
HAL Id: hal-01709321
https://hal.science/hal-01709321

Preprint submitted on 14 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forecasting the Volatility of the Chinese Gold Market by
ARCH Family Models and extension to Stable Models

Marie-Eliette Dury, Bing Xiao

To cite this version:
Marie-Eliette Dury, Bing Xiao. Forecasting the Volatility of the Chinese Gold Market by ARCH
Family Models and extension to Stable Models. 2018. �hal-01709321�

https://hal.science/hal-01709321
https://hal.archives-ouvertes.fr


 

    Marie-Eliette Dury, Bing Xiao                                                               1 

 

Forecasting the Volatility of the Chinese Gold Market by ARCH Family Models and 

extension to Stable Models 

Marie-Eliette DURY 

School of Economics, Clermont Auvergne University 

France 

m-eliette.dury@uca.fr  

 

Bing XIAO 

University Technology Institute (IUT), Aurillac 

CRCGM EA 38 49 Clermont Auvergne University 

France  

bing.xiao@uca.fr 

Abstract 

Gold plays an important role as a precious metal with portfolio diversification; also it is an 

underlying asset in which volatility is an important factor for pricing option. The aim of this 

paper is to examine which autoregressive conditional heteroscedasticity model has the best 

forecast accuracy applied to Chinese gold prices. It seems that the Student’s t distribution 

characterizes better the heavy-tailed returns than the Gaussian distribution. Assets with higher 

kurtosis are better predicted by a GARCH model with Student’s distribution while assets with 

lower kurtosis are better forecasted by using an EGARCH model. Moreover, stochastic 

models such as Stable processes appear as good candidates to take heavy-tailed data into 

account. The authors attempt to model and forecast the volatility of the gold prices at the 

Shanghai Gold Exchange (SGE) during 2002–2016, using various models from the ARCH 

family. The analysis covers from October 30, 2002 to December 7, 2015 and from December 

8, 2015 to May 6, 2016 as in-sample and out-of-sample sets respectively. The results have 

been estimated with MAE, MAPE and RMSE as the measures of performance. 
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1. Introduction 

Gold is a precious metal which forms an integral part of many investment portfolios; it has 

similar characteristics to money (see Solt and Swanson, 1981). Ciner (2001) indicates that 

gold plays an important role as a precious metal with portfolio diversification properties: 

holding gold leads to a more balanced portfolio. Lawrence (2003) finds that gold returns are 

less correlated with returns on equities and bonds than other assets. Many researchers and 

professionals believe that gold plays the role of a hedge against inflation. Sjaastad and 

Scacciavillani (1996) claim that gold is a refuge value against inflation. Central banks and 

international financial institutions hold a large proportion of gold for their diversification 

capacity, and gold is considered as an insurance against market crises. According to Smith 

(2002), when the economic environment becomes more uncertain, gold plays a role as a safe 

haven. A number of authors have reported the fact that gold reflects the value of the US 

dollar, because a depreciation in the dollar may increase interest in gold, Tully and Lucey 

(2007) report that a lower US dollar makes gold less expensive for other international 

investors to buy dollar-denominated gold. 

The Chinese assets market is one of the emerging assets markets which offer an opportunity 

for international diversification. Since the 1990s, reforms in regulations as well as in the 

attitudes of regulators have rendered the stock market more efficient. However, it would seem 

that in the Chinese assets market, anomalies persist (see Mookerjee and Yu, 1999; Mitchell 

and Ong, 2006). This article studies the volatility of gold prices in China through gold prices 

at the Shanghai Gold Exchange (SGE). As mentioned in Hoang et al. (2015), it is important to 

use local gold prices when studying the Chinese gold market since it is still forbidden for 

Chinese investors to trade gold abroad without authorization.  

It has become more important for financial institutes to consider the volatility of a financial 

asset. The movements are usually measured by the volatility and can be seen as the risk of the 

asset. One of the problems with modelling the volatility is that it is non-stationary: there are 

periods with low movements and then periods with high movements. The first model that 

assumed that volatility is not constant is ARCH (autoregressive Conditional 

Heteroscedasticity Model) by Engle in 1982. The ARCH model has been transformed and 

developed into more sophisticated models, such as GARCH, EGARCH, PARCH and 

TARCH. The questions to ask are: Do the new models capture the volatility better? If one 
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model better captures the volatility, would it lead to a more efficient forecast accuracy? 

