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Cécile Huneau
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Abstract

We solve the Einstein constraint equations for a 3 + 1 dimensional vacuum space-
time with a space-like translational Killing field in the asymptotically flat case. The
presence of a space-like translational Killing field allows for a reduction of the 3 + 1
dimensional problem to a 2+ 1 dimensional one. The aim of this paper is to go further
in the asymptotic expansion of the solutions than in [14]. In particular the expansion
we construct involves quantities which are the 2-dimensional equivalent of the global
charges.

1 Introduction

Einstein equations can be formulated as a Cauchy problem whose initial data must satisfy
compatibility conditions known as the constraint equations. In this paper, we will consider
the constraint equations for the vacuum Einstein equations, in the particular case where
the space-time possesses a space-like translational Killing field. It allows for a reduction of
the 341 dimensional problem to a 2+ 1 dimensional one. This symmetry has been studied
by Choquet-Bruhat and Moncrief in [8] (see also [6]) in the case of a space-time of the
form ¥ x S! x R, where ¥ is a compact two dimensional manifold of genus G > 2, and R is
the time axis, with a space-time metric independent of the S! coordinate. They prove the
existence of global solutions corresponding to perturbation of particular expanding initial
data.

In this paper we consider a space-time of the form R? x R, x R;, symmetric with respect
to the third coordinate. Minkowski space-time is a particular solution of vacuum Einstein
equations which exhibits this symmetry. Since the celebrated work of Christodoulou and
Klainerman (see [10]), we know that Minkowski space-time is stable, that is to say asymp-
totically flat perturbations of the trivial initial data lead to global solutions converging
to Minkowski space-time. It is an interesting problem to ask whether the stability also
holds in the setting of perturbations of Minkowski space-time with a space-like transla-
tional Killing field. Let’s note that it is not included in the work of Christodoulou and
Klainerman. However, it is crucial, before considering this problem, to ensure the existence
of compatible initial data. In [14], we proved the existence of solutions to the constraint
equations. The purpose of this paper is to go further in the asymptotic development of the
solutions to the constraint equations. The solutions we construct in this paper are actually
the one used in [15] to prove the stability in exponential time of Minkowski space-time
with a space-like translational Killing field.

In the compact case, if one looks for solutions with constant mean curvature, as it is
done in [8], the issue of solving the constraint equations is straightforward. Every metric



on a compact manifold of genus G > 2 is conformal to a metric of scalar curvature —1.
As a consequence, it is possible to decouple the system into elliptic scalar equations of the
form Au = f(x,u) with 9, f > 0, for which existence results are standard (see for example
chapter 14 in [21]).

The asymptotically flat case is more challenging. First, the definition of an asymptot-
ically flat manifold is not so clear in two dimension. In [3], [1], [4] radial solutions of the
2 4+ 1 dimensional problem with an angle at space-like infinity are constructed. In partic-
ular, these solutions do not tend to the Euclidean metric at space-like infinity. Moreover,
the behavior of the Laplace operator on R? makes the issue of finding solutions to the
constraint equations more intricate.

1.1 Reduction of the Einstein equations

Before discussing the constraint equations, we first briefly recall the form of the Einstein
equations in the presence of a space-like translational Killing field. We follow here the
exposition in [6]. A metric g on R? x R x R admitting d5 as a Killing field can be written

Weg =g + ¥ (dz® + Aydz®)?,

where g is a Lorentzian metric on R'*2 v is a scalar function on R'*2, A is a 1-form on
R'*2 and 2%, o = 0, 1,2, are the coordinates on R'™2. Since 95 is a Killing field, g, v
and A do not depend on z%. We set F' = dA, where d is the exterior differential. F is
then a 2-form. Let also (4)RW denote the Ricci tensor associated to Yg. f{ag and D are
respectively the Ricci tensor and the covariant derivative associated to g.

With this metric, the vacuum Einstein equations

@R, =0, p,v=0,1,2,3
can be written in the basis (dz®, dz3 + A,dz®) (see [6] appendix VII)

~ 1 ~
0=% R.s =Rap — 5627Fa>‘F5,\ — Daaﬁ’}/ — 60/766% (1)
1 ~
0 :(4) Rag = §€_ﬁ/Dﬂ(€3'yFa6)v (2)
1 N e
0= Ryg = —¢ 2 <—4e2”Fa5Faﬁ + 80,7087 + 87 Daaﬁ’7> : (3)

The equation (2) is equivalent to
d(xe*F) =0
where €37 F is the adjoint one form associated to e3VF. This is equivalent, on R*?2 to
the existence of a potential w such that

xS F = dw.

Since F' is a closed 2-form, we have dF' = 0. By doing the conformal change of metric
g = e Yg, this equation, together with the equations (1) and (3), yield the following
system,

Ogw — 40%v0,w = 0, (4)
1
Ogvy + 56747801(,08@0.) =0, (5)
1
Rop = 20,7087 + 56_478aw85w, a,=0,1,2, (6)



where Ug is the d’Alembertian! in the metric g and R,z is the Ricci tensor associated to
g. We introduce the following notation

u=(y,w), (7)

together with the scalar product
1
Oau.0gu = 20,7087y + 56_478aw8gw. (8)

We consider the Cauchy problem for the equations (4), (5) and (6). As it is in the case
for the 3 + 1 Einstein equation, the initial data for (4), (5) and (6) cannot be prescribed
arbitrarily. They have to satisfy constraint equations.

1.2 Constraint equations

We can write the metric g under the form
g = —N2(dt)? + gij(dz’ + Bidt)(da? + fdt), (9)

where the scalar function NV is called the lapse, the vector field 3 is called the shift and ¢
is a Riemannian metric on R?.
We consider the initial space-like surface R? = {t = 0}. Let T be the unit normal to
R? = {t = 0}. We set
eo=NT =0, — p0;.
We will use the notation

Oy = Ley = 0y — L,

where L is the Lie derivative. With this notation, we have the following expression for the
second fundamental form of R2 )
Kij = _ﬁaogij-

We will use the notation -

T =g" K
for the mean curvature. We also introduce the Einstein tensor

1
Ga,@ = Ra[o’ - §Rga,37

where R is the scalar curvature R = g®? R.s. The constraint equations are given by

Goj = N(0;7 — D'Ky;) = dou.0ju, j = 1,2, (10)
N2 2 2 1 af
Go = T(R —|K|* + 7%) = dpu.0pu — 5808 Oqudgu, (11)

where D and R are respectively the covariant derivative and the scalar curvature associated
to g (see |6] chapter VI for a derivation of (10) and (11)). Equation (10) is called the
momentum constraint and (11) is called the Hamiltonian constraint. If we came back to
the 3 + 1 problem, there should be four constraint equations. However, since the fourth
would be obtained by taking o = 0 in (2), it is trivially satisfied if we set €37 F = dw.

