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The Depoissonisation Quintet:
Rice–Poisson–Mellin–Newton–Laplace

Brigitte Vallée
GREYC Laboratory, CNRS and University of Caen, France
brigitte.vallee@unicaen.fr

Abstract
This paper is devoted to the Depoissonisation process which is central in various analyses of
the AofA domain. We first recall in Section 1 the two possible paths that may be used in this
process, namely the Depoissonisation path and the Rice path. The two paths are rarely described
for themselves in the literature, and general methodological results are often difficult to isolate
amongst particular results that are more directed towards various applications. The main results
for the Depoissonisation path are scattered in at least five papers, with a chronological order
which does not correspond to the logical order of the method. The Rice path is also almost
always presented with a strong focus towards possible applications. It is often very easy to apply,
but it needs a tameness condition, which appears a priori to be quite restrictive, and is not deeply
studied in the literature. This explains why the Rice path is very often undervalued.

Second, the two paths are not precisely compared, and the situation creates various “feelings”:
some people see the tools that are used in the two paths as quite different, and strongly prefer
one of the two paths; some others think the two paths are almost the same, with just a change
of vocabulary. It is thus useful to compare the two paths and the tools they use. This will be
done in Sections 2 and 3. We also “follow” this comparison on a precise problem, related to the
analysis of tries, introduced in Section 1.7.

The paper also exhibits in Section 4 a new framework, of practical use, where the tameness
condition of Rice path is proven to hold. This approach, perhaps of independent interest, deals
with the shifting of sequences and then the inverse Laplace transform, which does not seem of
classical use in this context. It performs very simple computations. This adds a new method to
the Depoissonisation context and explains the title of the paper. We then conclude that the Rice
path is both of easy and practical use: even though (much?) less general than the Depoissonisation
path, it is easier to apply.
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35:2 The Depoissonisation Quintet

1 General framework

This section first recalls the two probabilistic models, the Bernoulli model and the Poisson
model, together with the two main objects attached to a sequence f : the classical Poisson
transform Pf , and another sequence, denoted as Π[f ] and called here the Poisson sequence.
We insist on the involutive characteristic of the mapping Π and introduce two new notions,
shift and canonical sequences. After the description of the two paths of interest, we present
analyses on tries which strongly motivate the work, and will be performed within each path.

1.1 Probabilistic settings
Many algorithms deal with inputs that are finite sequences of data. We give some examples:
(a) for text algorithms, data are words, and inputs are finite sequences of words; (b) for
geometric algorithms, data are points, and inputs are finite sequences of points; (c) for a
source, data are symbols, and inputs are finite sequences of symbols, namely finite words.
The cardinality of the input sequence is often chosen as the input size, and, as usual, one is
interested in the asymptotic behaviour of the algorithm for large input size.

The probabilistic framework is as follows: Each data (word or point) is produced along a
distribution, and the set of data is thus a probabilistic space (X ,P). Very often, the data
are independently chosen with the same distribution and the set (Xn,P[n]) is the product of
order n of the space (X ,P). The space of all the inputs is thus the set X ? :=

∑
n≥0 Xn of

finite sequences x of elements of X , and there are two main probabilistic models:
(i) The Bernoulli model Bn (more natural in algorithmics), where the cardinality N(x) of

x is fixed and equal to n (then tends to ∞);
(ii) The Poisson model Pz of parameter z, where the cardinality N(x) is a random variable

that follows a Poisson law of parameter z, where the fixed parameter z tends also to ∞,

P[N(x) = n] = e−z
zn

n! .

This model has very nice probabilistic properties, notably properties of independence.

1.2 The Poisson transform and the Poisson sequence
There is a variable (or a cost) R : X ? → N which describes the behaviour of the algorithm on
the input; for instance, for x ∈ X ?, R(x) is the path length of a tree (trie or dst) built on the
sequence x := (x1, . . . , xn) of words xi. Our final aim is the analysis of R in the Bernoulli
model Bn, i.e., the asymptotic study of the sequence f : n 7→ f(n), where f(n) := E[n][R]
is the expectation of R in the model Bn. We begin with the easier Poisson model Pz, and
study the expectation Ez[R] in the model Pz that satisfies

Ez[R] =
∑
n≥0

Ez[R |N = n]Pz[N = n] =
∑
n≥0

E[n][R]Pz[N = n] = e−z
∑
n≥0

f(n)z
n

n! .

This leads us to the Poisson transform Pf of the sequence f : n 7→ f(n), that is written as
an exponential generating function (with “signs”)1 and thus defines another sequence p,

Pf (z) := e−z
∑
n≥0

f(n)z
n

n! =
∑
k≥0

(−1)k z
k

k! p(k) , with p(k) := (−1)kk![zk]Pf (z) . (1)

1 The Poisson transform is often called the Poisson generating function. The signs are added in order to
get an involutive formula in (2).
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I Definition 1. Consider a sequence f : n 7→ f(n). Then,
(a) the series Pf defined in (1) is the Poisson transform of the sequence f ;
(b) the sequence p : k 7→ p(k) defined in (1) is the Poisson sequence of the sequence f .

The following holds:

I Lemma 2. Consider a cost R defined on X ?, its expectation f(n) in the model Bn. Then,
(a) its expectation in the model Pz is the Poisson transform Pf (z);
(b) there are binomial relations between the sequences f and p, namely

p(n) =
n∑
k=0

(−1)k
(
n

k

)
f(k), and f(n) =

n∑
k=0

(−1)k
(
n

k

)
p(k) ; (2)

(c) the map Π which associates with the sequence f the sequence p is involutive.

1.3 Description of the two paths.
We only deal here with a sequence f of polynomial growth, for which the Poisson transform
z 7→ Pf (z) is entire. The sequence f is often given in an implicit way, and we assume that
we have some knowledge on Pf (z), which may be of two different types
(a) about the Poisson transform Pf (z) itself,
(b) about its coefficients, namely the sequence Π[f ].
The main question is now: Is it possible to return to the initial sequence f and obtain some
knowledge about its asymptotics? There are two main return paths, one for each framework:
the Depoissonisation path for (a), and the Rice path for (b). We first describe in Section 1.4
the classical toolbox, then, in Section 1.5, a new useful tool. As we aim to provide a precise
comparison between the two paths, we perform a kind of “test” on a particular instance
which arises when analysing the trie structure and is introduced in Sections 1.6 and 1.7.

1.4 Toolbox and main definitions
This section gathers various definitions about domains of the plane, behaviours of functions.
Itthen presents the Mellin transform.

Cones and vertical strips. There are two important types of domains of the complex plane
we deal with.
(i) The cones built on the real line R+, with two possible definitions,

C(a, θ) := {z | | arg(z − a)| < θ} for θ < π

Ĉ(a, γ) = {z | <(z − a) > γ|z − a|} for |γ| ≤ 1 ,

related by the relation Ĉ(a, cos θ) = C(a, θ). When a = 0, it is omitted.
(ii) The vertical strips, or halfplanes: S(a, b) := {z | a < <z < b}, S(a) := {z | <z > a} .

