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We investigate end-to-end speech-to-text translation on a corpus of audiobooks specifically augmented for this task. Previous works investigated the extreme case where source language transcription is not available during learning nor decoding, but we also study a midway case where source language transcription is available at training time only. In this case, a single model is trained to decode source speech into target text in a single pass. Experimental results show that it is possible to train compact and efficient end-to-end speech translation models in this setup. We also distribute the corpus and hope that our speech translation baseline on this corpus will be challenged in the future.

INTRODUCTION

Most spoken language translation (SLT) systems integrate (loosely or closely) two main modules: source language speech recognition (ASR) and source-to-target text translation (MT). In these approaches, a symbolic sequence of words (or characters) in the source language is used as an intermediary representation during the speech translation process. However, recent works have attempted to build end-to-end speech-to-text translation without using source language transcription during learning or decoding. One attempt to translate directly a source speech signal into target language text is that of [START_REF] Duong | An Attentional Model for Speech Translation Without Transcription[END_REF]. However, the authors focus on the alignment between source speech utterances and their text translation without proposing a complete end-to-end translation system. The first attempt to build an end-to-end speech-to-text translation system (which does not use source language) is our own work [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF] but it was applied to a synthetic (TTS) speech corpus. A similar approach was then proposed and evaluated on a real speech corpus by [START_REF] Weiss | Sequence-to-Sequence Models Can Directly Transcribe Foreign Speech[END_REF].

This paper is a follow-up of our previous work [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF]. We now investigate end-to-end speech-to-text translation on a corpus of audiobooks -LibriSpeech [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF] -specifically augmented to perform end-to-end speech translation [START_REF] Ali Can Kocabiyikoglu | Augmenting Librispeech with French Translations: A Multimodal Corpus for Direct Speech Translation Evaluation[END_REF]. While previous works [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF][START_REF] Weiss | Sequence-to-Sequence Models Can Directly Transcribe Foreign Speech[END_REF] investigated the extreme case where source language transcription is not available during learning nor decoding (unwritten language scenario defined in [START_REF] Adda | Breaking the Unwritten Language Barrier: The Bulb Project[END_REF][START_REF] Anastasopoulos | A case study on using speech-to-translation alignments for language documentation[END_REF]), we also investigate, in this paper, a midway case where a certain amount of source language transcription is available during training. In this intermediate scenario, a unique (endto-end) model is trained to decode source speech into target text through a single pass (which can be interesting if compact speech translation models are needed).

This paper is organized as follows: after presenting our corpus in section 2, we present our end-to-end models in section 3. Section 4 describes our evaluation on two datasets: the synthetic dataset used in [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF] and the audiobook dataset described in section 2. Finally, section 5 concludes this work.

AUDIOBOOK CORPUS FOR END-TO-END SPEECH TRANSLATION

Augmented LibriSpeech

Large quantities of parallel texts (e.g. Europarl or Open-Subtitles) are available for training text machine translation systems, but there are no large (>100h) and publicly available parallel corpora that include speech in a source language aligned to text in a target language. The Fisher/Callhome Spanish-English corpora [START_REF] Post | Improved Speech-to-Text Translation with the Fisher and Callhome Spanish-English Speech Translation Corpus[END_REF] are only medium size (38h), contain low-bandwidth recordings, and are not available for free. We very recently built a large English to French corpus for direct speech translation training and evaluation [START_REF] Ali Can Kocabiyikoglu | Augmenting Librispeech with French Translations: A Multimodal Corpus for Direct Speech Translation Evaluation[END_REF] 1 , which is much larger than the existing corpora described above. We started from the LibriSpeech corpus used for Automatic Speech Recognition (ASR), which has 1000 hours of speech aligned with their transcriptions [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF].

The read audiobook recordings derive from a project based on a collaborative effort: LibriVox. The speech recordings are based on public domain books available on Gutenberg Project2 which are distributed in LibriSpeech along with the recordings.

Our augmentation of LibriSpeech is straightforward: we automatically aligned e-books in a foreign language (French) with English utterances of LibriSpeech. This lead to 236 hours of English speech aligned to French translations at utterance level (more details can be found in [START_REF] Ali Can Kocabiyikoglu | Augmenting Librispeech with French Translations: A Multimodal Corpus for Direct Speech Translation Evaluation[END_REF]). Since English (source) transcriptions are initially available for Lib-riSpeech, we also translated them using Google Translate. To summarize, for each utterance of our 236h corpus, the following quadruplet is available: English speech signal, English transcription, French text translation 1 (from alignment of e-books) and translation 2 (from MT of English transcripts).