!0y is the Lorentzian equivalent of the Laplace-Beltrami operator in Riemannian geometry. In a
coordinate system, we have Ogu = \/%&1 (g*"/|g|osu).
g



We will look for g of the form g = €**§ where § is the Euclidean metric on R2. There
is no loss of generality since, up to a diffeomorphism, all metrics on R? are conformal to
the Euclidean metric. We introduce the traceless part of K,

1
Hij = Kij — 5795,

and following [8] we introduce the quantity

62)\

U= Waou

Then the equations (10) and (11) take the form

1
aiHij = —Tl.aju + 562)‘8]‘7', (12)

AN+ e 1u1+1uﬂ2 fe”fi+fﬁvm2:0 (13)
2 2 4 "2 ’

where here and in the remaining of the paper, we use the convention for the Laplace
operator
A =097+ 05

The aim of this paper is to solve the coupled system of nonlinear elliptic equations (12)
and (13) on R? in the small data case, that is to say when % and Vu are small. A similar
system can be obtained when studying the constraint equations in three dimensions by
using the conformal method, introduced by Lichnerowicz [17] and Choquet-Bruhat and
York [9]. In the constant mean curvature (CMC) case, that is to say when one sets 7 = 0,
the constraint equations decouple and the main difficulty that remains is the study of the
scalar equation (13), also called the Lichnerowicz equation?. The CMC solutions have
been studied in [9] and [16] for the compact case, and in [5] for the asymptotically flat
case. There have been also some results concerning the coupled constraint equations, i.e.
without setting 7 constant The near CMC solutions in the asymptotically flat case have
been studied in [7]. The compact case has been studied in [13], [18] and [12]. See also [2]
for a review of these results.

As in [14], the solutions we construct in this paper are of the form

A= —aln(r) + o(1).

As shown by the analysis in [14], this logarithmic growth does not contradict asymptotic
flatness, but actually corresponds to the deficit angle present in [1].
We will do the following rescaling to avoid the e?* and e=2* factors

—e M, H=e¢ H, #%=¢'r

¢

Then the equations (12) and (13) become

o o 1 1
ale + Hlja@)\ = —ﬂ.aju + 56]7“- — 57%8]>\,
1 1 1 . 72
AN+~ + ~|Vu|? + Z|H]? = — = 0.
+ 5 +2\Vu] +2\ | 1

2The resolution of this equation is closely linked to the Yamabe problem




To lighten the notations, we will omit the ~ in the rest of the paper. We consider therefore

the system
{ 81Hlj + H”al)\ = —u.(?ju + %8]‘7' — %Taj)\,

14
AN+ La? 4 L Vu + LH]Z - T = 0. (14)

Before stating the main result, we recall several properties of weighted Sobolev spaces.

2 Preliminaries

2.1 Weighted Sobolev spaces

In the rest of the paper, x(r) denotes a smooth non negative function such that
0<x<1, x(r)=0forr<1, x(r)=1forr>2.

We will also note f < h when there exists a universal constant C such that f < Ch.

Definition 2.1. Let m € N and § € R. The weighted Sobolev space H§'(R™) is the
completion of C§° for the norm

5+18|
lullmm = 3" 11+ |22 DPul|a.
|B]<m

The weighted Hélder space C§* is the complete space of m-times continuously differentiable

functions with norm
5+

18]
lullep = 37 (L +[2) 72 DPul .
|B]1<m

Let 0 < a < 1. The Hélder space Cg”o‘ is the the complete space of m-times continuously
differentiable functions with norm

5
[ull gm+a = [lullcr +  sup 0™ u(z) — 0™ u(y)|(1 + |z]?)2 |
Cy 5 x#y, |lz—y|<1 ‘x _ y‘a

The following lemma is an immediate consequence of the definition.
Lemma 2.2. Letm > 1 and § € R. Then v € H§" implies Oju € ngll forji=1,..n.

We first recall the Sobolev embedding with weights (see for example [6], Appendix I).
In the rest of this section, we assume n = 2.

Proposition 2.3. Let s,,m € N. We assume s > 1. Let 8 < d4+1 and 0 < a <
min(l,s —1). Then, we have the continuous embedding

+ +
H; ™ C Cg‘ e,
We will also need a product rule.

Proposition 2.4. Let s,s1,52 € N. We assume s < min(sy, s2) and s < s1 + s9 — 1. Let
6 < 61+02+ 1. Then V(u,v) € Hi! x HZ,

lewlzg S el e 1ol

The following simple lemma will be useful as well.



Lemma 2.5. Let a € R and g € Ly, be such that
l9(2)] S (1 + [2[*)*.
Then the multiplication by g maps H(? to Hg_Qa.
We will also need the following modified version of Lemma (2.5).

Lemma 2.6. Let a € R and g1 € L, be a function such that
lg1(2)] S (L + [l
Let go € L*(S"). Then the multiplication by g1(x)g2(0) maps H} to HY o, .

Proof. Let u € Hg We estimate

oo 2w
/ / (1 + 720722 (2)%92(0) *u(r, 0)*rdrdd
0 0

2 2
< Hgg||%2(51)/0 (1+r2)52a< sup |g1|(r,9)> < sup |u](r,0)> rdr

0€[0,27] 0€[0,27]
[e's) 2w
S ||92||%2(s1)/0 (1+7%)?° </0 lu|? + |39u|2d0> rdr
S./ ||g2||%2(81) (/(1 + 7’2)5u2d$ + /(1 + 7«2)6+1|Vu|2d56>

S ||92||2L2(81)||U||%1§
where we have used the Sobolev embedding of L>°(S!) in the Sobolev space W12(S1). O

We will use the following definition
Definition 2.7. Letd € R and s € N. We note Hj the set of symmetric traceless 2-tensors
whose components are in H.
2.2 Behavior of the Laplace operator in weighted Sobolev spaces.

Theorem 2.8. (Theorem 0 in [19]) Let m € N and —1 +m < 6 < m. The Laplace
operator A : H(? — H§+2 s an injection with closed range

{fEH((5)+2| /fU:O VUGUT({Hi},
where H; is the set of harmonic polynomials of degree i. Moreover, u obeys the estimate
lull 2 < CO)l1Aul o,
where C(6) is a constant such that C(§) — +oo when § — m_ and 6 — (—1+m)4.

The following corollary has been proved in [14].

Corollary 2.9. Let s,m € N and —1+m < § < m. The Laplace operator A : H§+S —
H3 5 is an injection with closed range

{f€H§+2| /fsz VUGU?;O/HZ'}.
Moreover, u obeys the estimate

[ull g2 < C(s, O)l| Aulla, -



We now prove the following two corollaries of Theorem 2.8 which will be fundamental
in our work.

Corollary 2.10. Let —1 <6 < 0. Let f € Hg+3. Then there exists a solution u of
Au=f,

which can be written uniquely in the form

"= % < / f> () In(r) — % (cos(e) / f1 +sin(6) / fx2> Xff) +3,

where u € H(?_H. Moreover, we have the estimate

S CON S llme

il 2

6+1

Proof. Let F be a radial function, smooth, compactly supported, such that [ F' = 27, and
G a radial function, smooth, compactly supported, which is 0 in a neighborhood of 0 and
such that [ Gr = 4w. We note

Gi(x) = G(r) cos(0) and Ga(x) = G(r) sin(h).
Let .
un(e) = o= [ Flo)In(le ~ ydy

be a solution of Aug = F, and

1
wle) = 5= [ Gily) n(le — ydy
be a solution of Au; = G;. We may calculate
uo = x(r) In(r) + o,

w1 = —x(r) cos(6) L

where ug, u; € H§+1.
Thanks to Theorem (2.8), we can solve the equation

st ()& (fm)or- 4 ()

since the right-hand side is orthogonal to the polynomials of degree 0 and 1, and we have
v E H§+1, which satisfies

_ _ (L+r2)3t2 1
lWllgz,, S WA lae, + [ 1f1+ [ rlfLS 0 lmo,, + ‘f|(1+rz)g+1~\/m”f”H§+s'