Polynomial growth. This notion plays a fundamental role: A function s 7→ $(s) defined
in an unbounded domain Ω ⊂ C is said to be of polynomial growth if there exists r for
which the estimate |$(s)| = O(|s|r) holds as s→∞ on Ω. When Ω ⊂ S(a, b), this means:
|$(s)| = O(|=s|r); when Ω ⊂ C(θ) with θ < π/2, this means: |$(s)| = O(|<s|r);

AofA 2018



35:4 The Depoissonisation Quintet

Tameness. A function s 7→ $(s) is tame on <s > c when it is analytic and of polynomial
growth there. This notion is extended when $(s) stops being analytic on <s = c. We will
say that $ is tame at s = c if it is meromorphic and of polynomial growth in a larger region
R on the left of the line <s = c delimited by a frontier curve F . (see [4] and the Annex).

Mellin transform. The Mellin transform of a function Q defined in [0,+∞] is defined as

Q?(s) :=
∫ +∞

0
Q(u)us−1du .

The Mellin transform plays a central role in each of the two paths (see its main properties in
the survey paper [7]). In particular, the transform has a nice behaviour on harmonic sums:

Q(z) =
∑
k

g(µkz) =⇒ Q?(s) =
(∑

k

µ−sk

)
g?(s) . (3)

Moreover, the following lemma2 proves that the function Γ(s) and its derivatives Γ(m)(s) are
exponentially small along vertical lines (when |=(s)| → ∞).

I Lemma 3 (Exponential Smallness Lemma, [7]). If, inside the closure of the cone C(θ) with
θ > 0, one has Q(z) = O(|z|−α) as z → 0 and Q(z) = O(|z|−β as |z| → ∞, then the estimate
Q∗(s) = O(exp[−θ|=(s)|]) uniformly holds in the vertical strip S(α, β).

1.5 A first new tool: Shift and canonical sequences
The notions that are presented here are not introduced in this way in the literature, and,
in particular, the notion of canonical sequence appears to be new (and useful), notably in
Section 4.

I Definition 4. Consider a non zero real sequence n 7→ f(n).
(a) Its degree deg(f) and its valuation val(f) are defined as

deg(f) := inf{c | f(k) = O(kc)} val(f) := min{k | f(k) 6= 0} .

A sequence f with finite degree is said to be of polynomial growth.
(b) A sequence n 7→ f(n) satisfies the Valuation-Degree Condition (VD), iff val(f) >

deg(f) + 1.
(c) It is reduced if it satisfies val(f) = 0 and deg(f) < −1.

The VD Condition is essential in the Rice path. As we are (only) interested in the
asymptotics of the sequence f , the VD condition is easy to ensure, as we now show: With a
sequence F of polynomial growth, we associate the integer

σ(F ) := 1 (if deg(F ) < 0), σ(F ) := 2 + bdeg(F )c (if deg(F ) ≥ 0) , (4)

that satisfies the inequality σ(F ) > deg(F )+1; we only modify the first terms of the sequence
F : we put zeroes for indices k < σ(F ) together with one 1 for k = σ(F ), and obtain a new
sequence τ(F ) of valuation σ(F ) that keeps the same asymptotics as the initial sequence F
and now satisfies the VD condition.

We will need here to deal with the stronger notion of reduced sequences, and we now
explain how to associate with a sequence F , and in a canonical way, a reduced sequence.

2 It is called the Exponential Smallness Lemma in the paper [13], and we keep the same terminology.
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I Lemma 5. Consider the shifting map T which associates with a sequence f the sequence
T (f) defined, for any n ≥ 0 as

T [f ](n) = f(n+ 1)
n+ 1 and thus, for m ≥ 1, as Tm[f ](n) = f(n+m)

(n+ 1) . . . (n+m) .

For m ≥ 1, the inverse mapping T−m associates with a sequence g the sequence f defined as
f(n) = n(n− 1) . . . (n−m+ 1) g(n−m), for n ≥ m.

(a) The shifting Tm anti-commutes with the involution Π, namely Tm ◦Π = (−1)mΠ ◦ Tm.
(b) The sequence ρ(F ) := Tσ(F )(τ(F )) associated with F is reduced, with a degree equal to

deg(F )− σ(F ). It is called the canonical sequence associated to F .

Proof. Start with the sequence f with valuation `. Then the Poisson transform Pf (z) has
itself valuation ` and is written as

Pf (z) = z`Q(z) with Q(z) = e−z
∑
k≥0

g(k) z
k

k! =
∑
k≥0

(−1)k z
k

k! q(k) . (5)

Then, the two sequences g and q := Π[g] associated with f via Eqn (5) are expressed with
the iterate of T of order `, namely g = T `[f ], q := Π[g] = (−1)`T `[Π[f ]]. J

In the sequel, it will be then sufficient to deal with the canonical sequence ρ(F ), and its
Poisson sequence Π(ρ(F )) = (−1)σ(F )ρ(Π(F )). Then, the results on the asymptotics on ρ(F )
will be easily transfered on the initial Poisson pair of F with Properties (a) and (b).

Example. In Section 1.6, we will deal with the following sequences F0, F1, F2, all of valuation
2, which satisfy moreover F0(k) = 1, F1(k) = k, F2(k) = k log k, for k ≥ 2 . Their
canonical sequences are defined for k ≥ 0, as

f0(k) = f1(k) = 1
(k + 1)(k + 2) , f2(k) = log(k + 3)

(k + 1)(k + 2) .

1.6 An instance of the context. Probabilistic analysis of tries
A source S is a probabilistic process which produces infinite words on the (finite) alphabet
Σ := [0..r − 1]. A trie is a tree structure, used as a dictionary, which compares words via
their prefixes. Given a finite sequence x of (infinite) words emitted by the source S, the
trie T (x) built on the sequence3 x is defined recursively by the following three rules which
involve the cardinality N(x) of the sequence x:
(a) If N(x) = 0, then T (x) = ∅
(b) If N(x) = 1, with x = (x), then T (x) is a leaf labeled by x.
(c) If N(x) ≥ 2, then T (x) is formed with an internal node and r subtries equal to

T (x〈0〉), . . . , T (x〈r−1〉) ,

where x〈σ〉 denotes the sequence consisting of words of x which begin with symbol σ, stripped
of their initial symbol σ. If the set x〈σ〉 is non empty, the edge which links the subtrie
T (x〈σ〉) to the internal node is labelled with the symbol σ.

