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Abstract. This paper addresses the groups of permutable operations
method. This method is a flexible scheduling approach to hedge against
uncertainties and is composed of a proactive/reactive phase. The proac-
tive phase consists of computing a set of solutions (schedule) to a sched-
uling problem, leaving the choice of executing one of these solutions
during the reactive phase according to the current state of the shop
floor. During the reactive phase, the remaining decisions have to be
made in real-time. The worst-case evaluation of the remaining solu-
tions is a decision-aid parameter used during the reactive phase in order
to control the final schedule from exceeding a worst-case performance.
While the existing literature only tackles the worst-case evaluation of
the groups of permutable operations, this paper deals with its best-case
evaluation. For solving this problem, a new lower bound calculating
this parameter in polynomial time is proposed. The computational ef-
ficiency of this parameter in a reactive algorithm exhibits very good
performance. Moreover, the experiments show the robustness of this
evaluation allowing this parameter to be used in an unstable job shop
environment.
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1. Introduction

Most of the classical scheduling studies assume that all data and parameters
of the problem are fully known. However, in practice, manufacturing systems are
not so deterministic. During the execution of the offline generated schedule, many
disturbances may occur, like arrival of new jobs, uncertain task duration, machine
breakdown, etc, [9, 20, 31]. These disturbances will in most cases, deteriorate the
expected performances.

This issue has received considerable critical attention over the past years, [5,
10, 26, 27] are among who first considered this problem. To address this issue,
different approaches have been proposed in the literature. These approaches have
been classified by [20, 30, 43] into three main classes: proactive, reactive and
proactive-reactive approaches.

The proactive approaches rely generally on estimating and anticipating the
perturbations before executing a schedule [23]. One of the most known proactive
methods in project scheduling is the classical critical chain method used in several
project management pieces of software [28]. This method introduces slacks on the
operations of the critical path to absorb the delays caused by the perturbations.
Another proactive method is just-in-case scheduling [45]. This method identifies
the activities most likely to fail based on the available uncertainty information.
The weakness of this kind of approaches is that it deals with a prediction of the
system instead of the current state of the shop.

The second class encompasses the reactive approaches. Over the past years,
much effort has been devoted to developing reactive methods that use generally a
real-time control heuristics [19, 35, 46, 47]. These real-time control methods build
dynamically the schedule based on the current state of the system [18]. Although,
these reactive methods consider the current state of the shop floor contrarily to the
proactive methods, their performance is good on a very high disturbed environment
and generally poor on a low disturbed environment [13].

The third class combines the proactive and reactive approaches. The work
of [43] addresses the relative importance of such combination to hedge against
uncertainties. The basic idea of these approaches is to develop during the offline
phase of the scheduling process, a flexible schedule with some degree of freedom,
allowing during the online reactive phase (execution phase) to revise and adapt
the schedule according to the new state of the shop.

The right choice of the scheduling approach depends on the scheduling envi-
ronment and some assumptions that are taken into account when analyzing man-
ufacturing systems [49]. The proactive-reactive approaches seem to be the most
effective approaches to absorb production uncertainties while maintaining a good
performance [48]. These approaches focus on the proper combination between a
proactive flexible method and a reactive algorithm capable of revising the flexible
schedule without deteriorating too much the expected performances. Some of these
methods can be found in [8, 25, 32, 37, 40, 48]. Groups of Permutable Operations
(GoPO) is one of the most studied proactive-reactive methods [2, 3, 9, 13, 22].
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This method was created by LAAS-CNRS laboratory of Toulouse, France [21] and
is implemented in an industrial software [41]. It is composed of two phases:

• A proactive phase which aims at computing a flexible solution offline. This
solution is represented by groups of permutable operations such that each
permutation between two operations gives a feasible schedule.

• A reactive phase in which the proactive schedule is processed online on
the shop floor. This phase consists of choosing during the execution of a
GoPO solution, the order of operations to be executed in each group of
permutable operations. The decision of ordering the operations in each
group can be chosen either using a reactive algorithm or by a human,
named the operator. The schedule executed during this phase is called
realized schedule.

This flexible method has an interesting property; once the groups are gener-
ated during the proactive phase, the worst schedule called the worst-case (which
represents the worst permutation in each group), can be computed in polynomial
time [1, 2, 22]. This allows to guarantee a minimal quality of the realized schedule
(after taking all the decisions). Due to this property, the worst-case can be used
during the reactive phase of GoPO in a decision-aid algorithm/system in order
to schedule the operations inside each group according to the current state of the
shop. The literature review has primarily focused on this parameter. However,
making a decision during the reactive phase of GoPO using only the worst-case
parameter can lead prioritizing lower quality solutions.

