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Abstract

We present an alternative to growth accounting à la Solow, on the same set of variables, that provides a metric for

labor-saving technical change (‘λ’) and capital-saving technical change (‘µ’). These two components are identified

through the variations of the factor shares, which we assume to reflect marginal productivities. We run our algorithm

using BEA data from 1948 to 2015, and compare the predictive power of our time series of (λt ,µt )with the one of the

Solow residual. Through simple regressions, we find: (i ) that λ and µ are as good predictors of the growth rate of GDP

per capita as the Solow residual, and (i i ) that λ and µ, together with capital accumulation, are strong predictors of

the variation of the factor shares, while the Solow residual is not. We conclude that a bi-dimensional representation

of productivity has a stronger empirical relevance than the usual linear representation; however the former carries

some different theoretical properties than the latter – notably on the consequences of capital accumulation.

Keywords: Productivity, factor-saving technical change, capital accumulation.

JEL codes: E25, O33, O40, O47.

Introduction

Although the issue of factor-saving technical change has received considerable attention by indus-

try analysts as well as by macroeconomic historians, no consensus has emerged on the proper way

to represent it nor to estimate it. This paper aims at partially filling the latter gap1 by introducing a

new – and, to the best of our knowledge, the first – method to assess labor-saving technical change

and capital-saving technical change from the very same set of observables than the ones used in
∗We are grateful to Chad Jones for the stimulating discussion that gave to the authors the idea of this work, as well as to Pascal da Costa, Georges-

Vivien Houngbonon and seminar participants at CentraleSupélec for useful comments and suggestions. All errors are our own.
†Université Paris-Saclay/CentraleSupélec, (contact: pierre.barral@student.ecp.fr).
‡Université Paris-Saclay/CentraleSupélec, Laboratoire Genie Industriel (contact: mehdi.senouci@centralesupelec.fr). Corresponding author.
1The former gap is addressed in Senouci (2014).
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Figure 1: The classical growth accounting problem.

the seminal paper by Solow (1957): the output-labor ratio (yt ), the capital-labor ratio (kt ) and the

labor share (1−αt ).

As one of us has argued in a previous article,2 in a framework with two inputs A andB , ‘A-saving

technical change’ is best defined as the transition to a production function that yields more out-

put than the original one for lower values of relative inputs A/B . ‘B -saving technical change’ then

denotes the transition to a production function that yields more output than the original one for

higher values of relative inputs A/B .

The basic problem of growth accounting can be stated as follows: how can we infer the changes

in the production function between dates 0 and 1 with data only on output, inputs and input share

of income at each date? To address this question, one has to make some assumptions.

Figure 1 represents the problem of growth accounting with a reproducible factor of production

(capital) and a non-reproducible one (labor). Observable data consists of the capital-labor ratio

k , the output-labor ratio y and the labor share of income (1−α) at dates 0 and 1.

The classical answer to that problem is Solow’s (1957) method, which is summarized on fig-

ure 2, which consists in inferring that both production functions f0 and f1 are both Cobb-Douglas,

and then measure the gap between both functions which is called the Solow residual. With the

additional assumption that inputs are paid their marginal product, the Solow residual measures

the contribution of total factor productivity (TFP) growth to output growth, as opposed to the con-

tribution of capital accumulation.

One reason for the success of Solow’s method probably lies in the result that the residual is
2Senouci (2014).
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Figure 2: Growth accounting à la Solow (1957).

responsible for the bulk of growth. This empirical regularity is in line with the key prediction of

neoclassical growth theory: growth can be sustained only by the accumulation of a factor that is

not subject to diminishing marginal returns. Another reason is the great literature that followed

which split up the Solow residual in different components, reducing our ignorance on the causes

of growth.3

By limiting the manifestations of technical change to variations of TFP, Solow’s accounting method

does not aim at explaining the variations of factor shares. The theoretical assumption of orthogo-

nality between TFP and factor shares has been put into serious doubt by the global decline of the

labor share starting in the early 1980’s and which is suspected to be driven by technological change

itself.4

Our growth accounting method, in contrast, takes variations of the labor share very seriously.5

It yields two series, rather than one. Labor-saving technical change (LSTC) tends to decrease the

labor share, while capital-saving technical change (KSTC) tends to increase the labor share. Both

LSTC and KSTC tend to increase GDP per capita. Running our algorithm on Solow data and on US

data from the Bureau of Economic Analysis (BEA) and between 1948 and 2015, it comes out that:
3For instance, Mankiw et al. (1992) assessed the contribution of human capital to TFP growth, while Greenwood et al. (1997) assessed the

contribution of TFP growth in the investment-goods sector to overall TFP growth.
4Karabarbounis and Neiman (2014) document the global decline of the labor share. Bengtsson and Waldenström (2017) investigate the long-run

links between the capital share and top income shares. Acemoglu and Retrespo (2017) present evidence supporting the view that industrial robots

tend to decrease employment and earnings of competing workers.
5Another growth accounting method interpreting changes in the labor share as the reflection of some bias of technical change has been devel-

oped by Sturgill (2014) and Sturgill and Zuleta (2017), but their method is plagued by an index number problem that makes the estimates dependent

on the unit of measure of capital.
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Figure 3: Our growth accounting method. λ represents labor-saving technical change and µ represents capital-saving

technical change.

– The rates of LSTC and KSTC are extremely well correlated with each other, as well as with the

Solow residual;

– λ and µ taken together are as strong predictors of the growth rate of GDP per capita as the

Solow residual;

– LSTC and KSTC are strong predictors of the variations of the labor share while the Solow resid-

ual is not.

Section 1 presents our growth accounting procedure and the underlying model. Sections 2

sets up the algorithm with Cobb-Douglas and constant elasticity of substitution (CES) production

functions. Section 4 presents our estimates of LSTC and KSTC in US data and investigate their

empirical content. Section 4 concludes.

1 The model and the growth accounting procedure

Our method is depicted on figure 3. The observations set consists of (k0, y0,α0) and (k1, y1,α1). We

interpret the passage from the situation at t = 0 to the situation at t = 1 as the passage from pro-

duction function f0 to two production functions, fλ and fµ.