MT and AST tasks

This paper focuses on the speech translation (AST) task of audiobooks from English to French, using the Augmented LibriSpeech corpus. We compare a direct (end-to-end) approach, with a cascaded approach that combines a neural speech transcription (ASR) model with a neural machine translation model (MT). The ASR and MT results are also reported as baselines for future uses of this corpus.

Augmented LibriSpeech contains 236 hours of speech in total, which is split into 4 parts: a test set of 4 hours, a dev set of 2 hours, a clean train set of 100 hours, and an extended train set with the remaining 130 hours. Table 1 gives detailed information about the size of each corpus. All segments in the corpus were sorted according to their alignment confidence scores, as produced by the alignment software used by the authors of the corpus [START_REF] Ali Can Kocabiyikoglu | Augmenting Librispeech with French Translations: A Multimodal Corpus for Direct Speech Translation Evaluation[END_REF]. The test, dev and train sets correspond to the highest rated alignments. The remaining data (extended train) is more noisy, as it contains more incorrect alignments. The test set was manually checked, and incorrect alignments were removed. We perform all our experiments using train only (without extended train). Furthermore, we double the training size by concatenating the aligned references with the Google Translate references. We also mirror our experiments on the BTEC synthetic speech corpus, as a follow-up to [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF].

END-TO-END MODELS

For the three tasks, we use encoder-decoder models with attention [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF][START_REF] Chorowski | Attention-Based Models for Speech Recognition[END_REF][START_REF] Bahdanau | End-to-End Attention-based Large Vocabulary Speech Recognition[END_REF][START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF][START_REF] Weiss | Sequence-to-Sequence Models Can Directly Transcribe Foreign Speech[END_REF]. Because we want to share some parts of the model between tasks (multi-task training), the ASR and AST models use the same encoder architecture, and the AST and MT models use the same decoder architecture.

Speech Encoder

The speech encoder is a mix between the convolutional encoder presented in [START_REF] Weiss | Sequence-to-Sequence Models Can Directly Transcribe Foreign Speech[END_REF] and our previously proposed encoder [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF]. It takes as input a sequence of audio features: x = (x 1 , . . . , x Tx ) ∈ R Tx×n . Like [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF], these features are given as input to two non-linear (tanh) layers, which output new features of size n . Like [START_REF] Weiss | Sequence-to-Sequence Models Can Directly Transcribe Foreign Speech[END_REF], this new set of features is then passed to a stack of two convolutional layers. Each layer applies 16 convolution filters of shape (3, 3, depth) with a stride of (2, 2) w.r.t. time and feature dimensions; depth is 1 for the first layer, and 16 for the second layer. We get features of shape (T x /2, n /2, 16) after the 1 st layer, and (T x /4, n /4, 16) after the 2 nd layer. This latter tensor is flattened with shape (T x = T x /4, 4n ) before being passed to a stack of three bidirectional LSTMs. This set of features has 1/4th the time length of the initial features, which speeds up training, as the complexity of the model is quadratic with respect to the source length. In our models, we use n = 128, which gives features of size 512.

The last bidirectional LSTM layer computes a sequence of annotations h = h 1 , • • • , h T x , where each annotation h i is a concatenation of the corresponding forward and backward states:

h i = ( h i ⊕ h i ) ∈ R 2m
, with m the encoder cell size.

This model differs from [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF], which did not use convolutions, but time pooling between each LSTM layer, resulting in a shorter sequence (pyramidal encoder).

