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Abstract
We solve the Einstein constraint equations for a 3 + 1 dimensional vacuum space-

time with a space-like translational Killing field. The presence of a space-like transla-
tional Killing field allows for a reduction of the 3 + 1 dimensional problem to a 2 + 1
dimensional one. Vacuum Einstein equations with a space-like translational Killing
field have been studied by Choquet-Bruhat and Moncrief in the compact case. In
the case where an additional rotational symmetry is added, the problem has a long
history (see [3], [1], [4]). In this paper we consider the asymptotically flat case. This
corresponds to solving a nonlinear elliptic system on R2. The main difficulty in that
case is due to the delicate inversion of the Laplacian on R2. In particular, we have to
work in the non-constant mean curvature setting, which enforces us to consider the
intricate coupling of the Einstein constraint equations.

1 Introduction

Einstein equations can be formulated as a Cauchy problem whose initial data must satisfy
compatibility conditions known as the constraint equations. In this paper, we will consider
the constraint equations for the vacuum Einstein equations, in the particular case where
the space-time possesses a space-like translational Killing field. It allows for a reduction of
the 3+1 dimensional problem to a 2+1 dimensional one. This symmetry has been studied
by Choquet-Bruhat and Moncrief in [8] (see also [6]) in the case of a space-time of the
form Σ×S1×R, where Σ is a compact two dimensional manifold of genus G ≥ 2, and R is
the time axis, with a space-time metric independent of the S1 coordinate. They prove the
existence of global solutions corresponding to perturbation of particular expanding initial
data.

In this paper we consider a space-time of the form R2×R×R, symmetric with respect
to the third coordinate. Minkowski space-time is a particular solution of vacuum Einstein
equations which exhibits this symmetry. Since the celebrated work of Christodoulou and
Klainerman (see [10]), we know that Minkowski space-time is stable, that is to say asymp-
totically flat perturbations of the trivial initial data lead to global solutions converging
to Minkowski space-time. It is an interesting problem to ask whether the stability also
holds in the setting of perturbations of Minkowski space-time with a space-like transla-
tional Killing field. Let’s note that it is not included in the work of Christodoulou and
Klainerman. However, it is crucial, before considering this problem, to ensure the existence
of compatible initial data, i.e. the existence of solutions to the constraint equations. This
is the purpose of the present paper.
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In the compact case, if one looks for solutions with constant mean curvature, as it is
done in [8], the issue of solving the constraint equations is straightforward. Every metric
on a compact manifold of genus G ≥ 2 is conformal to a metric of scalar curvature −1.
As a consequence, it is possible to decouple the system into elliptic scalar equations of the
form ∆u = f(x, u) with ∂uf > 0, for which existence results are standard (see for example
chapter 14 in [18]).

The asymptotically flat case is more challenging. First, the definition of an asymptot-
ically flat manifold is not so clear in two dimension. In [3], [1], [4] radial solutions of the
2 + 1 dimensional problem with an angle at space-like infinity are constructed. In partic-
ular, these solutions do not tend to the Euclidean metric at space-like infinity. Moreover,
the behaviour of the Laplace operator on R2 makes the issue of finding solutions to the
constraint equations more intricate.

1.1 Reduction of the Einstein equations

Before discussing the constraint equations, we first briefly recall the form of the Einstein
equations in the presence of a space-like translational Killing field. We follow here the
exposition in [6]. A metric (4)g on R2×R×R admitting ∂3 as a Killing field can be written

(4)g = g̃ + e2γ(dx3 +Aαdx
α)2,

where g̃ is a Lorentzian metric on R1+2, γ is a scalar function on R1+2, A is a 1-form on
R1+2 and xα, α = 0, 1, 2, are the coordinates on R1+2. Since ∂3 is a Killing field, g, γ
and A do not depend on x3. We set F = dA, where d is the exterior differential. F is
then a 2-form. Let also (4)Rµν denote the Ricci tensor associated to (4)g. R̃αβ and D̃ are
respectively the Ricci tensor and the covariant derivative associated to g̃.

With this metric, the vacuum Einstein equations

(4)Rµν = 0, µ, ν = 0, 1, 2, 3

can be written in the basis (dxα, dx3 +Aαdx
α) (see [6] appendix VII)

0 =(4) Rαβ = R̃αβ −
1

2
e2γFα

λFβλ − D̃α∂βγ − ∂αγ∂βγ, (1)

0 =(4) Rα3 =
1

2
e−γD̃β(e3γFα

β), (2)

0 =(4) R33 = −e−2γ
(
−1

4
e2γFαβF

αβ + g̃αβ∂αγ∂βγ + g̃αβD̃α∂βγ

)
. (3)

The equation (2) is equivalent to

d(∗e3γF ) = 0

where ∗e3γF is the adjoint one form associated to e3γF . This is equivalent, on R1+2, to
the existence of a potential ω such that

∗e3γF = dω.

Since F is a closed 2-form, we have dF = 0. By doing the conformal change of metric
g̃ = e−2γg, this equation, together with the equations (1) and (3), yield the following
system,
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�gω − 4∂αγ∂αω = 0, (4)

�gγ +
1

2
e−4γ∂αω∂αω = 0, (5)

Rαβ = 2∂αγ∂βγ +
1

2
e−4γ∂αω∂βω, α, β = 0, 1, 2, (6)

where �g is the d’Alembertian1 in the metric g and Rαβ is the Ricci tensor associated to
g. We introduce the following notation

u ≡ (γ, ω), (7)

together with the scalar product

∂αu.∂βu = 2∂αγ∂βγ +
1

2
e−4γ∂αω∂βω. (8)

We consider the Cauchy problem for the equations (4), (5) and (6). As it is in the case
for the 3 + 1 Einstein equation, the initial data for (4), (5) and (6) cannot be prescribed
arbitrarily. They have to satisfy constraint equations.

1.2 Constraint equations

We can write the metric g under the form

g = −N2(dt)2 + gij(dx
i + βidt)(dxj + βjdt), (9)

where the scalar function N is called the lapse, the vector field β is called the shift and g
is a Riemannian metric on R2.

We consider the initial space-like surface R2 = {t = 0}. Let T be the unit normal to
R2 = {t = 0}. We set

e0 = NT = ∂t − βj∂j .

We will use the notation
∂0 = Le0 = ∂t − Lβ,

where L is the Lie derivative. With this notation, we have the following expression for the
second fundamental form of R2

Kij = − 1

2N
∂0gij .

We will use the notation
τ = gijKij

for the mean curvature. We also introduce the Einstein tensor

Gαβ = Rαβ −
1

2
Rgαβ,

where R is the scalar curvature R = gαβRαβ . The constraint equations are given by

G0j ≡ N(∂jτ −DiKij) = ∂0u.∂ju, j = 1, 2, (10)

G00 ≡
N2

2
(R− |K|2 + τ2) = ∂0u.∂0u−

1

2
g00g

αβ∂αu∂βu, (11)

1�g is the Lorentzian equivalent of the Laplace-Beltrami operator in Riemannian geometry. In a
coordinate system, we have �gu = 1√

|g|
∂α(g

αβ
√

|g|∂βu).
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where D and R are respectively the covariant derivative and the scalar curvature associated
to g (see [6] chapter VI for a derivation of (10) and (11)). Equation (10) is called the
momentum constraint and (11) is called the Hamiltonian constraint. If we came back to
the 3 + 1 problem, there should be four constraint equations. However, since the fourth
would be obtained by taking α = 0 in (2), it is trivially satisfied if we set ∗e3γF = dω.

We will look for g of the form g = e2λδ where δ is the Euclidean metric on R2. There
is no loss of generality since, up to a diffeomorphism, all metrics on R2 are conformal to
the Euclidean metric. We introduce the traceless part of K,

Hij = Kij −
1

2
τgij ,

and following [8] we introduce the quantity

u̇ =
e2λ

N
∂0u.

Then the equations (10) and (11) take the form

∂iHij = −u̇.∂ju+
1

2
e2λ∂jτ, (12)

∆λ+ e−2λ
(

1

2
u̇2 +

1

2
|H|2

)
− e2λ τ

2

4
+

1

2
|∇u|2 = 0, (13)

where here and in the remaining of the paper, we use the convention for the Laplace
operator

∆ = ∂21 + ∂22 .

