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INTRODUCTION

Out of nearly 7000 languages spoken worldwide, current speech (ASR, TTS, voice search, etc.) technologies barely address 200 of them. Broadening ASR technologies to ideally all possible languages is a challenge with very high stakes in many areas and is at the heart of several fundamental research problems ranging from psycholinguistic (how humans learn to recognize speech) to pure machine learning (how to extract knowledge from unlabeled data). The present work focuses on the narrow but important problem of unsupervised Acoustic Unit Discovery (AUD). It takes place as the continuation of an ongoing effort to develop a Bayesian model suitable for this task, which stems from the seminal work of [START_REF] Lee | A nonparametric bayesian approach to acoustic model discovery[END_REF] later refined and made scalable in [START_REF] Ondel | Variational inference for acoustic unit discovery[END_REF]. This model, while rather crude, has shown that it can provide a clustering accurate O. Scharenborg was supported by a Vidi-grant from NWO (grant number: 276-89-003) enough to be used in topic identification of spoken document in unknown languages [START_REF] Kesiraju | Topic identification of spoken documents using unsupervised acoustic unit discovery[END_REF]. It was also shown that this model can be further improved by incorporating a Bayesian "phonotactic" language model learned jointly with the acoustic units [START_REF] Ondel | Bayesian phonotactic language model for acoustic unit discovery[END_REF]. Finally, following the work in [START_REF] Johnson | Composing graphical models with neural networks for structured representations and fast inference[END_REF] it has been combined successfully with variational auto-encoders leading to a model combining the potential of both deep neural networks and Bayesian models [START_REF] Ebbers | Hidden markov model variational autoencoder for acoustic unit discovery[END_REF]. The contribution of this work is threefold:

• we compare two Bayesian models ( [START_REF] Ondel | Variational inference for acoustic unit discovery[END_REF] and [START_REF] Ebbers | Hidden markov model variational autoencoder for acoustic unit discovery[END_REF]) for acoustic unit discovery (AUD) on a very low resource language speech corpus,

• we investigate the use of "informative prior" to improve the performance of Bayesian models by using information from resourceful languages,

• as an extrinsic evaluation of AUD quality, we cascade AUD with sequence/lattice based word discovery [START_REF] Heymann | Unsupervised word segmentation from noisy input[END_REF].

MODELS

The AUD model described in [START_REF] Lee | A nonparametric bayesian approach to acoustic model discovery[END_REF][START_REF] Ondel | Variational inference for acoustic unit discovery[END_REF] is a non-parametric Bayesian Hidden Markov Model (HMM). This model is topologically equivalent to a phone-loop model with two major differences:

• since it is trained in an unsupervised fashion the elements of the loop cannot directly be interpreted as the actual phones of the target language but rather as some acoustic units (defined as 3-states left-to-right sub-HMM) whose time scale approximately corresponds the phonetic time scale.

• to cope with the unknown number of acoustic units needed to properly describe speech, the model assumes a theoretically infinite number of potential acoustic units. However, during inference, the prior over the weight of the acoustic units (a Dirichlet Process [START_REF] Teh | Hierarchical Bayesian nonparametric models with applications[END_REF])

will act as a sparsity regularizer leading to a model which explains the data with a relatively small number of units.

In this work, we have used two variants of this original model. The first one (called HMM model in the remainder of this paper), following the analysis led in [START_REF] Kurihara | Collapsed variational Dirichlet process mixture models[END_REF], approximates the Dirichlet Process prior by a mere symmetric Dirichlet prior. This approximation, while retaining the sparsity constraint, avoids the complication of dealing with the variational treatment of the stick breaking process frequent in Bayesian non-parametric models. The second variant, which we shall denote Structured Variational AutoEncoder (SVAE) AUD, is based upon the work of [START_REF] Johnson | Composing graphical models with neural networks for structured representations and fast inference[END_REF] and embeds the HMM model into the Variational AutoEncoder framework [START_REF] Kingma | Auto-encoding variational bayes[END_REF]. A very similar version of the SVAE for AUD was developed independently and presented in [START_REF] Ebbers | Hidden markov model variational autoencoder for acoustic unit discovery[END_REF]. The main noteworthy difference between [START_REF] Ebbers | Hidden markov model variational autoencoder for acoustic unit discovery[END_REF] and our model is that we consider a fully Bayesian version of the HMM embedded in the VAE; and the posterior distribution and the VAE parameters are trained jointly using the Stochastic Variational Bayes [START_REF] Johnson | Composing graphical models with neural networks for structured representations and fast inference[END_REF][START_REF] Matthew | Stochastic variational inference[END_REF]. For both variants, the prior over the HMM parameters were set to the conjugate of the likelihood density: Normal-Gamma prior for the mean and variance of the Gaussian components, symmetric Dirichlet prior over the HMM's state mixture's weights and symmetric Dirichlet prior over the acoustic units' weights.

