
HAL Id: hal-01709442
https://hal.science/hal-01709442v1

Submitted on 15 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

General parametric scheme for the online uniform
machine scheduling problem with two different speeds
Alexandre Dolgui, Vladimir Kotov, Aliaksandr Nekrashevich, Alain Quilliot

To cite this version:
Alexandre Dolgui, Vladimir Kotov, Aliaksandr Nekrashevich, Alain Quilliot. General parametric
scheme for the online uniform machine scheduling problem with two different speeds. Information
Processing Letters, 2018, 134, pp.18 - 23. �10.1016/j.ipl.2018.01.009�. �hal-01709442�

https://hal.science/hal-01709442v1
https://hal.archives-ouvertes.fr


General parametric scheme for the online uniform machine scheduling problem with
two different speeds

Alexandre Dolguia,∗, Vladimir Kotovd,c, Aliaksandr Nekrashevichc, Alain Quilliotb

aIMT Atlantique, LS2N - UMR CNRS 6004, La Chantrerie, 4, rue Alfred Kastler - B.P. 20722, F-44307 NANTES cedex 3, France
bISIMA, LIMOS - UMR CNRS 6158, Complexe scientifique des Cézeaux, 63173 AUBIERE cedex, France
cBelarusian State University, FPMI DMA department, 4 Nezavisimosti avenue, 220030, MINSK, Belarus

dVilnius Gediminas Technical University, Faculty of Fundamental Sciences, Department of Information Technologies, Saulėtekio al. 11,
LT-10223 VILNIUS, Lithuania

Abstract

In this paper, we consider the online uniform machine scheduling problem on m processors when speed si = 1 for i =
k+1, ...,m and si = s, s > 1, for i = 1, ..., k. The objective is to minimize makespan. We propose a parametric scheme with
the worst-case performance 2.618 when 1 < s ≤ 2, and with the asymptotic worst-case performance 1

2 (1+s+
√
5− 2s+ s2)

for all s > 1 when the ratio m/k tends to infinity.

Keywords: approximation algorithms, online algorithms, scheduling

1. Introduction and Problem Formulation

We study a classic online uniform machine schedul-
ing problem for m uniform processors (M1, . . . , Mm) with
speeds (s1, ..., sm) without preemption. The objective is to
minimize makespan. Jobs come sequentially one after an-
other, and are immediately assigned to one of the processors.
Jobs cannot change their processors afterward. No informa-
tion about the future jobs is given. On the other hand, the
order of the jobs is not connected to their starting time in
the schedule. For example, a job that arrives later may start
earlier than the current one. We only fix the assignment to
the processors. Let us identify a job j with its processing
time pj . If job j is scheduled for processor Mi, then job
processing takes pj

si
time.

An algorithm’s quality is measured by its worst-case per-
formance. Denote by F (LA) the makespan of the schedule
created by algorithm A, and denote by F (Lopt) the opti-
mal offline makespan. We say that an algorithm A has
the worst-case performance c ∈ R if, for any list of jobs L,
F (LA) ≤ c · F (Lopt).

The online scheduling problem for identical proces-
sors without preemption was first investigated by Graham
(1969). He showed that the List Scheduling algorithm (LS),
assigning the current next job to the least loaded processor,
has the worst-case performance (2− 1

m ).
Cho and Sahni (1980) proved the following worst-case

performance of the LS for the system of uniform proces-
sors. For m = 2, the ratio is at most 1+

√
5

2 . If m > 2,
the ratio is at most 1 +

√
2m−2
2 . In the special case when

s1 = . . . = sm−1 = 1 and sm > 1, they proved the worst-
case performance of 3− 4

m+1 , for m > 2.
Li and Shi (1998) proved that the algorithm LS has the

least possible worst-case performance for m ≤ 3, and pro-
posed an approximation algorithm for the particular case
si = 1, i = 1, . . . ,m− 1, and sm = 2,m ≥ 4. Their algo-
rithm has the worst-case asymptotic performance of 2.8795
for m → ∞. For the case si = 1, i = 1, . . . ,m− 1, and
1 < sm ≤ 2,m ≥ 4, Cheng et al. (2006) designed an algo-

rithm with the worst-case performance of 2.45. The case
when the number of processors is two was studied in the
work of Liu et al. (2009); Angelelli et al. (2008); Wen and
Du (1998).