The aim of this paper is to solve the coupled system of nonlinear elliptic equations (12)
and (13) on R2 in the small data case, that is to say when u̇ and ∇u are small. A similar
system can be obtained when studying the constraint equations in three dimensions by
using the conformal method, introduced by Lichnerowicz [14] and Choquet-Bruhat and
York [9]. In the constant mean curvature (CMC) case, that is to say when one sets τ = 0,
the constraint equations decouple and the main difficulty that remains is the study of the
scalar equation (13), also called the Lichnerowicz equation2. The CMC solutions have
been studied in [9] and [13] for the compact case, and in [5] for the asymptotically flat
case. There have been also some results concerning the coupled constraint equations, i.e.
without setting τ constant The near CMC solutions in the asymptotically flat case have
been studied in [7]. The compact case has been studied in [12], [15] and [11]. See also [2]
for a review of these results.

In our case, the difficulty will arise from particular issues concerning the inversion of
second order elliptic operators on R2. In particular, without special assumptions on u, it
is not possible to set τ = 0 in the case of R2. Indeed, equation (12) induces for H the
asymptotic |H|2 ∼ 1

r2
as r tends to infinity. Now, it is known (see [17]) that an equation

of the form
∆u+Re2u + f = 0,

with R, f ≤ 0 and R . − 1
r2

when r tends to infinity, admits no solution. Therefore, we
will be forced to carefully adjust the asymptotic behaviour of τ as r tends to infinity, to
compensate the term |H|2 in equation (13), and to ensure that we remain in the range of
the elliptic operators which come into play.

2The resolution of this equation is closely linked to the Yamabe problem
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Remark 1.1. The solution of equation (13) that we construct in this paper satisfies

λ = −α ln(r) + o(1), (14)

as r →∞, with α > 0. At first sight, this could seem to contradict the asymptotic flatness
we are looking for. However, we mentioned in the beginning of the introduction that it is
not so clear what to expect as a definition of asymptotic flatness in 2 + 1 dimension. The
solutions of the evolution problem (4), (5) and (6) with an additional rotational symmetry
and ω ≡ 0, known as Einstein-Rosen waves, have been studied in [3] and [1]. These
solutions exhibit a conical singularity at space-like infinity, that is to say the perimeter of a
circle of radius r asymptotically grows like 2πcr with c < 1, instead of 2πr in the Euclidean
metric.

Using a change of variable, we observe that the asymptotic behavior (14) is equivalent
to the presence of an asymptotic angle at space-like infinity. Indeed, if we make the change
of coordinate r′ = r1−α

1−α for r large enough, then the metric

g ∼ r−2α(dr2 + r2dθ2), r →∞

takes the form
g′ ∼ dr′2 + (1− α)2r′2dθ2, r′ →∞

which corresponds to a conical singularity at space-like infinity, with an angle given by

2π(1− α).

Note that, since the constraint equations (10) and (11) are independent of the choice of
coordinates, the metric g′ and the second fundamental form K ′, obtained by performing
the change of variables r′ = r1−α

1−α for r large enough, are still solutions of the constraint
equations.

We will do the following rescaling to avoid the e2λ and e−2λ factors

ŭ = e−λu̇, H̆ = e−λH, τ̆ = eλτ.

Then the equations (12) and (13) become

∂iH̆ij + H̆ij∂iλ = −ŭ.∂ju+
1

2
∂j τ̆ −

1

2
τ̆ ∂jλ,

∆λ+
1

2
ŭ2 +

1

2
|∇u|2 +

1

2
|H̆|2 − τ̆2

4
= 0.

To lighten the notations, we will omit the ˘ in the rest of the paper.

2 Main result

We are interested in the system of constraint equations on R2{
∂iHij +Hij∂iλ = −u̇.∂ju+ 1

2∂jτ −
1
2τ∂jλ,

∆λ+ 1
2 u̇

2 + 1
2 |∇u|

2 + 1
2 |H|

2 − τ2

4 = 0.
(15)

We look for solutions (H,λ) where H is a 2-tensor, symmetric and traceless, and λ is a
scalar function. The function u is defined by (7) and τ is a scalar function which may be
chosen arbitrarily. We recall however from the end of the previous section that τ must
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be chosen carefully. In particular, τ can not be identically 0 otherwise there may not be
solutions. In our work, some parts of τ will be imposed. These are the quantities

lim
r→∞

∫ 2π

0
τ(r, θ) cos(θ)rdθ, lim

r→∞

∫ 2π

0
τ(r, θ) sin(θ)rdθ,

where (r, θ) are polar coordinates. We will work in the case where we choose data for u
and τ which are small.

Before stating the main theorem, we recall several properties of weighted Sobolev
spaces.

2.1 Weighted Sobolev spaces

In the rest of the paper, χ(r) denotes a smooth non negative function such that

0 ≤ χ ≤ 1, χ(r) = 0 for r ≤ 1, χ(r) = 1 for r ≥ 2.

We will also note f . h when there exists a universal constant C such that f ≤ Ch.

Definition 2.1. Let m ∈ Z, m ≥ 0 and δ ∈ R. The weighted Sobolev space Hm
δ (Rn) is the

completion of C∞0 for the norm

‖u‖Hm
δ

=
∑
|β|≤m

‖(1 + |x|2)
δ+|β|

2 Dβu‖L2 .

The weighted Hölder space Cmδ is the complete space of m-times continuously differentiable
functions with norm

‖u‖Cmδ =
∑
|β|≤m

‖(1 + |x|2)
δ+|β|

2 Dβu‖L∞ .

Let 0 < α < 1. The Hölder space Cm+α
δ is the the complete space of m-times continuously

differentiable functions with norm

‖u‖Cm+α
δ

= ‖u‖Cmδ + sup
x 6=y, |x−y|≤1

|∂mu(x)− ∂mu(y)|(1 + |x|2)
δ
2

|x− y|α
.

The following lemma is an immediate consequence of the definition.

Lemma 2.2. Let m ≥ 1 and δ ∈ R. Then u ∈ Hm
δ implies ∂ju ∈ Hm−1

δ+1 for j = 1, .., n.

We first recall the Sobolev embedding with weights (see for example [6], Appendix I).
In the rest of this section, we assume n = 2.

Proposition 2.3. Let s,m ∈ Z. We assume s > 1 and m ≥ 0. Let β ≤ δ + 1 and
0 < α < min(1, s− 1). Then, we have the continuous embedding

Hs+m
δ ⊂ Cm+α

β .

We will also need a product rule.

Proposition 2.4. Let s, s1, s2 ∈ Z, s, s1, s2 ≥ 0. We assume s ≤ min(s1, s2) and s <
s1 + s2 − 1. Let δ < δ1 + δ2 + 1. Then ∀(u, v) ∈ Hs1

δ1
×Hs2

δ2
,

‖uv‖Hs
δ
. ‖u‖Hs1

δ1

‖v‖Hs2
δ2

.
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The following simple lemma will be useful as well.

Lemma 2.5. Let α ∈ R and g ∈ L∞loc be such that

|g(x)| . (1 + |x|2)α.

Then the multiplication by g maps H0
δ to H0

δ−2α.

We have the following theorem due to McOwen (see [16])

Theorem 2.6. (Theorem 0 in [16]) Let m ∈ Z, m ≥ 0 and −1+m < δ < m. The Laplace
operator ∆ : H2

δ → H0
δ+2 is an injection with closed range{

f ∈ H0
δ+2 |

∫
fv = 0 ∀v ∈ ∪mi=0Hi

}
,

where Hi is the set of harmonic polynomials of degree i. Moreover, u obeys the estimate

‖u‖H2
δ
≤ C(δ)‖∆u‖H0

δ+2
,

where C(δ) is a constant such that C(δ)→ +∞ when δ → m− and δ → (−1 +m)+.

Corollary 2.7. Let −1 < δ < 0 and f ∈ H0
δ+2. Then there exists a solution u of

∆u = f

which can be written
u =

1

2π

(∫
f

)
χ(r) ln(r) + v,

where v ∈ H2
δ is such that ‖v‖H2

δ
≤ C(δ)‖f‖H0

δ+2
.