3 The trie depends only on the underlying set {x1, x2, . . . , xn}.

AofA 2018



35:6 The Depoissonisation Quintet

Iterating the process, we consider, for a finite prefix w, the sequence x〈w〉 consisting
of words of x which begin with prefix w, stripped of their initial prefix w, and denote by
Nw(x) := N(x〈w〉) the cardinality of such a sequence. Then, the internal nodes are used for
directing the search: they are labelled by prefixes w with Nw(x) ≥ 2. The leaves contain
suffixes of x, and there are as many leaves as words in x.

Trie analysis aims at describing the average shape of a trie. We focus here on additive
parameters, whose (recursive) definition exactly copies the (recursive) definition of the trie.
With a sequence f : N→ R – called a toll – which satisfies f(0) = f(1) = 0 and f(k) ≥ 0 for
k ≥ 2, we associate a random variable R defined on the set X ? as follows:
(ab) If N(x) ≤ 1, then R(x) = 0;
(c) if N(x) ≥ 2, then R(x) = f(N(x)) +

∑
σ∈Σ

R(x〈σ〉).

Iterating the recursion leads to the expression R(x) :=
∑

w∈Σ?

f(Nw(x)) . (6)

The probabilistic properties of R will depend both on the toll f and the source S:
– The probabilistic properties of the source S are encapsulated in the Dirichlet series

Λ(s) of the source, introduced in [19], and defined with the fundamental probabilities πw,

Λ(s) :=
∑

w∈Σ?

πsw , with πw := P[a word emitted by S begins with the prefix w] . (7)

The series Λ(s) mainly intervenes via its behaviour near s = 1. We consider here a tame
source, for which s 7→ Λ(s) is tame at s = 1, with a simple pole at s = 1 whose residue equals
1/h(S) where h(S) is the entropy of the source. (See [4] about tameness of sources.)

– Here are some instances of natural tolls : the size is associated to the toll f(k) = 1 (for
k ≥ 2) and the path length to the toll f(k) = k (for k ≥ 2). A version of the QuickSort
algorithm on words [4] leads to the sorting toll f(k) = k log k (for k ≥ 2).

We focus here on this last toll, and are interested in the analysis of the associated cost R.
The analysis was already performed in [4] with Depoissonisation path (a). We would have
wished there to use the Rice path (b) (as we got used in our previous analyses) but we did
not succeed. This failure was a strong motivation for the present study, and we now present
here two proofs for the following result, each of them using one path.

I Theorem 6. Consider a trie built on n words emitted by a tame source S. Then the mean
value of parameter R associated with the sorting toll f satisfies in the Bernoulli model Bn

r(n) ∼ 1
2h(S) n log2 n (n→∞) .

1.7 Main principles of trie analysis
We begin to deal with the Poisson model, that presents the following advantage: In the
model Pz, the cardinality Nw which appears in Eqn (6) follows a Poisson law of rate z πw

that involves the fundamental probability πw defined in (7). We then adapt the general
framework defined in Subsection 1.3, both for the initial sequence f and for the sequence r,
and consider the two paths:

– Path (a) deals with the Poisson transforms Pr(z) and Pf (z); averaging Relation (6) in
the model Pz entails a relation between the two Poisson transforms

Pr(z) =
∑

w∈Σ?

Ez[f(Nw)] =
∑

w∈Σ?

Pf (z πw). (8)
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Then, the function Pr(z) writes as a harmonic sum, and, with (3), its Mellin transform P ∗r (s)
factorises and involves the Λ function defined in (7), namely P ∗r (s) = Λ(−s) · P ∗f (s) .

– Path (b) deals with the Poisson sequences q = Π[r] and p = Π[f ]. Then, Relation (8)
entails the equality which also involves the Λ function, namely: q(n) = Λ(n) p(n) for n ≥ 2.

2 The Depoissonization path

We first provide a general description of the path; then, we apply it to the analysis of tries
and obtain a first proof of Theorem 6.

2.1 General description
We first describe the main steps of the path in an informal way.

Main steps. The Depoissonization path deals with the Poisson transform Pf (z):
(a) It compares f(n) and Pf (n) via the Poisson–Charlier expansion.
(b) It uses the tameness of the Mellin transform P ?f (s) for the asymptotics of Pf (n).
(c) Under Conditions (J S) on the Poisson transform Pf (z), the Poisson-Charlier expansion

may be truncated and provides the asymptotic of f(n) with a good remainder.
(d) Moreover, there exists a Condition (DP) on the input sequence f under which the

Conditions (JS) hold.
We then describe more precisely the main objects that are involved.

The Poisson-Charlier expansion. Using the Taylor expansion of Pf (z) at z = n, the term
f(n) admits an (infinite) expansion,

f(n) := n![zn] (ezP (z)) =
∑
j≥0

P (j)(n)
j! τj(n),

where the coefficient τj(n) := n![zn]
(
(z − n)jez

)
is a polynomial in n of degree bj/2c, closely

related to the (classical) Charlier polynomial.

Conditions (JS). An entire function P (z) satisfies the Conditions JS(α, β) if there exist
θ ∈]0, π/2[, and δ < 1 for which one has, for z →∞:

(I) Inside cone C(θ), one has |P (z)| = O
(
|z|α logβ(1 + |z|)

)
.

(O) Outside cone C(θ), one has |P (z)ez| = O
(
eδ|z|)

)
.

Condition (DP). There exists an analytic lifting ϕ for the sequence f which is of polynomial
growth inside horizontal cones.

We now state the two main results of the Depoissonisation path.

I Theorem 7 ([15, 13]). If the Poisson transform Pf (z) satisfies the JS(α, β) conditions,
then the first terms of the Poisson-Charlier expansion provide the beginning of the asymptotic
expansion of f(n). More precisely, for any k > 0, one has:

f(n) =
∑

0≤j<2k
P (j)(n) τj(n)

j! +O(nα−k logβ n) .

AofA 2018



35:8 The Depoissonisation Quintet

I Theorem 8 ([16, 14]). The two conditions are equivalent :
(i) the sequence f satisfies the Condition (DP);
(ii) the Poisson transform Pf satisfies the Conditions (JS).

Bibliographic references. The Depoissonisation path is based on five main contributions,
that are scattered in the literature. The path, together with its name, was systemized
in 1998 by Jacquet and Szpankowski in [15]. They compare the asymptotics of the two
sequences, the sequence f(n) and the sequence Pf (n). There were previous results of the
same vein, notably a paper due to Hayman [11] in 1956, but they were not known by the
AofA community. Jacquet and Szpankowski did not use the Poisson-Charlier expansion
which was later introduced in 2010 into the AofA domain by Hwang, Fuchs and Zacharovas
in [13]. Jacquet and Szpankowski also introduced conditions on the Poisson transform that
we call (following the proposal of [13]) the Conditions (JS). In [15], the authors prove that,
under Conditions (JS), it is possible to compare the two sequences Pf (n) and f(n). Later
on, in 2010, using the Poisson Charlier expansion, the authors of [13] obtain a direct and
natural proof of this comparison, with a more explicit remainder term. Finally, in two other
papers, Jacquet and Szpankowski show that the two conditions – Condition (DP) on the
sequence f and Conditions (JS) on Pf – are equivalent. The paper [16] deals with the
necessary condition whereas the very recent paper [14] deals with the sufficient condition.