Therefore we can solve the equation Au = f, and u can be written

u=vi o ([ ) g ([rm)ue g ([ 1) e

-4 ( / f) X(r)Inr) — 5 <cos(9) / fa1 + sin(6) / f:c2> Xff) + 1,

where © € H§+1 with

@l S I fllu,
This concludes the proof of Corollary 2.10. 0



We introduce the notation.

cos(260) sin(26) —sin(260) cos(26)
Mo = ( sin(260) — cos(20) ) » No= < cos(20)  sin(20) > '

Corollary 2.11. Let =1 < 6 < 0. Let fj € H((5)+3 with [ f; =0, j = 1,2. Then, there
exists a symmetric and traceless 2-tensor K solution of

0;iKij = fj,
which can be written uniquely in the form

K = A&;‘)Mg + J&Q)Ng + K,
T T

with K € 7—[%+2 and

542 +3°

1 1 ~
A= 27T/5131f1 +a2fe, J= 27r/961f2 —xafi, Kl , S Alme, , + [1fllm
Proof. We can look for K of the form
Kij = 8le + 8])/1 — 5l-j(‘)kYk,

then Y; satisfies
AY; = fj-

We apply Corollary (2.10) which allows us to find a solution in the form3

Y; = x(r) (a; cos(0) + b, sin(0)) + 17]

.
with V; € HZ,, and
1 1 y
0= [ 0155 b= 5= [wadis Wil Sl
We calculate

K11 =01Y1 — 0:Y5

:Xg) <a1(— cos?(6) + sin?(#)) — 2b1 cos(8) sin(8) + 2az cos(#) sin(#)

+ bo(sin?(0) — 0052(0))> + Kp
XD (a4 by) cos(20) + (az — by) sin(260)) + &
=3 ay + ba) cos(26) + (ag — by) sin( 11,
K12 =01Y2 + 0211

:Xg) (‘12(_ cos?(#) 4 sin®()) — 2bs cos(#) sin(f) — 2a; cos(#) sin(6)

+ by (= sin®(0) + cos(6) ) + Kz

ZXS) (—(az — b1) cos(260) — (ay + by) sin(26)) + K1,

®Recall that [ f; = 0.



with IN(H and INQQ in H§+2 and

Kl , + 1Kl S W fillag,, + 120w, -

Therefore we can write

K = AX7) ( cos(20)  sin(20) ) LX) < —sin(20) cos(20) ) s

r2 sin(20) — cos(260) r2 cos(20)  sin(26)
with
1
A=—(a1+b) = /fvlfl + 22 f2,
v
1
szl—a2=2/$1f2—x2f17
T
1Bl , S il + I fellm.
This concludes the proof of Corollary 2.11. O

3 Main result and outline of the proof

In [14], we solved the system (14) for 4%, |[Vu|* € Hf, , with —1 < § < 0. The solutions we
found were of the form

A= —ax(r)In(r) + X,
H = —(pcos( — 1) +5(9))@M9 +H,

7 = (pcos(f —n) +F5(9))XY) + 7,

where \ € H?, Hc H%H' By looking for H as H;; = ;Y —i—ajyi—&jakYk, the system (14)
corresponds to three Laplace-like equations. The quantities be Wh2(SY) and 7 € H g 11
are free parameters, while the three parameters a, p and 7 are determined by the three
corresponding orthogonality conditions, namely that the integrals of the right-hand sides
of (14) vanish.

In this paper, assuming that 42, |Vul|? € H§+3 (i.e. assuming more decay on u and %
than in [14]), we want to go further in the asymptotic expansion of our solution. This will
require to enforce additional orthogonality conditions.

3.1 Main result

Theorem 3.1. Let —1 < § < 0. Let u?,|Vul® € HY 4 and b € WY2(SY) such that

/ b(6) cos(0)db = / b(6) sin(6)df = 0. (15)
Sl

Sl

We note

€= /fﬂ + |Vul?

We assume B
1o, + NIVl + [Bllwee S e.



Let B € WY2(SY). We assume
IBllw2 S €.
Let ¥ € H§+2 be such that [ W = 2. Ife > 0 is small enough, there exist o, p,n, A, J, c1, co

mn R, a scalar functions Xe H(?H and a symmetric traceless tensor He H%H such that,
if r,0 are the polar coordinates centered in (c1,c2), and if we note

A= —ax(r)In(r) + X,

N x(r)

H = —(0(68) + peos(t — ) X\ ag, 4 e X0 <(J (1= a)B@O)N, - 29

2

M9>+H,

r
2r r?
then X\, H are solutions of (14) with

7= (b(6) + pcos(d — 77))X54r) + e_’\B’(H)X7g) + AV.

Moreover we have the estimates
a= 4;/ (@ + |Vul?) + O(e?),
pcos(n) = i/u.&lu + 0(e?),
psin(n) = i/d.@gu + 0(e?),
o = 4177/9;1 (i + [Vul?) + O(e2),
co = ﬁ /wg (112 + ]Vu\z) + O(az),

7= =5 [ty Lcrsintn) = excosta) + O,
A= —% /m.aru + % </ X'(T)rdr) /'E(e)de +0(e?),

[RYZE

6+1

and ~
Wl + 1 E s, S e

Remark 3.2. There is a natural rapprochement between the quantities o, p,m,c1,ca, J, A
and the global charges in 3 + 1 dimensions (such as the ADM mass, ADM momentum...).
See for example [11] for a definition.

The following corollary is a straightforward consequence of Theorem (3.1) and Corollary
(2.9).

Corollary 3.3. Let §,, Vu, s,g, B and ¥ be as in the assumptions of Theorem 3.1. More-

over let s € N and assume u?, |Vu|* € H} B,be WsHL2(S) and U e Hgi% Then the

conclusion of Theorem (3.1) holds and we have furthermore \ € Hgif, H e Hgi;, with
the estimates

Mgz + 15 llggzen S 162 mg,, + NIVl + [ollwsrz + [ Bllwsrie.

3.2 Outline of the proof

We will prove the theorem using a fixed point argument.

10



Construction of the map F We consider the map
F:RxRxRxHj - RxRxRx Hj,
(a,cl,CQ,X) — (o/,cll,clz,X’)
where if we note
(c1,¢2) = re(cos(be),sin(0)), (e}, ch) = re(cos(6e), sin(6;))
and

A =—ax(r)In(r) + r.cos(d — GC)XET) +A

N =—a'x(r)In(r) + .. cos( — GQ)XY) + X,

then )\ is the solution of

ol Yo Ligp T
AN +5u +2|Vu| +2|H| 1 =0,
with
H=e¢?HY 4+ H® 4 ¢ AHO),
where
@ — o X ar — e oy sind — 0.7 X 0 — Tepio)sind — 6.y X"
H b(0) o o 2a(b(0)s1n(9 0.)) 2 My ab(@)sm(@ 0.) 3
x(r B'(0
H®) = ;2) (—(1—a)B(9)N9— 2( )M9>,

and H satisfies

1 1
8iHij + HU@A = —u.(‘)ju + 58]-7 — 57’8]‘/\,
with
=7 420 4 AP,

where

We have noted _
b(0) = pcos(6 —n) + b(0).
The parameters p,n and A are suitably chosen during the process.
Solving (20) We will show that H(!) satisfies
1 1
o; Hi(j) _ fj( )

with f;l) € Hg+3. We will prove that we may choose p,n and A such that

[10= [182 = [a? 4l o0

Then we will show that H() can be written
HO = X0y L g,
T

with HV € H} .