Character-level decoder

We use a character-level decoder composed of a conditional LSTM [START_REF] Sennrich | Nematus: a Toolkit for Neural Machine Translation[END_REF], followed by a dense layer.

s t , o t = update 1 (s t-1 , E(y t-1 )) (1) c t = look(o t , h) (2) 
s t , o t = update 2 (s t-1 , c t ) (3) 
y t = generate(o t ⊕ c t ⊕ E(y t-1 )) (4) 
where update 1 and update 2 are two LSTMs with cell size m . look is a vanilla global attention mechanism [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF], which uses a feed-forward network with one hidden layer of size m . E k×|V | is the target embedding matrix, with k the embedding size and |V | the vocabulary size. c t ∈ R 2m is a context vector which summarizes the input states to help the decoder generate a new symbol and update its state. generate uses a nonlinear layer followed by a linear projection to compute a score for each symbol in target vocabulary V . It then picks target symbol z t with the highest score:

generate(x) = arg |V | max i=1 z i (5) z = W proj tanh(W T out x + b out ) + b proj (6) 
with

W proj ∈ R |V |×l , b proj ∈ R |V | , W out ∈ R l×(m +2m+k) , b out ∈ R l
, where l is the output layer size.

EXPERIMENTS

Model Settings

Speech files were preprocessed using Yaafe [START_REF] Mathieu | YAAFE, an Easy to Use and Efficient Audio Feature Extraction Software[END_REF], to extract 40 MFCC features and frame energy for each frame with a step size of 10 ms and window size of 40 ms, following [START_REF] Chan | Listen, Attend and Spell[END_REF][START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF]. We tokenize and lowercase all the text, and normalize the punctuation, with the Moses scripts 3 . For BTEC, the same preprocessing as [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF] for LibriSpeech are of size 46 for English (transcriptions) and 167 for French (translation). The decoder outputs are always at the character-level (for AST, MT and ASR). For the MT task, the LibriSpeech English (source) side is preprocessed into subword units [START_REF] Sennrich | Neural Machine Translation of Rare Words with Subword Units[END_REF]. We limit the number of merge operations to 30k, which gives a vocabulary of size 27k. The MT encoder for BTEC takes entire words as input.

Our BTEC models use an LSTM size of m = m = 256, while the LibriSpeech models use a cell size of 512, except for the speech encoder layers which use a cell size of m = 256 in each direction. We use character embeddings of size k = 64 for BTEC, and k = 128 for LibriSpeech. The MT encoders are more shallow, with a single bidirectional layer. The source embedding sizes for words (BTEC) and subwords (LibriSpeech) are respectively 128 and 256.

The input layers in the speech encoders have a size of 256 for the first layer and n = 128 for the second. The Lib-riSpeech decoders use an output layer size of l = 512. For BTEC, we do not use any non-linear output layer, as we found that this led to overfitting.

Training settings

We train our models with Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF], with a learning rate of 0.001, and a mini-batch size of 64 for BTEC, and 32 for LibriSpeech (because of memory constraints). We use variational dropout [START_REF] Diederik P Kingma | Variational dropout and the local reparameterization trick[END_REF], i.e., the same dropout mask is applied to all elements in a batch at all time steps, with a rate of 0.2 for LibriSpeech and 0.4 for BTEC. In the MT tasks, we also drop source and target symbols at random, with probability 0.2. Dropout is not applied on recurrent connections [START_REF] Zaremba | Recurrent Neural Network Regularization[END_REF].

We train all our models on LibriSpeech train augmented with the Google Translate references, i.e., the source side of the corpus (speech) is duplicated, and the target side (translations) is a concatenation of the aligned references with the Google Translate references. Because of GPU memory limits, we set the maximum length to 1400 frames for LibriSpeech input, and 300 characters for its output. This covers about 90% of the training corpus. Longer sequences are kept but truncated to the maximum size. We evaluate our models on the dev set every 1000 mini-batch updates using BLEU for AST and MT, and WER for ASR, and keep the best performing checkpoint for final evaluation on the test set.

Our models are implemented with TensorFlow [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF] as part of the LIG-CRIStAL NMT toolkit4 .

Results

Table 2 presents the results for the ASR and MT tasks on BTEC and LibriSpeech. The MT task (and by extension the AST task) on LibriSpeech (translating novels) looks particularly challenging, as we observe BLEU scores around 20% For Automatic Speech Translation (AST), we try four settings. The cascaded model combines both the ASR and MT models (as a pipeline). The end-to-end model (described in section 3) does not make any use of source language transcripts. The pre-trained model is identical to end-to-end, but its encoder and decoder are initialized with our ASR and MT greedy beam ensemble params Test BLEU (million) Baseline [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF] 29 models. The multi-task model is also pre-trained, but continues training for all tasks, by alternating updates like [START_REF] Luong | Multi-task Sequence to Sequence Learning[END_REF], with 60% of updates for AST and 20% for ASR and MT. Table 3 and 4 present the results for the end-to-end AST task on BTEC and LibriSpeech. On both corpora, we show that: (1) it is possible to train compact end-to-end AST models with a performance close to cascaded models; (2) pretraining and multi-task learning 6 improve AST performance;