2.2 Application to the sorting toll in tries. First proof of Theorem 6.
This section ends with an example of the Depoissonisation path in the study of trie parameters.
The Mellin transform of Pf (z) satisfies,

P ∗f (s) =
∑
k≥2

f(k)
k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥2

f(k)
k! Γ(k + s) =

∑
k≥2

f(k)
k

Γ(k + s)
Γ(k) .

The ratio of Gamma Functions can be estimated with the Stirling Formula,

Γ(k + s)
Γ(k) = (k + s)k+s

kk
e−k−s

e−k

√
k + s

k

[
1 +O

(
1
k

)]
= ks

[
1 +O

(
|s|
k

)]
, (9)

with a O-term uniform in k. Then, the Mellin transform of Pf satisfies, for f(k) = k log k,

P ∗f (s) =
∑
k≥2

ks log k
[
1 +O

(
|s|
k

)]
= −ζ ′(−s) +H1(s), H1(s) analytic on <s < 0. (10)

Then P ∗f (s) has a pole at s = −1 of order 2, and, together with the tameness of Λ(s) at
s = 1, this entails the following singular expressions for P ∗f (s) and P ∗r (s) at s = −1,

P ∗f (s) � 1
(s+ 1)2 , P ∗r (s) � 1

h(S)
1

(s+ 1)3 .

The tamenesses of P ∗f (s) and Λ(−s) at s = −1 are enough to deduce, using standard Mellin
inverse transform [7], the estimates, for z →∞,

Pf (z) = z log z (1 + o(1)), Pr(z) = 1
2h(S)z log2 z (1 + o(1)) . (11)
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We now return to the Bernoulli model; we prove that Pr(z) satisfies the Conditions (JS).
This will entail the estimate r(n) ∼ Pr(n) and end the proof. Assertion (I) is deduced from
(11) in some cone C(θ1). For Assertion (O), we write Pf (z) as

Pf (z) = z2e−zG(z) with G(z) =
∑
k=0

zk

k! g(k) and g(k) := 1
k + 1log(k + 2). (12)

As the sequence g := T 2[f ] satisfies Condition (DP), Theorem 8 entails good behaviour for
G(z) outside horizontal cones. Namely, for some θ2, and for all linear cones C(θ) with θ < θ2,
there exist δ < 1 and A > 0 such that the exponential generating function G(z) of g satisfies

z 6∈ C(θ) =⇒ (∀w ∈ Σ?) , |G(pwz)| ≤ A exp(δ|pwz|) (13)

We now consider, for γ < 1, a cone Ĉ(γ) defined in Section 1.4, with γ large enough to ensure
the inclusions Ĉ(γ) ⊂ C(θ1) (with θ1 relative to Assertion (I) for Pr(z)) and Ĉ(γ) ⊂ C(θ2)
(with θ2 relative to Eqn (13) for G(z)). With (8) and (12), and α := max(δ, γ), one has

for z 6∈ Ĉ(γ), |G(pwz) exp(z − pwz)| ≤ A exp [δpw|z|+ <(z)(1− pw)]
≤ A exp[|z|(δpw + γ(1− pw))] ≤ A exp(α|z|).

We then transfer the bounds on

Pr(z)ez = ez
∑
w∈Σ?

Pf (zpw) = z2
∑
w∈Σ?

p2
wG(pwz) exp(z − pwz).

and obtain, with B := AΛ(2), and for |z| large enough

z 6∈ Ĉ(γ) =⇒ |Pr(z)ez| ≤ B|z|2 exp(α|z|) ≤ C exp(α′|z|)

with α′ ∈]α, 1[ and a given constant C. Finally, Assertion (O) of Condition (JS) holds for
Pr(z) and this ends the proof.

3 The Rice path

In the Rice path, we deal with the Poisson sequence Π[f ]. We assume the following condition,
denoted as Condition RM [Rice-Mellin], to hold on the sequence Π[f ]

Condition (RM): There is an analytic lifting ψ(s) for the sequence Π[f ] which is tame.
Then the binomial recurrence (2) is transfered into a relation which expresses the term f(n)
as an integral along a vertical line which involves the analytic lifting ψ(s). With tameness of
ψ, we obtain the asymptotics of the sequence f .

3.1 The three steps of the Rice path
The Rice path performs three steps. It deals with a sequence f which satisfies the (VD)
conditions, but we describe it in the stronger case when f is reduced. The complete proofs
are in the Annex.

Step 1. It proves the existence of an analytical lifting ψ of the sequence Π[f ], on a halfplane
<s > c (for some c). It uses the (direct) Mellin transform and the Newton interpolation,
without any other condition on the sequence f .

I Proposition 9 (Nördlund-Rice). The sequence Π[f ] associated with a reduced sequence f of
degree c < −1 admits as an analytic lifting on <s > c a function ψ, which is also an analytic
extension of P ∗f (−s)/Γ(−s) there.
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Step 2. If moreover ψ is of polynomial growth “on the right”, the binomial relation (2) is
transfered into a Rice integral expression

I Proposition 10. Assume that the analytic lifting ψ of Π[f ] is of polynomial growth on the
halfplane <s > c, with c < −1. Then, for any a ∈]c, 0[ and n ≥ n0, the sequence f(n) admits
an integral representation of the form

f(n) =
n∑
k=0

(−1)k
(
n

k

)
p(k) = 1

2iπ

∫ a+i∞

a−i∞
Ln(s) · ψ(s) ds ,

where the Rice kernel Ln(s) := (−1)n+1 n!
s(s− 1)(s− 2) . . . (s− n) = Γ(n+ 1)Γ(−s)

Γ(n+ 1− s)
involves the Beta Function B with the equality Ln(s) = B(n+ 1,−s).

This integral representation is valid for any abscissa a which belongs to the interval ]c, 0[.
We now shift the vertical line <s = a to the left, and thus use tameness conditions on ψ at
s = c, as defined in Section 1.4.

Step 3. If moreover ψ is tame “on the left”, the integral is shifted to the left; this provides
the asymptotics of of the sequence f .

I Proposition 11. Consider a reduced sequence f : n 7→ f(n) with deg(f) = c < −1. If the
lifting ψ of Π[f ] is tame at s = c with a region R of tameness and a left frontier F , then

f(n) = −

 ∑
k|sk∈R

Res [Ln(s) · ψ(s); s = sk] + 1
2iπ

∫
F
Ln(s) · ψ(s) ds

 ,
where the sum is over the poles sk of ψ inside R.