Proof. Let Θ be a smooth function supported in B(0, 1) such that
∫

Θ = 2π. Let u0 be
defined by

u0(x) =
1

2π

∫
ln(|x− y|)Θ(y)dy.

Then u0 is a solution of ∆u0 = Θ. We can write, for |x| ≥ 2

u0 − ln(|x|) =
1

2π

∫
|y|≤1

Θ(y)(ln(|x− y)− ln(|x|))dy,

therefore we have, for |x| ≥ 2

|u0 − ln(|x|)| ≤ C(Θ)

|x|
.

Moreover,

∂iu0 − ∂i ln(|x|) =
1

2π

∫
|y|≤1

Θ(y)∂i(ln(|x− y)− ln(|x|))dy

and therefore, for |x| ≥ 2

|∂iu0 − ∂i ln(|x|)| ≤ C(Θ)

|x|i
.

Besides, for |x| ≤ 2, since ln is locally integrable, we have

∂iu0 =
1

2π

∫
ln(|y|)∂iΘ(x− y)dy,
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and therefore, for |x| ≤ 2
|∂iu0| ≤ C(Θ).

Consequently, we can write

u0(x) = χ(|x|) ln(|x|) + ũ0,

with ũ0 ∈ H2
δ . Theorem 2.6 implies that there exists ṽ ∈ H2

δ solution of

∆ṽ = f − 1

2π

(∫
f

)
Θ.

Therefore
u =

1

2π

(∫
f

)
χ(r) ln(r) +

1

2π

(∫
f

)
ũ0 + ṽ

is a solution of ∆u = f . To obtain the estimate of the corollary, it suffices to note that,
for f ∈ H0

δ+2 we have ∫
|f | =

∫
|f |(1 + r2)

δ
2
+1

(1 + r2)
δ
2
+1
.

1√
1 + δ

‖f‖H0
δ+2
.

Corollary 2.8. Let s,m ∈ Z, s,m ≥ 0 and −1 + m < δ < m. The Laplace operator
∆ : H2+s

δ → Hs
δ+2 is an injection with closed range{

f ∈ Hs
δ+2 |

∫
fv = 0 ∀v ∈ ∪mi=0Hi

}
.

Moreover, u obeys the estimate

‖u‖Hs+2
δ
≤ C(s, δ)‖∆u‖Hs

δ+2
.

Proof. We will proceed by induction. Note that Theorem 2.6 corresponds to the case s = 0.
We assume that the statement of the corollary holds true for some s ∈ Z, s ≥ 0 and all
m ∈ Z, m ≥ 0 and we will prove that it holds true for s + 1. Let m ∈ Z, m ≥ 0 and
−1 +m < δ < m. Let f ∈ Hs+1

δ+2 , such that f belongs to the set{
f ∈ H0

δ+2 |
∫
fv = 0 ∀v ∈ ∪mi=0Hi

}
.

Then Theorem 2.6 provides a unique u ∈ H2
δ such that ∆u = f . In particular for i = 1, 2

we have
∆∂iu = ∂if.

Since f ∈ Hs+1
δ+2 , we have that ∂if ∈ Hs

δ+3. Moreover, for all v, harmonic polynomial of
degree j ≤ m+ 1, we have ∫

(∂if)v = −
∫
f∂iv = 0,

because ∂iv is an harmonic polynomial of degree j − 1 ≤ m. Therefore, by induction, we
have ∂iu ∈ Hs+2

δ+1 and

‖u‖Hs+1+2
δ

. ‖u‖H2
δ

+ ‖∂1u‖Hs+2
δ+1

+ ‖∂2u‖Hs+2
δ+1

≤ C(δ)‖f‖H0
δ+2

+ C(s, δ + 1)
(
‖∂1f‖Hs

δ+3
+ ‖∂2f‖Hs

δ+3

)
≤ C(s+ 1, δ)‖f‖Hs+1

δ+2
.
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2.2 Main result

In the rest of the paper, δ will be a fixed real number such that

−1 < δ < 0.

Definition 2.9. Let δ′ ∈ R and s ∈ Z, s ≥ 0. We note Hsδ′ the set of symmetric traceless
tensor whose components are in Hs

δ′ .

We introduce the following traceless tensor, which is the traceless part of rdθ2

Hθ = −χ(r)

2r

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
,

where (r, θ) are polar coordinates. The following theorem is our main result.

Theorem 2.10. Let u̇2, |∇u|2 ∈ H0
δ+2, τ̃ ∈ H1

δ+1 and b ∈ L∞(S1) such that∫
S1
b(θ) cos(θ)dθ =

∫
S1
b(θ) sin(θ)dθ = 0.

We note
ε =

∫
u̇2 + |∇u|2.

We assume
‖u̇2‖H0

δ+2
+ ‖|∇u|2‖H0

δ+2
+ ‖τ̃‖H1

δ+1
+ ‖b‖L∞ . ε.

If ε > 0 is small enough, there exist α, ρ, η ∈ R, a scalar function λ̃ ∈ H2
δ and a traceless

symmetric tensor H̃ ∈ H1
δ+1 such that, if we note

H = (b(θ) + ρ cos(θ − η))Hθ + H̃,

λ =− αχ(r) ln(r) + λ̃,

where (r, θ) are polar coordinates, then λ,H is a solution of (15) with

τ =
χ(r)

r
(b(θ) + ρ cos(θ − η)) + τ̃ .

Moreover, α, ρ, η, λ̃, H̃ are unique. Finally, α, ρ, η are such that

α =
1

4π

∫ (
u̇2 + |∇u|2

)
+O(ε2),

ρ cos(η) =
1

π

∫
u̇∂1u+O(ε2),

ρ sin(η) =
1

π

∫
u̇∂2u+O(ε2),

and we have the estimates ‖λ̃‖H2
δ

+ |α| . ε and ‖H̃‖H1
δ+1

+ |ρ| . ε.

The following corollary is an immediate consequence of Theorem 2.10 and Corollary
2.8.

Corollary 2.11. Let s ∈ Z, s ≥ 0 and assume u̇2, |∇u|2 ∈ Hs
δ+2, b ∈ W s,∞(S1) and

τ̃ ∈ Hs+1
δ+1 . Let ε be defined as in Theorem 2.10. Then the conclusion of Theorem 2.10

holds and we have furthermore λ̃ ∈ Hs+2
δ , H̃ ∈ Hs+1

δ+1, with the estimates

‖λ̃‖Hs+2
δ

+ ‖H̃‖Hs+1
δ+1
. ‖u̇2‖Hs

δ+2
+ ‖|∇u|2‖Hs

δ+2
+ ‖τ̃‖Hs+1

δ+1
+ ‖b‖W s,∞ .

9



Comments on Theorem 2.10

1. The trivial asymptotically flat solution to the Einstein vacuum equations with a
space-like translational Killing field (4), (5) and (6) is obtained by taking for g the
Minkowski metric on R1+2, and by setting ω = γ = 0. The corresponding initial
data set is given by

(u̇2 = 0, |∇u|2 = 0, τ = 0, H = 0, λ = 0).

Theorem 2.10 corresponds to the existence of solutions to the constraint equations
which are small perturbations of (0, 0, 0, 0, 0). An interesting open problem is the
question of the non linear stability of the “Minkowski space-time with a space-like
translational Killing field” under these perturbations3.

2. We solve here the constraint equations for small data. It is an interesting open
problem to investigate the large data case.

3. The logarithmic divergence in λ does not contradict asymptotic flatness (see Remark
1.1).

4. To understand where the special asymptotic structure of our solutions comes from,
we can consider the space-time metric, given in (t, r, θ) coordinates by

gh = −dt2 + r−2α(dr2 + (r − 2h(θ)rαt)2dθ2).

This is a flat Lorentzian metric wherever it is well defined. The induced Riemannian
metric on the surface t = 0 is r−2αδ, and we can calculate the second fundamental
form, which is given in (x1, x2) coordinates by

K =
h(θ)r−α

r

(
sin2(θ) − cos(θ) sin(θ)
− cos(θ) sin(θ) cos2(θ)

)
.

Therefore, for such a metric, we have τ = rα

r h(θ) and H = h(θ)r−αHθ. By choosing
h(θ) = b(θ) + ρ cos(θ − η), we obtain exactly the asymptotic behavior predicted by
Theorem 2.10. Since gh is a flat space-time metric, the induced metric and second
fundamental form on R2 are special solutions of the vacuum constraint equations.