In this paper, we raised this issue by proposing a new parameter that can be
used for the reactive phase of GoPO. This parameter consists of evaluating the
best-case performance which corresponds to the best possible permutation in each
group, such that the final realized schedule is an optimal solution of GoPO. The
literature research has not focused on this parameter (best-case) as its computation
is NP-hard and can be too time-consuming to be used in real-time in a decision-
aid system. But a lower bound of this parameter should be of good interest for
different reasons:

• Associated with the worst-case value, it permits to better represent the
quality of GoPO as denoted by [22]. This quality can be measured by a
range of all possible performances [worst-case ... best-case].

• It also permits to know, once the groups are generated during the proactive
phase, the best achievable performance in case of no disruptions. For
example, if the scheduling objective is to minimize the tardiness, it permits
to know if there is no schedule that has no late job which can be of great
interest for the decision maker.

• Most importantly, it permits to know, during the execution of a GoPO
solution (reactive phase), the next optimal (or near-optimal) operation to
be chosen in each group of permutable operations.

Two main contributions are presented in this work: the first one concerns the
computation of the best-case of GoPO. As this problem is challenging, an efficient
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polynomial lower bound for the best-case makespan performance has been pro-
posed. Three steps are used for the computation of this new lower bound: first,
we adapt the literature findings to GoPO. Then, this lower bound is tightened
using the groups precedence property and the last step is the improvement of this
lower bound using a precedence constraint property between the operations. The
second contribution of the work presented in this article concerns the study of
the usefulness of the best-case parameter in a decision-aid system. For this, the
best-case parameter has been implemented in a decision-aid reactive algorithm and
experimented in both deterministic and non-deterministic environments. This ex-
perimental implementation of the best-case parameter exhibits good performance.

The rest of the article is structured as follows: in section 2 and 3, GoPO is
described and the problematic of the presented work is discussed. In section 4,
the lower bound for the best-case of GoPO is presented. Section 5 is devoted to
the reactive phase of GoPO where a new reactive algorithm using the best-case
parameter has been evaluated on well-known instances of the job shop problem.
In the same section, the reactive decision-aid algorithm which uses the best-case
parameter is studied on both deterministic and non-deterministic environments.
Finally, main conclusions are summarized in the last section.

2. Groups of Permutable Operations

We consider the job shop problem with release dates and precedence con-
straints (J/ri,Pred/f according to the classification of [29]) where we have n jobs
J1, J2, ..., Jn to be processed on m machines M1,M2, ...,Mm, each machine can
treat only one operation at a time. Job i consists of ni operations. Associated
with every operation Oi : a machine allocation µi , a release date ri, a processing
time pi and a completion time Ci. Γ−i and Γ+

i denote respectively the predecessor
and the successor of a given operation. Generally, the job shop problem uses a
regular objective function f that is a non-decreasing function of the Ci. In this
work, we focus on the makespan objective Cmax = max(Ci).

GoPO is defined as a sequence of groups (of permutable operations) on each
machine to be performed in a particular given order. The group containing oper-
ation Oi is denoted Gi. Every group contains one or many operations that can be
executed in an arbitrary order. On a given machine, the group after (resp. before)
the group containing the operation Oi is denoted by G+

i (resp. G−i ). A GoPO
schedule is feasible if for each group, all the permutations among all the operations
of the same group give a feasible schedule (i.e. a schedule which satisfies all the
constraints of the problem).

To illustrate this problem, let us study a job shop example of three jobs and
three machines as described in table 1. Fig. 1 presents a feasible GoPO solving
this problem. This GoPO is made of seven groups: two groups of two opera-
tions and five groups of one operation. The first machine is composed of two
groups, the group G6 containing O6 and its predecessor group G−6 containing the
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permutable operations O1 and O7. To generate these groups of permutable opera-
tions, a greedy algorithm (described in [22]) may be used for the construction of the
groups. This algorithm starts with an initial schedule with one operation per each
group (this initial schedule is usually generated using simple heuristics). Then, the
algorithm tries to merge each two successive groups according to different criteria1

until no group merging is possible.

Table 1. Example of a job shop problem

Ji J1 J2 J3

Oi O1 O2 O3 O4 O5 O6 O7 O8 O9

µi M1 M2 M3 M2 M3 M1 M1 M3 M2

Γ−i / O1 O2 / O4 O5 / O7 O8

pi 1 4 1 2 3 1 4 2 3

M1 O1 O7 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 1. Groups of Permutable Operations solution.