Related models. Some related models have been in-
vestigated in the past few years and semi-online algorithms
have been studied. This term encompasses algorithms that
are essentially online, but some partial information about
the input is given to the scheduler in advance. The main
motivation behind this approach is the observation that the
classic competitive analysis is too pessimistic compared to
practical results; in other words, the adversary who may ar-
bitrarily determine the input sequence is too powerful. In
practice, the inputs are not completely arbitrary, and it may
be reasonable to restrict them.

Semi-online algorithms for scheduling with reassignment
to two identical machines were considered in Min et al.
(2011). Online algorithms with rearrangements for two re-
lated machines were studied in Wang et al. (2012); Cao and
Liu (2010); Dosa et al. (2011). There are some related publi-
cations studying scheduling subject to eligibility constraints.
Online scheduling on two uniform machines subject to eli-
gibility constraints of type GradeOfService (GoS) was first
considered in Liu et al. (2009). More recent results for this
problem were presented in Lee et al. (2009).

Our contribution. In this paper, we consider the on-
line uniform machine scheduling problem for the case si = 1
for i = k + 1, ...,m and si = s, s > 1, for i = 1, ..., k. The
objective is to minimize makespan. We present a gener-
alization of the approach proposed by Dolgui et al. (2015).
Our parametric scheme has a better worst-case performance
than the current known results starting from a big enough
m with fixed k and s. We also prove that for the case
1 < s ≤ 2, the worst-case performance of our algorithm is
at most of 2.618. The proposed parametric scheme requires
only the ratio of the number of all the processors to the num-
ber of the fast ones instead of the exact numbers. For the
case in which this ratio tends to infinity and the fast proces-
sors have the speed s, we obtain the asymptotic worst-case

∗Corresponding author
Email addresses: alexandre.dolgui@imt-atlantique.fr (Alexandre Dolgui), kotovvm@yandex.by (Vladimir Kotov), nekrald@gmail.com

(Aliaksandr Nekrashevich), alain.quilliot@isima.fr (Alain Quilliot)

Preprint submitted to Information Processing Letters December 20, 2017



performance of 1
2 (1 + s +

√
5− 2s+ s2). We also propose

some algorithms that would help to find parameters for the
proposed scheme. In our proofs and statements, we use the
ideas of reserved classes and the dynamic lower bound of
the optimal solution from Dolgui et al. (2015); Kellerer and
Kotov (2013); Kellerer et al. (2015).

2. Notation and Lower Bounds

Denote the number of processors by m. Let us enumer-
ate the processors with numbers from 1 to m. Denote the
i-th processor by Mi. Denote by k the number of the pro-
cessors with a speed s > 1. Let Li,j be the current load for
the processor with number i before scheduling job j (with
processing time pj at step j). Denote by OMj the optimal
makespan after the first j jobs.

Denote by q
(j)
1 , . . . , q

(j)
j the processing times of jobs

1, . . . , j ordered at step j such that q(j)1 ≥ q(j)2 ≥ . . . ≥ q(j)j .
For simplicity, we assume that q(j)y with non-positive indices
y are equal to zero. Denote by z the upper integer part of
s, i.e. z is a positive integer s.t. (z − 1) < s ≤ z.

Set V (1)
j = min

{
q
(j)
(z−1)·k+1,

q
(j)

(z−1)·(k−1)+1
+...+q

(j)

(z−1)·k+1

s

}
,

V
(2)
j =

p1+p2+...+pj

m−k+s·k , V (3)
j =

q
(j)
1

s .

Property 1. The optimal makespan after the first j jobs
OMj ≥ V (1)

j , OMj ≥ V (2)
j , and OMj ≥ V (3)

j .