Function fλ results from a anti-clockwise rotation of f0. This means that:

∀k > 0,

¨

fλ(k )< f0(k ) ⇔ k < k0

fλ(k )> f0(k ) ⇔ k > k0

4



Figure 4: f1 as the convex envelope of fλ and fµ.

So fλ yields more output than the original production function if and only if the capital-labor ratio

increases. Consequently, the passage from f0 to fλ stands for LSTC.

Function fµ is a clockwise rotation of f0, meaning:

∀k > 0,

¨

fµ(k )> f0(k ) ⇔ k < k0

fµ(k )< f0(k ) ⇔ k > k0

fµ is more efficient than f0 for capital-labor ratios lower than k0, so the passage from f0 to fµ stands

for KSTC.

We assume that at date t = 1, the economy uses both production functions fλ and fµ. Our

growth accounting procedure consists in inferring the ‘amounts of rotation’ λ and µ from the set

of observables.

What are the efficient production plans when two production functions fλ and fµ are available?

The answer is represented on figure 4. As shown in Jones (2005), the aggregate production function

is the convex envelope of functions fλ and fµ. For low capital-labor ratios (k < k ), the efficient

production plan consists in putting all inputs in production function fµ. For high capital-labor

ratios (k > k ), the efficient production consists in putting all inputs in production function fλ. For

intermediate capital-labor ratios (k < k < k ), both technologies are used. The capital-labor ratio

in the µ-industry is then k and the capital-labor ratio in the λ-industry is k , where k and k are the
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Figure 5: Some cases where our method cannot account for the passage from t = 0 observations to t = 1 observations.

Large dots and arrows represent examples of such t = 1 observables.

solutions to the system:
¨

f ′µ(k ) = f ′λ(k )

fµ(k )−k f ′µ(k ) = fλ(k )−k f ′λ(k )
(1)

We call f1 the convex envelope of fλ and fµ. To account for the passage from f0 to f1, we need to

estimate fλ and fµ. To do so, we need to restrict ourselves to some subset of production functions –

which is what we do in the next two sections. But before that, some remarks are worth making.

First, our algorithm to estimate fλ and fµ can be understood graphically in a simple way in the

(k , y ) plane. We describe it in steps:

1– Locate the point (k0, y0) and draw production function f0 that has slope α0 y0/k0 (the shape of

f0 is part of the assumptions);

2– Locate the point (k1, y1) and draw the line of slopeα1 y1/k1 that passes through (k1, y1); call this

line D1;

3– Rotate f0 anti-clockwise around (k0, y0) until the rotated function touches D1. This amount of

rotation is λ;

4– Rotate f0 clockwise around (k0, y0) until the rotated function touches D1. This amount of ro-

tation is µ.

Secondly, not all sets of observables (k0, y0,α0; k1, y1,α1) are interpretable this way. For instance,

if k1 = k0 and y1 < y0, we could not find some λ and someµ such that the data could be interpreted
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as the passage from one production function to the convex envelope of two rotated production

functions (let’s call this process ‘rotation-convexification’). Figure 5 represents cases where the

above graphical method would fail. Indeed, the above method works under two assumptions:

A1 – The D1 line cuts the vertical axis below y0, or:

(1−α1)y1 < y0

A2 – The D1 line is above y0 at k0, or:

y1+
k0−k1

k1
α1 y1 > y0

Although assumption A1 is always realized in practice, assumption A2 is not. We set up a

method for the cases where A2 does not hold in subsection 1.1.

Thirdly and finally, it should be noted that there is some theoretical inconsistency in our growth

accounting procedure. Indeed, when performing our algorithm between dates t = 0 and 1, we as-

sume that technology switches from one to two production functions. However, when performing

the same algorithm between dates t = 1 and 2, we assume that date-1 technology consists of only

one production function, while date-2 technology consists of two production functions. We do not

assume that date-2 technology consists of four production functions, as the reader might expect.

The merit of our method, as we shall argue in section 3, lies in the information contained in our

estimated series for (λt ,µt ).

1.1 The identification of λ and µ under ¬A2

Whenever A2 does not hold, we use a time-inversion method. The idea is that if we canot account

for the transition from t = 0 to t = 1 through some (λ,µ), then we can account for a hypothetical

transition from t = 1 to t = 0 for some (λ′,µ′). We then define λ=−λ′ < 0 and µ=−µ′ ∈ (−1, 0).
We can account for the transition from t = 1 to t = 0 through some (λ′,µ′) if and only if:

A1′ – (1−α0)y0 < y1

A2′ – y0+
k1−k0

k0
α0 y0 > y1

Indeed, in the data, assumption A1′ is always valid and assumption A2′ holds exactly when

assumption A2 does not hold.6

1.2 Properties of λ and µ

Before implementing our growth accounting procedure, we state below how t = 1 observations

influence the estimates of λ and µ.

Proposition 1.
∂ λ
∂ k1
< 0 , ∂ µ

∂ k1
< 0

∂ λ
∂ y1
> 0 , ∂ µ

∂ y1
> 0

∂ λ
∂ α1
> 0 , ∂ µ

∂ α1
< 0

Proof. Obvious from graphical analysis.
6We could have some observations for which neither A2 nor A2′ would be valid, but this does not happen in practice.
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2 The implementation of the growth accounting method

We now see how to implement numerically our procedure when production functions belong to

specified families.

2.1 The method with Cobb-Douglas production functions

2.1.1 Under A2

If f0, fλ and fµ are Cobb-Douglas, then:

∀k > 0,











f0(k ) = y0

�

k
k0

�α0

fλ(k ) = y0

�

k
k0

�αλ

fµ(k ) = y0

�

k
k0

�αµ

(2)

with αλ = α1−λ
0 and αµ = α

1+µ
0 . We are looking for λ ∈ (0, 1) and µ > 0 such that there exist some k

and k such that:
¨

f ′µ(k ) = f ′λ(k ) = α1 y1
k1

fµ(k )−k f ′µ(k ) = fλ(k )−k f ′λ(k ) = (1−α1)y1

(3)

System (3) has four equations and four unknown
�

αλ,αµ, k , k
�

. The following proposition re-

duces the system to one equation with two solutions:

Proposition 2. Under A1 and A2, αλ and αµ are the solutions of equation:

(1−X )
�

1

α1

k1

k0
X
�

X
1−X

= (1−α1)
�

y1

y0

�
1

1−X

(4)

and: λ= 1− lnαλ
lnα0

and µ= lnαµ
lnα0
−1.