In this paper, we focus on the execution phase of GoPO; we suppose that the
groups are already given. The execution of a GoPO schedule can be viewed as a
sequence of decisions: each decision consists in choosing an operation to execute
in a group when this group is composed of more than one operation. The number
of decisions that need to be taken is expressed as follows :∑

∀i

(|Gi| − 1)

For instance, for the solution described on fig. 1 and table 1, there are two
decisions to be taken: on M1, at the beginning of the scheduling, either operation
O1 or O7 has to be executed. Let us suppose that the decision taken is to schedule

1Such that the groups are not related with a precedence constraint and the worst-case per-
mutation in this group does not exceed a given threshold
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O1 before O7. There is another decision to be taken on M3 : scheduling operation
O5 or O8 first. Fig. 2 represents all the different semi-active2 schedules that can
be obtained after taking these two decisions. Note that these schedules do not
always have the same quality (performance); the best schedule has a Cmax = 10
as shown on fig. 2.a and the worst schedule has a Cmax = 12 as shown on fig. 2.c
and fig. 2.d.

M1 O1 O7 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10

(a)

O1 O7 O6

O4 O2 O9

O8 O5 O3

1 2 3 4 5 6 7 8 9 10 11

(b)

M1 O7 O1 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10 11 12

(c)

O7 O1 O6

O4 O2 O9

O8 O5 O3

1 2 3 4 5 6 7 8 9 10 11 12

(d)

Figure 2. Set of Semi-active schedules.

3. Problematic

The main problematic of this paper is to find the best schedule (best-case) to be
used as a decision-aid parameter during the decision phase of GoPO. This problem
is computationally challenging as it is a combinatorial problem and the number of
possible schedules that can be described by a GoPO solution is

∏
∀i((|Gi|)!).

2A feasible schedule is called semi-active if no operation can be finishing earlier without
changing the order of the operations on the machines.
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The most effective and commonly operational research tool for solving optimally
this problem is to use an exact method like the branch and bound algorithm.
However, an exact method can be very costly and time-consuming in a decision-
aid system, especially for solving large scale NP-hard combinatorial optimization
problems. Instead, an effective lower bound can be computed in real-time to
produce a near optimal (or optimal) anticipation of the best schedule that can be
achieved.

To compute this lower bound and to avoid the exhaustive enumeration of all pos-
sible schedules, we can use a symmetrical calculation of the worst-case evaluation
[2, 3]. This new evaluation can be measured by computing the best-case-earliest-
starting-time of operations and groups.

The computation of this best-case-earliest-starting-time problem is similar to
the computation of the longest path in a disjunctive graph [11, 15]. A disjunc-
tive graph is defined as G = (N,A,B) [42], N denotes the set of nodes (opera-
tions) including two fictitious operations; a source operation O0 and sink operation
O(n×m)+1 (n × m being the number of operations), A is the set of conjunctive
arcs representing the precedence constraints between operations and denoted by
Oi → Oj (i.e., Oi precedes Oj). B represents the set of disjunctive arcs for
each pair of operations that must be performed in the same group and denoted by
Oi L9999K Oj which means that either Oi → Oj or Oj → Oi. A feasible semi-active
schedule can be obtained as soon as all the disjunctive arcs are selected.

Fig. 3(a) and Fig. 3(b) present respectively the disjunctive graph representation
of the initial job shop problem described in table 1 and the groups of permutable
operations shown in fig. 1. These two figures show that the GoPO example is a
partial schedule of the initial job shop problem, where some disjunctive arcs are
selected. In this GoPO representation, there are two remaining disjunctive arcs
O1 L9999K O7 and O5 L9999K O8. The selection of these arcs leads to one of the
schedules presented in fig. 2.

The literature review on the job shop lower bound problem are based on two
main techniques identified by [44] : the adjustment conjunctive constraints based
techniques and the classical one-machine relaxation-based techniques [4, 16, 17,
38]. These techniques can be the starting point of the GoPO lower bound compu-
tation.

However, computing a lower bound for the best-case in a GoPO problem is quite
different from computing a lower bound for the optimal schedule of the general job
shop problem, because of the conjunctive constraints between groups on the same
machines as shown in figure 3. Moreover, due to these conjunctive constraints,
the best-case is not necessarily the optimal schedule of the initial general job shop
problem. In the next section, this lower bound calculation is presented in three
steps: a job shop lower bound adaptation, the groups’ conjunctive constraints
improvement and a precedence constraint improvement.
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O0 O4 O2 O9 O10

O1 O7 O6

O5 O8 O3

(a) Initial job shop problem described in table 1

O0 O4 O2 O9 O10

O1 O7 O6

O5 O8 O3

(b) GoPO problem described in fig. 1

Figure 3. Disjunctive graph representation.

4. Lower bound of the best-case schedule

4.1. The best-case-earliest-starting/completion-time of an operation

The lower bound of the best-case-earliest-completion-time of an operation (χi)
corresponds to the smallest value of Ci in every semi-active schedule described by
GoPO. To compute χi we need first to calculate the lower bound of the best −
case− earliest− starting − time of this operation (θi).