11

N97



Solving (16) We will show that

72

1
§\H’2 7€ Hys.

Then, it will be straightforward to solve (16) using Corollary (2.10). The solution we
obtain is of the form

)

”” ~
N = —a'x(r) In(r) + 7. cos(6 — 02)& + X,
r
with X € HZ, ;.
The fixed point Proving that F' is a contracting map easily follows from the estimates
for N and H. The Picard fixed point theorem then implies that F has a fixed point. To
obtain the result stated in Theorem (3.1) then easily folows after performing the following
change of variables
) =mx — fe cos(f.), wh=x9+ Le sin(6,.),
Q@ Q@
which corresponds to work in a frame centered in the center of mass.
The rest of the paper is as follows. In section (4), we explain how to solve the momentum

constraint (20). We also explain how to choose A, p,n. In section (5), we explain how to
solve (16). Finally, the map F' is shown to have a fixed point in section (6).

4 The momentum constraint

The goal of this section is to solve equation (20). We will note

1A= la] + e + 3Lz, . (25)
We assume a priori
IAll'S e,
1 -2 2
a> — W 4 |Vul? ). (26)
8
This yields
re o M 1.
a™ e ~

Proposition 4.1. If ¢ > 0 is small enough, there exists p,n, A € R, such that for
=7 4270 4 Ap,

with 7, 7G) defined by (22) and (23), there exists a solution of (20) which may be uniquely
written under the form
H=e?HY + H® 4 e 2H®

where H®) and H®) are defined by (18) and (19) and

O = X Ny o),
r

12



with e *H® ¢ H%H such that
le D s S liVullgy -+ [bllwra + [ Bllwsa + 4] S
Moreover we have the estimates
1
pcos(n) = — /u.ﬁlu +0(e?),
7
1
psin(n) = - /u.agu +0(e?),
A——l/ Oy 4 — / /(ryrd /’5(9)d9+0( 2)
=g | redrut o X (r)rdr %),
1 c .
J = ~5- /uﬁgu + % sin(n — 6.) + O(e?).
Proof. We introduce the notation

2 1 2
h? = —§T<2>6~A ~HP 9,

(
j
h§3) 78 ( (3)) - %e—*7(3>aj>\ - &;(e_)‘H(?’))ij - e_’\Hi(f)aj)\.
In view of (17), (20) and (21) an easy calculation yields

ol =

where

1 : 1 1 2 3 1 2
= e>‘< — idju+ 50;(AV) = SAVIA+ B + 1) 4 20,7 — a,;Hfﬁ).

The three following propositions, proved respectively in Sections (4.1), (4.2) and (4.

us to estimate the different contributions to f](l)

Proposition 4.2. We have

/ /

%aﬁ@) _ D =X ff")b(e) cos(6) + XT(;) " ((6) sin (6 — 62) cos(6))'
/ /

%aﬂ@) —oH® =X () b 6) sin(0) + X (,j )T (4(9) sin(6 — 6.) sin(9)) .
T T «

Proposition 4.3. We have hf) € H§+3, with
2
18 g, , S 1Ml
Proposition 4.4. We have h( Ve H 5+3, with

185 0,., S 1Bl

5+3
- (1) 0 .
We have e”*f, " € Hy 5 :

e For h§.2) and hg-g) this follows from Propositions (4.3) and (4.4).

13

(29)

(30)

3) allow



e For %8j7(2) —0;H g), this is a consequence of Proposition (4.2). Since X’ is compactly

supported, we have

1
|07 —aun

S 1bllwzsty.-
5+3

e Since V¥ € H§+2’ we have in view of Lemma 2.2

1405 ¥| o < [Al-

e We have

AVO;\ = ( axgjn) — recos(f — GC)XS) —ax/'(r)In(r) + r.cos(f — Gc)XliT)> AVO;r

— resin(f — 90)@,4\1@9 + AT,
r
and since x’ is compactly supported we have

o
147

Te
1+r2

~

490y, 5 |4

4w

ANy .+ A,
HY o Hf, g

For the terms of the form AV % and AW T, we use Lemma (2.5) which yields

o
1+7r

Te
1472

S [Allre]-

+3

v

< |Allal, H“

+3

0 0
H6 H6

e For the term A\I/an we use Proposition (2.4) which yields

1400, X] o, < ANz

S41”
Consequently we have

_ 1 .
le ™ f Vg0 < NaVaullgo + lbllwrz + | Bllwe + |Al.
543

643

We have 0o
recos(9 = 0x(r) 5

A= —ax(r)In(r) + "

with A € HZ,, C L*™ thanks to Proposition (2.3). Therefore
S (1+r%)7%,

and Lemma (2.5) yields f;l) € HY with

+3+a

£ 0

5+3+a

S eVl |+ [[bllwrz + [ Bllw2 + Al

We want to solve (29) with Corollary (2.11). To this end, we need

[0= [ -0 (31)

The following proposition, proven in Section (4.4), allows us to carefully choose the pa-
rameters p,7, A in order to enforce the orthogonality condition (31).

14



Proposition 4.5. If ¢ > 0 is small enough, there exist p,n, A € R such that

[H0= [5 = [arf 4 afl? =0

pcos(n) = 71T/e/\2181u + 0(e?),

psin(n) = i/ekuazu + 0(e?),

A= —% / Nirdyu+ % ( X’(r)rdr) / b(6)d6 + O(?).

We choose p, 1, A according to Proposition (4.5). Since |a] S €, if € > 0 is small enough,
we have —1 < § + a < 0. Since ffl(l) = fo b - = 0, we can apply Corollary (2.11). Since
fxlfl(l) + $2f2(1) =0, we obtain

Moreover we have

7O J&g) Ny + B,
T
with HD ¢ 7—[%+2+a such that

7.,

<[#7].

S

6+3+ 6+3+a

S lavulge  + [bllwrz + [ Bllw2 + Al

6+2+

/$1f2 —9C2f1

_ (2) (3) (2) (3) Ple . _
27T/ ( wdu — AU + 21 (B + h$P) — 2o (h? + 1 )) 2 sin(n - 0.)

and

re [ X(P)yoy n
+ o /(e 1) . b(#) sin(6 — 6,)
_ 1 A - Te . _ 2
= /| e udpu + P sin(f — 6.) + O(e?)
(32)

where we have used the definition (30) of f;l), 2109 — 1201 = Oy, Proposition 4.2 and the

following calculations
1 1
5 / e Ayl = -5 / e AT,

e |z qu(f) b(0) sin(0) — x4 X;(n?“) b(0) cos(0)>

e* X' (1)b(0) (cos(0) sin(#) — cos(0) sin(0))rdrdf

15



72

Q

/ AX )T <x1 (b(6) sin(8 — 6,) sin(6)) — x> (b(0) sin(0 — 6,) cos<9>>’)
— / AX(r )b(G) sin(f — 6,)(—sin?(A) — cos*(h))
/8 e )‘X/?ET b(0) sin(f — 6..)(cos(8) sin(h) — sin(6) cos(6))

e ( / X’(r)d’r) ( / b(6) sin(6 — Qc)d9> v / = 1)X/£T)b(9) sin(0 — 6.)