3.2 The main question about the Rice method: Tameness of ψ
The main results are due to Nörlund [18, 17], then to Rice who popularized them. Later
on, with the paper [10], Flajolet and Sedgewick brought this methodology into the AofA
domain. The Rice-Mellin method is also well described in [6]. There exist many analyses
of various data structures or algorithms that are based on the application of the method:
tries ([9, 8, 3, 1]), digital trees ([9, 12]), or fine complexity analyses of sorting or searching
algorithms on sources ([4, 2]).

The situation for applying the Rice method is not the same as in Section 2: previously,
with Condition (DP), we know exactly when the Depoissonisation method may be applied.
This is not the case for the Rice method. Even though the literature well explains how to
use this method in various cases of interest, the following question is never asked: What are
sufficient conditions on the sequence f that would entail tameness of ψ?

As ψ(s) is closely related to the Mellin transform P ∗f (−s), meromorphy is often easy to
prove, and the poles often easy to find. In many natural contexts, the polynomial growth
and the tameness of the Mellin transform P ∗f (s) generally hold, and are often used in the
Depoissonisation approach [see Section 2.2]. But the main difference between the Rice
method and the Depoissonisation method is the division by Γ(s).

Sometimes, and this is often the case in classical tries problems, the factor Γ(s) already
appears in P ∗f (s), and ψ(s) has an explicit form, from which its polynomial growth may
be easily proven. For instance, for the toll f = f1 associated to the path length, then
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P ∗f (s) = Γ(s+ 1) and ψ(−s) is explicit, and equal to s. This is also the case for polynomial
tolls f of the form f = T−m[f1] with m ≥ 1.

But what about other sequences, for instance the sorting toll f(k) = k log k, and more
generally, the basic sequence f(k) = kd logb k (with d ∈ R and an integer b ≥ 1)? In this case,
the following expansion holds for P ∗f (−s), that involves the b-th derivative of the Riemann ζ
function and generalizes (10),

P ∗f (−s) = (−1)bζ(b)(s− (d− 1)) +H1(s) , (14)

where H1(s) is analytic on <s > d − 1. Then principles of Depoissonisation apply in this
case, due to good properties of the Riemann function. Now, in the Rice method, the function
ψ satisfies ψ(s) = P ∗f (−s)/Γ(−s), and the function 1/Γ(−s), even though it is analytic on
the half-plane <(s) ≥ 0, is of exponential growth along vertical lines. The Stirling formula
indeed entails the estimate

1
Γ(x+ iy) ∼

1√
2π

eπ|y|/2 |y|1/2−x, as |y| → ∞ .

It is thus not clear whether ψ(s) attached to the sorting toll is tame at s = 1. Then, the
Rice method seems to have a more restrictive use than the Depoissonisation method. As we
wish to compare the power of the two paths [Depoissonisation path and Rice path], we ask
the two (complementary) questions: Is the Rice path only useful for very specific tolls, where
the Mellin transform P ∗f (s) of the Poisson transform Pf (s) factorizes with the factor Γ(s),
or is it useful for more general tolls?

This leads us to study sufficient conditions under which the analytic lifting ψ may be
proven to be tame. We now propose to use the (inverse) Laplace transform. With this tool,
we prove the tameness of ψ for basic sequences (see Theorem 13).

4 The Rice–Laplace approach.

As in the previous Section, we deal with the Poisson sequence Π[F ]. Our main result proves
the tameness of the analytic continuation Ψ(s) of Π[F ], when F is a basic sequence.

I Definition 12. Consider a pair (d, b) with a real d and an integer b ≥ 0.
(i) A sequence F is basic with pair (d, b) if it writes as Fb,d(k) = kd logb k for any k ≥ 2 .
(ii) A sequence F is extended basic with pair (d, b) if it has an analytic extension Φ on

some halplane <s > a, of the form Φ(z) = Fd,b(z)W (1/z), with W analytic at 0, and
W (0) = 1.

I Remark. In the proof, an integral exponent b ≥ 0 is needed to relate Fd,b to a b-th
derivative.

Our main result is as follows:

I Theorem 13. Consider a basic extended sequence F with pair (d, b). Then, for some
σ0 > 0, the analytic continuation Ψ(s) of the Π[F ] sequence is of polynomial growth on any
halfplane <s ≥ a > d. Moreover, it writes in terms of the integer ` := σ(F ) defined in (4),

Ψ(s) =
[
s(s− 1) . . . (s− `+ 1)

b∑
m=0

am Γ(m)
` (s− d)

]
+B(s) (15)
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on the halfplane <s > d− σ0, for σ0 ∈]0, 1[. Here, B(s) is of polynomial growth, and Γ(m)
` is

the m-th derivative of the twisted Γ function that is defined for <s > 0, integers m ≥ 0 as

Γ(m)
` (s) :=

∫ ∞
0

e−`uus−1 logm u du . (16)

The coefficients am involve the derivatives of order k ≤ b of s 7→ 1/Γ(s) at s = `− d.

Remarks.
(a) With Lemma 3, the twisted function Γ` and its derivatives are of exponential decrease

along the vertical lines. This entails the tameness of Ψ at s = d.
(b) We already know the singular part of Ψ at s = d which is given by the expansion (14),

and the singular expansion given in (15) is just an alternative and complicate expression.
What is new is the tameness, not the singular expansion.

4.1 Plan of the proof
We first recall the principles of Section 1.5 : with a initial sequence F , we associate its
canonical sequence f := ρ(F ), and now deal with this new sequence f ; it is easy to return
(later) to the initial sequence F with Lemma 5. If the initial F admits an analytic lifting of
polynomial growth on <s > 0, then the sequence f = ρ(F ) is reduced and admits an analytic
lifting ϕ on <s > −1 that satisfies ϕ(s) = O(|s+ 1|c) there, with c < −1.

The first step performed in Section 4.2 deals with any reduced sequence f which admits
an analytic lifting ϕ on <s > −1 that satisfies ϕ(s) = O(|s+ 1|c) there, with c < −1. With a
strong use of the involutive character of Π, we first exhibit a new expression of the analytical
extension ψ of Π[f ] which deals with the inverse Laplace transform ϕ̂ of the extension ϕ
of the sequence f . The proof is then applied to the canonical sequence ρ[F ] of the initial
sequence F .

Then, the sequel of the present section focuses on (extended) basic sequences Fd,b. Here,
in this Section, we only deal with exact basic sequences. The extension to extended basic
sequences will be done in the Annex. We first obtain in Section 4.3 a precise expression of
the inverse Laplace transform ϕ̂ of extension ϕ of the canonical sequence fd,b := ρ(Fd,b), that
is transfered into a precise estimate of Π[fd,b]. This leads to the proof of Theorem 13.

4.2 A new general expression for ψ with the inverse Laplace transform
This section is of independent interest and provides a new expression of the extension of the
sequence Π[f ] in the case when f is reduced.