Currently, results of research into the model’s performance are conflicting and confusing. 

These observations lead the author to determine how well these different models perform in 

terms of forecasting volatility and will be assessed based on the forecasts they produce. This 

study focuses on the gold prices at the Shanghai Gold Exchange (SGE); it contributes to the 

existing finance literature by investigating the Chinese gold market during the recent period. 

In addition, this work opens another suitable way to model heavy-tailed data, such as returns. 

Heavy-tailed data can be modelled very well by α-Stable distributions because of the high 

variability of the data.  

 

The structure of this article is as follows. Section 2 provides a brief overview of the existing 

literature. Data and methodology are described in Section 3 which firstly recalls the different 

ARCH Family models. Then, construction and properties of Symmetric α-Stable processes 

are presented; the aim is to show the adequacy of this model in this context. Next, Section 4 

displays the results of this study with the numerical comparison between Student and 

Gaussian distribution.  

 

2. Literature Review 

Engle’s (1982) study was the first to distinguish between unconditional and conditional 

variance. According to the ARCH models, the variance of the current error term is a function 

of the previous time period’s error terms. Bollerslev (1986) points out that the ARCH model 

has a long lag in the conditional variance equation. To avoid problems of negative variance 

parameter estimates, his solution was to generalize the ARCH model. Nelson (1991) proposed 

the EGARCH model to account for the presence of asymmetric effects. Poon and Granger 

(2003) noted that models that allowed for asymmetric effects are able to provide better 

forecasts owing to the negative relationship between volatility and shocks.  

Most research on volatility modeling has focused on equity markets and foreign exchange 

markets, but Sadorsky (2006) pointed out that one type of market cannot be generalized 

across other markets. It seems that stocks with higher kurtosis were better predicted by using 

the GARCH model and stocks with lower kurtosis were forecasted better by using EGARCH. 
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Ederington and Guan (2005) showed that the financial market has a longer memory than 

explained by the GARCH(1,1) model. Awrtani and Corradi (2005) found that the asymmetric 

models perform better than the GARCH(1,1) model. After comparing the different volatility 

models, Köksal (2009) found that the EGARCH(1,1) performed best. Bracker and Smith 

(1999) studied the volatility of the copper futures market, and concluded that both the 

GARCH and EGARCH models best fit this market’s volatility. Carvalho et al. (2006) found 

evidence of asymmetric effects when using the EGARCH model. 

However, not all the empirical studies agree with these findings. Ramasamy and Munisamy 

(2012) found that the GARCH models are better to predict the volatility of exchange rates and 

the EGARCH model does not improve the quality of the forecasts. Marcucci (2005) found 

that the GARCH model performs much better than other models in a long time period, but not 

in a short time period. Zahangir et al. (2013) investigated the ARCH models for forecasting 

the volatility of equity returns. Their study showed that based on in-sample statistical 

performance, both the ARCH and PARCH models are considered the best performing model 

whereas all models except the GARCH and TARCH models are regarded as the best model 

for the returns series. 

3. Data and Methodology 

The main motive of this paper is to investigate the use of the ARCH family models for 

forecasting the volatility of the Shanghai Gold Exchange (SGE) by using daily data. GARCH, 

EGARCH, PARCH, IGARCH, GARCHM and TARCH models are used for this study. 

3.1 Data 

The data used is the returns on the Shanghai Gold Exchange (SGE) returns series (Figure 1). 

In order to calculate these returns, we use data on the daily price. Data on prices spans the 

period from October 30, 2002 to May 6, 2016, a total of 3,278 observations. The total data set 

is divided into in-sample samples and out-of-sample samples. The requisite data is obtained 

from the Factset database. The price taken as the daily price is the last trading price of the 

day.  