:7’['% sin(y] — 90) + % /(e)\ — 1)X’(7") b(e) sin(9 — 00)7

r

where we have used in the last equality the definition of b (24) and the orthogonality
condition (15) for b. It remains to estimate e *H®) in H5+2 First, we note that since

-\ — ax(r)In(r)

is bounded, thanks to Lemma (2.5) and the fact that H®) e Hj. oy, We have e HW ¢
HY_ . We now calculate V(e *HW). The contributions are

e the term e *VHW : since VAW ¢ ’Hg+a+3, we have e *VH® ¢ ”Hg+3 thanks to
Lemma (2.5),

e the term & ( Le=AHW : it also belongs to H§ 5 thanks to Lemma (2.5).

e The term e *HMVX : thanks to Proposition (2.4), H HOWTX belong to 7-[5+3+a, and
therefore, thanks to Lemma (2.5), we have e *HDVX € HY 5

Consequently, we have V(e_’\ﬁ(l)) € Hg+3 and therefore e H1) ¢ ’H}H with
ATy .
[ HD s S Jiullg + I6lwre + | Bllwrs + 4] < <.
This concludes the proof of Proposition (4.1). O

4.1 Proof of Proposition (4.2)

We calculate

o, (b(@)_X(’")Mg) - bo) (X'(’") _ XW) (cos(6) cos(20) + sin(6) sin(26))

2 r r2

B b(0)x(r) (sin(6) sin(26) + cos(6) cos(26))

2
- b’(92)r)§(r)(_ sin(0) cos(20) 4+ cos(8) sin(20))
b(6)x(r) b'(O)x(r) . b(0)X'(r)
B cos(f) — oz sin(f) — o cos(0),
%al <b(9)XY)> :%b(@) (X 7{’”) _ Xg )) cos(6) — ;b’(e)xg ) sin(0).
Therefore
29 (b(@)m> ) <b(0) () ) bOX(T) oo
! r ! 2r o il B cos(6)



For j = 2 we obtain

0 (b(@)_;(y)M9> = b(j ) (X/(’") - Xg )> (cos(8) sin(26) — sin(6) cos(20))

b(0)x(r . ;
_ N 2?2(( )(— sin(#) cos(26) 4 cos(#) sin(26))
_ b’(i):;(r) (— sin(f) sin(26) — cos(0) cos(20))
b(0)x(r) . v (0)x(r b(O)X'(r)
32 (20157 ) =300 (7 X3 i) + 01 o)

Therefore

T 2r

332 (b(e)"(r)> —0; (b(w _X(r)Me>i2 _ XOxX(r) sin(6).

We now calculate the other contributions. We note that T%Mg and T%Ng satisfy

@(éM0”:@<;leﬂ,fmr>Q (33)
This yields
o <—;;(b(9) sin(f — ec))"‘g ) ay - %b(ﬂ) sin( — GC)XSNOH
= — S (b(6) sin(6 — 0.)) (cos(0) cos(26) + sin(6) sin(26)) X;(;)
- %b(@) sin(@ — 6.)(— cos(6) sin(26) + sin(6) cos(26)) X;(;)
- 2%(1)(9) sin(6 — 6,.))" (— sin(6) cos(26) + cos(d) sin(26)) XT(;: )
— 22 (b(6) sin(6 — 0.)) (sin(6) sin(20) + cos(9) cos(29))X:§)
= (b(0) 50— 02)500(0) — J00)sin(0 — )Y cos(0) ) X1

4 Te <—(b(0) sin(@ — 6.)) cos(8) — 3 (b(8) sin(6 — 6.))" sm(a)) ),

« 7

We now calculate the term involving 7.

%al (T‘f(b(e) sin(6 — 96))’Xg )>

=1 <X;(;) _ 2X£§>> cos()(b(8) sin0 — 6.)) + 2 (— sin () (5(6) sin 0 — 0.))" 7
_;;; cos(6)(b(0) sin(0 — 90))/X;(2T)
N % (—(b(@) sin(6 — 6,)) cos(9) — %(b(&) sin(0 — 6.))" Sin(9)> :g)

17



Therefore we have

— 0 (-é";(b(e) sin(6 — 96))"‘;;’ )y — %b(@) sin(0

|
>
g}
~—
<
—~
=
S~—
g
N———
=

:% (cos(8)(b(8) sin(8 — 6.))" — sin(0)b(6) sin(6 — 6.)) X(r)

2
Z% (cos(0)b(6) sin(0 — 0.)) X;(; ).
For j = 2 we obtain
o (—;";w(m sin(6 — 6.)) 5 asy — "o 1(9) sino - 0c>’<ﬁ§)Ne)i2
= 2%(5(9) sin(0 — 0c))’ (cos(6) sin(26) — sin(6) 008(29))X;(2T)
— TEb(6) sin(6 — 0)(cos(6) cos(26) + sin(6) sn(26)) X 1
— 22 (b(6) sin(0 — 6.))" (— sin(68) sin(26) — cos(6) cos(29))Xg )
- %(b(a) sin(0 — 0,))' (— sin(6) cos(20) + cos(0) sin(29))£§)
" X'(r)

(%

=< (—b(@) sin(6 — 6.) cos(f) — %(b(@) sin(f — QC))’sin(H))

r2

4+ (—(b(@) sin(f — 6.)) sin(6) + %(b(ﬁ) sin(0 — 6.))" 005(9)) X(T).

@ rd

We now calculate the term involving 7.

30 (= 00)sin(o - 0y X5 )

:% <)</TF;) - 2M> sin(0)(b(0) sin(6 — 6.)) + % cos(8)(b() sin(6 — 6,))”

r3

:g—; sin(6)(b(8) sin(6 — 90))/X7~(2T)

~—

2 (0050 — 0 sin(0) + L (0(6)sin(0 — 00" cos(0) ) X5

Q@ r3

Therefore we have

%ag <(b(6) sin(6 — 00))’Xg )>

=0, (= 000)singt — 0 a1y — Zeb(0)sin(0 — 00 X0, )
=~ (sin(0)(b(0) sin(0 — 6))" + cos(0)b(6) sin(6 - b)) X;(;)
:% (sin(0)b(6) sin(6 — 6.))’ X;g” ).

In view of (18) and (22), this concludes the proof of Proposition (4.2).
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4.2 Proof of Proposition (4.3)

Since [VA| € Hj ,, Lemma (2.5) implies that the terms of the form I‘—Jbr'T|VX\ belong to

H§+3 and satisfy
0]
Fee( S iV,
and consequently, with the Sobolev injection W12(St) ¢ L>°(S!),

(34)

S41°

b o
| B 931 % olhwsacon 1
H6+3

Moreover, thanks to Lemma (2.6), the terms of the form e oL |VA| belong to HY,, and

(14r)?
satisfy
re |b| + |b’
RV S Bl L, (35)
6+3
where we have used, that thanks to (26), ™ < 1. The terms of the form e |(b1|17|“l;/2‘ (11‘; jz are
also in HY 5 and satisfy
re [b] + [0 e <
= b . 36
o (1 +7,)2 (1_'_7,)2 0 ~ H ||W1,2(§1)‘7“c| ( )
5+3
Finally, since x’ is compactly supported, we also have
0] [b] rex'(r)
In(r) S [bllwrzsyled, S bllwrzgsylrel,
H1+r ., & Ltr (L) |l (e
(37)

Consequently, the terms which remain to calculate are the ones decaying like %2 and %3
We obtain