I Proposition 14. Consider a sequence f which admits an analytic lifting ϕ on <s > −1,
with the estimate ϕ(s) = O(|s+ 1|c) with c < −1. Then:
(i) The function ϕ admits an inverse Laplace transform ϕ̂ whose restriction to the real line

[0,+∞[ is written as the Bromwich integral for a ∈]− 1, 0[,

ϕ̂(u) = 1
2iπ

∫
<s=a

ϕ(s) esuds , and satisfies |ϕ̂(u)| ≤ Keau .

(ii) There is an analytical lifting ψ of the sequence Π[f ] that admits an integral form

ψ(s) = Is[ϕ̂] with Is[h] :=
∫ ∞

0
h(u)(1− e−u)sdu for <s > −1 . (17)
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Sketch of the proof. The complete proof is in the Annex.
(i) In a general context, where the analytic lifting ϕ(s) is only defined on <s > 0, the

Bromwich integral is written as an integral on a vertical line <s = a with a > 0. Here,
the hypotheses on ϕ are stronger and the Bromwich integral may be shifted to the left
with a ∈]− 1, 0[. Moreover, the Bromwich integral is absolutely convergent, and the
exponential bound on ϕ̂(u) holds.

(ii) As ϕ is polynomial growth, we use the involutive character of Π and apply Proposition
10 to the pair (p := Π[f ], f = Π2[f ]). It transfers the binomial expression of Π[f ] in
terms of Π2[f ] = f into a Rice integral, with a ∈]− 1, 0[,

p(n) = 1
2iπ

∫
<s=a

ϕ(s)Ln(s)ds, Ln(s) = Γ(n+ 1)Γ(−s)
Γ(n+ 1− s) = B(n+ 1,−s) .

We now use the integral expression of the Beta function, and “exchange” the two
integrals. J

The integral representation (17) leads us to introduce the two functions, defined on [0,+∞],

Ns(u) :=
(

1− e−u

u

)s
, Ms(u) :=

[(
1− e−u

u

)s
− 1
]
, (18)

that satisfy the two estimates, with σ := <s,

Ns(u) = Θ(1), (u→ 0), Ns(u) = O(u−σ) (u→∞) ,

Ms(u) = Θ(u) (u→ 0), Ms(u) = O(u−σ) (u→∞, σ > 0) .

Then, for “good” functions h, the integral Is[h] may be compared to the Mellin transform
h?(s+ 1). We now apply this idea to the particular cases where the behaviour of h = ϕ̂ is
well-known. Then, there are two steps which deal with a reduced sequence f , and aim at
studying the tameness of the analytical extension ψ of Π[f ]:
(a) transfer properties of ϕ into properties of its inverse Laplace transform ϕ̂;
(b) with properties of ϕ̂, study the tameness of ψ, via the representation (17).
We now perform these two steps. The (inverse) Laplace transform is not well studied, and
we do not know a general transfer result of type (a). This is why we only perform the two
steps for canonical sequences related to basic sequences. The proofs of the following section
are in the Annex.

4.3 Dealing with basic sequences
Step (a). We obtain first an expression for ϕ, then an expression for ϕ̂.

I Proposition 15.
(i) The sequence fb,d is extended in a function ϕ defined on <s > −1

ϕ(s) = (s+ `)d−` logb(s+ `)U
(

1
s+ `

)
; ` := σ(d)

Here U satisfies U(u) = 1 for d < 0. For d ≥ 0, it is defined as

U(u) = (1− u)−1(1− 2u)−1 . . . (1− (`− 1)u)−1 (with ` = 2 + bdc)

For d ≥ 0, the coefficient aj := [uj ]U(u) satisfies aj = Θd(`− 1)j.
(ii) The inverse Laplace transform ϕ̂(u) is a linear combination of functions, for m ∈ [0..b],

e−`u u−c−1 logm u
[
1 + V 〈m〉(u)

]
, with |V 〈m〉(u)| ≤ A(d,b) u e

(`−1)u .
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Step (b). The previous expression of ϕ̂ together with the representation (17) entail a
decomposition for ψ. Using the estimates of functions defined in (18), each term is compared
to the twisted version of the Γ function and its m-th derivative, defined in (16). This provides
the estimate for the initial function Ψ := Π[f ].

I Proposition 16.
(i) The extension ψ of the sequence Π[fb,d] is a linear combination of functions, for

m ∈ [0..b], each term being the sum of a main term A〈m〉(s) and a remainder term
O(B〈m〉(s)), with c := d− σ(d) < −1 and

A〈m〉(s) := Is
[
e−`u u−c−1 logm u

]
, B〈m〉(s) := Is

[
e−u u−c logm u

]
.

(ii) For <s ≥ 0, the two functions A〈m〉(s) and B〈m〉(s) are bounded on the halfplane
<s ≥ 0. For any integer m ≥ 0 and any integer ` ≥ 1, the two functions

A〈m〉(s)− Γ(m)
` (s− c), B〈m〉(s)

are analytic and of bounded growth on the vertical strip <s > c− σ0, with σ0 ∈]0, 1[.

4.4 A second proof for Theorem 6.
Within the framework of Section 1.7, we deal with the sorting toll F1,1. The singular part
of the extension Ψ := Π[F1,1] at s = 1 is obtained in (14). The tameness of Ψ at s = 1 is
proven in Theorem 13. Together with the tameness of the Dirichet series Λ at s = 1, this
entails the tameness of Π[r] and gives a three-lines proof of Theorem 6. We prefer this proof!

5 Final comparison between the two paths.

The Annex describes a formal comparison between the two paths. From analytical properties,
the Rice-Laplace path remains of more restrictive use than the Depoissonisation path:
(a) We need the analytic extension ϕ of f to hold on a halfplane, whereas the Depoissonisation

path needs it only on a horizontal cone.
(b) The analytic extension ϕ of f involves a precise expansion in terms of an analytic series

W , whereas the Depoissonisation path only needs a rough asymptotic estimate of ϕ.
(c) The exponent of the log term must be an integer b, whereas the Depoissonisation path

deals with any real exponent. The need of an integer exponent b is related to the
interpretation in terms of b-derivatives, and this is a restriction which is also inherent in
the method used by Flajolet in [5] in a similar context.

These are strong restrictions... However, most of the Depoissonisation analyses (at least for
mean values) deal with extended basic sequences, where the Rice-Laplace path may be used.
We let the final conclusion to the reader !
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A Annex

A.1 More on tameness
I Definition 17 (Tameness). A function $ analytic and of polynomial growth on <s > c is
tame at s = c if one of the three following properties holds:
(a) [S-shape] (shorthand for Strip shape) there exists a vertical strip <(s) > c− δ for some

δ > 0 where $(s) is meromorphic, has a sole pole (of order b+ 1 ≥ 1) at s = c and is of
polynomial growth as |=s| → +∞.