Figure 1 shows the gold prices at the Shanghai Gold Exchange (SGE) from October 2002 to 

May 2016, the crash of 2007 is clearly visible as well as the major long-run rise in the index 

in 2002-2011. The index is non-stationary, since its mean level is not constant and rises over 
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time. The daily return on the index appears to be stationary with a constant mean and 

variance. The outliers, namely very large or very small returns, imply that the returns are non-

normal with fat tails and the distribution may be asymmetric.  

 

Figure 1: Chines gold market prices and returns (Daily, 2002 – 2016) 

 

A positive skewness of 0.11876799 and negative kurtosis of -1.04121692 are revealed in the 

gold price summary statistics at the Shanghai Gold Exchange (SGE) (Table A1 in the 

Appendix). At a confidence interval of 99%, the SGE Index is non-normal, in accordance 

with Jarque-Bera statistics. Therefore, it is necessary to remodel the gold price series into a 

return series. Plotting autocorrelation and partial autocorrelation of the SGE index designates 

the series to be non-stationary (Figures A1 and A2 in the Appendix). Applying the Dickey-

Fuller test and the Phillips-Perron test to the series confirms this (Table A2, A3 in the 

Appendix), and suggests that it cannot be used to model volatility. 

Movements of stock indices series are not suitable for study as they are usually non-stationary 

and it is therefore necessary to remodel the daily price into a return series. The SGE index 

series is converted into a returns series by using the following equation: 

�� = � ������	 − 1    (1.1) 

The logarithm of the gross return is given by: 
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����� = ln	� �������   (1.2) 

Where, 

��= the rate of return at time t  

�� = the price at time t    

���� = the price just prior to the time t 

Statistics on returns are summarized in Table 1, where the SGE index has a 0.04 average daily 

return and a 0.000208 standard deviation. At -0.05748, the skewness coefficient is negative 

which is common for most financial time series.  The kurtosis value is higher than 3, implying 

that the returns distribution has fat tails. The ARCH family of models should, therefore, be 

used to account for these characteristics of the data. When modelling a series of this sort, it 

must be stationary and the data must be mean-reverting. Therefore, the Dickey-Fuller test is 

used on the returns series (Table A4 in the Appendix) to confirm that the series is, indeed, 

stationary. The Phillips-Perron test can also be applied to confirm that the series is stationary 

and, in addition, for modelling (Table A5 in the Appendix). 

Table 1: Summary statistics for returns 

 Observations Mean Standard Deviation Min Max Skewness Kurtosis 

Returns 3278 0.0004 0.00020864 -0.103765 0.127962 -0.05748 14.00012 

 

The observed pattern in Figure 1 indicates that GARCH type models are necessary to model 

return volatility patterns for SGE index returns. The return volatility descriptive statistics 

presented in Table 1 indicate a Kurtosis at 14.00012. Since the Kurtosis statistic is greater 

than three, the SGE return series is leptokurtic (Figure2).  
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Figure 2: Leptokurtic distribution of SGE return series 

 

According to recent research, it seems that returns with higher kurtosis were better predicted 

by using GARCH with student’s distribution and returns with lower kurtosis were forecasted 

better by using EGARCH. Skewness is -0.05748, this indicates that return volatiles are 

negatively skewed (left skewness). Negative skewness indicates that the upper tail of 

distribution is thinner than the lower tail. That indicates that in the SGE market, prices fall 

more often than they rise. The ADF-test, as well as the PP-test, are used to get confirmation 

regarding whether the return series is stationary or not. The value of the ADF test statistic, -

62.283, is less than its test critical value, -3.410, at 5%, level of significance, which implies 

that the gold price return series is stationary. The findings of the PP test also confirm that the 

return series is stationary, since the values of the PP test statistic is less than its test critical 

value. The plotted autocorrelation and partial autocorrelation of squared returns indicate 

dependence and hence imply a time-varying volatility (Figures A3 and A4 in the Appendix).  