Proof. Values V (2)
j and V

(3)
j are trivial lower bounds. Let

us prove OMj ≥ V
(1)
j . Consider the k(z − 1) + 1 great-

est jobs at step j and denote them by GJj . WLOG, for
j < k(z − 1) + 1, it is possible to add some jobs with zero
size. Then, in any scheduling, there are two cases. In the
first, some job from GJj comes to a processor with speed
one. It follows that the makespan of such scheduling is at
least q(j)(z−1)·k+1. In the second case, all of jobs come to pro-
cessors with speed s. Since there are k(z − 1) + 1 jobs in
GJj , there is a processor IMj with speed s, such that at
least z jobs are scheduled to it. Thus, the current load of

IMj is at least
q
(j)

(z−1)·(k−1)+1
+...+q

(j)

(z−1)·k+1

s .

Denote by LBj the maximal value among
V

(1)
j , V

(2)
j , V

(3)
j . It is clear that LBj is a lower bound

for the optimal makespan OMj . Trivial calculations show
LBj−1 ≤ LBj .

3. Algorithm

Let us construct a parametric algorithm with the worst-
case performance B ≥ s. Let m1,m2, and R be non-
negative integers, such that k +m1 +m2 = m, and m2 =
R · (z − 1) · k.

Divide all processors into three classes. All k processors
with speed s are assigned to the class Fast, m1 processors
are assigned to the class Normal, and the remaining m2

processors are assigned to the class Reserved. By defini-
tion, m2 is an integer multiple of k · (z − 1). Note that
the processors with high speed are always assigned to the
class Fast. The classes Normal and Reserved are not fixed in
advance; we only fix their cardinalities. In other words, pro-
cessors from these classes may change their classes during
the execution of the algorithm.

For the purpose of the algorithm description, we divide
the list of Reserved processors into the groups G1, . . . , GR.

Every group is an ordered list of (z − 1) · k processors. The
processors are numbered from 1 to (z − 1) · k within the
group.

Introduce a real number ϕ ∈ [0, 1] and the following clas-
sification for the current job at the stage j. The job j with a
processing time pj not exceeding ϕ ·B ·LBj is called small.
Otherwise, the job is called big. We say that job j fits into
processor i, if Li,j + pj/si ≤ B · LBj .

Algorithm. Initialize u = 1. Then perform the follow-
ing points sequentially for each new job j:

1. If job j fits into one of the processors of the Fast or
Normal classes, assign it there and go to the next job.

2. If u ≤ (z − 1) · k, carry out the following instructions:
Assign the current job to the processor with number
u in G1; denote this processor by gu. Denote by i
the processor from the Normal class with the minimal
current load. Swap processors gu and i, i.e. processor
i substitutes processor gu in group G1 (and obtains
number u within the group). The processor i moves
to the Reserved class. Correspondingly, gu moves to
the Normal class. After that increment u := u+ 1.

3. If u > (z − 1) · k, move the group numeration
G1, . . . , GR cyclically left by 1, i.e. the group Gr be-
comes Gr−1 if r > 1, and group G1 becomes GR.
Afterward, set u := 1.

Notice that at point 3 we restore the property u ≤
(z − 1) · k if it was violated before. The algorithm can be
implemented with complexity O((j +m) · log(m+ j)) using
some standard data structures, where j is the number of
currently processed jobs.

The main idea of the algorithm is to determine a good
proportion ofm1 andm2 in order to guarantee the following
conditions:
• A small job will fit into a processor from the Fast class

or into a processor from the Normal class.
• If a big job does not fit into any of the processors from

the Fast and Normal classes, it will fit into one of the
processors from the Reserved class.

Moreover, we also want to minimize B. For this purpose,
we introduce the following parametric scheme with parame-
ters m1,m2, R,B, and ϕ. The first inequality of the scheme
will force the first condition to hold. The second inequality
of the scheme will force the second condition to hold.