For the case of the uninformative prior, the prior was set to be vague prior with one pseudo-observation [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF] 1 .

INFORMATIVE PRIOR

Bayesian Inference differs from other machine learning techniques by introducing a distribution p(ξ) over the parameters of the model. A major concern in Bayesian Inference is usually to define a prior that makes as little assumption as possible. Such a prior is usually known as uninformative prior. Having a completely uninformative prior has the practical advantage that the prior distribution will have a minimal impact on the outcome of the inference leading to a model which bases its prediction purely and solely on the data. In the present work, we aim at the opposite behavior, we wish our AUD model to learn phone-like units from the unlabeled speech data of a target language given the knowledge that was previously accumulated from another resourceful language. More formally, the original AUD model training consists in estimate the a posteriori distribution of the parameters given the unlabeled speech data of a target language X t :

p(ξ|X t ) = p(X t |ξ)p(ξ) p(X t ) (1) 
The parameters are divided into two subgroups ξ = {η, u t } where η are the global parameters of the model, and u t are the latent variables which, in our case, correspond to the sequences of acoustic units. The global parameters are separated into two independent subsets : η = {η A , η L }, corresponding to the acoustic parameters (η A ) and the "phonotactic" language model parameters (η L ). Replacing η and following the conditional independence of the variable induced by the model (see [START_REF] Ondel | Variational inference for acoustic unit discovery[END_REF] for details) leads to:

p(u t , η|X t ) ∝ p(X t |u t , η A )p(u t |η L )p(η L )p(η A ) (2)
If we further assume that we have at our disposal speech data in a different language than the target one, denoted X p , along with its phonetic transcription u p , it is then straightforward to show that:

p(η, u t |X t , X p , u p ) ∝ p(X t |u t , η A )p(u t |η L )p(η A |X p , u p ) (3) 
which is the same as Eq. 2 but for the distribution of the acoustic parameters which is based on the data of the resourceful language. In contrast of the term uninformative prior we denote p(η A |X p , u p ) as an informative prior. As illustrated by Eq. 3, a characteristic of Bayesian inference is that it naturally leads to a sequential inference. Therefore, model training can be summarized as:

• given some prior data X p from a resourceful language, estimate a posterior distribution over the acoustic parameters p(η A |X p )

• for a new unlabeled speech corpus, estimate the posterior distribution but considering the learned posterior distribution p(η A |X p ) as a "prior".

Practically, the computation of the informative prior as well as the final posterior distribution is intractable and we seek for an approximation by means of the well known Variational Bayes Inference [START_REF] Jordan | An introduction to variational methods for graphical models[END_REF]. The approximate informative prior q 1 (η A ) is estimated by optimizing the variational lower bound of the evidence of the prior data X p :

q * 1 = arg max q1 E q1(η A ) ln p(X p , η A |u p , ) -D KL (q 1 (η A )||p(η A )) (4) 
where D KL is the Kullback-Leibler divergence. Then, the posterior distribution of the parameters given the target data q 2 (u t , η A , η L ) can be estimated by optimizing the evidence of the target data X t :

q * 2 = arg max q2 E q2(ut,η A ,η L ) ln p(X t , u t , η A , η L ) -D KL (q 2 (η A )||q 1 (η A )) -D KL (q 2 (u t , η L )||p(u t , η L )) (5) 
Note that when the model is trained with an uninformative prior the loss function is the as in Eq. 5 but with p(η A ) instead of the q 1 (η A ). For the case of the uninformative prior, the Variational Bayes Inference was initialized as described in [START_REF] Ondel | Variational inference for acoustic unit discovery[END_REF]. In the informative prior case, we initialized the algorithm by setting q 2 (η A ) = q 1 (η A ).

EXPERIMENTAL SETUP

Corpora and acoustic features

We used the Mboshi5K corpus [START_REF] Godard | A very low resource language speech corpus for computational language documentation experiments[END_REF] as a test set for all the experiments reported here. Mboshi (Bantu C25) is a typical Bantu language spoken in Congo-Brazzaville. It is one of the languages documented by the BULB (Breaking the Unwritten Language Barrier) project [START_REF] Adda | Breaking the unwritten language barrier: The Bulb project[END_REF]. This speech dataset was collected following a real language documentation scenario, using Lig Aikuma2 , a mobile app specifically dedicated to fieldwork language documentation, which works both on android powered smartphones and tablets [START_REF] Blachon | Parallel speech collection for underresourced language studies using the LIG-Aikuma mobile device app[END_REF]. The corpus is multilingual (5130 Mboshi speech utterances aligned to French text) and contains linguists' transcriptions in Mboshi (in the form of a non-standard graphemic form close to the language phonology). It is also enriched with automatic forced-alignment between speech and transcriptions. The dataset is made available to the research community 3 . More details on this corpus can be found in [START_REF] Godard | A very low resource language speech corpus for computational language documentation experiments[END_REF].