In the first step, we can compute such a lower bound using a relaxation on the
resources by making the assumption that each resource has an infinite capacity. In
the GoPO problem, θi is computed as the maximum of the best−case−earliest−
completion− time (lower bound) (χj) of all its predecessors: for an operation Oi,
its predecessors include the predecessors given by the problem (Γ−i ) and also the
operations of the previous group on the same machine (each operations in G−i ).
In the job shop example described in fig. 1, the predecessors of operation O6

(executed on M1) are: operation O5 (executed on M3) because of the precedence
constraints, and the operations O1 and O7 executed on the same machine M1

because they are in the previous group G−6 . So, we have:
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θi = max(ri, max︸︷︷︸

j∈G−i

χj , max︸︷︷︸
j∈Γ−i

χj)

χi = θi + pi
(1)

Calculating θi using equation (1) is equivalent to the head computation of op-
eration Oi as explained in [15]. [44] used a similar idea based on a one-machine
relaxation using the precedence constraints property between operations.

In a second step, we use the precedence constraints between groups to improve
the computation of the lower bound; in this case, an operation in a given group
Gi cannot be executed before all the operations of its previous group G−i have
been executed. As a consequence, an operation can only begin after the optimal
max(Ci) of the previous group.

Thus, it needs the computation of the optimal completion time of a group
(named as γ(Gi)). We have previously computed θi as a release date so we can
generate a 1|ri|Cmax problem instance that corresponds to our problem, with
ri = θi. This problem is polynomially solvable by ordering the operations in
ascending release dates [12, 33].

Thus, the improved lower bound for Oi is computed as follows :
θi = max(ri, γG−i

, max︸︷︷︸
j∈Γ−(i)

χj)

χi = θi + pi

γ(Gj) = Cmaxof1|rj |Cmax,∀Oj ∈ Gj , rj = θj

(2)

Table 2 illustrates the computation of the lower bound of all the groups and
operations best− case − earliest − completion− times in our job shop example.
The computation shows that θ9 = 9 which is not the optimal completion time of
O9 (= 10) as shown in fig. 2.a. and fig. 2.b.

Table 2. Computation of the Lower bounds using equation(2)

Oi O1 O7 O4 O2 O5 O8 O3 O6 O9

θi 0 0 0 2 2 4 7 5 6
χi 1 4 2 6 5 6 8 6 9
γ(Gi) 5 2 6 7 8 6 9

4.2. Precedence constraint improvement

Using equation (2) for the computation of the best−case−earliest−completion−
time of operation nine (θ9) has given an error gap of one. It is noticeable that
for the calculation of this lower bound, we put O2 and O8 on their both best −
starting− time, as well as O7 and O1 transitively, which is inconsistent. We know
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for a fact that O7 and O1 cannot start together at their best − starting − time
at the same time. In this section, we present a precedence constraint rule to im-
prove θi using an adjustment technique based on the precedence consistency of
operations belonging to the same group.

This improvement is based on a property about any two operations (Oi and
Oj) that belongs to two successive groups (Gi and Gj / Gj = G+

i ) on the same
machine and have their predecessors (direct or indirect) in the same group (Γ−i
and Γ−j ∈ Gk). In this case, one of the operations O−i or O−j has to start after the
other one. Executing one of these operations at first and delaying the other one
will have an influence on the completion time of Gj . Fig. 4 shows this precedence
constraint property for our job shop example.

M1 O7 O1 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4. Precedence consistency between O2 and O9

From the example shown in fig. 4, we have on Machine M2, operation O9 that
has to start after O8 because of the precedence constraint, and after operation O2

because of the group precedence on the same machine. Both predecessors of these
operations, O1 and O7 are in the same group. Executing one of them first will
have an influence on the starting time of operation O9.

To take into account this situation, we propose an adjustment technique for χi

that requires two times the calculation of χi using equation (2); in our job shop
example χ9 will be computed one time for the case when O1 is executed before O7

and the other one when O7 is executed before O1. The new χ9 will be the minimum
value between these two evaluations. The results of this improvement are shown
on table 3. In this case, the lower bound’s improvement gives the optimal value
for the Cmax.

Computing χi using equation (2) is polynomial and has a complexity of O(n2).
In a GoPo, this precedence constraints property may be found at most n × m
times. So we have a complexity of O(n3).
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Table 3. Improved Lower bounds results

r1 < r7 r7 < r1

Oi θ1
i χ1

i γ1
Gi

θ2
i χ2

i γ2
Gi

min(γ1
Gi
, γ2

Gi
)

O1 0 1
5

4 5
5 5

O7 1 5 0 4
O4 0 2 2 0 2 2 2
O2 2 6 6 5 9 9 6
O5 2 5

7
2 5

7 7
O8 5 7 4 6
O3 7 8 8 9 10 10 8
O6 5 6 6 5 6 6 6
O9 7 10 10 9 12 12 10

4.3. Heads and tails for the best-case schedule

The classical computation of a job shop lower bound is generally based on the
calculation of :

• The best-case-earliest-starting-time, called Head, which represents the longest
path from O∗ and the operation Oi in a disjunctive graph.