3.2 Specification of the Models used in this study 

In order to  model  the  volatility  of  the  returns,  we  need  to determine  their  mean 

equation.  The return for today will depend on returns in previous periods (autoregressive 

component) and the surprise terms in previous periods (moving order component). In this 

empirical study, plotting the autocorrelation and partial autocorrelation of the returns series 

can help determine the order of the mean equation. 
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Like most financial time series, the returns series exhibits what is referred to as “volatility 

clustering” (Figures A5 and A6 in the Appendix). In order to model such patterns of behavior, 

the variance of the error term is allowed to depend on its history. The classic model of such 

behavior is the ARCH model introduced by Engle (1982), which simultaneously models the 

mean and variance of a series.   

 

3.2.1 ARCH(q) model 

Autoregressive conditional heteroscedasticity (ARCH) models are used when the error terms 

will have a characteristic size or variance. The ARCH models assume the variance of the 

current error term to be a function of the actual sizes of the previous time period’s error terms. 

The ARCH model is a non-linear model which does not assume the variance is constant. The 

basic linear ARCH model may be presented as: 

�� = ��� + �.  (2) 

The error terms are split into a stochastic piece and a time dependent standard deviation: 

�� = ����   (3) 

The random variable is a white noise process, the series ��� is the volatility of the time series 

which changes over time, and ��� (variances of the residual) is modelled by: 

��� = � + ������� +⋯+ �"���"� = � + ∑ �$"$%� ���$�  (4) 

Where � > 0	�(	�$ > 0. 
3.2.2 GARCH(p, q) model 

The GARCH model is a generalized ARCH model, developed by Bollerslev (1986) and 

Taylor (1986) independently. They introduced a moving average term into the ARCH 

estimation. A fixed lag structure is imposed. The GARCH(p, q) model, where p is the order of 

the GARCH terms �� and q is the order of the ARCH terms ��. 

��� = * + ������� +⋯+ �"���"� + +������ +⋯+ +,���,�  

= * +∑ �$"$%� ���$� +∑ +$,$%� ���$�    (5) 
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The form of GARCH(1,1) is given below, the equation (5) is the conditional variance 

equation, ��� is the one period forecast variance based on past information, ��� is determined 

by � , �����  and ����� . Where the news about volatility from the previous period is ����� , 

measured as the lag of the squared residual from the equation (2), and �����  is used to be 

considered as the last period’s (forecast) variance. 

��� = � + ������ + +�����    (6) 

Engle and Bollerslev (1986) indicated that the coefficient �- + +� measures the volatility 

shock, when  �- + +� is closed to one, the volatility shocks are persistent, this means that the 

volatility may take long time to return to a quieter phase. 

 

3.2.3 GARCH-M model 

The M in GARCH-M stands for “in the mean”. This model is an alternative ARCH model 

developed by Engle and Bollerslev (1986). GARCH-M is used when the expected financial 

time series return is related to the expected asset risk. The conditional variance is included in 

the conditional mean equation. The GARCH-M (1,1) is written as: 

.� = /0�1����2 + 3������ � + �� (7) 

�� = ���� 
The equation shows that the returns (.��	has a positive relation to its own volatility. Engle and 

Bollerslev proposed to introduce the logarithm of conditional variance into the mean 

equation; the equation (7) can be expressed as: 

�� = ��� + 4 log����� + ��  (8) 

3.2.4 IGARCH 

Consider the GARCH model in ARMA equation: 

�� = ���� 
��� = � + ∑ �$���$�"$%� + ∑ +7���7�,7%�   (9) 
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Where the parameter α is the ARCH parameter and β is the GARCH parameter, α(L) and β(L) 

is defined polynomials, and � > 0, �$ ≥ 0, +$ ≥ 0	�(	 ∑ ��$ + +$� < 1;<=	�,,"�$%� . 