TIMIT is also used as an extra speech corpus to train the informative prior. We used two different set of features: the mean normalized MFCC + ∆ + ∆∆ generated by HTK and the Multilingual BottleNeck (MBN) features [START_REF] Grézl | Adapting multilingual neural network hierarchy to a new language[END_REF] trained on the Czech, German, Portuguese, Russian, Spanish, Turkish and Vietnamese data of the Global Phone database.

Acoustic unit discovery (AUD) evaluation

To evaluate our work we measured how the discovered units compared to the forced aligned phones in term of segmentation and information. The accuracy of the segmentation was measured in term of Precision, Recall and F-score. If a unit boundary occurs at the same time (+/-10ms) of an actual phone boundary it is considered as a true positive, otherwise it is considered to be a false positive. If no match is found with a true phone boundary, this is considered to be a false negative. The consistency of the units was evaluated in term of normalized mutual information (NMI -see [START_REF] Ondel | Variational inference for acoustic unit discovery[END_REF][START_REF] Ondel | Bayesian phonotactic language model for acoustic unit discovery[END_REF][START_REF] Ebbers | Hidden markov model variational autoencoder for acoustic unit discovery[END_REF] for details) which measures the statistical dependency between the units and the forced aligned phones. A NMI of 0 % means that the units are completely independent of the phones whereas a NMI of 100 % indicates that the actual phones could be retrieved without error given the sequence of discovered units. 

Extension to word discovery

In order to provide an extrinsic metric to evaluate the quality of the acoustic units discovered by our different methods, we performed an unsupervised word segmentation task on the acoustic units sequences, and evaluated the accuracy of the discovered word boundaries. We also wanted to experiment using lattices as an input for the word segmentation task, instead of using single sequences of units, so as to better mitigate the uncertainty of the AUD task and provide a companion metric that would be more robust to noise. A model capable of performing word segmentation both on lattices and text sequences was introduced by [START_REF] Heymann | Unsupervised word segmentation from noisy input[END_REF]. Building on the work of [START_REF] Mochihashi | Bayesian unsupervised word segmentation with nested pitman-yor language modeling[END_REF][START_REF] Neubig | Bayesian learning of a language model from continuous speech[END_REF] they combine a nested hierarchical Pitman-Yor language model with a Weighted Finite State Transducer approach. Both for lattices and acoustic units sequences, we use the implementation of the authors with a bigram language model and a unigram character model 4 . Word discovery is evaluated using the Boundary metric from the Zero Resource Challenge 2017 [START_REF] Ludusan | Bridging the gap between speech technology and natural language processing: an evaluation toolbox for term discovery systems[END_REF] and [START_REF] Dunbar | The zero resource speech challenge 2017[END_REF]. This metric measures the quality of a word segmentation and the discovered boundaries with respect to a gold corpus (Precision, Recall and F-score are computed).

RESULTS AND DISCUSSION

First, we evaluated the standard HMM model with an uninformative prior (this will be our baseline) for the two different input features: MFCC (and derivatives) and MBN. Results are shown in Table 1. Surprisingly, the MBN features perform relatively poorly compared to the standard MFCC. These results are contradictory to those reported in [START_REF] Ondel | Bayesian phonotactic language model for acoustic unit discovery[END_REF]. Two factors may explain this discrepancy: the Mboshi5k data being different from the training data of the MBN neural network, the neural network may not generalize well. Another possibility may be that the initialization scheme of the model is not suitable for this type of features. Indeed, Variational Bayesian Inference algorithm converges only to a local optimum of the objective function and is therefore dependent of the initialization. We believe the second explanation is the more likely since, as we shall see shortly, the best results in term of word segmentation and NMI are eventually obtained with the MBN features when the inference is done with the informative prior. Table 3: Average duration of the (AUD) units (AUD) for the HMM and SVAE models trained with an uninformative prior. "phones" refers to the forced aligned phone reference.

Next, we compared the HMM and the SVAE models when trained with an uninformative prior (lines with "Inf. Prior" set to "no" in Table 4). The SVAE significantly improves the NMI and the precision showing that it extracts more consistent units than the HMM model. However, it also degrades the segmentation in terms of recall. We further investigated this behavior by looking at the duration of the units found by both models compared to the true phones (Table 3). We observe that the SVAE model favors longer units than the HMM model hence leading to fewer boundaries and consequently smaller recall.