Proof. See appendix A.

2.1.2 Under ¬A2

When assumption A2 is not valid, we apply our time-inversion method. When assumptions A1′

and A2′ are valid, we apply the above method to find some µ′ ∈ (0, 1) and λ′ that account for the

transition from t = 1 observations to t = 0 observations.

Proposition 3. Under A1′ and A2′, αλ′ and αµ′ are the solutions of equation:

(1−X )
�

1

α0

k0

k1
X
�

X
1−X

= (1−α0)
�

y0

y1

�
1

1−X

(5)

and λ′ = 1− lnαλ′
lnα1

and µ′ =
lnαµ′
lnα1
−1.

Proof. Proposition 2 applied to observations (k1, y1,α1) and (k0, y0,α0), i.e. to time-inverted data.

We then takeλ=−λ′ andµ=−µ′ as respectively the measures of LSTC and KSTC between dates

t = 0 and t = 1.
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2.1.3 Summary

To summarize, we obtain our metric of LSTC (λ) and KSTC (µ) with Cobb-Douglas productions

function with the following method, that we apply for each couple of consecutive dates (t , t +1):

1. If assumptions A1 and A2 are jointly met, then solve equation (4):

(1−X )
�

1

αt+1

kt+1

kt
X
�

X
1−X

= (1−αt+1)
�

yt+1

yt

�
1

1−X

Roots are αλ,t >αµ,t . Then, we define:

λt = 1−
lnαλ,t

lnαt

µt =
lnαµ,t

lnαt
−1

2. If assumptions A1 and A2 are not jointly met, then if A1′ and A2′ are jointly met; then solve

equation 5:

(1−X )
�

1

αt

kt

kt+1
X
�

X
1−X

= (1−αt )
�

yt

yt+1

�
1

1−X

Roots are αλ′,t >αµ′,t . Then, we define:

λt =
lnαλ′,t
lnαt+1

−1

µt = 1−
lnαµ′,t
lnαt+1

3. If neither (A1 and A2) nor (A1′ and A2′) are jointly met, then our method does not apply.

We implement this procedure using Python. The program is available in appendix C.

2.2 The method with CES production functions

We implement a similar procedure under the assumption that the production functions are CES

rather than Cobb-Douglas.

Moysan and Senouci (2016) proved that for any k ∗ > 0, y ∗ > 0, and α∗ ∈ (0, 1), the only CES

production function f of parameterσ such that f (k ∗) = y ∗ and k ∗ f ′ (k ∗)/ f (k ∗) =α∗ is defined by:

∀k > 0, f (k ) = y ∗
�

α∗
�

k

k ∗

�
σ−1
σ

+1−α∗
�

σ
σ−1

(6)

We invoke this result below.

2.2.1 Under A2

We now assume that f0, fλ and fµ are CES production functions with the same elasticity of substi-

tutionσ ∈ (0, 1). Specifically:

∀k > 0,























f0(k ) = y0

�

α0

�

k
k0

�
σ−1
σ +1−α0

�

σ
σ−1

fλ(k ) = y0

�

αλ
�

k
k0

�
σ−1
σ +1−αλ

�

σ
σ−1

fµ(k ) = y0

�

αµ
�

k
k0

�
σ−1
σ +1−αµ

�

σ
σ−1

(7)

9



with 0<αµ <α0 <αλ < 1 and αλ =α1−λ
0 and αµ =α

1+µ
0 .

We are looking for the values of λ and µ such that there exists some k and k such that:
¨

f ′µ(k ) = f ′λ(k ) = α1 y1
k1

fµ(k )−k f ′µ(k ) = fλ(k )−k f ′λ(k ) = (1−α1)y1

(8)

where f0, fλ and fµ are defined in (7).

Proposition 4. Under A1 and A2, assuming CES production functions of parameter σ ∈ (0, 1), αλ
and αµ are the solutions of equation:

(1−α1)
σ−1

�

y1

y0

�σ−1

= X σ

�

1−α1

α1

�σ−1�k1

k0

�σ−1

+ (1−X )σ (9)

and: λ= 1− lnαλ
lnα0

and µ= lnαµ
lnα0
−1.

Proof. See appendix B.

2.2.2 Under ¬A2

When assumption A2 does not hold, we apply again our time-inversion method. If A1′ and A2′

hold, then there exist some λ′ > 0 and µ′ ∈ (0, 1) that account for the transition from t = 1 observa-

tions to t = 0 observations. We then take λ=−λ′ and µ=−µ′.

Proposition 5. Under A1′ and A2′, assuming CES production functions of parameter σ ∈ (0, 1), α′λ
and α′µ are the solutions of equation:

(1−α0)
σ−1

�

y0

y1

�σ−1

= X σ

�

1−α0

α0

�σ−1�k0

k1

�σ−1

+ (1−X )σ (10)

and: λ′ = 1− lnαλ′
lnα1

and µ=
lnαµ′
lnα1
−1.

Proof. Proposition 4 applied to observations (k1, y1,α1) and (k0, y0,α0), i.e. to time-inverted data.

Like in the Cobb-Douglas case, we then take λ = −λ′ < 0 and µ = −µ′ ∈ (−1, 0) as respectively

the measures of LSTC and KSTC between dates t = 0 and t = 1.