• The best-case-latest-completion-time of an operation, called Tail, which
represents the distance between the latest completion time of an operation
and the end of the schedule.

So any improvement of these two values will generally improve the lower bound
for the objective function. In a job shop problem, the classical concept of the
one-machine relaxation is used; each machine is considered alone and heads and
tails have to be found for each one-machine-problem. The maximum value of these
evaluations represents the lower bound of the job shop problem.

In a GoPO problem, we can use this relaxation more efficiently relying on the
concept of one-group-one-machine-problems relaxation. In this relaxation each
group is considered as a one-machine and efficient heads and tails are computed
for each group.

Using equation (2), θi is a valid head and must be quite effective. Because of the
symmetry of heads and tails, tails can be computed as θi using a reversed version
of equation (2): rather than starting the computation at the beginning of the
scheduling problem, the computation begins at the end. So, replacing predecessor
by successor, the new formulation is :

θ
′

i = max(γ
′

G+
i

,max︸︷︷︸
j∈Γ+

i

χ
′

j)

χ
′

i = θ
′

i + pi

γ
′

Gj
= Cmaxof1|rj |Cmax,∀Oj ∈ Gj , rj = θ

′

j

(3)
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With θi being a valid head and θ
′

i being a valid tail for the group relaxation. The
one-group-one-machine-problems are then generated. Then, as for the classical
lower bound for the job shop problem, we optimally evaluate the one-group-one-
machine-problems using the branch and bound method of [14]. The maximal
evaluation is a lower bound of the best-case schedule of GoPO. In the rest of the
article, LB best-case and LB best-case(Oi) denote respectively the lower bound
of the best-case schedule (for all semi-active schedules generated by the GoPo
solution), and the lower bound of the best-case schedule when Oi is executed first
in its group.

5. Reactive phase of GoPO

During the reactive phase, each time a group containing more than one opera-
tion has to be executed, a lower bound of the best-case of each operation of this
group is calculated. This lower bound (LB best-case(Oi)) can be either used in a
decision reactive algorithm or can be proposed in a decision-aid system.

Similarly to the best-case, the worst-case of an operation (worst-case(Oi)) rep-
resents the worst realized schedule if operation Oi is sequenced first in its group.
These two parameters (LB best-case(Oi) and worst-case(Oi)) are available to help
the decision maker to look for an alternative schedule in case of a disturbance,
without the need of rescheduling again. In this context, LB best-case(Oi) should
be of good interest for selecting only the schedules with the highest performances.

The algorithm RA best-case described bellow is a reactive algorithm which sim-
ulates the decision process based only on LB best-case(Oi) parameter.

L(G) = {G1, G2, ...Gn};
(Gi is a group containing more than one operation) LB best-case :=
maximum value;

for every group Gi in L(G) do
while Card(Gi) > 1 do

for every operation Oi in Gi do
- Put Oi first ;

- Calculate LB best-case(Oi) ;

end

- LB best-case := minOi∈Gi(LB best-case, LB best− case(Oi));

(Ties are broken using θi) - Remove Oi from Gi;

end

- remove Gi from L(G).;

end
Algorithm 1: RA best-case for the reactive phase of GoPO

As an illustration of how RA best-case works, let us enumerate all the groups
of our job shop GoPO example.
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G1 : {O1, O7}, G2 : {O5, O8}
L := {G1, G2}

The reactive procedure is executed on the first group of the list G1 : {O1, O7}:
• LB best-case(O1) = 10 and LB best-case(O7) = 12 (using the result in

table 3)
• Remove O1 from the group and update LB best-case = min(10, 12) = 10
• The current group contains only O7 and is removed from the list.

Then the reactive procedure is executed on the second group of the list G2 :
{O5, O8}:

• LB best-case(O5) = 10 and LB best− case(O8) = 11
• Remove O5 from the group
• The current group contains only O8 and is removed from the list.

At the end of the reactive phase, the realized schedule generated by RA best-case
has an optimal value of 10. Of course, in this example no disturbances occurred
and therefore the final schedule generated by RA best-case (based on the lower
bound) is the optimal schedule of GoPO.