5. The function b(θ) is a free parameter. However, ρ and η must be chosen according
to the asymptotic behavior H = O(1r ), induced by the fundamental solution of the
Laplace operator in the first equation of (15). The particular structure of the coupling
between the momentum and the Hamiltonian constraints, explained in the previous
comment, makes this cancellation possible, and allows us to perform a fixed point
theorem in weighted Sobolev spaces.

6. The quantities α, ρ and η are conserved by the flow of the Einstein equations. To
see this, we note that ρ, η can be expressed as

ρ cos(η) =
1

π
lim
r→∞

∫ 2π

0
τ cos(θ)rdθ,

ρ sin(η) =
1

π
lim
r→∞

∫ 2π

0
τ sin(θ)rdθ.

3This is the analogue in dimension 2 + 1 of the nonlinear stability of the Minkowski space-time in
dimension 3+1, which has been established in the celebrated work of Christodoulou and Klainerman [10].
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The (0, 0) component of equation (6) can be written under the form

∂0τ = −e−2λ∆N +

(
e−4λ(|H|2 + u̇2) +

τ2

2

)
N.

This yields ∂tτ = O( 1
r2

) as r tends to ∞ and therefore

∂t(ρ cos(η)) = ∂t(ρ sin(η)) = 0.

The deficit angle α can be expressed as

α = 1− lim
r→∞

L(r)

2πr
,

where L(r) is the length of the set of points which are at distance r from the origin.
In the coordinates where g is asymptotic to

dr′2 + (1− α)2r′2dθ2,

we see that we can write

α = 1− 1

2πr
lim
r→∞

∫ 2π

0

√
gθθdθ.

Since the evolution equation for g is ∂0gij = −2NKij , we have ∂tgθθ = O(r) as r
tends to ∞ and

∂tα = 0.

The deficit angle is said to be the two dimensional equivalent of the ADM energy,
and we can naturally think of ρ(cos(η), sin(η)) as the ADM linear momentum.

2.3 Outline of the proof

We will prove Theorem 2.10 by a fixed point argument. The quantities u̇,∇u, τ̃ and b(θ)
are fixed.

The construction of the map F. We will construct a map

F : R×H2
δ ×H1

δ+1 → R×H2
δ ×H1

δ+1

(α, λ̃, H̃) 7→ (α′, λ̃′, H̃ ′),

such that (λ′, H ′) given by

λ′ = −α′ ln(r)χ(r) + λ̃′,

H ′ = (b(θ) + ρ cos(θ − η))Hθ + H̃ ′,

are solutions of

∂iH
′
ij +Hij∂iλ = −u̇∂ju+

1

2
∂jτ −

1

2
τ∂jλ, (16)

∆λ′ +
1

2
u̇2 +

1

2
|∇u|2 +

1

2
|H|2 − τ2

4
= 0, (17)

11



with λ,H, τ defined by

λ = −α ln(r)χ(r) + λ̃, (18)

H = (b(θ) + ρ cos(θ − η))Hθ + H̃, (19)

τ =
bχ(r)

r
+
ρχ(r)

r
cos(θ − η) + τ̃ , (20)

where ρ, η depending on α, λ̃, H̃ are constructed during the process in order to have the
same parameters ρ, η in H, τ and in H ′, τ ′. Then, proving that F has a fixed point easily
follows from the estimates derived for α′, λ′ and H ′, which concludes the proof of Theorem
2.10. Thus the core of the analysis is to solve (16) and (17).

Solving (16). For λ,H, τ of the form (18), (19) and (20), there always exists a solution
of (16) of the form

H ′ =
χ(r)

r

(
g1(θ) g2(θ)
g2(θ) −g1(θ)

)
+ H̃ ′,

where g1 and g2 are two functions of the angle θ, and H̃ ′ is a traceless symmetric tensor
belonging to H1

δ+1. For ε > 0 small enough, we will be able to choose ρ and η such that
H ′ can be written under the form (b(θ) + ρ cos(θ − η))Hθ + H̃ ′.

Solving (17). We remark that, according to Theorem 2.6, the equation (17) may not
have solutions in H2

δ . Also, because of the asymptotic behavior of |H|2 and τ2, which are
only decreasing like 1

r2
as r →∞, the right-hand side of the equation (17) may not be in the

space H0
δ+2, in which case we may not be able to apply Corollary 2.7 to solve the equation.

However, the particular form of H and τ allows the terms decreasing like 1
r2

to balance
each other, and we are able to obtain a solution of (17) of the form −α′ ln(r)χ(r)+ λ̃′ with

α′ =
1

2π

∫ (
1

2
u̇2 +

1

2
|∇u|2 +

1

2
|H|2 − τ2

4

)
.

The rest of the paper is as follows. In section 3, we explain how to solve the momentum
constraint (16). In section 4, we explain how to choose the coefficients ρ, η and how to
solve the Lichnerowicz equation (17). Finally the map F is constructed in section 5. It is
shown to have a fixed point, which concludes the proof of Theorem 2.10.

3 The momentum constraint

The goal of this section is to solve equation (16).

Proposition 3.1. We assume u̇.∇u ∈ H0
δ+2. Let b ∈ L∞(S1) such that∫

S1
b(θ) cos(θ)dθ =

∫
S1
b(θ) sin(θ)dθ = 0.

Let α, ρ, η ∈ R, and let

τ = b(θ)
χ(r)

r
+ ρ

χ(r)

r
cos(θ − η) + τ̃ ,

λ = −αχ(r) ln(r) + λ̃,

H = (b(θ) + ρ cos(θ − η))Hθ + H̃,

12



with τ̃ ∈ H1
δ+1, λ̃ ∈ H2

δ , H̃ ∈ H1
δ+1. Then the equation

∂iH
′
ij +Hij∂iλ = −u̇.∂ju+

1

2
∂jτ −

1

2
τ∂jλ,

has a unique solution of the form

H ′ =
mχ(r)

r

(
cos(θ + φ) sin(θ + φ)
sin(θ + φ) − cos(θ + φ)

)
− ρχ(r)

4r

(
cos(3θ − η) sin(3θ − η)
sin(3θ − η) − cos(3θ − η)

)
+ b(θ)Hθ + H̃ ′,

with H̃ ′ ∈ H1
δ+1 and

m cos(φ) =
1

2π

∫ (
− u̇.∂1u−

1

2
τ̃ ∂1λ− H̃i1∂iλ− ∂iλ̃

(
(b(θ) + ρ cos(θ − η))Hθ

)
i1

− 1

2
χ(r)

b(θ) + ρ cos(θ − η)

r
∂1λ̃

)
+
ρ

4
cos(η),

(21)

m sin(φ) =
1

2π

∫ (
− u̇.∂2u−

1

2
τ̃ ∂2λ− H̃i2∂iλ− ∂iλ̃

(
(b(θ) + ρ cos(θ − η))Hθ

)
i2

− 1

2
χ(r)

b(θ) + ρ cos(θ − η)

r
∂2λ̃

)
+
ρ

4
sin(η).

(22)

Moreover we have

‖H̃ ′‖H1
δ+1
.‖b‖L∞ + ‖u̇.∇u‖H0

δ+2
+ (1 + |α|+ ‖λ̃‖H2

δ
)‖τ̃‖H1

δ+1

+ |ρ|+ (‖H̃‖H1
δ+1

+ ‖b‖L∞ + |ρ|)‖λ̃‖H2
δ

+ |α|‖H̃‖H1
δ+1
.

To prove this proposition, we write H ′ = H(1) +H(2) +H(3) with

∂iH
(1)
ij =− u̇.∂ju+

1

2
∂j τ̃ −

1

2
τ̃ ∂jλ− H̃ij∂iλ (23)

+
ρχ′(r)

4r
ej − ∂iλ̃

(
(b(θ) + ρ cos(θ − η))Hθ

)
ij
− 1

2
χ(r)

b(θ) + ρ cos(θ − η)

r
∂j λ̃,

∂iH
(2)
ij =

1

2
∂j

(
b(θ)χ(r)

r

)
+ (b(θ)Hθ)ij∂i(αχ(r) ln(r)) +

1

2

b(θ)χ(r)

r
∂j(αχ(r) ln(r)), (24)

∂iH
(3)
ij =

1

2
∂j

(
ρ cos(θ − η)χ(r)

r

)
− ρχ′(r)

4r
ej + (ρ cos(θ − η)Hθ)ij∂i (αχ(r) ln(r)) (25)

+
1

2

ρχ(r) cos(θ − η)

r
∂j(αχ(r) ln(r)),

where e1 = cos(η) and e2 = sin(η). The following three propositions allow us to solve (23),
(24) and (25).