3.1. Parametric scheme

As mentioned before, the algorithm is parametric in the
terms of m1,m2, R,B, and ϕ, where m1,m2, R, and z are
non-negative integers, k + m1 + m2 = m, z is the upper
integer part of s, s+ 1 > z ≥ s, and B,ϕ are non-negative
real numbers, B ≥ s, ϕ ∈ [0, 1], m2 = R · (z − 1) · k. Note
that since m2 = R · (z − 1) · k, and m2 ≤ m − k, then R
cannot be arbitrarily large.

We further consider only those parameters satisfying the
following system:{

(B − 1)·s·k + (1− ϕ)·m1 ·B ≥ s·k +m1 +m2

(1− ϕ) ·B ≤ (ϕ ·B)R · (B − s)
(1)

The first inequality in the system enables us to prove
Lemma 1. The second inequality allows us to recalculate the
dynamic lower bound estimation in Lemma 2. This helps us
to prove the worst-case performance B for our algorithm.

The scheme and the algorithm generalize and extend the
analysis of Dolgui et al. (2015). As in the latter study, we
use the analysis with big and small jobs, a similar lower
bound recalculation, as well as the separation of the proces-
sors into the Fast, Normal and Reserved classes.

2



However, there are some major differences. The division
into big and small jobs is now parametric in the terms of
ϕ. The analysis is modified to work with any speed s and
parametric job separation. Two new approaches for the esti-
mation are used. The first uses the Wolfram Mathematica.
The second is essentially a numerical approach with a grid
parameter search. The algorithm works for any speed s > 1,
as well as for any m and k.

Note that the system presented in Dolgui et al. (2015) is
obtained from (1) by setting B = 2+α, z = 2 and ϕ = 1/2.
Note also that from s > 1 it follows z ≥ 2.

3.2. Basic properties of the algorithm
Property 2. If job j does not fit into processor i from the
Fast class, then Li,j > (B − 1) · LBj.

Proof. This follows from pj/s ≤ LBj by the lower bound
V

(3)
j .

Lemma 1. For the next current job j during the al-
gorithm execution, there is a Fast processor i with load
Li,j ≤ (B − 1) · LBj, or a Normal processor w with load
Lw,j ≤ (1− ϕ) ·B · LBj.

Proof. Assume the converse: at step j, all Fast processors
have loads greater than (B−1)·LBj , and all Normal proces-
sors have loads more than (1−ϕ) ·B ·LBj . Then, we obtain
(p1+ . . .+pj) > k ·s ·(B−1) ·LBj+m1 ·(1−ϕ) ·B ·LBj . On
the other hand, from the first equation from (1), we obtain
(p1 + . . .+ pj) > (s · k +m1 +m2) · LBj . This contradicts
Property 1 (by the lower bound V (2)

j ).

Corollary 1. If job j is small, then there is a Fast or Nor-
mal processor i, such that job j fits into processor i.

The next property proves that the system always has a
solution.

Property 3. The system (1) always has a feasible solution
with fixed k,m, and s.

Proof. Consider ϕ = 1, R = 0,m1 = m − k, and m2 = 0.
The only important inequality for this case is (B−1) ·s ·k ≥
s · k+m− k. This inequality means that B ≥ 2+ m−k

s·k .

Note that if R = 0, the Reserved class will be empty,
and only the first point of the algorithm will be executed.

Next we assume that (B,m1,m2, R, z) is a solution of
(1).

3.3. Case R ≥ 1

In this section, we suppose that the system (1) has a
solution with some R ≥ 1. Consider any such solution.
Since groups are constantly renamed during the algorithm,
it is useful to give them some stable notation. Denote the
groups F1, . . . , FR, where Fi corresponds to Gi in the source
numeration(before the algorithm is launched). The only dif-
ference is that the numeration Fi will not change during the
execution of the algorithm. Denote by Lr

i,j the current load
of the processor with index i within group Gr, r = 1, . . . , R,
before assignment of job j (at iteration j).