3.2.5 EGARCH model 

The EGARCH model was developed by Nelson (1991) as a solution to avoid problems with 

negative variance parameter estimates. If “bad news” has a more pronounced effect on 

volatility than “good news” of the same magnitude, then a symmetric specification such as 

ARCH or GARCH is not appropriate since in standard ARCH/GARCH models the 

conditional variance is unaffected by the sign of the past periods’ errors  (it  depends  only  on 

squared  errors). The logarithmic function ensures that the conditional variance is positive 

and, therefore, the parameters can be allowed to take negative values. The form of 

GARCH(1,1) is given below: 

log ��� = * + 	+ log ����� + > ?���
@A���B + �C |?���|

@A���B −@2 FG H (10) 

According to Engle and Ng. (1993), the EGARCH model allows positive return shocks and 

negative return shocks so that there are different effects on volatility; the coefficient > 

measures the asymmetry effect. Gokan (2000) indicated that when > = 0, the goods news 

(positives return shocks) has the same effect on volatility as bad news represents the negative 

return shocks. 

In equation (10), positive return shocks, namely good news, has �* + >� impacts on return 

volatility while the negative return shocks, bad news, has a �* − >� impacts. If * and > are 

positive, the good news will have more effect on return than bad news. According to previous 

studies in this subject, the coefficient > is often negative; this suggests negative return shocks 

have more impact on return volatility than good news. 

3.2.6 PARCH model 

The PARCH model is a GARCH model with an additional term to account for the 

asymmetries effect. It employs an indicator function as follows (PARCH(1, 1)): 

��� = � + ������� + +����� + >����� I��� (11) 
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The indicator function takes a value of 1 if the error > 0, and 0 otherwise. For the effect of the 

previous period’s bad news to be greater than the effect of good news of the same magnitude, 

γ should be significant and have a negative sign. 

3.2.7 TARCH model 

The Threshold GARCH (TARCH) model by Zakoïan (1994) is one on conditional standard 

deviation instead of conditional variance. The effect of good and bad news is captured 

separately through the two coefficients, α and γ, respectively. The TARCH model adds a 

separate variable for negative shocks. 

��� = * + ∑ �$���$�"$%� + ∑ +7���7�,7%� + ∑ >J���J� I��JKJ%�  (12) 

I��JLLLLL equals one if � is less than zero and zero if else. The form of TARCH(1,1) is given below: 

��� = * + ������ + +����� + >����� I���LLLLL (13) 

In equation (12) and (13), good news (positive return shocks) and bad news (�� < 0) have 

different impacts on the conditional variance. Positive return shocks have an --effect on 

volatility, while bad news has an (- + >)-effect on the conditional variance (volatility). If > 

equals zero, the TARCH model becomes a linear GARCH (symmetric) model. If > ≠ 0, then 

that suggests an asymmetric effect. 

3.2.8 NGARCH model 

Nonlinear GARCH (NGARCH) is known as nonlinear asymmetric GARCH(1,1). 

��� = � + ������� − N������ + +�����   (14) 

��, + ≥ 0; � > 0 

For the return series, parameter φ is positive, it means a leverage effect: negative returns 

increase future volatility by a larger amount than positive returns of the same magnitude. 

3.2.9 Student’s t distribution 

One of the problems with forecasting volatility is the distribution: there are periods with low 

movements and periods with high movements. Köksal (2009) indicates that the Student’s t 

distribution characterizes better the heavy-tailed returns than the Gaussian distribution. It 
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seems that stocks with higher kurtosis were better predicted by using GARCH with student’s 

distribution and stocks with lower kurtosis were better forecasted by using EGARCH model 

(see Grek A., 2014). 

In the ARCH models, the first part is �� = ���� with P�~R�0,1�. In the GARCH model with 

student distribution, the first part is written as part �� = ��.� with ��~S�(� and ( is the 

degrees of freedom.  

3.2.10 Extension to Stable Models 

The most famous stochastic model for self-similar phenomena is certainly the Fractional 

Brownian Motion (fBm) popularized by Benoit Mandelbrot in the 60’s. The fractional 

Brownian motion is the only H-self-similar centered Gaussian process with stationary 

increments in dimension 1. There exist several generalizations of the fractional Brownian 

motion, such as the multifractional Brownian motion (mBm) defined independently by Peltier 

and Lévy-Véhel, and by Benassi et al. 