2.2.3 Summary

The procedure with CES production functions of parameterσ ∈ (0, 1) is:

1. If assumptions A1 and A2 are jointly met, then solve equation (9):

(1−αt+1)
σ−1

�

yt+1

yt

�σ−1

= X σ

�

1−αt+1

αt+1

�σ−1�kt+1

kt

�σ−1

+ (1−X )σ

Roots are αλ,t >αµ,t . Then, we define:

λt = 1−
lnαλ,t

lnαt

µt =
lnαµ,t

lnαt
−1
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2. If assumptions A1 and A2 are not jointly met, then if A1′ and A2′ are jointly met; then solve

equation (10):

(1−αt )
σ−1

�

yt

yt+1

�σ−1

= X σ

�

1−αt

αt

�σ−1� kt

kt+1

�σ−1

+ (1−X )σ

Roots are αλ′,t >αµ′,t . Then, we define:

λt =
lnαλ′,t
lnαt+1

−1

µt = 1−
lnαµ′,t
lnαt+1

3. If neither (A1 and A2) nor (A1′ and A2′) are jointly met, then our method does not apply.

We also implement this procedure using Python. The program is available in appendix D.

3 λ and µ in US data and their empirical content

3.1 Data

We run our algorithm on two datasets: the first is simply Solow’s (1957) dataset which extends from

1909 to 1949, the second is built on Bureau of Economic Analysis and Federal Reserve data, and

covers the time period from 1948 to 2015.

Solow’s (1957) dataset From the seminal Solow (1957) paper we take the variables “Private non-farm

GDP per manhour,” “Employed capital per manhour” and “Share of property in income” as mea-

sures, respectively, of y , k and α. See Solow (1957, Table I, p. 315) for data sources.

1948–2015 dataset Post-WWII real GDP (‘Y ’), aggregate labor share (‘β ’) are taken from BEA Na-

tional Income and Product Accounts database.7

The capital stock data (‘K ’) – the one with the greatest conceptual and practical measurement

problems – is taken from the BEA Fixed Assets database.8

Aggregate worked hours (‘L ’) data is taken from the Federal Reserve Economic Data (FRED)

database.9

Then, we define y = Y /L as real GDP per manhour, k = K /L as the capital-labor ratio and

α= 1−β as the capital share.

3.2 Results

We run our algorithm (Cobb-Douglas version) and the traditional Solow (1957) algorithm on both

datasets. The results are displayed on figures 6 and 7. It comes out that, for all dates (t , t +1), either
7https://www.bea.gov/iTable/index_nipa.cfm. Y is from “Table 1.1.3. Real Gross Domestic Product, Quantity Indexes,” line 1 “Gross

domestic product”; β is from “Table 1.11. Percentage Shares of Gross Domestic Income,” line 2 “Compensation of employees, paid.”
8https://www.bea.gov/iTable/index_FA.cfm. K is from “Table 1.2. Chain-Type Quantity Indexes for Net Stock of Fixed Assets and Con-

sumer Durable Goods,” line 2 “Fixed assets.”
9https://fred.stlouisfed.org. The variable we use here is “Hours worked by full-time and part-time employees (B4701C0A222NBEA).”
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Figure 6: Estimates of LSTC (λ) and KSTC (µ) on right-hand scale, growth rate of real GDP and Solow residual on left-

hand scale, 1909–1949, assuming Cobb-Douglas core production functions. Data from Solow (1957).
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Figure 7: Estimates of LSTC (λ) and KSTC (µ) on right-hand scale, growth rate of real GDP and Solow residual on

left-hand scale, 1948–2015, assuming Cobb-Douglas core production functions. Data from BEA-NIPA and FED-FRED

datasets (see subsection 3.1). 13



Table 1: The explanatory power of our measures of LSTC and KSTC (λ,µ) compared to the explanatory power of the

Solow residual (∆A/A) over the growth rate of real GDP per capita (∆y /y ) in the Solow (1957) dataset.

Dependent variable: ∆y /y

Dataset→ Solow (1957) [N = 40]

Constant 0.004045∗ 0.00303565 0.00139902

(1.849) (1.319) (0.8312)

∆A/A 0.906542∗∗∗

(15.42)

λ 0.0254126 0.0738151∗∗∗

(0.8744) (3.280)

µ 0.0696811∗∗∗ 0.0388880∗∗

(3.330) (2.436)

∆k/k 0.250630∗∗∗

(0.141)

R 2 0.862 0.862 0.930

R̄ 2 0.859 0.855 0.924

OLS estimates. t -statistics in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

assumptions (A1, A2) or assumptions (A1′, A2′) hold, and they never hold jointly, so our algorithm

yields uninterrupted and unambiguous series for λ and µ.

The most striking feature of the output of our algorithm is that our measures of technical change

λ and µ are extremely well-correlated with each other, as well as with the growth rate of real GDP

per capita (∆y /y ) and with the Solow residual (∆A/A), reflecting the predominantly neutral nature

of technical change, i.e. the low variance of α in both datasets.

3.3 Explanatory power of λ and µ

First, we assess the explanatory power of (λ,µ) over (∆y /y ). We perform three OLS regressions

on each of the dataset we use. As table 1 shows for the Solow (1957) dataset, (λ,µ) are as good

predictors of the growth rate of real GDP per capita as the Solow residual. When the growth rate

of capital per manhour (∆k/k ) is added to the set of explanatory variables, the R 2 reaches 93%.

Table 2 performs the very regressions on the 1948-2015 dataset. Here too λ andµ appear as strong

predictors of the growth rate of real GDP per capita.

Secondly, we run a few regressions with the variations of the capital share (∆α) as the dependent

variable. Results are displayed in tables 3 and 4, respectively for the Solow (1957) dataset and the

1948–2015 dataset. It comes out that the Solow residual is at best a weak predictor of the variations

of the capital share.

In the Solow (1957) dataset (table 3), the Solow residual is not significant in all the regressions

14



Table 2: Idem table 1, 1948–2015 dataset.

Dependent variable: ∆y /y

Dataset→ 1948–2015 [N = 67]

Constant 0.0104530∗∗∗ 0.00515756∗∗∗ -0.00134955

(6.996) (3.086) (1.284)

∆A/A 0.650314∗∗∗

(7.294)

λ -0.134619∗∗∗ 0.0109270

(5.093) (0.5876)

µ 0.164362∗∗∗ 0.0593085∗∗∗

(6.879) (3.817)

∆k/k 0.415178∗∗∗

(12.36)

R 2 0.450 0.578 0.877

R̄ 2 0.442 0.565 0.871

OLS estimates. t -statistics in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: The explanatory power of our measures of LSTC and KSTC (λ,µ) compared to the explanatory power of the

Solow residual (∆A/A) over the variations of the capital share (∆α) in the Solow (1957) dataset.