Note that for fixed i and r and different j, the value Lr
i,j

may correspond to different processors. Note also that, in
general, Lx

i,j 6= Ly
i,j when x 6= y, because of the correspon-

dence to different groups.

Lemma 2. For each job j, such that point 2 of the algo-
rithm is executed and processor gu in group G1 is changed,
it holds that L1

u,j ≤ (B − s) · LBj.

Proof. We proceed by induction. Assume that before the
previous assignment to processor h from group Fi, the load
of that processor h was at most (B − s) ·LBj . Then, prove
that before the next assignment, the load of h will not ex-
ceed (B − s) · LBj′ . The base holds since initially all loads
are zero. From the symmetry, it is sufficient to prove the
statement for the first processor from the group F1 at the
moment when it is in G1.

Denote by th1 the iteration in which we executed point 2
of the algorithm for the processor with number u = h, h =
1, . . . , (z − 1) · k in the group G1 = F1. After assignment
of big job th1 to processor h in group G1 with the property
L1
h,th1
≤ (B − s) · LBth1

, we obtain that the new load L is
within the following borders:

ϕB · LBth1
< L ≤ B · LBth1

(2)

From Property 2 for any processor i from the Fast class,
we obtain Li,th1

> (B − 1) · LBth1
. Thus, from Lemma 1 it

follows that there is a processor i from the Normal class,
such that Li,th1

≤ (1−ϕ) ·B ·LBth1
. Then, for the processor

i mentioned in point 2 of the algorithm, it holds:

Li,th1
≤ (1− ϕ) ·B · LBth1

(3)

After the assignment and exchange of processors (but before
the group renaming), we obtain:

L1
h,th1+1 ≤ (1− ϕ) ·B · LBth1

(4)

Note that the conditions (2), (3), and (4) hold for every it-
eration th1 , where h = 1, . . . , (z − 1) · k. After (z−1) ·k such
iterations, we have the group renaming for all Gi. Now G1

is the previous G2, i.e. F2. Therefore, the conditions men-
tioned above are respected for GR.

Let t12 be the iteration in which we assign a big job to
the processor 1 in the new group G1, i.e. immediately after
renaming the groups at step t

(z−1)·k
1 . Similarly, define th2 .

Then t12 is big, and pt12 > ϕ ·B · LBt12
.

We have (z − 1) · k jobs th1 , and job t12 with a processing
time of at least ϕ · B · LBt11

. Therefore, from the bound

V
(1)
j of Property 1, we obtain ϕ ·B · LBt11

< LBt12
. We can

proceed similarly for all h, i.e. the following holds:

ϕ ·B · LBth1
< LBth2

(5)

Therefore, combining (5) and (4) we obtain:

LR
h,th1
≤ (1− ϕ) ·B · LBth1

≤
(1− ϕ) ·B · LBth2

ϕ ·B
(6)

Analogously, we obtain ϕ ·B · LBth2
< LBth3

, and so on.
As a result, we proceed with a recalculation of the lower
bound. After R such recalculations on the iteration for job
j, we find that the load of processor 1 in the group F1 is at
most (1−ϕ)·B

(ϕ·B)R
LBj . To finish the proof, we need to note that

from the system (1) we have (1−ϕ)·B
(ϕ·B)R

≤ (B − s).

3.4. Particular case R = 0

Lemma 3. In the case R = 0, the algorithm is correct,
i.e. only point 1 will be executed. Moreover, then the min-
imal possible B is equal to max

{
s, 2 + (s−1)·(d−1)

s+d−1

}
, where

d = m
k ∈ Q is the ratio of the number of all processors to

the number of fast ones.