HZ-(12)8¢)\ =— X2(:)b(9) < - <(:j + W) (cos(20) cos(8) + sin(26) sin(h))
- %6;_00)(— sin(6) cos(26) + cos(0) sin(20))>

r

_ 7”527{? (cos(8 — 0)b(6) + sin(6 — 0)b'(6)) — (cos(20) cos(6) + sin(20) sin(9))
rcx(2 ") sin(0— 0 )b(e)TO‘(— cos(6) sin(26) + sin(0) cos(20)) + hy
_ (232 ) os) + 7“b(i)3><(7") <cos(9) cos(8 — 0) — 5 sin(®) sin(6 - 90)>
+ 7”1’(2%(’”) cos(0) sin(f — 6.) + ha,

where, thanks to (34), (35) and (36), h1 € Hy, , satisfies

Meallo,, < IMBllwee:
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We calculate

—%T(Q)O1A =— LH)X(T) <_a cos(f) — Tc COSIY = Pe) COS(Z —0c) cos(0) + Te S~ Ye) sin(92 —0e) Sin(0)>

2r r r "
- ;;;(b(g) cos(0 — 6.) + b/ (0) sin(0 — ec))xg) <_Ta cos(9)> +he
OO gy 4 T <COS(9) cos(8 — 0) — 3 sin(0) sin(6 - 9c>>
* W cos(0) sin(0 — 6.) + ha,
where thanks to (34), (35) and (36), he € H<(5)+3 satisfies

zllng,, < 1M IBllwee.

Therefore 1
757-(2)31)\ — Hi(f)ai)‘ =hy —hy € H 3.

For j = 2 we obtain

Hg)@-)\ =— x(r) b(6) ( - (fj + 1"0005(0—90)> (— cos(26) sin(6) + sin(26) cos(#))

2r 72

- Testn® = 6) og() cos(26) — sin(0) sin(20)>>

2
_ r;zfj;) (cos(8 — 0)b(6) + sin(6 — 0)b'(6)— (— cos(20) sin(8) + sin(26) cos(9))
B TC;(:;) sin(0 — gc)b(g)%a(sjn(e) sin(260) + cos(6) cos(26)) + h3

_ ab(;)é(?“) sin(0) + rb(iw <sin(9) cos(6 — 6.) + %cos(ﬁ) sin(6) — Hc))
N ’W sin(0) sin(6 — 6,) + hs,

where thanks to (34), (35) and (36), hs € H, 4 satisfies
allag . S 1Al

We calculate

_37(2)32)\ __ bO)x(r) (_a sin(6) — recos( — fc) sin(6) — resin(f — 0c) COS(Q))

2r r r? re
_ ;;;(b(e) cos(f — 6.) + V'(0) sin(0 — ﬁc))xg ) (_Ta sin(9)> + ha
_ab(;)g(?“) sin(6) + ”’(iw <sin(l9) cos(f — 0.) + %cosw) sin(f — 9c)>
+ TCb/(QH:E;X(T) sin(f) sin(0 — 6.) + hy,
where thanks to (34), (35) and (36), ha € HY, , satisfies

Veallso,, < IMBllwse-

Therefore 1
_57(2)32)\ - Hg)aix = hy — h3 € Hy 5.

This concludes the proof of Proposition (4.3).
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4.3 Proof of Proposition (4.4)
We first note
0i(e M H®)y; + e HY 91 = e 20,1

%aj () - %e*w@jx _ 19,0 _ @,

Since X € Hg 1, Proposition (2.3) implies that \ is bounded and consequently

e S (1 + )3,
Therefore Lemma, (2.6) imply that the terms of the form e “(B'—HB) AvsY belong to H5+4 o
with

S IBlwraen Az, -

B B’
HeAI |+ 1B

1+ ) W‘

S+4—a

Since « is of size ¢, for € small enough we have @ < 1 and

LB
|| S 1w Ry, (59
643
The terms of the form e*)‘% 1_?2 satisfy
AABIHIB 1o | re(|B[+]B)
L4722 14072~ (14922727
so, for £ > 0 small enough so that § + a < 0 they belong to H((S)Jr3 and satisfy
ABI+ B e
et I L T (39)

H6+3

Since y’ is smooth and compactly supported, the term of the form e=* |B|j:‘B | X'(r) belong

to H§+3 and satisfy
S IBllwr2sy. (40)

0
H5+3

|B| + |B|
H N 14172 X (r)

Consequently the terms which remain to calculate are the one which decay like :—Z We
calculate

e_’\al-Hl.(f) = — e M1 — a)B'(0)(sin(0) sin(20) + cos(h) 008(29))Xg)
/"
*)‘Bi@(— sin(#) cos(26) + cos(8) s1n(29))L +0
1
—e (—(1 — a)B'(0) cos(f) — 53”(9) Sin(0)> Xf?)) + 91
where we have used (33) and where, thanks to the estimate (40), g1 € HY , satisfies

lorllus,, < I1Blwa.
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We now calculate

%e_)‘alT(S) — T(3)€_)\81>\

2

- _25643'(9)9‘(” cos(6) — %B”(G) ¢ x(r) sin(0) — B'0)e X =% co(0) + g

r3 73 r2 r

= (a— 1)6)‘B’(0)X7E§) cos(6) — ;e’\B”(H)Xg ) in(9) + g2

where thanks to the estimates (38), (39) and (40), g2 € H, , satisfies

lazllze, , < IBllwre.

Therefore

1 1

ST = Sr@oN = oIy — e HTON = g2 — g1 € HY .
For j = 2 we have

e HE) = — (1 — ) B ()(— sin() cos(20) + cos(9) sin(20))X7)

w5
w(— sin(6) sin(260) — cos(6) 008(26))%2’”) i

Y <_(1 —a)B'(0) sin(0) + %B”(Q) COS(Q)) Xg) + 93

where thanks to the estimate (40), g3 € HJ, , satisfies

losls,, < I1Bllwa.

1
§€_>\827’(3) — e_/\T(3)(92)\

- _26—“3'(9))(;7") sin(6) + ;B”(H)Q/\X(r) cos(0) — B’(@)e—AX(”—f sin(60) + g1

2 3 r3 r2
r)e A r)e
= (a— 1)B’(0)X( 23 sin(6) + %B”(Q)X( 7?3 cos(0) + g4

where thanks to the estimates (38), (39) and (40), g4 € Hj 4 satisfies

lgallmo, , < 1 Bllw 2.

Therefore

1 1

5827'(3) - 57'(3)82)\ - 81'(67/\H(3))Z‘2 — 67/\Hl-(§)8i)\ =04 — g3 € Hg+3.
This conclude the proof of Proposition (4.4).

4.4 Proof of Proposition (4.5)

Recall that f;l) has been defined in (30). We calculate

/R Y= /R e (—oru — AwoyA+ b + )

+ /(eA — 1)9@6(9) cos(0)dx — s / e Xl(r)b(@) sin(f — 6.) cos(6) g\

o r2
+ mpcos(),
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where we have used Proposition 4.2 and the calculations

% / e AG T = —% / AT, ),
/ eAX/ff“)b(e) cos(0) = / (e — 1)/5%(9) cos(0) + ( / X'(T)dr) < / b(0) cos(@)d@)

— /(e/\ — 1)X,(r)b(9) cos(#) + mpcos(n),

r

=

where we have used the definition of b (24) and the orthogonality condition 15,

e [ X 000)sin(0 - 00) cos() = =% [ AXLDp(0)5i0(0 - 0, cost0)00.

r2 r2

Similarly, we have

/ £V = / e (—anu — AU+ B h(23)>
R2 R2

+ / (@ = )X b9) sin(0)dw — ¢ / X)) sin(6 — 6.) sin(8)9p\

T « r2

(42)

+ mpsin(n).