Dependent variable: ∆α

Dataset→ Solow (1957) [N = 40]

Constant -0.000401293 0.00429165 -0.000419504 0.0035149 -0.000217105

(0.1097) (1.3925) (0.1084) (1.1457) (0.0645)

∆A/A 0.0109813 0.011402

(0.1116) (0.1107)

λ 0.168398∗∗∗ 0.19137∗∗∗

(4.3261) (4.6653)

µ -0.127436∗∗∗ -0.14205∗∗∗

(4.5473) (4.8810)

∆k/k 0.00153661 0.11895 -0.00105888

(0.0164) (0.1317) (0.0118)

R 2 0.000 0.359 0.000 0.399 0.000

R̄ 2 -0.026 0.324 -0.054 0.348 -0.026

OLS estimates. t -statistics in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

15



Table 4: Idem table 3, 1948–2015 dataset.

Dependent variable: ∆α

Dataset→ 1948–2015 [N = 67]

Constant -0.00180884∗ 0.000966788 -0.00322667∗∗ -0.00308333∗∗∗ -0.000275419

(1.8370) (0.9394) (2.5095) (4.8916) (0.3111)

∆A/A 0.147028∗∗ 0.19446∗∗∗

(2.5023) (3.0177)

λ 0.0977628∗∗∗ 0.188353∗∗∗

(6.0052) (16.8930)

µ -0.0777473∗∗∗ -0.143134∗∗∗

(5.2840) (15.3625)

∆k/k 0.0602948∗ 0.258413∗∗∗ 0.0129829

(1.6825) (12.8336) (0.3799)

R 2 0.088 0.389 0.127 0.831 0.002

R̄ 2 0.074 0.370 0.099 0.823 -0.013

OLS estimates. t -statistics in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

where it is included while, λ and µ taken together are strong predictors of∆α.

In the 1948–2015 dataset (table 4), the Solow residual is a significant predictor of ∆α, but the

explanatory power of λ,µ and ∆k/k far exceeds that of ∆A/A. Morover, when the regression is

augmented with the growth rate of the capital-labor ratio, it has a positive and significant effect –

consistently with the model that underlies our growth accounting method – and the regression

reaches an adjusted R 2 of 82%.

4 Conclusion

We attempted to measure LSTC and KSTC through a method that treat both directions of techni-

cal change symmetrically. We have come to invoke rotations of the production function – rather

than shifts – as the manifestation of technical change, in the vein of some theoretical literature on

economic growth.10 Our estimates of LSTC and KSTC are very strong predictors of the growth rate

of real GDP per capita and of the variations of the factor shares.

In future research, we plan to investigate technical change at the sector level through input-

output matrices.

10See, for instance, Glachant (2003), Zuleta (2008) and Zuleta and Young (2013).
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A Proof of proposition 2

For a set of observations (k0, y0,α0, k1, y1,α1) that satisfies assumptions A1 and A2, αλ, αµ, k and k

are the solutions of the system:

(S ) :

¨

f ′µ(k ) = f ′λ(k ) = α1 y1
k1

fµ(k )−k f ′µ(k ) = fλ(k )−k f ′λ(k ) = (1−α1)y1

(S )⇐⇒

(

y0
k0
αµ
�

k
k0

�αµ−1
= y0

k0
αλ
�

k
k0

�αλ−1
= α1 y1

k1

(1−αµ)y0

�

k
k0

�αµ
= (1−αλ)y0

�

k
k0

�αλ
= (1−α1)y1

(S ) =⇒







(1−αµ)
�

1
α1

k1
k0
αµ
�

αµ
1−αµ = (1−α1)

�

y1
y0

�
1

1−αµ

(1−αλ)
�

1
α1

k1
k0
αλ
�

αλ
1−αλ = (1−α1)

�

y1
y0

�
1

1−αλ

Then, αλ =α1−λ
0 ⇒λ= 1− lnαλ/ lnα0 and αµ =α

1+µ
0 ⇒µ= lnαµ/ lnα0−1.

B Proof of proposition 4

By definition of functions fλ an fµ:

∀k > 0,







































f ′µ(k ) = y0
αµ
k0

�

k
k0

�− 1
σ

�

αµ
�

k
k0

�
σ−1
σ +1−αµ

�

1
σ−1

f ′λ(k ) = y0
αλ
k0

�

k
k0

�− 1
σ

�

αλ
�

k
k0

�
σ−1
σ +1−αλ

�

1
σ−1

fµ(k )−k f ′µ(k ) = (1−αµ)y0

�

αµ
�

k
k0

�
σ−1
σ +1−αµ

�

1
σ−1

fλ(k )−k f ′λ(k ) = (1−αλ)y0

�

αλ
�

k
k0

�
σ−1
σ +1−αλ

�

1
σ−1

System (8) is, then, equivalent to:














































αµ y0

k0

�

k
k0

�− 1
σ

�

αµ
�

k
k0

�
σ−1
σ
+1−αµ

�
1
σ−1

= α1 y1
k1

αλ y0
k0

�

k
k0

�− 1
σ

�

αλ
�

k
k0

�
σ−1
σ
+1−αλ

�
1
σ−1

= α1 y1
k1

y0(1−αµ)
�

αµ
�

k
k0

�
σ−1
σ
+1−αµ

�
1
σ−1

= (1−α1)y1

y0(1−αλ)
�

αλ
�

k
k0

�
σ−1
σ
+1−αλ

�
1
σ−1

= (1−α1)y1

Combining the first and third equations, as well as the second and fourth equations above, we get

rid of unknown k and k :