3



Proof. Consider how the system (1) changes in the case
when we fix R = 0. Then, m1 = m − k, and m2 = 0.
We obtain:{

ϕ ·B ≥ s⇔ (1− ϕ) ·B ≤ B − s
B ·s·k+m1 ·B−ϕ·B ·m1 ≥ 2s·k+m1

(7)

From Lemma 1 and (1−ϕ) ·B ≤ (B− s), using bound V (3)
j

it follows that the algorithm will execute the first step only.
Let us prove the part about the minimality of B. Since
ϕB ≥ s, the best option for the second equation in (7) is
when ϕB = s. Thus, the minimal value B for (7) is equal to
the result of the minimization of B subject to the following
constraints (where ϕ ∈ [0, 1]):{

ϕ ·B = s

B ≥ 2 + (s−1)·(d−1)
s+d−1

(8)

The solution for this system is described by
max

{
s, 2 + (s−1)·(d−1)

s+d−1

}
. In fact, from ϕ · B = s it fol-

lows that B ≥ s. If the second equation of (8) gives the
requirement for B to be at least s, then by adjusting ϕ we
can make ϕ · B = s. Otherwise, we can take ϕ = 1 and
obtain s.

Note that the solution with R = 0 always exists. The
minimization problem for B in the system (1) has a solution
not worse than max

{
s, 2 + (s−1)·(d−1)

s+d−1

}
.

4. Main Result

4.1. Main theorem

Theorem 1. For any fixed m, k, and s, the system (1) has
at least one solution (B,m1,m2, z, R). For any solution of
the system, the algorithm built upon it has the worst-case
performance of at most B.

Proof. It is enough to show that after each iteration of the
algorithm, the load of each processor is at most B · LBj .
In other words, each job has a processor into which it fits.
The existence of the solution follows directly from Lemma
3. Lemma 3 also implies that all jobs for the case R = 0
have some processors they fit into, since only point 1 of the
algorithm is executed. Now assume that R ≥ 1. Property
1 implies that pj ≤ s · LBj by the bound V (3)

j . Then, from
Lemma 2 it follows that if we reach point 2 of the algorithm,
job pj will fit into processor gu.

According to Theorem 1, it is intuitive to set the min-
imization problem over B with the conditions shown in
the system (1). In fact, the less B is, the better the
worst-case performance is. From Lemma 3 we obtain that
B ≤ max

{
s, 2 + (s−1)·(d−1)

s+d−1

}
, where d = m

k is the ratio of
the number of all the processors to the number of the fast
ones. Note that from the second equation of the system (1),
we obtain B ≥ s.

Property 4. Let us fix the parameters k, and s. Then,
if there is a solution for m = m0 with B = B0, and
(1 − ϕ)B0 ≥ 1, a solution with B = B0 exists for any
m ≥ m0. In particular, this holds if we minimize over B
the system (1) with the additional condition ϕ ≤ 1− 1

s .

Proof. In the system (1), we may use the samem2 as for the
solution with m = m0. Then we need to check that the first
inequality holds. The only changed variable is m1. Since
the coefficient (1−ϕ) ·B for m1 in the Left-Hand-Side(LHS)
is at least 1, the inequality holds. The last statement of this
property follows from B ≥ s.

4.2. Equivalent scheme

Since m1 + m2 + k = m, we can write an equivalent
scheme for the system 1. Let us remember that d = m

k .
B · (s+ (1− ϕ) · (d− 1−R · (z − 1))) ≥ 2s+ d− 1

d ≥ 1 +R · (z − 1)

(1− ϕ) ·B ≤ (ϕ ·B)R · (B − s)

z = dse, ϕ ∈ [0, 1], R ≥ 0, R ∈ Z

(9)

Note that for this new scheme, it is enough to know the
ratio d instead of knowing both m and k. The equivalence
here means that if we have some solution (B,ϕ,R) for (1),
these values will work for (9), and vice versa.

Let us show that (9) is equivalent to (1). To see this,
substitute d = m

k into (9). Then the second inequality of
(9) becomes m ≥ k+R · k · (z− 1). Set m2 = R · k · (z− 1),
and set m1 = m − k − m2. Note that m1 ≥ 0. The first
inequality in (9) becomes 2 · s · k +m − k ≤ B · s · k + B ·
(1− ϕ) · (m− k −R · k · (z − 1)). This is equivalent to the
first inequality of (1).