Proposition 3.2. There exists a unique solution of (23) of the form

H(1) =
mχ(r)

r

(
cos(θ + φ) sin(θ + φ)
sin(θ + φ) − cos(θ + φ)

)
+ H̃(1),

with H̃(1) ∈ H1
δ+1 and m cos(φ) and m sin(φ) are defined by (21) and (22). Moreover, H̃(1)

satisfies the estimate

‖H̃ ′‖H1
δ+1
.‖u̇.∇u‖H0

δ+2
+ (1 + |α|+ ‖λ̃‖H2

δ
)‖τ̃‖H1

δ+1

+ |ρ|+ (‖H̃‖H1
δ+1

+ ‖b‖L∞ + |ρ|)‖λ̃‖H2
δ

+ |α|‖H̃‖H1
δ+1
.

(26)
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Proposition 3.3. There exists an unique H̃(2) ∈ H1
δ+1 such that H(2) = b(θ)Hθ + H̃(2)

satisfies (24). Moreover we have the estimate∥∥∥H̃(2)
∥∥∥
H1
δ+1

. ‖b‖L∞ .

Proposition 3.4. There exists an unique H̃(3) ∈ H1
δ+1 such that

H(3) = −ρχ(r)

4r

(
cos(3θ − η) sin(3θ − η)
sin(3θ − η) − cos(3θ − η)

)
+ H̃(3),

satisfies (25). Moreover, we have the estimate∥∥∥H̃(3)
∥∥∥
H1
δ+1

. |ρ|.

Since the sum of the right-hand sides of (23), (24) and (25) is equal to

−Hij∂iλ− u̇∂ju+
1

2
∂jτ −

1

2
τ∂jλ,

Proposition 3.1 is a straightforward consequence of Propositions 3.2, 3.3 and 3.4. Thus, in
the rest of this section, we prove Proposition 3.2, 3.3 and 3.4, respectively in section 3.1,
3.2 and 3.3.

3.1 Proof of Proposition 3.2

We need the following lemma.

Lemma 3.5. Let f1, f2 ∈ H0
δ+2. The equation

∂iKij = fj ,

with K a symmetric traceless tensor, has a unique solution of the form

K =
mχ(r)

r

(
cos(θ + φ) sin(θ + φ)
sin(θ + φ) − cos(θ + φ)

)
+ K̃,

with
m(cos(φ), sin(φ)) =

1

2π

(∫
f1,

∫
f2

)
and K̃ ∈ H1

δ+1 with
‖K̃‖H1

δ+1
. ‖f1‖H0

δ+2
+ ‖f2‖H0

δ+2
.

We postpone the proof of Lemma 3.5 to the end of the section, and use it to prove
Proposition 3.2.

Proof of Proposition 3.2. We apply Lemma 3.5 with

fj =− u̇.∂ju+
1

2
∂j τ̃ −

1

2
τ̃ ∂jλ− H̃ij∂iλ+

ρχ′(r)

4r
ej

− ∂iλ̃
(
(b(θ) + ρ cos(θ − η))Hθ

)
ij
− 1

2
χ(r)

b+ ρ cos(θ − η)

r
∂j λ̃, j = 1, 2.

(27)
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We first check that fj belongs to H0
δ+2. Since τ̃ ∈ H1

δ+1, we have ∂j τ̃ ∈ H0
δ+2 with

‖∂j τ̃‖H0
δ+2
. ‖τ̃‖H1

δ+1
. (28)

Moreover, thanks to Lemma 2.5, we have χ(r)
r τ̃ ∈ H1

δ+2. Since λ̃ ∈ H2
δ , we have ∂j λ̃ ∈ H1

δ+1

and therefore, thanks to Proposition 2.4, τ̃ ∂j λ̃ ∈ H0
δ+2. Consequently we have the estimate

‖τ̃ ∂jλ‖H0
δ+2
. (|α|+ ‖λ̃‖H2

δ
)‖τ̃‖H1

δ+1
. (29)

In the same way, we have the estimates

‖H̃ij∂iλ‖H0
δ+2
. (|α|+ ‖λ̃‖H2

δ
)‖H̃‖H1

δ+1
, (30)∥∥∥∥∂iλ̃((b(θ) + ρ cos(θ − η))Hθ)ij −

1

2
χ(r)

b+ ρ cos(θ − η)

r
∂j λ̃

∥∥∥∥
H0
δ+2

. (‖b‖L∞ + |ρ|)‖λ̃‖H2
δ
.

(31)

Since χ′ is compactly supported, we have∥∥∥∥ρχ′(r)4r
ej

∥∥∥∥
H0
δ+2

. |ρ|. (32)

(28), (29), (30), (31) and (32) yield

‖f1‖H0
δ+2

+ ‖f2‖H0
δ+2
.‖u̇.∇u‖H0

δ+2
+ (1 + |α|+ ‖λ̃‖H2

δ
)‖τ̃‖H1

δ+1

+ |ρ|+ (‖H̃‖H1
δ+1

+ ‖b‖L∞ + |ρ|)‖λ̃‖H2
δ

+ |α|‖H̃‖H1
δ+1
.

(33)

Therefore, Lemma 3.5 implies that we have a unique solution of (23) of the form

H(1) =
mχ(r)

r

(
cos(θ + φ) sin(θ + φ)
sin(θ + φ) − cos(θ + φ)

)
+ H̃(1),

with H̃(1) ∈ H1
δ+1. Together with (33), it yields the estimate (26). Then, in view of the

definition (27) of f1 and f2, the computations∫
ρχ′(r)

4r
cos(η)rdrdθ =

πρ

2
cos(η),∫

ρχ′(r)

4r
sin(η)rdrdθ =

πρ

2
sin(η),

and the fact that ∫
∂j τ̃ = 0,

yield the identities (21) and (22).

Proof of lemma 3.5. We look for solutions of the form

Kij = ∂iYj + ∂jYi − δij∂kYk. (34)

The vector Y then satisfies the equations

∆Y1 = f1,

∆Y2 = f2.
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We can apply Corollary 2.7 which says that

Yj =
1

2π

(∫
fj

)
χ(r) ln(r) + Ỹj

where Ỹj ∈ H2
δ satisfies

‖Ỹj‖H2
δ
. ‖fj‖H0

δ+2
.

We have then

K11 = ∂1Y1 − ∂2Y2 = χ(r)
x1
∫
f1 − x2

∫
f2

2πr2
+ K̃11,

K12 = ∂1Y2 + ∂2Y1 = χ(r)
x1
∫
f2 + x2

∫
f1

2πr2
+ K̃12,

where K̃11, K̃12 ∈ H1
δ+1 satisfy

‖K̃‖H1
δ+1
. ‖f1‖H0

δ+2
+ ‖f2‖H0

δ+2
.

Let
m(cosφ, sinφ) =

1

2π

(∫
f1,

∫
f2

)
.

We obtain

x1
∫
f1 − x2

∫
f2

2πr2
=
m

r
(cosφ cos θ − sinφ sin θ) =

m

r
cos(θ + φ),

x1
∫
f2 + x2

∫
f1

2πr2
=
m

r
(sinφ cos θ + cosφ sin θ) =

m

r
sin(θ + φ).

This yields

K11 = χ(r)
m cos(θ + φ)

r
+ K̃11,

K12 = χ(r)
m sin(θ + φ)

r
+ K̃12.

Since K is symmetric and traceless, we have K22 = −K11 and K12 = K21. Moreover, K
is unique, because if H̃ ∈ H1

δ+1 satisfies DiH̃ij = 0, then ∆H̃ij = 0 for i, j = 1, 2, and
therefore H̃ = 0. This concludes the proof of Lemma 3.5.