(3) contrary to [START_REF] Weiss | Sequence-to-Sequence Models Can Directly Transcribe Foreign Speech[END_REF], in both BTEC and LibriSpeech settings, best AST performance is observed when a symbolic sequence of symbols in the source language is used as an intermediary representation during the speech translation process (cascaded system); (4) finally, the AST results presented on Lib-riSpeech demonstrate that our augmented corpus is useful, although challenging, to benchmark end-to-end AST systems on real speech at a large scale. We hope that our baseline on Augmented LibriSpeech will be challenged in the future.

The large improvements on MT and AST on the BTEC corpus, compared to [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF] are mostly due to our use of a better decoder, which outputs characters instead of words. Fig. 2: Dev BLEU scores on 3 models for end-to-end AST of audiobooks. Best scores on the dev set for the end-to-end (mono-task), pre-train and multi-task models were achieved at steps 369k, 129k and 95k.

Analysis

Figure 1 shows the evolution of BLEU and WER scores for MT and ASR tasks with single models, and when we continue training them as part of a multi-task model. The multi-task procedure does more updates on AST, which explains the degraded results, but we observe that the speech encoder and text decoder are still able to generalize well to other tasks. Figure 2 shows the evolution of dev BLEU scores for our three AST models on LibriSpeech. We see that pre-training helps the model converge much faster. Eventually, the End-to-End system reaches a similarly good solution, but after three times as many updates. Multi-Task training does not seem to be helpful when combined with pre-training.

CONCLUSION

We present baseline results on End-to-End Automatic Speech Translation on a new speech translation corpus of audiobooks, and on a synthetic corpus extracted from BTEC (follow-up to [START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF]). We show that, while cascading two neural models for ASR and MT gives the best results, end-to-end methods that incorporate the source language transcript come close in performance.

Fig. 1 :

 1 Fig. 1: Augmented LibriSpeech Dev BLEU scores for the MT task, and WER scores for the ASR task, with the initial (mono-task) models, and when multi-task training picks up.

Table 1 :

 1 Size of the Augmented LibriSpeech and BTEC corpora, with the average frame, character and word counts (subword count for LibriSpeech) per segment. Character counts take whitespaces into account. The source side of BTEC actually has six times this number of segments and hours, because we concatenate multiple speakers (synthetic voices). LibriSpeech train 1 (alignments) and train 2 (automatic translation) share the same source side.

	is applied. Character-level vocabularies

Table 2 :

 2 5 . MT and ASR results on test set for BTEC and Augmented LibriSpeech. We use a beam size of 8, and ensembles of 2 models trained from scratch.

		Model	ASR (WER ↓) MT (BLEU ↑)
	BTEC	greedy beam-search ensemble	14.9 13.8 11.3	47.4 49.2 50.7
	LibriSpeech	greedy beam-search ensemble Google Translate	19.9 17.9 15.1	19.2 18.8 19.3 22.2

Table 3 :

 3 Results of the AST task on BTEC test. † was obtained with an ensemble of 5 models, while we use ensembles of 2 models. The non-cascaded ensemble combines the pre-trained and multi-task models. Contrary to[START_REF] Bérard | Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation[END_REF], we only present mono-reference results.

		.1	31.3	37.9 †	10.4
	Cascaded	38.9	40.7	43.8	7.9 + 3.4
	End-to-End	31.3	33.7		
	Pre-trained Multi-task	33.7 35.1	36.3 37.6	40.4	6.7

Table 4 :

 4 AST results on Augmented LibriSpeech test. † combines the end-to-end, pre-trained and multi-task models.

	6 if source transcriptions are available at training time

The Augmented LibriSpeech corpus is available for download here: https://persyval-platform.univ-grenoble-alpes. fr/DS91/detaildataset

https://www.gutenberg.org/

http://www.statmt.org/moses/

The toolkit and configuration files are available at: https:// github.com/eske/seq2seq

Google Translate is also scored as a topline (22.2%).