4.3. Particular case R = 1

Let R = 1. Then from d ≥ 1+R · (z− 1), it follows that
d ≥ z. Then the conditions of the equivalent system are the
following: {

B ≥ s− 1 + 1/ϕ = f1(s, ϕ, d)

B ≥ 2s+d−1
s+(1−ϕ)·(d−z) = f2(s, ϕ, d)

(10)

Here we have two limitations for B. Fix d, s, and z
and allow ϕ to change. Then the upper condition decreases
monotonously by ϕ, tending to positive infinity with ϕ→ 0.
The lower condition increases monotonously with ϕ, thus
the minimal value is obtained with ϕ = 0, and the maximal
value is obtained with ϕ = 1.

Suppose that the maximal value of f2 is less than the
minimal value of f1. The minimal value of f1 equals to s
and is reached when ϕ = 1. Then we have 2 + d−1

s ≤ s,
which is equivalent to d < (s − 1)2. Thus, if d < (s − 1)2,
then the minimal possible B is s.

Suppose d > (s − 1)2. Then the best value for B
is obtained with the equality f1(ϕ) = f2(ϕ). From the
monotonous properties, this solution exists and is unique.
Thus, we obtain the following second-order equation with
respect to the variable ϕ:

s− 1 +
1

ϕ
=

2s+ d− 1

s+ (1− ϕ) · (d− z)
(11)

When d→∞, this equation is equivalent to s−1+ 1
ϕ = 1

1−ϕ .
After substituting the solution of the new equation to f1,
we obtain 1

2

(
1 + s+

√
5− 2s+ s2

)
. We proved the follow-

ing result.

Lemma 4. With d → ∞, it holds that B ≤
1
2

(
1 + s+

√
5− 2s+ s2

)
.

Lemma 5. If d ≤ (s−1)2, then the worst-case performance
B ≤ s. If d > (s − 1)2, then the optimal B is not greater
than the value obtained when equality (11) holds.

4



Proof. This immediately follows from the previous discus-
sion.

The solution for (11) can be written explicitly. We have
ϕ = 1−3d+2z−3s+d·s−z·s+s2+

√
M

2(d−z)·(s−1) , where M = −4(−d + z −
s) ·(−d+z+d ·s−z ·s)+(−1+3d−2z+3s−d ·s+z ·s−s2)2.
Then the optimal B is at most s− 1 + 1/ϕ.

4.4. Merging the estimations for R = 0 and R = 1 in the
case 1 < s ≤ 2

Lemma 6. Suppose that 1 < s ≤ 2. Then for any d, the
optimal value of B is less than or equal to 3+

√
5

2 ≈ 2.618.

Proof. From 1 < s ≤ 2, it follows that z = 2. Consider two
cases. In the first, d ≤ 3 and in the second d > 3.

Suppose that d ≤ 3. Then let us use the algorithm and
its estimation for the particular case R = 0. Since the es-
timation is monotonous over d, the maximal value of B is
obtained for d = 3. Here we obtain 2.5, which is less than
2.618.

Now assume that d ≥ 3. Then use the algorithm and its
estimation for the particular case R = 1. Since d > (s− 1)2

and d > n, from Lemma 5 it follows that the optimal B is
less than or equal to the value obtained by solving equation
(11).

This solution can be written explicitly with respect to
ϕ. After natural substitution, we obtain a conditional op-
timization problem with conditions 1 < s ≤ 2 and d ≥ 3.
This is a standard extremum search problem, which can be
solved analytically. We solve it with the Wolfram Math-
ematica and the notebook print is presented in the Online
Appendix C. The maximal limitation for B is 3+

√
5

2 ≈ 2.618,
and is reached when s = 2 and d→∞.

5. Further Notes

The source code, as well as the Wolfram Mathematica
notebook and files with online appendices, can be found on
the Internet 1.