We calculate also

Lot ® vanf® = [ (itr0) — 400 A+ (b + ) + a(h? + 1Y)
R2 R2

- / (e* — 1)x/(r)b(8) — % / eAaGA@b(e) sin( — 6,.)

4 < / X’mm«) / b(0)dO — A / A

where we used x101 + 2202 = r9, and the following calculations

1 1
— /6)\(1718114\1’ + l‘QagA\If) = —5 /SAA\IJ(IL‘161)\ + IL'2(92>\) — /SAA\I/,

(43)

2

/ A< X/(r)b(H)coS(e)+$2X/£T)b(9)sm(9)>

_ / '(r)b(6) (cos?(0) + sin?(6))
( [t m) ( JEG d9> = nxeme

Ec ( )sin(f — 6,.) cos(0))" + 2 (b(6) sin(0 — 6,.) sin(@))')
AX(

= — T;/ . b(9) sin(f — 60.)(— cos(f) sin(#) + cos(#) sin(0))

B % /eAaeAXI?(nr)b(g) sin(f — 6,)(cos?(0) + sin?(9))

=2 [ a0 s - 0.)
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, we have

) and (
s

if and only if the quantities pcos(n), psin(n) and A are solutions of a linear system of the
form

Therefore, in view of (

14+ 0() Of(e) O(e) pcos(n) ay
O(e) 1+0(e) O(e) psin(n) | =| a2 |,
O(e) O(e) 1+ 0(e) A as

where, since [ ¥ = 2,

1

a1 = /ualw 0(e2),
T
1

ay = W/ﬂ32u+0(52),

a5 = —% /maru + % (/ X’(r)rdr) /E(@)d@ + 0.

In the last equation we have used [ b(6)df = fg(G)dH to point out that this quantity does
not depend on p,7n. For € > 0 small enough, this system is invertible, therefore we can find
a unique triplet (p,n, A) in R x S! x R such that the three integrals are zero, and we have

1

pcos(n) = W/e)‘itaw + 0(e?),
1

psin(n) = — /e’\uagu + 0(e?),
T

A= —% /e)‘iw@ru + 02(’0 /E(e)de + 0(e?).

™

This concludes the proof of Proposition (4.5)

5 The Lichnerowicz equation

Let H and 7 be given by
H=e*HY + H® 4 e HO),
=7 40 4 AT,
with p,n, A and H®) given by Proposition (4.1). We recall HV = JX( )N + HW, and
AL+ 1T+ ol + leH V| S

5+2
Proposition 5.1. There exists a solution X' of (16) which can be written uniquely under

the form

N = —a'x(r)In(r) + 7. cos(§ — 0. XY)
with N € H§+1 and we have

(@ + [Vul?) + O(e?),

x9 (z‘f + |Vu]2) + 0(?),

/
7 cos(f) = ﬁ /1:1 (iL2 +|Vul?) + O(e?),
-5/
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and B
Nz, < [la* + \Vu]2}|Hg+3 + &2,

Proof. In order to apply Corollary (2 10) we have to check whether the right-hand side of
(16) is in Hy, 5. To estimate |e~ AHM2 we use Proposition (2.4), which yields e *HM 2 €
H? 543 With

< e (44)

H5+2

fiea0 ],

o]

~ )
5+3

To estimate terms of the form 1'_?_' e M HW| we use Lemma (2.5). It yields

b - -
“’6—2A|H<1>| S Ibllwray e HD|| e (45)
1+7r HY,, Hs,,
To estimate terms of the form 1' g e HW]| and Le 1‘+ s HWY| we use Lemma (2.6),
which yields
B B’ ~ ~
"|+|2|6A|H(1) S IBllwrat ‘e*’\H(l)‘ ) < g2
o e i ()
bl + b ~
E| | =+ |2|67)\|H(1) 5} ||b||W172(Sl) )\H(l)‘ 52.
a l+7r 9., Hi o

In the same way, thanks to Proposition 2.4 and Lemma 2.6 we estimate

b
(A2 e ||Paw]| < (47)
6"'3 1 +T HO
5+3
We can also estimate
2 /1\2 /
re ([6] +[0']) <& —2>\(|B\ +|B'])? €2, (48)
oz2 1 +7“4 o 1 +T4 O
5+3 543

We now calculate

/ 2
gt = 3t = 2 (<0082 - (22 00ysin0 - 0y + > EL) XY agying,

4 2 2r 20 2
_ b(e)XZ(:) (-2%(9) sin(0 — 6,) Xg ) feMg—(1— @B(@))ﬁf”) My" Np;;

a r2

00X (oo -0+ p0) D) 4y

where thanks to the estimates (44), (45), (46), (47), and (48), we have h; € HY, , with
< 22
Fallag | S &
Since Mgingij =2 and MgijNgij = 0 we obtain
1 1 ~
§|H|2 — 17'2 == h]_ € H((5)+3
Consequently, we can solve (16) with Corollary (2.10), and the solution A\’ can be written

N = —a'x(r)In(r) + r.cos( — HC)X(:) + X',
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with

1 1 1 72 1
o 2 2 ) 2 2
= — — —|Hf — — | = — 0]
1 1 1 o 1o T\ 1 9 9 9
e cos(6 =g / <2 2|Vu\ + 2|H| 4) = 47T/x1 (u* + |Vul*) + O(e?),
1 1 U D 1 5 5 5
7o sin(6 2/ < §]Vu\ + i‘H‘ - 4) = 47T/QCQ (@* + |Vul*) + O(e?),

and N € H§+1 such that

~ 1 1 1 2
' "2 2 2 -2 2 2
i, | 502+ 5104 1P = | S0+ TP, +
o+3
This concludes the proof of Proposition (5.1). O

6 Proof of Theorem (3.1)

We find it more convenient to perform the fixed point with the quantities (¢, c2) instead
of r.,0.. We recall the relation

(c1,¢2) = re(cos(be),sin(6e)).
We note X the Banach space
X=RxRxRxHj,,
equipped with the norm
INx = [l eryea, Nllx = lal + fen] + fea] + [Nz, -
We have constructed, for € > 0 small enough, a map
F:X—>X

which maps («, Cl,CQ,X) satisfying

[, e e2, Ml[x = laf +ler] + |e2| + [ Mz, S e

ap = % </ w? + yvu|2> : (49)

to (o, d, C,Q,X/) such that, for p,n, A, HY given by Proposition (4.1), if we note

and o > %ao where

A= —ax(r)In(r) + r.cos(d — 90)@ + }\’7
r

H = C_AH(l) + H(2) + €_>\H(3)7

=73 4 4 AY,
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then H satisfies | )
aiHij + Hij&;)\ = —U.aju + 58]’7' — *Taj)\,

2
and
N = —a/x(r)In(r) + 7. cos(§ — G/C)XET) + N
is the solution of )
1 1 1 T
AN 4 Zi2 4 = 2, Lo
A+2u +2]Vu\+2| | 1 0,

given by Proposition (5.1). Proposition (4.1) implies

171+ 1AL+ [H D g, S,

§+24a

and Proposition (5.1) implies

ol Jo| -+ WLz, S e

In particular there exist Cjy such that
”F(Oé(], 0, O, O)HX = 006.
Next we show that F' is a contracting map in

Bx(0,2Cpe) N {a > %} )

We consider, for i = 1,2 (a4, (¢1)4, (¢2)i, A;) such that

g (%
(i, (en)is (e2)i, M)l x < 2Coe, i > .