(b) [H-shape] (shorthand for Hyperbolic shape) there exists an hyperbolic region R, defined
as, for some A,B, ρ > 0

R := {s = σ + it; |t| ≥ B, σ > c− A

|t|ρ
}
⋃
{s = σ + it; σ > c− A

Bρ
, |t| ≤ B},
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where $(s) is meromorphic, with a sole pole (of order b+1) at s = c and is of polynomial
growth in R as |=s| → +∞.

(c) [P -shape] (shorthand for Periodic shape) there exists a vertical strip <(s) > c− δ for
some δ > 0 where $(s) is meromorphic, has only a pole (of order b + 1 ≥ 1) at s = c

and a family (sk) (for k ∈ Z \ {0}) of simple poles at points sk = c+ 2kiπt with t 6= 0,
and is of polynomial growth as |=s| → +∞4.

A.2 Proofs of the Rice path
Proof of Proposition 9. In the strip S(0,−c), the Mellin transform P ∗f (s) of Pf (z) exists
and satisfies

P ∗f (s)
Γ(s) = 1

Γ(s)
∑
k≥0

f(k)
k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥0

f(k)
k!

Γ(k + s)
Γ(s)

where the exchange of integration and summation is justified by the estimates given in (9).
On the strip S(c, 0), the series is a Newton interpolation series,

ψ(s) :=
P ∗f (−s)
Γ(−s) =

∑
k≥0

(−1)k f(k)
k! s(s− 1) . . . (s− k + 1) . (19)

Such series converge in right halfplanes and thus the previous series converges on <s > c.
Moreover, Relation (19), together the binomial relation (2), entails the equality

ψ(n) =
n∑
k=0

(−1)k f(k)
k! n(n− 1) . . . (n− k + 1) =

n∑
k=0

(−1)k
(
n

k

)
f(k) = Π[f ](n) .

This proves that ψ provides an analytic lifting of the sequence Π[f ] on <s > c which is also
an analytic extension of P ∗f (−s)/Γ(−s). J

Proof of Proposition 10. (Sketch) Use the Residue Theorem and the polynomial growth of
ψ(s) “on the right”. First, we consider the rectangle AM delimited by the contour τM defined
by the two vertical lines <s = a and <s = n+M and the two horizontal lines =s = ±M . If
the contour τM is taken counterclockwise, then the Residue Theorem applies,

1
2iπ

∫
τM

Ln(s) ·ψ(s) ds =
n∑
k=0

Res[Ln(s) ·ψ(s); s = k] = −
n∑
k=0

(−1)k
(
n

k

)
Π[f ](k) = −f(n).

Next, the integral on the curve τM is the sum of four integrals. Let now M tend to ∞. The
integrals on the right, top and bottom lines tend to 0, due to the polynomial growth of the
function ψ(s). The integral on the left becomes

−
∫ a+i∞

a−i∞
Ln(s) · ψ(s) ds,

and we have proven the result. For details on the proof, we may refer to papers [18, 17, 10]. J

4 More precisely, this means that $(s) is of polynomial growth on a family of horizontal lines t = tk with
tk →∞, and on vertical lines <(s) = σ0 − δ′ with some δ′ < δ.
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Proof of Proposition 11. (Sketch) The proof is similar to the previous proof. With the
tameness of ψ(s) at s = c with a tameness domain R, we now deal with the residues of ψ;
we consider the domains

R̂ := R∩ {<s < a} and RM := R̂ ∩ {|=s| ≤M},

and denote LM the curve (taken counterclockwise) which borders the region RM . As ψ(s) is
meromorphic in RM and Ln(s) analytic there, we apply the Residue Theorem to the function
Ln(s) · ψ(s) inside RM , and obtain

1
2iπ

∫
LM

Ln(s) · ψ(s) ds =
∑

sk∈RM

Res [Ln(s) · ψ(s); s = sk]

where the sum is taken over the poles sk of ψ(s) inside R. Now, when M →∞, the integrals
on the two horizontal segments tend to 0, since ψ(s) is of polynomial growth, and

lim
M→∞

∫
RM

Ln(s) · ψ(s) ds =
∫ a+i∞

a−i∞
Ln(s) · ψ(s) ds−

∫
F
Ln(s) · ψ(s)ds

= 2iπ
∑
sk∈R

Res [Ln(s) · ψ(s); s = sk] ,

where the sum is taken over the poles sk of ψ(s) inside the domain R. J

A.3 Proofs of the Rice-Laplace path
Proof of Proposition 14.
(i) In a general context, where the analytic lifting ϕ(s) is only defined on <s > 0, the

Bromwich integral is written as

ϕ̂(u) = 1
2iπ

∫
<s=a

ϕ(s) esuds, (with a > 0) .

Here, the hypotheses on ϕ are stronger: we can shift the integral on the left and
choose a ∈]− 1, 0[. Moreover, the Bromwich integral is ansolutely convergent, and the
exponential bound on ϕ̂(u) holds.

(ii) We use the involutive character of Π and apply Proposition 10 to the pair (p :=
Π[f ], f = Π2[f ]). In the classical Rice path, it is applied to the pair (f,Π[f ]), when
Π[f ] is of polynomial growth, and it transfers the binomial expression of f in terms of
Π[f ] into an integral expression. Here, due to the polynomial growth of f = Π2[f ] on
<s > −1, it transfers the binomial expression of Π[f ] in terms of Π2[f ] = f into a Rice
integral, with a ∈]− 1, 0[,

p(n) = 1
2iπ

∫
<s=a

ϕ(s)Ln(s)ds, Ln(s) = Γ(n+ 1)Γ(−s)
Γ(n+ 1− s) .

We now deal with the Beta function

B(t+ 1,−s) = Γ(t+ 1)Γ(−s)
Γ(t+ 1− s) ,

that is well defined for <t > −1 and <s < 0, and admits an integral expression

B(t+ 1,−s) =
∫ ∞

0
esu(1− e−u)tdu, (for <t > −1, <s < 0) .
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Together with the equality Ln(s) = B(n+ 1,−s), this entails an analytic extension ψ
of the sequence Π[f ] on the halfplane <t > −1,

ψ(t) = 1
2iπ

∫
<s=a

ϕ(s)B(t+ 1,−s)ds, (b < 0)

with an integral expression,

ψ(t) = 1
2iπ

∫
<s=a

ϕ(s)
[∫ ∞

0
esu(1− e−u)tdu

]
ds .