Some improvements in the proposed scheme, as well as
some possible new research directions, are presented in the
Online Appendix A. Since we do not have an explicit for-
mula for B, it is natural to use a computational approach.
Our computational approach and its results are presented
in the Online Appendix B.

The table in the Online Appendix B presents the worst-
case performance found with the computation approach for
s = 2 depending on m− k (the number of unit processors)
and k (the number of fast processors).

6. Discussion

The obtained asymptotic worst-case performance when
d→∞ is better than the result of Cho and Sahni (1980).

The table presented in the Online Appendix B shows
better results than those achieved in Dolgui et al. (2015)
(e.g. we have a better value for m = 39, k = 1, which is

2.41 in that paper and 2.372 in this paper). It is natural
to expect that since the new scheme is more flexible (the
scheme from Dolgui et al. (2015) is a particular case of our
scheme), it will provide better results in other cases.

7. Conclusion

A parametric scheme is proposed, with a polynomial ap-
proximation algorithm based on the scheme. The asymp-
totic worst-case performance is estimated when d→∞. For
the case 1 < s ≤ 2, we prove the worst-case performance
of 2.618. This works for any ratio of the number of all the
processors to the number of fast ones.

8. Acknowledgments

This research was supported in part by Labex IMOBS3
and FEDER Funding. Vladimir Kotov was also supported
in part by BRFFI F15MLD-022.

References

Angelelli, E., Speranza, M., Tuza, Z., 2008. Semi-online scheduling on two
uniform processors. Theoretical Computer Science 393, 211–219.

Cao, Q., Liu, Z., 2010. Online scheduling with reassignment on two uniform
machines. Theoretical Computer Science 411, 2890–2898.

Cheng, T., Ng, C., Kotov, V., 2006. A new algorithm for online uniform-
machine scheduling to minimize the makespan. Information Processing
Letters 99, 102–105.

Cho, Y., Sahni, S., 1980. Bounds for list schedules on uniform processors.
SIAM J. Comput. 9, 91–103.

Dolgui, A., Quilliot, A., Kotov, V., 2015. A parametric scheme for on-
line uniform-machine scheduling to minimize the makespan. Buletinul
Academiei de Stiinte a Republicii Moldova. Matematica 79(3), 102–109.

Dosa, G., Wang, Y., Han, X., Guo, H., 2011. Online scheduling with rear-
rangement on two related machines. Theoretical Computer Science 412,
642–653.

Graham, R., 1969. Bounds on multiprocessing timing anomalies. SIAM J.
Appl. Math 17, 263–269.

Kellerer, H., Kotov, V., 2013. An efficient algorithm for bin stretching.
Operations Research Letters 41(4), 343–346.

Kellerer, H., Kotov, V., Gabay, M., 2015. An efficient algorithm for semi-
online multiprocessor scheduling with given total processing time. Jour-
nal of Scheduling 18, 623–630.

Lee, K., Leung, J.-T., Pinedo, M., 2009. Online scheduling on two uni-
form machines subject to eligibility constraints. Theoretical Computer
Science 410, 3975–3981.

Li, R., Shi, L., 1998. An on-line algorithm for some uniform processor
scheduling. SIAM J. Comput. 27, 414–422.

Liu, M., Xu, Y., Chu, C., Zhengin, F., 2009. Online scheduling on two uni-
form machines to minimize the makespan. Theoretical Computer Sci-
ence 410, 2099 – 2109.

Min, X., Liu, J., Wang, Y., 2011. Optimal semi-online algorithms for
scheduling problems with reassignment on two identical machines. In-
formation Processing Letters 111, 423–428.

Wang, Y., Benko, A., Chen, X., Dosa, G., Guo, H., Han, X., Lanyi, C.,
2012. Online scheduling with one rearrangement at the end: Revisited.
Information Processing Letters 112, 641–645.

Wen, J., Du, D., 1998. Preemptive on-line scheduling for two uniform pro-
cessors. Operations Research Letters 23, 113–116.

1https://github.com/nekrald/parametric_scheme_uniform_scheduling

5