We point out that the method we have used to solve ∂iKij = fj is the one used in the
conformal method. In the conformal method, one looks for solutions of the form

K = LY + σ,

where L is the conformal Killing operator (defined in our case by (34)) and σ a transverse
traceless tensor. In our case, since there are no transverse traceless tensors which decay at
infinity on R2, we can pick σ = 0.
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3.2 Proof of Proposition 3.3

We calculate the right-hand side of (24) for j = 1

1

2
∂1

(
b(θ)χ(r)

r

)
+ (b(θ)Hθ)i1∂i(αχ(r) ln(r)) +

1

2

b(θ)χ(r)

r
∂1(αχ(r) ln(r))

=
b(θ)

2
cos(θ)

(
−χ(r)

r2
+
χ′(r)

r

)
− αb(θ)χ(r)

2r

(
χ′(r) ln(r) +

χ(r)

r

)
(cos(θ) cos(2θ) + sin(θ) sin(2θ))

+ α
b(θ)χ(r)

2r

(
χ′(r) ln(r) +

χ(r)

r

)
cos(θ)− sin(θ)∂θb(θ)

2

χ(r)

r2

=
b

2
cos(θ)

(
−χ(r)

r2
+
χ′(r)

r

)
− sin(θ)∂θb(θ)

2

χ(r)

r2
.

We have similarly for j = 2,

1

2
∂2

(
b(θ)χ(r)

r

)
+ (b(θ)Hθ)i2∂i(αχ(r) ln(r)) +

1

2

b(θ)χ(r)

r
∂2(αχ(r) ln(r))

=
b(θ)

2
sin(θ)

(
−χ(r)

r2
+
χ′(r)

r

)
+

cos(θ)∂θb(θ)

2

χ(r)

r2
.

We calculate then,

∂i(b(θ)Hθ)i1 =− 2b(θ)χ(r)

2r2
(sin(θ) sin(2θ) + cos(θ) cos(2θ))

− b(θ)

2

(
−χ(r)

r2
+
χ′(r)

r2

)
(cos(θ) cos(2θ) + sin(θ) sin(2θ))

− ∂θb(θ)χ(r)

2r2
(− sin(θ) cos(2θ) + cos(θ) sin(2θ))

=− b(θ)χ(r)

2r2
cos(θ)− b(θ)χ′(r)

2r
cos(θ)− sin(θ)∂θb(θ)

2

χ(r)

r2
.

In the same way

∂i(b(θ)Hθ)i2 = −b(θ)χ(r)

2r2
sin(θ)− b(θ)χ′(r)

2r
sin(θ) +

cos(θ)∂θb(θ)

2

χ(r)

r2
.

Therefore b(θ)Hθ + H̃(2) satisfies (24) if and only if

∂iH̃
(2)
ij = fj , (35)

with (
f1
f2

)
=
b(θ)χ′(r)

r

(
cos(θ)
sin(θ)

)
.

We have f1, f2 ∈ H0
δ+2 with

‖f1‖H0
δ+2

+ ‖f2‖H0
δ+2
. ‖b‖L∞ ,

and, since we assume ∫
b(θ) cos(θ)θ =

∫
b(θ) sin(θ)dθ = 0,

we have also ∫
f1 =

∫
f2 = 0.
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Therefore Lemma 3.5 implies that there exists a unique solution H̃(2) ∈ H1
δ+1 of (35).

Furthermore it satisfies the estimate∥∥∥H̃(2)
∥∥∥
H1
δ+1

. ‖b‖L∞ ,

which concludes the proof of Proposition 3.3.

3.3 Proof of Proposition 3.4

We calculate each term of the right-hand side of (25) for j = 1

1

2
∂1

(
ρ cos(θ − η)χ(r)

r

)
− ρχ′(r)

4r
cos(η)

=
ρχ(r)

2r2
(sin(θ) sin(θ − η)− cos(θ) cos(θ − η)) +

ρχ′(r)

2r
cos(θ) cos(θ − η)− ρχ′(r)

4r
cos(η)

= −ρχ(r)

2r2
cos(2θ − η) +

ρχ′(r)

2r

cos(η) + cos(2θ − η)

2
− ρχ′(r)

4r
cos(η)

= −ρχ(r)

2r2
cos(2θ − η) +

ρχ′(r)

4r
cos(2θ − η),

(Hρ,η)i1∂i(αχ(r) ln(r)) +
1

2

ρχ(r) cos(θ − η)

r
∂1(αχ(r) ln(r))

=− αρχ(r)

4r
(∂r(χ(r) ln(r))) (cos(θ)(cos(θ + η) + cos(3θ − η)) + sin(θ)(sin(θ + η) + sin(3θ − η)))

+
αρχ(r)

2r
(∂r(χ(r) ln(r))) cos(θ) cos(θ − η)

=− αρχ(r)

4r
(∂r(χ(r) ln(r))) (cos(η) + cos(2θ − η)) +

αρχ(r)

2r
(∂r(χ(r) ln(r)))

cos(η) + cos(2θ − η)

2
=0.

Therefore we have

1

2
∂1

(
ρ cos(θ − η)χ(r)

r

)
− ρχ′(r)

4r
cos(η) + (Hρ,η)i1∂i(αχ(r) ln(r))

+
1

2

ρχ(r) cos(θ − η)

r
∂1(αχ(r) ln(r))

=− ρχ(r)

2r2
cos(2θ − η) +

ρχ′(r)

4r
cos(2θ − η).

In the same way, for j = 2 we have

1

2
∂2

(
ρ cos(θ − η)χ(r)

r

)
− ρχ′(r)

4r
sin(η) + (Hρ,η)i2∂i(αχ(r) ln(r))

+
1

2

ρχ(r) cos(θ − η)

r
∂2(αχ(r) ln(r))

=− ρχ(r)

2r2
sin(2θ − η) +

ρχ′(r)

4r
sin(2θ − η).
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We calculate now

∂1

(
−ρχ(r) cos(3θ − η)

4r

)
+ ∂2

(
−ρχ(r) sin(3θ − η)

4r

)
=− ρ

4
(cos(θ) cos(3θ − η) + sin(θ) sin(3θ − η))

(
−χ(r)

r2
+
χ′(r)

r

)
− 3

ρ

4
(sin(θ) sin(3θ − η) + cos(θ) cos(3θ − η))

χ(r)

r2

=− ρχ(r)

2r2
cos(2θ − η)− ρχ′(r)

4r
cos(2θ − η).

In the same way we have

− ∂2
(
−ρχ(r) cos(3θ − η)

4r

)
+ ∂1

(
−ρχ(r) sin(3θ − η)

4r

)
=− ρχ(r)

2r2
sin(2θ − η)− ρχ′(r)

4r
sin(2θ − η).

Therefore

H(3) = −ρχ(r)

4r

(
cos(3θ − η) sin(3θ − η)
sin(3θ − η) − cos(3θ − η)

)
+ H̃(3)

satisfies (25) if and only if
∂iH̃

(3)
ij = fj , (36)

with (
f1
f2

)
=
ρχ′(r)

2r

(
cos(2θ − η)
sin(2θ − η)

)
.

We have f1, f2 ∈ H0
δ+2 with

‖f1‖H0
δ+2

+ ‖f2‖H0
δ+2
. |ρ|,

and ∫
f1 =

∫
f2 = 0.

Therefore Lemma 3.5 implies that there exists a unique solution H̃(3) ∈ H1
δ+1 of (36).

Furthermore, it satisfies the estimate∥∥∥H̃(3)
∥∥∥
H1
δ+1

. |ρ|,

which concludes the proof of Proposition 3.4.

4 The choice of ρ, η and the Lichnerowicz equation

The goal of this section is to solve equation (17).

4.1 The choice of ρ, η

We assume u̇∇u ∈ H2
δ . Let α ∈ R, b ∈ L∞(S1), λ̃ ∈ H2

δ and H̃ ∈ H1
δ+1. We consider the

map

G : R× S1 → R× S1

(ρ, η) 7→ (−4m,φ),
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with (m,φ) given by

m cos(φ) =
1

2π

∫ (
− u̇.∂1u−

1

2
τ̃ ∂1λ− H̃i1∂iλ− ∂iλ̃

(
(b(θ) + ρ cos(θ − η))Hθ

)
i1

− 1

2
χ(r)

b(θ) + ρ cos(θ − η)

r
∂1λ̃

)
+
ρ

4
cos(η),

m sin(φ) =
1

2π

∫ (
− u̇.∂2u−

1

2
τ̃ ∂2λ− H̃i2∂iλ− ∂iλ̃

(
(b(θ) + ρ cos(θ − η))Hθ

)
i2

− 1

2
χ(r)

b(θ) + ρ cos(θ − η)

r
∂2λ̃

)
+
ρ

4
sin(η).