Similarly to RA best-case, we create two other reactive algorithms, both based
on the worst-case(Oi) parameter; the first one called RA worst-case-1 is similar to
the algorithm described above where the variable LB best-case(Oi) is replaced by
worst-case(Oi). The second reactive algorithm is called RA worst-case-2 and is
similar to RA worst-case-1 with an additional condition; ties between operations
having the same value of worst-case(Oi) are broken using LB best-case(Oi). The
following steps illustrates RA worst-case-2 on our job shop example for the two
groups, G1 at first then G2:

• worst-case(O1) = 11 and worst-case(O7) = 12 (using the polynomial al-
gorithm of [2] described also in [3]), therefore O1 is sequenced before O7

using RA worst-case-2.
• Remove O1 from the group and update worst-case = min(11, 12) = 11 and

go to the second group.
• worst-case(O5) = 10 and worst-case(O8) = 11 (if for example worst-

case(O5) = worst-case(O8) then LB best-case(O5) and LB best-case(O8)
will be calculated to determine which operation should be sequenced first.

• In this case, O5 is sequenced before O8 and the realized schedule will have
a makespan of 10.

In the rest of this section, we assess the relative importance of the three algo-
rithms to their overall performances on a well-known job shop instances.

5.1. Protocol of the experiment

We took a set of benchmark instances called La01 to La40 from [34] with well-
known optimal solutions for the makespan objective [11, 22, 36]. These forty
instances (i.e., from La01 to La40) are widely used in the job shop literature
[7, 39]. These are classical job shop instances of different sizes (5 instances for
each size) with a range from 10 x 5 to 30 x 10 where n x m represents n jobs and
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m machines. These instances can be downloaded from [6] and each job of these
instances can start at time zero.

For each instance, we generate a GoPO schedule with a maximum possible
flexibility and such that the best-case is not only the optimal schedule of GoPO
but also the optimal schedule of the instance 3. To do so, we use an adaptation
of the algorithm of [22] mentioned in section 2. This algorithm has the following
steps:

• Step 0 : Construct a schedule solving the job shop problem. This schedule
is called an initial schedule and can be calculated using a branch and
bound algorithm or a simple heuristic. In our case, for each of the forty
Lawrence instances we took the optimal schedule found in [11, 36, 39]

• Step 1 : Initialize the groups in the machines such that each operation Oi

is contained by a group Gi.
• Step 2 : Calculate the worst−case for each two successive groups that can

be merged. If there is no possible merging between the groups in all the
machines (due to precedence constraints), finish the algorithm. Otherwise,
go to Step 3.

• Step 3 : Merge the two groups having the minimum worst− case and go
back to Step 2.

For each GoPO problem type, we compare the the initial schedule (optimal)
with the realized schedule obtained by the three algorithms RA worst-case-1,
RA worst-case-2 and RA best-case. The algorithms were coded using the JAVA
language and the experiments are made on an Intel(R) Core(TM) i5 CPU.

5.2. Results and discussion

The results of these experiments are exposed in table 4 and table 5. Table 4
presents for each instance, the number of groups generated, the number of decisions
for the reactive phase, the best-case, Brucker’s lower bound [11], the lower bound
of the best-case (LB best-case) using equation 2 and equation 3 and the gap error
between LB best-case and the best-case.

Table 5 presents for each reactive algorithm (RA worst-case-1, RA worst-case-
2, RA best-case) the gap error between the makespan of the realized schedule and
the initial schedule. For the three algorithms and for all instances, the realized
schedule were found in almost one second.

Based on the results shown on table 4, the lower bound computation provided a
near-optimal solution with an average gap error less than 1%. Whereas the average
gap error of Brucker’s lower bound is 2.74%. Moreover, the proposed lower bound
gave the optimal solution for twenty-three instances out of forty (57%). Most
of these instances are the same as the optimal instances found by Brucker and
are problems of 10(jobs) X 5(machines), 15X5, 20X10, 30X10. This is not that
surprising, because the proposed lower bound is based on an adaptation of the

3In this way, we can measure the efficiency of the best-case lower bound without using a
branch and bound algorithm.
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Table 4. Lower bound results for the best-case parameter
(LB best-case)

n X m Instances Number Number Optimal Brucker’s Lower bound Gap
of of solution Lower bound (LB best-case) error

groups decisions (%)

10 X 5

La01 19 31 666 666 666 0%
La02 18 32 655 655 655 0%
La03 15 35 597 588 588 1.51%
La04 14 36 590 567 588 0.34%
La05 15 35 593 593 593 0%

15 X 5

La06 19 56 926 926 926 0%
La07 17 58 890 890 890 0%
La08 16 59 863 863 863 0%
La09 16 59 951 951 951 0%
La10 19 56 958 958 958 0%

20 X 5

La11 20 80 1222 1222 1222 0%
La12 21 79 1039 1039 1039 0%
La13 18 82 1150 1150 1150 0%
La14 19 81 1292 1292 1292 0%
La15 22 78 1207 1207 1207 0%

