r)? /'?: p d
Slt—r p
0o BFt—rl(1+pB)H o VI+pd+[t—r|pH
t+r
[t—r]
S+le-rpie [" L
o ve(ik+e)
< (1A [t —r]) 2T
where we have made the change of variable p = ﬁ, and also used the fact that p > %
We estimate the second factor
t da
et VEFT — a1+ o)
min(t, t+r) do t do
< + /
~ /_T_t Vi+r—a(l+al)’  Jminetr) VE+T —a(l +|af)”
< 1 min(t, ) da 1 ¢ do
~Y + B
vt+7’/_r—t (I+la))r  A+t+r)” /min(t,t;’“) Vit+r—o
< 1 ,
~ Vit
where we have used the fact that v > 1. We have proved therefore that
S (1+\t—ry) 2l
2 N /71 T trr )
S0 o]
14+t — “H
J S A A U i
VIt trry/1+]t—r]
The proof of the L>° — L* estimate is now complete. O
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E Hardy inequality with weight

Proposition E.1. Let o <1 and 8 > 1. We have, with g =1 —t,

/qu(q)rdrdH < Cla,p) /((%u)zg(q)rdrdﬁ
where

floo=@Q+1g)* % ¢>0
=(1+]g))* 2 ¢<0

g(@) =1 +q)? ¢>0
=(1+g)* ¢<0

Proof. We look first at the region r > t. We can assume, by a density argument that u is compactly
supported. We calculate

O (r( 471 =07 7) = Qbr =) 4 (B=1)r(147 =72 = r(147 - 1) (”T—t +8 - 1)

r

We want to find ¢ > 0 such that
1+r—t

r

+68—-1>c.

This condition is satisfied if
t<1l4+r(B—c

which is the case if § — ¢ > 1. Since § > 1 we can find such a ¢ > 0. Therefore

oo 2w
/ / u*(1 + 7 — )P 2rdrdd
t Jo
<1/OO /Qﬂzﬁa (r(1+r—t)ﬁ*1) drdf
¢ Jo
1 oo 2w 2w oo
<- <—/ / O u®)(1 + 7 — )P rdrdd + [/ w?(r,0)(1 4 r — t)ﬁlrdﬁ} ) :
¢ t Jo 0 t

Since u is compactly supported,

[ee]

[/OQW W2(r,0)(1 + 1 — t)ﬁ_lrdﬁ} <0

t

therefore

0o 2
/ / u*(1 + 7 — )P 2rdrds
t 0

9 oo 2w
S/ / ludyul(1 4 r — t)?~Lrdrdd
cJe Jo

00 2 % 00 21 %
gg </ / u2(1 +r— t)B_QTdrdH) (/ / (aTu)Q(l +r— t)ﬁrdrd0>
c t 0 t 0

We have proved
oo 2w (%) 2w
/ / w2147 — )% 2rdrdd < C(a) / / (Ou)2(1 + 1 — t)Prdrdo. (E.1)
t Jo t Jo
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We now look at the region r < t. We calculate

O (r(l+t—r)* N =Q+t—r)*T+1Q-a)r(l+t—1r)*2

Therefore
/ / 21+t —r)*2rdrdd
27
< r(l+t—r)*")drdf
2 27 t
< / / - (8ru2) (1+t—r)a717“drd9—|— [/ u2(1+t—7‘)p7“:|
—Q o Jo 0 0
1 t 21 21
< (2/ / |udpu|(1 4+t — ) Lrdrdd + t/ u?(t, 9)d9> .
-« 0 Jo 0
We have
t 27
/ / ludpu|(1 4+t —r)* Lrdrdd
0o Jo
t 2 % t 2 %
< </ / uw?(1 4t — T‘)a27“d’l”d9> </ (Opu)*(1 4+t — T)ardrd9>
0 Jo 0 Jo
and

2 2
t/ 2(t,) 9<t/ / u?)|drdf
0

2m 1 I
< 2t/ / |udy u| i ); " drdo
(I1+t—r)z t

2 3 0o 2w 3
<2 (/ / w?(1+7r— t)_ﬁrdraw) (/ (Opu)?(1+7— t)ﬂrdrd0>
t Jo t Jo

Since 8 > 1, we have § > 2 — 3. Thanks to the estimate (E.1) in the region r > t, we obtain

t pr2m
/ / w (14t — )2 2rdrdf
0o Jo
t 27 oo 2
<C(p, ) </ / (Opu)?(1 +t — ) ¥rdrdf + / / (Opu)?(1+ 7 — t)Brdrd9>
0 Jo t Jo

This concludes the proof of Proposition E.1.

F  Weighted Klainerman-Sobolev inequality

Proposition F.1. We have the inequality

1 1
£t 2)0 (o] =0 S e A= 3

<2

(.—)ZLf|| 2.

Proof. We introduce the decomposition
f=h+f,
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where

fex () e (oa ()

and y is a cut-off such that x(p) = 1 for p < 3 5 and x(p) = 0 for p > % Since the quantities Z7y
are bounded, it is sufficient to prove the proposition for f; and fs.
For f1, we introduce the function f; = fi(¢,tz). The Sobolev embedding H? < L* gives

Ifell S D 1V fell 2

laf<2
1 « (0%
S5 D IV e,
lor| <2

In the region r < Zt we have —t <r —t < — % therefore

Vel S1r =)Vl S Y 129l

ZeZ

Moreover, in this region v(|z| —t) ~ v(t), so

it 2o (el = O S 7 3 002 filge

I<2

1

< oz (. — )27 fu)] .
V1+tt+]z[/1+ |z — ¢ 1222

For fa we write
1+t +7) 1+t —rDv(r —t)(fo(t,r,0))>

S [ 0+t )0+ = plioto = 002t 0.0)) dp

t
2

2T
Z// 950, ((1++ p)(1+ [t — pl)u(p — ) falt, p,6)°) |dpdo

0<a<1

where we have used the Sobolev embedding W1t (S!) < L>°(S!') . We estimate the terms appearing
when we distribute the derivation 0, from left to right.

[(L+ [t —pDo(p — )05 f5| S plo(p — )5 f31,
(L4t + p)o(p — )5 f3] S plv(p — )05 f31,
(L4+t+p) L+ [t —p)V (p— )05 f5] S pl(L+ 1t —p)V'(p— )05 F5] < plo(p — )05 f3 ],

(L4t 4 p)olp — 1) (1 + [t — p|)Dp05 13 S plolp =) Y 1205 151,
ZeZ

where we have used in the third inequality |sv’(s)| < v(s). Therefore

(A +t+n) A+t —rDor =D (Rtr0) < Y Y w205 2h[3: < 102 2" ol

0<a<1 ZeZ 1<2

This concludes the proof of Proposition F.1. O
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