Such Gaussian models are well known and applied in different fields. Nevertheless, as soon as 

the observed phenomenon has large fluctuations or high variability, they are no longer 

appropriate. Such limitations lead us to propose stable non-Gaussian models as those data 

present large fluctuations and variability on the collected values. 

The stable non-gaussian framework is however much more complicated than the Gaussian 

one. It is richer as there exist at least two distinct models of H-self-similar symmetric α-stable 

(SαS) family of processes: the so-called Moving Average and the Harmonizable stable 

process. Actually, they are distinct since they form two disjoint classes of processes, as 

proved in Cambanis et al. and in the reference book of Samorodnitsky and Taqqu. In the 

Gaussian case where - = 2, the two classes describe in fact the same, since they have the 

same law, up to a constant. Let us then consider stable non-gaussian stochastic processes; they 

are defined in the following way: 

For 1, . ∈ ℝV 

0W,X�1; .� = |1 − .|X�VW − |.|X�VW 
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3W,X�1; .� = Y1Z�[1. .� − 1
|.|X\VW  

for some + > 0. Next we take + = - the stability index, or + = -∗ such that 

1- + 1-∗ = 1. 
If - = -∗ = 2, we come back to the Gaussian framework. Then α-stable stochastic processes 

are defined as the integral, for a random measure^_, of the previous kernels: 

��1� = ` 0W,X�1; .�ℝa
^_�(.�												�15� 

and 

P�1� = ` 3W,X�1; .�ℝa
^_�(.�										�16� 

where process � is the Moving Average and process P is the harmonizable representation. 

3.3 Measures of the Statistical Performance of the Model  

After producing the forecasts, they are evaluated by comparing out-of-sample forecasts with 

historical volatility.  To identify the best-performing model in both the in-sample data set and 

the out-of-sample data set of this study, statistical performance measures are applied. 

Measures such as MAE (mean absolute error), MAPE (mean absolute percentage error) and 

RMSE (root mean squared error) are used. Their definition and way of computation is:  

^de =	 f1 G g∑ h�i$� − �$�hj$%�   (17) 

^d�e = �1/�∑ h��i$� − �$��/�$�hj$%�   (18) 

�^le = 1 G @∑ ��i$� − �$��j$%� ²  (19) 

We detail the empirical findings in next Section. Then, from this study, we think that Stable 

non-Gaussian processes would fit better the heavy-tailed returns of such data than the 
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Gaussian distribution. Actually, consider a non-Gaussian --Stable process �n with 

distribution l_��, +, o�, where 0 < - < 2  is the stability index, 

 � ≥ 0 is the scale parameter,  

−1 ≤ + ≤ 1 is the skewness parameter, 

 o ∈ ℝ is the shift parameter. 

The case - = 2 can be added, but it comes back to the Gaussian framework as when + = 0 

then this Stable distribution corresponds to the Normal law l���, 0, o� ≔ Ɲ�o,2��).  

A symmetric α-stable non-Gaussian process �n_n with distribution l_��, 0,0� for - < 2 

satisfies an important characteristic property 

 ��|�| > 1�~
�

�
 �_�_1�_ when 1 → +∝      (20) 

Namely, the tails of the distribution decay like a power function while it is an exponential 

decay for a Gaussian process. Consequently stable non-Gaussian processes exhibits more 

variability than Gaussian ones. Thus, the smaller α, the highest is the variability: as described 

in the books of Taqqu et al., a Stable process is likely to take values far away from the 

median, which is called the Noah Effect (defined by Mandelbrot for “very severe flood”). 

This high variability is given by the following property of the order-p moments 

e�|�|,� = +∝,  ∀Z ≥ -.      �21� 

Property (21) will entail in particular an infinite variance. This high variability of Stable 

distributions is one of the reasons they play an important role in modeling. Stable non-

Gaussian processes appear as good candidates to take into account heavy-tailed data. 

 

4. Empirical Findings (Analysis and Results) 

Our aim is to determine how well these different models perform in terms of forecasting 

volatility. The forecasting approach used is such that the last 100 observations of the sample 

are used to assess out-of-sample forecasts. The study period contains 3, 279 trading days. The 

in-sample data set covers from October 30, 2002 to December 7, 2015 and includes 3, 179 
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observations, whereas the out-of-sample data set covers from December 8, 2015 to May 6, 

2016 and incorporates 100 observations. 