10 X 10

La16 43 57 945 875 931 1.48%
La17 36 64 784 739 751 4.21%
La18 40 60 848 770 815 3.89%
La19 39 61 842 709 796 5.46%
La20 39 61 902 807 850 5.76%

15 X 10

La21 54 96 1046 995 1045 0.10%
La22 49 101 927 913 927 0%
La23 54 96 1032 1032 1032 0%
La24 50 100 935 881 914 2.25%
La25 50 100 977 894 954 2.35%

20 X 10

La26 53 147 1218 1218 1218 0%
La27 56 144 1252 1235 1231 1.68%
La28 63 137 1273 1216 1273 0%
La29 60 140 1202 1114 1189 1.08%
La30 58 142 1355 1355 1355 0%

30 X 10

La31 69 231 1784 1784 1784 0%
La32 64 236 1850 1850 1850 0%
La33 64 236 1719 1719 1719 0%
La34 72 228 1721 1721 1721 0%
La35 73 227 1888 1888 1888 0%

15 X 15

La36 88 137 1268 1224 1244 1.89%
La37 84 141 1397 1355 1392 0.36%
La38 88 137 1196 1077 1147 4.10%
La39 86 139 1233 1221 1230 0.24%
La40 86 139 1222 1170 1207 1.23%

Average 0.95%
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Table 5. Comparison between the three reactive algorithms

RA worst-case-1 RA worst-case-2 RA best-case

Gap Gap Gap Gap Gap Gap
error error(%) error error(%) error error(%)

La01 155 23.27% 155 23.27% 0 0%
La02 187 28.55% 187 28.55% 0 0%
La03 200 33.50% 282 47.24% 0 0%
La04 184 31.19% 157 26.61% 0 0%
La05 55 9.27% 55 9.27% 0 0%
La06 63 6.80% 63 6.80% 0 0%
La07 132 14.83% 183 20.56% 0 0%
La08 153 17.73% 93 10.78% 0 0%
La09 225 23.66% 97 10.20% 0 0%
La10 71 7.41% 30 3.13% 0 0%
La11 58 4.75% 58 4.75% 0 0%
La12 252 24.25% 119 11.45% 0 0%
La13 351 30.52% 351 30.52% 0 0%
La14 0 0% 0 0% 0 0%
La15 272 22.54% 272 22.54% 0 0%
La16 239 25.29% 301 31.85% 74 7.83%
La17 129 16.45% 119 15.18% 15 1.91%
La18 432 50.94% 302 35.61% 43 5.07%
La19 437 51.90% 354 42.04% 5 0.59%
La20 373 41.35% 451 50.00% 22 2.44%
La21 317 30.31% 317 30.31% 21 2.01%
La22 824 88.89% 481 51.89% 29 3.13%
La23 522 50.58% 417 40.41% 62 6.01%
La24 181 19.36% 220 23.53% 71 7.59%
La25 206 21.08% 271 27.74% 30 3.07%
La26 747 61.33% 715 58.70% 38 3.12%
La27 495 39.54% 402 32.11% 26 2.08%
La28 326 25.61% 284 22.31% 1 0.08%
La29 645 53.66% 410 34.11% 29 2.41%
La30 527 38.89% 266 19.63% 25 1.85%
La31 416 23.32% 324 18.16% 0 0%
La32 681 36.81% 370 20.00% 0 0%
La33 774 45.03% 677 39.38% 0 0%
La34 352 20.45% 336 19.52% 0 0%
La35 562 29.77% 328 17.37% 31 1.64%
La36 647 51.03% 530 41.80% 41 3.23%
La37 579 41.45% 400 28.63% 40 2.86%
La38 746 62.37% 457 38.21% 45 3.76%
La39 461 37.39% 321 26.03% 38 3.08%
La40 691 56.55% 460 37.64% 59 4.83%∑

14667 11615 745

Average 32.44% 26.45% 1.71%
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classical job shop lower bound. Moreover, the proposed lower bound has been
computed for less than one second on each instance.

The results presented in table 5 showed that the reactive algorithm using our
improved lower bound (RA best-case) dominates all the instances with a perfor-
mance about fifteen times (11615/745) better than RA worst-case-2 and twenty
times (14667/745) better than that of RA worst-case-1.

RA best-case gave optimal results for all problems with five machines and all
problems with thirty jobs and ten machines except La35; nineteen instances were
solved optimally compared to only one instance (La14) by RA worst-case-1 and
RA worst-case-2. This can be explained by the accuracy of the lower bound cal-
culated for these instances as shown in table 4.