We then evaluated the effect of the informative prior on the acoustic unit discovery (Table 4). On all 4 combinations (2 features sets × 2 models) we observe an improvement in terms of precision and NMI but a degradation of the recall. This result is encouraging since the informative prior was trained on English data (TIMIT) which is very different from Mboshi. Indeed, this suggests that even speech from an unrelated language can be of some help in the design of an ASR for a very low resource language. Finally, similarly to the SVAE/HMM case described above, we found that the degradation of the recall is due to longer units discovered for models with an informative prior (numbers omitted due to lack of space).

Word discovery results are given in Table 2 for the Boundary metric [START_REF] Ludusan | Bridging the gap between speech technology and natural language processing: an evaluation toolbox for term discovery systems[END_REF][START_REF] Dunbar | The zero resource speech challenge 2017[END_REF]. We observe that i) the best word boundary detection (F-score) is obtained with MBN features, an informative prior and the SVAE model; this confirms the results of table 4 and shows that better AUD leads to better word segmentation ii) word segmentation from AUD graph Lattices is slightly better than from flat sequences of AUD symbols (1best); iii) our results outperform a pure speech based baseline [START_REF] Jansen | Efficient spoken term discovery using randomized algorithms[END_REF] (F-score of 19.3% on the exact same corpus).

CONCLUSION

We have conducted an analysis of the state-of-the-art Bayesian approach for acoustic unit discovery on a real case of lowresource language. This analysis was focused on the quality of the discovered units compared to the gold standard phone alignments. Outcomes of the analysis are i) the combination of neural network and Bayesian model (SVAE) yields a significant improvement in the AUD in term of consistency ii) Bayesian models can naturally embed information from a resourceful language and consequently improve the consistency of the discovered units. Finally, we hope this work can serve as a baseline for future research on unsupervised acoustic unit discovery in very low resource scenarios.

Table 1 :

 1 AUD results of the baseline (HMM model with uninformative prior) -Mboshi5k corpus

	Features Precision Recall F-score NMI
	MFCC	28.40	54.36	37.36	17.92
	MBN	24.60	41.71	30.95	14.81

Table 2 :

 2 Precision, Recall and F-measure on word boundaries, using different AUD methods. Segmental DTW baseline[START_REF] Jansen | Efficient spoken term discovery using randomized algorithms[END_REF] gave F-score of 19.3% on the exact same corpus; dpseg[START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF] was also used as a word segmentation baseline and gave similar (slightly lower) F-scores to 1-best (best config with dpseg gave 42.5%) -Mboshi5k corpus

		Features Model Inf. Prior Precision Recall F-score Precision Recall F-score
						1-best Word Seg.	Lattices Word Seg.
		MFCC	HMM	no	28.8	74.5	41.5	29	75.9	41.9
		MFCC	HMM	yes	28.5	79.1	41.9	29.3	78.1	42.6
		MFCC	SVAE	no	28.7	77.2	41.9	30	74.4	42.8
		MFCC	SVAE	yes	29.3	73.1	41.8	30.4	69.6	42.3
		MBN		HMM	no	30.3	69	42.1	30.8	66.1	42
		MBN		HMM	yes	29.2	67.5	40.8	29.9	67.8	41.5
		MBN		SVAE	no	29.2	68.3	41	29.6	68.1	41.3
		MBN		SVAE	yes	29.8	73.4	42.4	30.9	72.2	43.3
	Features Model Average Unit duration (s)					
	phones	0.091					
	MFCC	HMM	0.082					
	MFCC	SVAE	0.096					
	MBN	HMM	0.093					
	MBN	SVAE	0.102					

Table 4 :

 4 Effect of the informative prior on AUD (phone boundary detection) -Mboshi5k corpus based on segmental DTW

	Features Model Inf. Prior Precision Recall F-score	NMI
	MFCC	HMM	no	28.4	54.36	37.6	17.92
	MFCC	HMM	yes	29.88	47.34	36.64	20.42
	MFCC	SVAE	no	30.1	49.29	37.38	21.03
	MFCC	SVAE	yes	35.85	25.59	29.87	21.67
	MBN	HMM	no	24.6	41.71	30.95	14.81
	MBN	HMM	yes	27.8	36.58	31.56	20.34
	MBN	SVAE	no	26.8	41.51	32.57	18.33
	MBN	SVAE	yes	30.75	37.94	33.97 23.49

Because of lack of space, we have only given a rudimentary description of the models. Note that the HMM model was described at length in[START_REF] Ondel | Variational inference for acoustic unit discovery[END_REF] whereas the full description of the SVAE model is yet to be published. However, the implementation of both models is available at https://github.com/amdtkdev/amdtk

http://lig-aikuma.imag.fr

It will be made available for free from ELRA, but its current version is online on: https://github.com/besacier/mboshi-frenchparallel-corpus

It would be more natural to use a 4-gram or an even higher order spelling model for word discovery, but we wanted to be able to validate our metric by matching it with the model of[START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF] (dpseg) which implements a bigram language model based on a unigram model of characters (see details in Table2).
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