We want our solution H ′ of equation (16) to have the same form as H, in order to find
a fixed point H = H ′ and λ = λ′. Therefore, we need to show that G has a fixed point.
This is done in the following lemma.

Lemma 4.1. If ‖λ̃‖H2
δ
. ε, then for ε > 0 small enough, G admits an unique fixed point

(ρ, η) ∈ R× [0, 2π[. Moreover, if we assume

‖u̇∇u‖H0
δ+2

+ ‖H̃‖H1
δ+1

+ ‖τ̃‖H1
δ+1

+ ‖λ̃‖H2
δ

+ ‖b‖L∞ + |α| . ε, (37)

then we have

ρ cos(η) =
1

π

∫
u̇.∂1u+O(ε2),

ρ sin(η) =
1

π

∫
u̇.∂2u+O(ε2).

Proof. We write

aj =
1

2π

∫ (
−u̇.∂ju−

1

2
τ̃ ∂jλ− H̃ij∂iλ− ∂iλ̃(b(θ)Hθ)ij −

1

2
χ(r)

b

r
∂j λ̃

)
.

The conditions ρ = −4m and η = φ are satisfied if and only if

ρ cos(η) = −4

(
a1 +

1

2π

∫ (
−∂iλ̃(ρ cos(θ − η)Hθ)i1 −

1

2
χ(r)

ρ cos(θ − η)

r
∂1λ̃

)
+
ρ

4
cos(η)

)
,

(38)

ρ sin(η) = −4

(
a2 +

1

2π

∫ (
−∂iλ̃(ρ cos(θ − η)Hθ)i2 −

1

2
χ(r)

ρ cos(θ − η)

r
∂2λ̃

)
+
ρ

4
sin(η)

)
.

(39)

Since we assume ‖λ̃‖H2
δ
. ε, we can write this system under the form(

1 +O(ε) O(ε)
O(ε) 1 +O(ε)

)(
ρ cos(η)
ρ sin(η)

)
= −2

(
a1
a2

)
.

For ε > 0 small enough, it is invertible, so G has a fixed point, and we obtain, under the
hypothesis (37)

ρ cos(η) =
1

π

∫
u̇∂1u+O(ε2),

ρ sin(η) =
1

π

∫
u̇∂2u+O(ε2),

which concludes the proof of Lemma 4.1.
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4.2 The Lichnerowicz equation

Proposition 4.2. Let u̇2, |∇u|2 ∈ H0
δ+2. Let b ∈ L∞(S1), τ̃ ∈ H1

δ+1, H̃ ∈ H1
δ+1, ρ, η ∈ R

and

H = (b(θ) + ρ cos(θ − η) + H̃,

τ =
b(θ)χ(r)

r
+
ρχ(r)

r
cos(θ − η) + τ̃ .

There exists a unique λ′ of the form

λ′ = −α′χ(r) ln(r) + λ̃′,

with λ̃′ ∈ H2
δ , solution of

∆λ′ = −1

2
u̇2 − 1

2
|∇u|2 − 1

2
|H|2 +

τ2

4
. (40)

Moreover, if

‖u̇2‖H0
δ+2

+ ‖|∇u|2‖H0
δ+2

+ ‖H̃‖H1
δ+1

+ ‖τ̃‖H1
δ+1

+ ‖b‖L∞ + |ρ| . ε, (41)

we have
‖λ̃′‖H2

δ
. ‖u̇2 + |∇u|2‖H0

δ+2
+ ε2

and
α′ =

1

4π

∫ (
u̇2 + |∇u|2

)
+O(ε2).

Proof. We want to apply Corollary 2.7. We have to check that the right-hand side of (40)
is in H0

δ+2. We write

|H|2 = |(b(θ) + ρ cos(θ − η))Hθ|2 + f1,

τ2 =

(
(b+ ρ cos(θ − η))χ(r)

r

)2

+ f2.
(42)

We first estimate f1 and f2. Since τ̃ ∈ H1
δ+1, H̃ ∈ H1

δ+1, we have thanks to Proposition
2.4 that τ̃2, |H̃|2 ∈ H0

δ+2, and thanks to Lemma 2.5,

τ̃

(
(b+ ρ cos(θ − η))χ(r)

r

)
∈ H0

δ+2, H̃ ij((b(θ) + ρ cos(θ − η))Hθ)ij ∈ H0
δ+2.

Therefore, we have f1, f2 ∈ H0
δ+2 with

‖f1‖H0
δ+2

+ ‖f2‖H0
δ+2
. ‖H̃‖2H1

δ+1
+ ‖τ̃‖2H1

δ+1
+ ‖b‖2L∞ + ρ2 . ε2. (43)

We now compute 1
2 |(b(θ) + ρ cos(θ− η))Hθ|2 and 1

4

(
(b+ρ cos(θ−η))χ(r)

r

)2
. Since we have

|Hθ|2 =
2χ(r)2

4r2
(cos(2θ)2 + sin(2θ)2) =

χ(r)2

2r2
,

we obtain
1

2
|b(θ) + ρ cos(θ − η))Hθ|2 =

1

4

(
(b+ ρ cos(θ − η))χ(r)

r

)2

. (44)
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(42), (43) and (44) imply that the right-hand side of (40) is in H0
δ+2 with∥∥∥∥−1

2
u̇2 − 1

2
|∇u|2 − 1

2
|H|2 +

τ2

4

∥∥∥∥
H0
δ+2

. ‖u̇2‖H0
δ+2

+ ‖|∇u|2‖H0
δ+2

+ ε2,

so Corollary 2.7 gives a unique solution of (40) of the form

λ′ = −α′χ(r) ln(r) + λ̃′,

with

α′ =
1

2π

∫ (
1

2
u̇2 +

1

2
|∇u|2 +

1

2
|H|2 − τ2

4

)
,

and λ̃′ ∈ H2
δ . If we assume (41), we obtain

α′ =
1

4π

∫ (
u̇2 + |∇u|2

)
+O

(
‖f1‖H0

δ+2
+ ‖f2‖H0

δ+2

)
=

1

4π

∫ (
u̇2 + |∇u|2

)
+O(ε2),

which, together with the estimate

‖λ̃′‖H2
δ
. ‖u̇2‖H0

δ+2
+ ‖|∇u|2‖H0

δ+2
+ ε2,

concludes the proof of Proposition 4.2.

5 Proof of Theorem 2.10

We note X the Banach space R×H2
δ ×H1

δ+1 equipped with the norm

‖(α, λ̃, H̃)‖X = |α|+ ‖λ̃‖H2
δ

+ ‖H̃‖H1
δ+1
.

We now have constructed, for ε > 0 small enough, a map F : X → X which maps (α, λ̃, H̃)
satisfying

‖(α, λ̃, H̃)‖X . ε

to (α′, λ̃′, H̃ ′) such that, if ρ, η, depending on u̇,∇u, τ̃ , α, λ, H̃, b, are given by Lemma 4.1,
then

H ′ = b(θ) + ρ cos(θ − η))Hθ + H̃ ′

is the solution of
∂iH

′
ij +Hij∂iλ = −u̇.∂ju+

1

2
∂jτ −

1

2
τ∂jλ,

given by Proposition 3.1, with

H =(b(θ) + ρ cos(θ − η))Hθ + H̃,

λ =− αχ(r) ln(r) + λ̃,

τ =
χ(r)

r
(b(θ) + ρ cos(θ − η)) + τ̃ ,

and
λ′ = −α′χ(r) ln(r) + λ̃′

is the solution of

∆λ′ = −1

2
u̇2 − 1

2
|∇u|2 − 1

2
|H|2 +

τ2

4
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given by Proposition 4.2. Lemma 4.1 implies |ρ| . ε, and therefore Proposition 3.1 and
Proposition 4.2 imply

|α′|+ ‖λ̃′‖H2
δ

+ ‖H̃ ′‖H1
δ+1
. ε.