(

(1−α1)σ−1
�

y1
y0

�σ−1
= ασµ

�

1−α1
α1

�σ−1 �k1
k0

�σ−1
+ (1−αµ)σ

(1−α1)σ−1
�

y1
y0

�σ−1
= ασλ

�

1−α1
α1

�σ−1 �k1
k0

�σ−1
+ (1−αλ)σ

which proves proposition 4.
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C The program with Cobb-Douglas production functions

import pandas as pd

import numpy as np

import m atplot l ib . pyplot as p l t

import openpyxl

from scipy . optimize import f s o l v e

import m atplot l ib . patches as mpatches

df = pd . read_excel ( open ( ’ Classeur3 . x l s x ’ , ’ rb ’ ) )

dfadd = pd . DataFrame ( {

’ y _ s h i f t e d ’ : [ ] ,

’ k _ s h i f t e d ’ : [ ] ,

’ a _ s h i f t e d ’ : [ ] ,

’ a_lambda ’ : [ ] ,

’a_mu ’ : [ ] ,

’ t ime_regular ’ : [ ] ,

} )

df = df . j o i n ( dfadd )

p r i n t ( df . head ( ) )

y1 = df [ ’ y ’ ] . s h i f t (−1)

k1 = df [ ’ k ’ ] . s h i f t (−1)

a1 = df [ ’ a ’ ] . s h i f t (−1)

df [ ’ y _ s h i f t e d ’ ] = y1

df [ ’ k _ s h i f t e d ’ ] = k1

df [ ’ a _ s h i f t e d ’ ] = a1

y0 = df [ ’ y ’ ]

k0 = df [ ’ k ’ ]

t ime_regular = y0 < y1+a1∗y1 ∗ ( k0−k1 )/ k1

df [ ’ t ime_regular ’ ] = t ime_regular

df = df . drop ( len ( df )−1 ,0) # supprime l a derniere l i g n e car l e c a l c u l e s t impossible dessus

def f u n c t i o n _ s o l ( x , L ) : # L = [ y0 , y1 , k0 , k1 , alpha1 ] ou [ y1 , y0 , k1 , k0 , alpha0 ]

return (1−x )∗L [ 0 ] ∗ ( L [ 0 ] ∗ x / ( L [ 4 ] ∗ L [ 1 ] ∗ L [ 2 ] / L [ 3 ] ) ) ∗ ∗ ( x/(1−x ))−(1−L [ 4 ] ) ∗ L [ 1 ]

def p a r a m e t e r _ l i s t ( df , n ) : #rend l a l i s t e L bien ordonnee

i f df [ ’ t ime_regular ’ ] [ n ] :

return [ df [ ’ y ’ ] [ n ] , df [ ’ y _ s h i f t e d ’ ] [ n ] , df [ ’ k ’ ] [ n ] , df [ ’ k _ s h i f t e d ’ ] [ n ] , df [ ’ a _ s h i f t e d ’ ] [ n ] ]

e l s e :

return [ df [ ’ y _ s h i f t e d ’ ] [ n ] , df [ ’ y ’ ] [ n ] , df [ ’ k _ s h i f t e d ’ ] [ n ] , df [ ’ k ’ ] [ n ] , df [ ’ a ’ ] [ n ] ]

f o r i in range ( len ( df ) ) :

def function ( x ) :

return f u n c t i o n _ s o l ( x , p a r a m e t e r _ l i s t ( df , i ) )

df . loc [ i , ’ a_mu ’ ] = f s o l v e ( function , 0 ) [ 0 ]

df . loc [ i , ’ a_lambda ’ ] = f s o l v e ( function , 0 . 9 9 ) [ 0 ]

df_out = df . loc [ : , ( ’ annee ’ , ’ y ’ , ’ k ’ , ’ a ’ , ’ a_mu’ , ’ a_lambda ’ , ’ a_mu’ , ’ a_lambda ’ , ’ t ime_regular ’ ) ]

df_out . columns = [ ’ annee ’ , ’ y ’ , ’ k ’ , ’ a ’ , ’ a_mu’ , ’ a_lambda ’ , ’ a_mu/ ’ , ’ a_lambda / ’ , ’ t ime_regular ’ ]

f o r i in range ( len ( df_out ) ) :

i f df_out . loc [ i , ’ t ime_regular ’ ] :

df_out . loc [ i , ’ a_mu/ ’ ] = np . nan

df_out . loc [ i , ’ a_lambda / ’ ] = np . nan

e l s e :

df_out . loc [ i , ’ a_mu ’ ] = np . nan

df_out . loc [ i , ’ a_lambda ’ ] = np . nan

df_out . to_csv ( ’ data_out . csv ’ , sep= ’ ; ’ )

f o r i in range ( len ( df ) −1 ) :

def f_ 0 ( x ) :

return df . loc [ i , ’ y ’ ] ∗ ( x/df . loc [ i , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a ’ ]

def f _ 1 ( x ) :

return df . loc [ i +1 , ’ y ’ ] ∗ ( x/df . loc [ i +1 , ’ k ’ ] ) ∗ ∗ df . loc [ i +1 , ’ a ’ ]

def f_a_mu ( x ) :

i f df . loc [ i , ’ t ime_regular ’ ] :

return df . loc [ i , ’ y ’ ] ∗ ( x/df . loc [ i , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a_mu ’ ]

e l s e :

return df . loc [ i +1 , ’ y ’ ] ∗ ( x/df . loc [ i +1 , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a_mu ’ ]

def f_a_lambda ( x ) :

i f df . loc [ i , ’ t ime_regular ’ ] :

return df . loc [ i , ’ y ’ ] ∗ ( x/df . loc [ i , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a_lambda ’ ]

e l s e :

return df . loc [ i +1 , ’ y ’ ] ∗ ( x/df . loc [ i +1 , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a_lambda ’ ]

x = np . l i n s p a c e ( 0 , 4 , 5 0 0 )

y0 = f _ 0 ( x )

y1 = f _ 1 ( x )

ym = f_a_mu ( x )

y l = f_a_lambda ( x )

p l t . f i g u r e ( )
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p l t . ylim ( 0 , 1 . 5 )

p l t . xlim ( 1 . 5 , 3 . 5 )

p l t . p l o t ( [ df . loc [ i , ’ k ’ ] ] , [ df . loc [ i , ’ y ’ ] ] , ’ ro ’ , l a b e l = ’( y0 , k0 ) ’ )