With properties of ϕ, it is possible to exchange the integrals: then, the equality holds

ψ(t) =
∫ ∞

0
(1− e−u)t

[
1

2iπ

∫
<s=a

ϕ(s) esuds
]
du,

and the second integral is the inverse Laplace transform ϕ̂ of ϕ. This ends the proof. J

Proof of Proposition 15. For (i), letting ` := σ(d) with σ defined in (4), the canonical
sequence f associated with F can be extended to a function ϕ defined on ]− 1,+∞[ as

ϕ(x) = logb(x+ `) (x+ `)d

(x+ 1)(x+ 2) . . . (x+ `) = logb(x+ `) (x+ `)d−` U
(

1
x+ `

)
,

and involves a function U defined as U(u) = 1 for d < 0 and, for d ≥ 0 as

U(u) = (1− u)−1(1− 2u)−1 . . . (1− (`− 1)u)−1 (with ` = 2 + bdc) . (20)

Then, for d ≥ 0, the coefficient aj := [ui]U(u) satisfies aj = Θ(`− 1)j .

For (ii), there are three main steps, according to the type of the basic sequence.

Step 1. We begin with the particular case when ϕ(s) is of the form ϕ(s) = (s+ `)c (with
c < −1). Its inverse Laplace transform ϕ̂ is then

ϕ̂(u) = 1
Γ(−c)e

−`u u−c−1 .

Step 2. We now consider a function (without logarithmic factor) of the form

ϕ(s) = ϕc(s) = (s+ `)cU
(

1
s+ `

)
=
∑
j≥0

aj (s+ `)c−j . (21)

Then ϕ is a linear combination of functions of Step 1 and the inverse Laplace transform ϕ̂ of
ϕ is written as

ϕ̂c(u) = e−`u
u−c−1

Γ(−c) [1 + Vc(u)], with Vc(u) :=
∑
j≥1

aju
jGj(c) , (22)

where the function Gj is the rational fraction which associates with c the ratio

Gj(c) := Γ(−c)
Γ(j − c) = 1

−c(1− c) . . . (j − 1− c) . (23)

As c < −1, the inequality Gj(c) ≤ (1/j!) holds and this entails the inequality |Vc(u)| ≤
Aue(`−1)u, where the constant A only depends on d.
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Step 3. We add finally a logarithmic factor and consider a function of the form

ϕ(s) = (s+ `)c logb(s+ `)U
(

1
s+ `

)
(24)

which is written as a b-th derivative. Indeed, the equality holds

U

(
1

s+ `

)
(s+ `)c logb(s+ `) = ∂b

∂tb

[
(s+ `)c+tU

(
1

s+ `

)] ∣∣∣∣
t=0

,

and we can take the derivative “under the Laplace integral”: we then deduce that the inverse
Laplace transform ϕ̂ of the function ϕ defined in (24) is equal to

∂b

∂tb
ϕ̂c+t(u)

∣∣∣∣
t=0

= e−`u
∂b

∂cb

[
u−c−1

Γ(−c) (1 + Vc(u))
]
.

The coefficient of uj in the k-th derivative of c 7→ Vc(u) involves the k-th derivative of the
function c 7→ Gj(c), defined in (23) which satisfies the inequality

|G(k)
j (c)| ≤ Ak logk(j + c)Gj(c) for some constant Ak.

Then, the inequality holds,∣∣∣∣ ∂k∂ck Vc(u)
∣∣∣∣ ≤ A(d,b) u e

(`−1)u ,

and involves a constant A(d,b) which depends on the pair (d, b). On the other hand, the
following m-th derivative is a linear combination of the form

∂m

∂cm

[
u−c−1

Γ(−c)

]
= u−c−1

[
(−1)m

m∑
a=0

(
m

a

)
(loga u)H(m−a)(c)

]
,

where H is the function defined as H(c) = 1/Γ(−c). This ends the proof. J

Proof of Proposition 16.
(a) is clear : For <s ≥ 0, the result follows from the inequalities (1 − e−u)σ ≤ 1, c < −1,

together with the integrability of the function u 7→ e−`uu−c−1 logm u on the interval
[0,+∞].

(b) The difference A〈m〉(s)−Γ(m)
` (s− c) is expressed with Ms, whereas B〈m〉(s) is expressed

with Ns, both defined in (18). Together with their estimates, this leads to the following
bounds, for any ρ > 0,

A〈m〉(s)− Γ(m)
` (s− c) = Oρ

(
Γ`(σ − c+ 1− ρ)

)
, B〈m〉(s) = Oρ

(
Γ(σ − c+ 1− ρ)

)
and also to the analyticity of the functions of interest on the vertical strip <s > c− σ0,
with σ0 ∈]0, 1[. J

Extension to extended basic sequences. It is easy to extend the proof of Theorem 13 to
this more general case: We denote by r the convergence radius of W , and we thus choose a
shift T ` with an integer which now satisfies

` ≥ max
[
2 + bdc, a+ 1, (1/r) + 1

]
,

and deal with the sequence f := T `[F ]. We replace the previous series U defined in
Proposition 15 by the series U ·W which has now a convergence radius r̃ := min(r, 1/(`− 1))
for which the bound 1/r̃ < ` holds. We choose r̂ ∈]1/r̃, `[, and the new series Vc defined in
(22) satisfies |Vc(u)| ≤ Au er̂u and indeed gives rise to a remainder term. J
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A.4 Description of a formal comparison between the two paths
As it is observed in the paper [13], there are formal manipulations which allow us to compare
the two paths.

In the Depoissonisation path, the asymptotics of f(n) is manipulated in two steps: first
use the Cauchy integral formula

f(n) = n!
2iπ

∫
|z]=r

Pf (z) ez 1
zn+1 dz . (25)

then derive asymptotics of Pf (z) for large |z| by the inverse Mellin integral

Pf (z) = 1
2iπ

∫
↑
P ∗f (s)z−sds = 1

2iπ

∫
↑
P ∗f (−s)zsds , (26)

where the integration path is some vertical line. This two-stage Mellin-Cauchy formula is
the beginning point of the Depoissonization path.

We now compare the formula obtained by this two stage approach with the N’́ordlund-Rice
formula. First remark that, as the function Pf (z)ez is entire, we can replace the contour
{|z| = r} in (25) by a Hankel contour H starting at −∞ in the upper halfplane, winding
clockwise around the origin and proceeding towards −∞ in the lower halfplane. Then (25)
becomes

f(n) = n!
2iπ

∫
H
Pf (z) ez 1

zn+1 dz (27)

Now, if we formally substitute (26) into (27), interchange the order of integration and use
the equality

1
Γ(n+ 1− s) = 1

2iπ

∫
H
ez

zs

zn+1 dz ,

we obtain the representation

f(n) = n!
2iπ

∫
↑
P ∗f (−s) 1

Γ(n+ 1− s)ds , (28)

and we recognize in (28) the Rice integral

f(n) = n!
2iπ

∫
↑

P ∗f (−s)
Γ(−s)

Γ(−s)
Γ(n+ 1− s)ds = 1

2iπ

∫
↑
ψ(s) (−1)n+1 n!

s(s− 1) . . . (s− n)ds .

This exhibits a formal comparison between the two paths. However, this comparison is
only formal because the previous manipulations may be meaningless due to the divergence of
the integrals.
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