In particular ‖F ((0, 0, 0))‖X . ε, so there exists a constant C such that

‖F ((0, 0, 0))‖X = Cε.

Next, we show that F is a contraction map in BX(0, 2Cε). We take, for i = 1, 2,
(αi, λ̃i, H̃i) ∈ R×H2

δ ×H1
δ+1 such that

|αi|+ ‖λ̃i‖H2
δ

+ ‖H̃i‖H1
δ+1
≤ 2Cε.

We note ρi, ηi the corresponding quantities given by Lemma 4.1. Thanks to formula (38)
and (39) we get

ρ1 cos(η1)− ρ2 cos(η2)

=− 1

π

∫ (
− τ̃

2
(∂1λ1 − ∂1λ2)− (H̃1)i1(∂iλ1 − ∂iλ2) + ∂iλ2((H̃1)i1 − (H̃2)i1)

)
− 1

π

∫ (
−(b(θ)Hθ)i1(∂iλ̃1 − ∂iλ̃2)−

χ(r)b

2r
(∂1λ̃1 − ∂1λ̃2)

)
− 1

π

∫
−
(
∂iλ̃1(Hθ)i1 +

χ(r)

2
∂1λ̃1

)
(ρ1 cos(θ − η1)− ρ2 cos(θ − η2))

− 1

π

∫
ρ2 cos(θ − η2)

(
(Hθ)i1(∂iλ̃1 − ∂iλ̃2) +

χ(r)

2
(∂1λ̃1 − ∂1λ̃2)

)
,

and a similar formula for ρ1 sin(η1)−ρ2 sin(η2). Lemma 4.1 implies that |ρi| . ε. Therefore
we can write

|ρ1 cos(η1)− ρ2 cos(η2)| .ε
(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
+ ε (|ρ1 cos(η1)− ρ2 cos(η2)|+ |ρ1 sin(η1)− ρ2 sin(η2)|) ,

|ρ1 sin(η1)− ρ2 sin(η2)| .ε
(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
+ ε (|ρ1 cos(η1)− ρ2 cos(η2)|+ |ρ1 sin(η1)− ρ2 sin(η2)|) ,

and so

|ρ1 cos(η1)− ρ2 cos(η2)| .ε
(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
,

|ρ1 sin(η1)− ρ2 sin(η2)| .ε
(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
.

We decompose
H ′i = H

(1)
i +H

(2)
i +H

(3)
i ,

where H(1)
i , H

(2)
i , H

(3)
i satisfy equations (23), (24) and (25). We have seen during the proof

of Proposition 3.3 that we can write

H
(2)
i = b(θ)Hθ + H̃

(2)
i ,
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where H̃(2)
i satisfies

∂l

(
H̃

(2)
i

)
lj

=
b(θ)χ′(r)

r

(
cos(θ)
sin(θ)

)
.

We have seen during the proof of Proposition 3.4 that we can write

H
(3)
i = −ρiχ(r)

4r

(
cos(3θ − ηi) sin(3θ − ηi)
sin(3θ − ηi) − cos(3θ − ηi)

)
+ H̃

(3)
i ,

where H̃(3)
i satisfies

∂l

(
H̃

(3)
i

)
lj

=
ρiχ
′(r)

2r

(
cos(2θ − ηi)
sin(2θ − ηi)

)
.

Therefore we can write

H ′i = b(θ)Hθ −
ρiχ(r)

4r

(
cos(3θ − ηi) sin(3θ − ηi)
sin(3θ − ηi) − cos(3θ − ηi)

)
+Ki,

where Ki satisfies

∂l(Ki)lj =− u̇∂ju+
1

2
∂j τ̃ −

1

2
τ̃ ∂jλi − (H̃i)lj∂lλi

+ (gi)j − ∂lλ̃i((b(θ) + ρi cos(θ − ηi))Hθ)lj −
1

2
χ(r)

b+ ρi cos(θ − ηi)
r

∂j λ̃i,

with (
(gi)1
(gi)2

)
=
χ′(r)

r

(
b(θ) cos(θ) + ρi

2 cos(2θ − ηi) + ρi
4 cos(ηi)

b(θ) sin(θ) + ρi
2 sin(2θ − ηi) + ρi

4 cos(ηi)

)
.

Consequently K1 −K2 satisfies

∂l(K1 −K2)lj =− 1

2
τ̃ ∂j(λ1 − λ2)− (H̃1)lj∂jλ1 + (H̃2)lj∂jλ2 + (g1)j − (g2)j

− ∂lλ̃1((b(θ) + ρ1 cos(θ − η1))Hθ)lj + ∂lλ̃2((b(θ) + ρ2 cos(θ − η2))Hθ)lj

− 1

2
χ(r)

b+ ρ1 cos(θ − η1)
r

∂j λ̃1 +
1

2
χ(r)

b+ ρ2 cos(θ − η2)
r

∂j λ̃2.

The right-hand side is in H0
δ+2 and satisfies

‖∂l(K1 −K2)lj‖H0
δ+2
.ε
(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
+ |ρ1 cos(η1)− ρ2 cos(η2)|+ |ρ1 sin(η1)− ρ2 sin(η2)|

.ε
(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
.

Therefore, we can apply Lemma 3.5 which yields

K1 −K2 =
mχ(r)

r

(
cos(θ + φ) sin(θ + φ)
sin(θ + φ) − cos(θ + φ)

)
+ K̃,

with K̃ ∈ H1
δ+1 which satisfies

‖K̃‖H1
δ+1
. ε

(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
.
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Moreover, since we can also write

H ′i = (b(θ) + ρi cos(θ − ηi))Hθ + H̃ ′i,

we have

K1 −K2 =− χ(r)

4r

(
ρ1 cos(θ + η1)− ρ2 cos(θ + η2) ρ1 sin(θ + η1)− ρ2 sin(θ + η2)
ρ1 sin(θ + η1)− ρ2 sin(θ + η2) −ρ1 cos(θ + η1) + ρ2 cos(θ + η2)

)
+ H̃ ′i − H̃ ′2

=
Mχ(r)

r

(
cos(θ + Φ) sin(θ + Φ)
sin(θ + Φ) − cos(θ + Φ)

)
+ H̃ ′i − H̃ ′2,

where M(cos(Φ), sin(Φ)) = −1
4(ρ1 cos(η1)− ρ2 cos(η2), ρ1 sin(η1)− ρ2 sin(η2)). By unique-

ness of the decomposition given by Lemma 3.5, we obtain

K̃ = H̃ ′1 − H̃ ′2,

and we deduce

‖H̃ ′1 − H̃ ′2‖H1
δ+1
. ε

(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
. (45)

Last we estimate

‖∆λ′1 −∆λ′2‖H2
δ
.ε‖H̃1 − H̃2‖H1

δ+1
+ ε (|ρ1 cos(η1)− ρ2 cos(η2)|+ |ρ1 sin(η1)− ρ2 sin(η2)|)

.ε
(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
.

Thus, thanks to Corollary 2.7, we have

|α′1 − α′2|+ ‖λ̃′1 − λ̃′2‖H2
δ
. ε

(
|α1 − α2|+ ‖λ̃1 − λ̃2‖H2

δ
+ ‖H̃1 − H̃2‖H1

δ+1

)
. (46)

In view of (45) and (46), we have proved that for ε small enough there exists C̃ such
that for (αi, λ̃i, H̃i) ∈ BX(0, 2Cε) we have

‖F ((α1, λ̃1, H̃1))− F ((α2, λ̃2, H̃2))‖X ≤ C̃ε‖(α1, λ̃1, H̃1)− (α2, λ̃2, H̃2)‖X .

In particular, if we apply this to (α2, λ̃2, H̃2) = (0, 0, 0) we obtain

‖F ((α1, λ̃1, H̃1))− Cε‖X ≤ 2C̃Cε2.

Therefore if ε is such that 2C̃ε ≤ 1, F is a contraction map from BX(0, 2Cε) to itself.
Therefore, F has a unique fixed point (α, λ̃, H̃). The estimates of Lemma 4.1 and Propo-
sition 4.2 complete the proof of Theorem 2.10.
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