p l t . p l o t ( [ df . loc [ i +1 , ’ k ’ ] ] , [ df . loc [ i +1 , ’ y ’ ] ] , ’ bo ’ , l a b e l = ’( y1 , k1 ) ’ )

p l t . p l o t ( x , y0 , ’ r − ’ , l a b e l= ’ f0 ’ )

p l t . p l o t ( x , y1 , ’ b− ’ , l a b e l= ’ f1 ’ )

p l t . p l o t ( x ,ym, ’ y ’ , l a b e l= ’f_a_mu ’ )

p l t . p l o t ( x , yl , ’ g ’ , l a b e l= ’ f_a_lambda ’ )

p l t . legend ( loc= ’ lower r i g h t ’ )

p l t . x l a b e l ( ’ k ’ )

p l t . y l a b e l ( ’ y ’ )

p l t . t i t l e ( ’ annee ’+ s t r (1909+ i ) )

p l t . s a v e f i g ( ’ annee_zoom { : 0 3 } . png ’ . format ( i ) )

p l t . c l o s e ( )

p l t . f i g u r e ( )

p l t . ylim ( 0 , 1 . 5 )

p l t . p l o t ( [ df . loc [ i , ’ k ’ ] ] , [ df . loc [ i , ’ y ’ ] ] , ’ ro ’ )

p l t . p l o t ( [ df . loc [ i +1 , ’ k ’ ] ] , [ df . loc [ i +1 , ’ y ’ ] ] , ’ bo ’ )

p l t . p l o t ( x , y0 , ’ r − ’ , l a b e l= ’ f0 ’ )

p l t . p l o t ( x , y1 , ’ b− ’ , l a b e l= ’ f1 ’ )

p l t . p l o t ( x ,ym, ’ y ’ , l a b e l= ’f_a_mu ’ )

p l t . p l o t ( x , yl , ’ g ’ , l a b e l= ’ f_a_lambda ’ )

p l t . legend ( loc= ’ lower r i g h t ’ )

p l t . x l a b e l ( ’ k ’ )

p l t . y l a b e l ( ’ y ’ )

p l t . t i t l e ( ’ annee ’+ s t r (1909+ i ) )

p l t . s a v e f i g ( ’ annee { : 0 3 } . png ’ . format ( i ) )

p l t . c l o s e ( )

D The program with CES production functions

import pandas as pd

import numpy as np

import m atplot l ib . pyplot as p l t

import openpyxl

from scipy . optimize import f s o l v e

import m atplot l ib . patches as mpatches

df = pd . read_excel ( open ( ’ BEA_data_comp_employ . x l s x ’ , ’ rb ’ ) )

sigma = 0 . 5

dfadd = pd . DataFrame ( {

’ y _ s h i f t e d ’ : [ ] ,

’ k _ s h i f t e d ’ : [ ] ,

’ a _ s h i f t e d ’ : [ ] ,

’ a_lambda ’ : [ ] ,

’a_mu ’ : [ ] ,

’ t ime_regular ’ : [ ] ,

’ mu_lin ’ : [ ] ,

’ lambda_lin ’ : [ ]

} )

df = df . j o i n ( dfadd ) y1 = df [ ’ y ’ ] . s h i f t (−1)

k1 = df [ ’ k ’ ] . s h i f t (−1)

a1 = df [ ’ a ’ ] . s h i f t (−1)

df [ ’ y _ s h i f t e d ’ ] = y1

df [ ’ k _ s h i f t e d ’ ] = k1

df [ ’ a _ s h i f t e d ’ ] = a1

y0 = df [ ’ y ’ ]

k0 = df [ ’ k ’ ]

t ime_regular = y0 < y1+a1∗y1 ∗ ( k0−k1 )/ k1

df [ ’ t ime_regular ’ ] = t ime_regular

p r i n t ( df . head ( ) )

# i c i on a tout l e dataFrame c o r r e c t

df = df . drop ( len ( df )−1 ,0) # supprime l a derniere l i g n e car l e c a l c u l e s t impossible dessus

def function_sol_sigma ( x , L ) : # L = [ y0 , y1 , k0 , k1 , alpha1 ] ou [ y1 , y0 , k1 , k0 , alpha0 ]

# fonction a resoudre

y0 = L [ 0 ]

y1 = L [ 1 ]

k0 = L [ 2 ]

k1 = L [ 3 ]

alpha = L [ 4 ]

return (1−alpha ) ∗ ∗ ( sigma−1)∗( y1/y0 ) ∗ ∗ ( sigma−1)−x∗∗ sigma∗((1− alpha )/ alpha ) ∗ ∗ ( sigma−1)∗( k1/k0 ) ∗ ∗ ( sigma−1)−(1−x )∗∗ sigma

def f u n c t i o n _ s o l _ k ( x , L , alpha_mu ) :

k0 = L [ 2 ]

k1 = L [ 3 ]

alpha = L [ 4 ]

return ( x/k0 )∗∗ ( 1/ sigma )−((1−alpha )/ alpha ) ∗ ( k1/k0 ) ∗ ( alpha_mu/(1−alpha_mu ) )

def p a r a m e t e r _ l i s t ( df , n ) : #rend l a l i s t e L bien ordonnee

i f df [ ’ t ime_regular ’ ] [ n ] :

return [ df [ ’ y ’ ] [ n ] , df [ ’ y _ s h i f t e d ’ ] [ n ] , df [ ’ k ’ ] [ n ] , df [ ’ k _ s h i f t e d ’ ] [ n ] , df [ ’ a _ s h i f t e d ’ ] [ n ] ]

e l s e :

return [ df [ ’ y _ s h i f t e d ’ ] [ n ] , df [ ’ y ’ ] [ n ] , df [ ’ k _ s h i f t e d ’ ] [ n ] , df [ ’ k ’ ] [ n ] , df [ ’ a ’ ] [ n ] ]
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f o r i in range ( len ( df ) ) :

def function_sigma ( x ) :

return function_sol_sigma ( x , p a r a m e t e r _ l i s t ( df , i ) ) # cree l a fonction de r e s o l u t i o n de l ’ annee i