We note N N
(e, (c1)is (c3)is A7) = Feu, (e1)is (e2)is Mi),
(re)i(cos(8e)i, sin(Be)i) = ((c1)is (c2)i),  (r2)i(cos(6e)i,sin(0r)i) = ((c1)i, (c)i)-

Since ot = o + O(g?) we have for € small enough

/ Qo

iy

a2

We note p;,n;, A;, Ji,ﬁi(l) the corresponding quantities given by Proposition (4.1). The

proof of the following lemma is postponed to the end of this section.

Lemma 6.1. We have the estimate
o1 — ab] + ()1 = (2] + [(ch)r = (h)al + 1M = Mol | S elldr = Al x.

We are now in position to prove Theorem (3.1). Thanks to Lemma (6.1) there exists
C such that
I1F (A1) = F(A2)llx < CellAr — Ao|x-

Consequently, by taking Ay = (v, 0,0,0) we have

VA € Bx(0,2C0e) N {a > %} , IE(N) — F(ap,0,0,0)]| < 20C,e2.
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Therefore, if ¢ is small enough such that Ce < 1, the map F sends Bx (0,2Cye) into itself.
Moreover we already have noted that the condition a@ > < is preserved by F for ¢ small
enough. Finally, for C'e < 1 the map F' is contracting, and the Picard fixed point Theorem
yields the existence of a fixed point.

We now choose coordinates centered in the center of mass (c1,c2). For these coordi-
nates, we have r, = 0 and consequently

A= —ax(r)In(r) + A,

H = —(b(0) + pcos(0 — 1)) 2( r) My + e_)‘?(?f?;) <(J —(1—a)B(#))Ny — B’(G)M9> + H,
r) + AV,

2

7= (b(6) + pcos(f — W))X( 7)\B/(0) ) 4

The estimates of Propositions (4.1) and (5.1) complete the proof of Theorem (3.1).
To prove Lemma 6.1, we first prove the following two lemmas.

Lemma 6.2. We have the estimate
|p1 cos(m) — p2cos(mz)| + [p1sin(m) — pasin(nz)| + |A1 — A2| S el| A1 — Ao x.
Lemma 6.3. We have the estimate

le ™ B — e BV |y |+ 14 = Bl S eld = ol

Proof of Lemma (6.2). The quantities p; cos(6;), p; sin(6;), A; are given by the expressions
(41), (42), (43). Therefore we have

m(p1 cos(n1) — p2 cos(n2))
_ / (eM _ e)‘Q) WO+ M AT — € AT
RQ

_ /e)q(hg?))l . e)‘2(h§2))2 + 6A1(h§3))1 _ e)\z(hg3))2

= @ =X 0) cos(Ordr + (= 1 g1 cos(0 - m) — prcostt — )

+/ (7;)1 A1 ﬁr) b1(0)sin(f — (6.)1) cos(8)Op A1 — (7;:2)26A2><;Eﬂ62(9) sin(6 — (6.)2) cos(0)IgAa,
(50)

and a similar expression for p; sin(n;) — p2 sin(n2) and A; — As.

We estimate first (h§-2))1 - (h;z))g, where the quantities (h;z))i are defined by (27). We

have

1 1
() 1=(0)2 = =570, n=da)+5 (P =)0 Ao =(HD 110 =)+ ()1 = (H)2) .

(
J 92 ij
We calculate

7'1(2) - 7‘2(2) = (p1cos(0 — 61) — pa cos(f — 05))

+ <(7;y01) ((p1 cos(8 — m1) + b(6)) cos(6 — (6.)1)) — (re)2

a2

r2 -

((p2 cos(f — n2) —1—5(9)) cos(f — (90)2))/> x(r)
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We have a similar expression for (H, i(j2))1 —(H 282))2. Therefore we have

| = ()

< €lp1 cos(n1) — p2 cos(n2) |+l p1 sin(n1) — p2 sin(na) |+l A1 — A2 x-

(51)

We now estimate (hg-g))l - (h§.3))2, where the quantities (h§3))i are defined by (28). The

function 7) does not depend on the index i = 1,2. We calculate

(
j 2 HO
5+3

AR TR

Therefore we obtain
| =

. Selld = Aellxe (52)
5+3

The estimates for the other terms of (50) are similar. Therefore (50), together with the
estimates (51) and (52) yields

|p1 cos(n1)—pz cos(nz)| < € (|p1 cos(m) — pz cos(nz)| + [prsin(m) — p2sin(e)| + [A1 — Az|)+el|Ar—A2| x.
Similarly we obtain
p1sin(m)—p2sin(nz)| S € (|p1 cos(m) — p2 cos(n2)| + [prsin(m) — p2sin(ne)| + |A1 — Ag|)+el| A=Al x
|A1=Asz| S € (|p1cos(m) — pzcos(ne)| + |pysin(m) — p2sin(nz)| + [Ar — Az|)+e[ A —Azllx
and consequently

|p1cos(01) — pacos(02)| + |p1sin(01) — pasin(fa)] + [A1 — Aa| < el A — Aol x,
which concludes the proof of Lemma (6.2). O

Proof of Lemma (6.3). We compare first J; and Jo thanks to the formula (32). We obtain

1
Jl — JQ = % , — (6)‘1 — e’\z) aagu — (6)‘1141 — 6)‘2142)\1189)\1 — A26A2\1169<)\1 — )\2)
R

+ pl(Ole)l sin(n — (6:)1) — p2(0j2c)2 sin(n — (0.)2) + s.t.

where the notation s.t. stands for similar terms. Therefore, we obtain

[J1 = Ja| S ellAdr — Aallx + |p1cos(n) — pa cos(me)| + [prsin(m) — pasin(nz)| + [A1 — Ay
and thanks to Lemma (6.2) we infer
|J1 = Jao| S ellAdr — Azl x- (53)
We now write the equation satisfied by e_)‘lflfl) — e_’\Qﬁél)
0; €_>\1ﬁ'(1) - e—/\zf_j(l)
( 1 2 )ij
=e M (HD)i;050 — e (HyY) 1503
+ (6_)\1 Jl — €>\2J2)8i <X7E§) Ng) + 6)‘13¢(H{1))¢j — 6/\261'(H§1))Z'j
- (eﬂl (H{")i; - e_AQ(ﬁz(l))ij) O + e (Hy)i305 (A1 = Aa)
+ (e My — eM05)0; (@M)) + (A1 — 4299 + (B)1 — (hP))a + s.t.
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Consequently, Corollary (2.11) yields
le M A — e HY |y Selle ™ B — e HY |y + T — Jal + A = Dellx,
and thanks to (53)

le MY — e AP |l S elld = Ao,

which concludes the proof of Lemma (6.3). O

Proof of Lemma (6.1). In view of (16) we have

1 1 1 1
AN —Xy) = —§’Hl|2 + 17'12 + §|H2|2 - 17'22-

The right-hand side is in HY 3 and satisfies

1 1 1 1
SIH 2 — 22 D2 - 22
H2| 1] 47'1 2| 2| 472

0
H5+3

Se(le M B = e HP |y, + 10— )+l = ellx

Selld = Aellx,

where we have used Lemma 6.3 in the last inequality. Therefore Corollary (2.10) allows us
to write

Ny Xy = (0 — () In(r) + () cos(0— (04)1) — (o cos(d — (020 X 4 5~ X,

with

|1 — o] 4 [(c1)1 = ()2l + ()1 = ()a| + M = Xall gz, | S ellAr — Aallx
This concludes the proof of Lemma (6.1). O
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