Compared to RA worst-case-1, RA worst-case-2 that uses the best-case param-
eter for breaking ties (RA worst-case-2 ) performs better; Its average gap error on
the forty instances was 26.45% compared to 32.44% for the reactive algorithm that
uses only the worst-case parameter (RA worst-case-1 ). But these two algorithms
have a poor performance compared to RA best-case which provided a realized
schedule with an average gap error of only 1.71%. These results suggest that a
good decision in a group of permutable operations cannot be relied primarily on
the worst-case parameter.

Overall, this suggestion is not that surprising in regards of what is expected
from the worst-case parameter; This parameter is more effective in controlling the
performance of the final schedule from not exceeding a performance threshold than
guaranteeing an optimal or near-optimal final schedule.

5.2.1. Performance of the reactive algorithm RA best-case on a non deterministic
environment

In this section, we investigate the robustness of the reactive algorithm RA best-
case in a disturbed environment.

For this, we try to quantify the performance of the realized schedule in case of bad
decisions. A bad decision is called so when the operation chosen first from a group
of permutable operations is not the one giving the best-case. For example, in the
job shop presented in section 2, choosing operation O7 (LB-best-case(O7)=12 ) to
be executed first in G1 instead of choosing O1 (LB-best-case(O1)=10 ) is considered
as a bad decision. This situation may appear whenever a perturbation has occurred
on the shop, or simply due to a lack of concentration by the operator. We focus on
determining the number of bad decisions required to deteriorate the makespan of
the realized schedule with a factor ρ from the optimal schedule (the percentage of
performance lost because of a non-optimal schedule). The degraded performance
of the best-case can be computed as follows : best-case = optimal-solution * (1 +
ρ%).

To determine the number of bad decisions required to deteriorate the makespan,
we incorporate these bad decisions randomly in the reactive algorithm RA best-
case during the decision-aid process. This algorithm was executed fifty times on
each square instance (La16 to La20); as these instances have been found to be the
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most difficult instances in practice for job shop problems [24]. Then, the number
of bad decisions has been measured according to ρ% as shown in fig. 5.

Figure 5. Number of bad decisions to deteriorate the makespan
with a distance factor ρ from the optimal schedule.

The results obtained showed that for an optimal realized schedule (best−case =
optimal− solution ∗ (1 + 0%)), four bad decisions out of 57 decisions (4/57) does
not have any impact on the optimal realized schedule obtained for La17. For the
other instances : La16, La18, La20 and La19, the number of bad decisions are
respectively 3/57, 2/60, 2/61 and 1/60. It means that, for La19, two bad decisions
are enough to deteriorate the makespan.

For all other variations of ρ, La16 gave the maximum number of possible bad
decisions. For example, when ρ = 100%, the reactive algorithm was allowed to take
22 bad decisions, which represents 38% of the total decisions. It can be noticed
that the average number of bad decisions for all the five instances almost varies
linearly with regards to ρ with a coefficient of 3% (the percentage number of bad
decisions with regards to the total number of decisions). Therefore, the percentage
number of bad decisions may be expressed by the following equation:

≈ 3% + (ρ/10%× 3%)

It can be suggested that this computation can be used as a post-evaluation
performance deviation check in order to trigger the operator concentration before
taking further decisions.

6. Conclusion

In this article we have proposed an evaluation of the base-case parameter in
a GoPO schedule. This evaluation relies on a computation of an efficient lower
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bound, which is calculated in three steps. The first step is an application of the
general job shop lower bound to the GoPO problem. The second step uses the
precedence property between groups in GoPO to improve this lower bound. This
step needs the calculation of a one-machine problem adapated to GoPO. For this,
we proposed the one-machine-one-group relaxation such that the lower bound of
each group is considered separately. Then, in the final step, we introduced a new
precedence constraint property to tighten this lower bound.

This lower bound can be used as a decision-aid parameter during the reactive
phase of GoPO. To evaluate the efficiency of this parameter, three reactive algo-
rithms for GoPO are proposed: the first two algorithms relies primarily on the
worst-case parameter, whereas the third algorithm relies only on the best-case pa-
rameter. These three algorithms have been implemented in a job shop benchmark
problem using the makespan objective. The comparative results show the benefits
of the proposed parameter (best-case) which exhibits clearly better performance
than the worst-case parameter.

The experimentation of the best−case reactive algorithm has been extended to
a disturbed environment. The results obtained has confirmed that the proposed
parameter could be of good use during the reactive phase of GoPO in order to
maintain a good performance in presence of disruptions.

However, there is still room for improvement :

• The proposed lower bound should also be implemented in a branch and
bound method in order to evaluate the exact best possible performance of
a flexible schedule.

• The calculation of this parameter may be generalized on other regular
objectives or multi-objective approaches.

For further research, the proposed parameter should be implemented in a real
decision-aid system involving the human temper factor in order to confirm and
extend the experimental theoretical results.
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