df . loc [ i , ’ a_mu ’ ] = f s o l v e ( function_sigma , 0 ) [ 0 ] #cherche l a premiere racine

df . loc [ i , ’ a_lambda ’ ] = f s o l v e ( function_sigma , 0 . 9 9 ) [ 0 ] #cherche l a seconde racine

alpha_mu = 1

def function_k ( x ) :

return f u n c t i o n _ s o l _ k ( x , p a r a m e t e r _ l i s t ( df , i ) , alpha_mu )

df_out = df . loc [ : , ( ’ annee ’ , ’ y ’ , ’ k ’ , ’ a ’ , ’ a_mu’ , ’ a_lambda ’ , ’ a_mu’ , ’ a_lambda ’ , ’ mu_lin ’ , ’ lambda_lin ’ , ’ t ime_regular ’ ) ] # r e t i r e l e s colonnes i n u t i l e s ( s h i f t )

df_out . columns = [ ’ annee ’ , ’ y ’ , ’ k ’ , ’ a ’ , ’ a_mu’ , ’ a_lambda ’ , ’ a_mu/ ’ , ’ a_lambda / ’ , ’ mu_lin ’ , ’ lambda_lin ’ , ’ t ime_regular ’ ] #renome

f o r i in range ( len ( df_out ) ) : #met des nan dans l e s colonnes qui n ’ ont pas s e r v i e s a cause du time_regular

i f df_out . loc [ i , ’ t ime_regular ’ ] :

df_out . loc [ i , ’ a_mu/ ’ ] = np . nan

df_out . loc [ i , ’ a_lambda / ’ ] = np . nan

df_out . loc [ i , ’ mu_lin ’ ] = df_out . loc [ i , ’ a ’ ] − df_out . loc [ i , ’ a_mu ’ ]

df_out . loc [ i , ’ lambda_lin ’ ] = − df_out . loc [ i , ’ a ’ ] + df_out . loc [ i , ’ a_lambda ’ ]

e l s e :

df_out . loc [ i , ’ a_mu ’ ] = np . nan

df_out . loc [ i , ’ a_lambda ’ ] = np . nan

df_out . loc [ i , ’ mu_lin ’ ] = df_out . loc [ i , ’ a_mu/ ’ ] − df_out . loc [ i +1 , ’ a ’ ]

df_out . loc [ i , ’ lambda_lin ’ ] = − df_out . loc [ i , ’ a_lambda / ’ ] + df_out . loc [ i +1 , ’ a ’ ]

df_out . to_csv ( ’ data_out_BEA_data_comp_employ . csv ’ , sep= ’ ; ’ )

ymin = df [ ’ y ’ ] . min ( )

ymax = df [ ’ y ’ ] . max ( )

kmin = df [ ’ k ’ ] . min ( )

kmax = df [ ’ k ’ ] . max ( )

f o r i in range ( len ( df ) −1 ) :

def f_ 0 ( x ) : # fonction de production annee n

return df . loc [ i , ’ y ’ ] ∗ ( x/df . loc [ i , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a ’ ]

def f _ 1 ( x ) : # fonction de production annee n+1

return df . loc [ i +1 , ’ y ’ ] ∗ ( x/df . loc [ i +1 , ’ k ’ ] ) ∗ ∗ df . loc [ i +1 , ’ a ’ ]

def f_a_mu ( x ) : # fonction de production mu

i f df . loc [ i , ’ t ime_regular ’ ] :

return df . loc [ i , ’ y ’ ] ∗ ( x/df . loc [ i , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a_mu ’ ]

e l s e :

return df . loc [ i +1 , ’ y ’ ] ∗ ( x/df . loc [ i +1 , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a_mu ’ ]

def f_a_lambda ( x ) : # fonction de production lambda

i f df . loc [ i , ’ t ime_regular ’ ] :

return df . loc [ i , ’ y ’ ] ∗ ( x/df . loc [ i , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a_lambda ’ ]

e l s e :

return df . loc [ i +1 , ’ y ’ ] ∗ ( x/df . loc [ i +1 , ’ k ’ ] ) ∗ ∗ df . loc [ i , ’ a_lambda ’ ]

x = np . l i n s p a c e ( 0 , i n t ( 1 . 2∗kmax)+1 ,500)

y0 = f _ 0 ( x )

y1 = f _ 1 ( x )

ym = f_a_mu ( x )

y l = f_a_lambda ( x )

p l t . f i g u r e ( )

p l t . ylim ( 0 . 8∗ ymin , ymax+0.2∗ymin )

p l t . xlim ( 0 . 8∗kmin , kmax+0.2∗kmin )

p l t . p l o t ( [ df . loc [ i , ’ k ’ ] ] , [ df . loc [ i , ’ y ’ ] ] , ’ ro ’ , l a b e l = ’( y0 , k0 ) ’ )

p l t . p l o t ( [ df . loc [ i +1 , ’ k ’ ] ] , [ df . loc [ i +1 , ’ y ’ ] ] , ’ bo ’ , l a b e l = ’( y1 , k1 ) ’ )

p l t . p l o t ( x , y0 , ’ r − ’ , l a b e l= ’ f0 ’ )

p l t . p l o t ( x , y1 , ’ b− ’ , l a b e l= ’ f1 ’ )

p l t . p l o t ( x ,ym, ’ y ’ , l a b e l= ’f_a_mu ’ )

p l t . p l o t ( x , yl , ’ g ’ , l a b e l= ’ f_a_lambda ’ )

p l t . legend ( loc= ’ lower r i g h t ’ )

p l t . x l a b e l ( ’ k ’ )

p l t . y l a b e l ( ’ y ’ )

p l t . t i t l e ( ’ annee ’+ s t r (1909+ i ) )

p l t . s a v e f i g ( ’ annee_zoom { : 0 3 } . png ’ . format ( i ) )

p l t . c l o s e ( )

p l t . f i g u r e ( )

p l t . ylim ( 0 , ymax∗1 . 2 )

p l t . xlim ( 0 , kmax∗1 . 2 )
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