Our first step is to identify the mean equation for the returns. The autocorrelation and partial 

autocorrelation function for the returns shows that autocorrelations and partial 

autocorrelations up to the fifth lag are significant. We, therefore, propose using an 

autoregressive moving average ARMA(1,1) mean equation to model volatility in the ARCH 

models. The main criterion to choose our mean equation is the log likelihood. We noticed that 

the AR model and the ARMA model provide the best quality of regression in terms of log 

likelihood. The rest of the models obtained the same level of likelihood, of around 9862 

against 9874 for AR(1) model and ARMA(1,1) model. For our mean equation, we chose 

arbitrarily the ARMA(1,1) model for forecasting. The estimated ARMA(1,1) equation for the 

mean is found to be a significant t-value for the coefficients.  The  residuals  of  the  mean  

equation  indicate  the  absence  of autocorrelation (Figures  A7  and  A8  in  the Appendix).  
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Table 2: Mean equation estimated 

 AR(1) ARMA(1,1) AR(2) ARMA(2,2) AR(3) ARMA(3,3) AR(4) ARMA(4,4) AR(5) ARMA(5,5) 

Log likelihood 9873.992 9874.152 9862.642 9862.172 9862.607 9862.825 
9862.54 9862.525 9864.74 9864.856 

Cons 
0.000427 

(0.031) 

0.0004271 

(0.033) 

0.0004272 

(0.044) 

0.0004272 

(0.046) 

0.0004271 

(0.040) 

0.000427 

(0.039) 

0.0004272 

(0.044) 

0.0004272 

(0.044) 

0.0004275 

(0.05) 

0.000428 

(0.055) 

AR 
-0.0844319 

(0.000) 

-0.2212373 

(0.070) 

0.0152087 

(0.178) 

0.2311969 

(0.758) 

-0.0156923 

(0.126) 

0.2676657 

(0.652) 

0.0125475 

(0.39) 

-0.0764161 

(0.931) 

0.0388731 

(0.000) 

0.2769624 

(0.323) 

MA  
0.1380424 

(0.260) 
 

-0.2151455 

(0.775) 
 

-0.2855026 

(0.628) 

 0.0890251 

(0.920) 

 -0.2387045 

(0.404) 

 AR(6) ARMA(6,6) AR(7) ARMA(7,7) AR(8) ARMA(8,8) AR(9) ARMA(9,9) AR(10) ARMA(10,10) 

Log likelihood 9862.868 9864.543 9862.59 9862.593 9862.27 9862.791 
9863.369 9866.058 9862.366 9862.42 

Cons 
0.0004269 

(0.037) 

0.0004212 

(0.016) 

0.000427 

(0.039) 

0.0004269 

(0.039) 

0.0004267 

(0.041) 

0.0004272 

(0.042) 

0.0004275 

(0.046) 

0.0004274 

(0.043) 

0.0004274 

(0.044) 

0.0004272 

(0.046) 

AR 
-0.0192116 

(0.067) 

0.9011165 

(0.000) 

-0.0141387 

(0.221) 

0.0228311 

(0.985) 

-0.0020933 

(0.854) 

-0.7500928 

(0.043) 

0.0259658 

(0.089) 

-0.8711368 

(0.000) 

0.0079391 

(0.494) 

-0.3105028 

(0.812) 

MA  
-0.917304 

(0.000) 
 

-0.0370078 

(0.975) 
 

0.761945 

(0.037) 

 0.8948036 

(0.000) 

 0.3198109 

(0.806) 

p-values are given in parentheses 
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There is second-order dependence in the squared  residuals  of  the  mean  equation  and,  

hence,  the  presence  of conditional heteroscedasticity in the returns (Figures A7 and A8 in 

the Appendix).  Further,  the  ARCH-Lagrange  Multiplier  (LM)  test  confirms the presence 

of ARCH effects and the  need  to  model  this  conditional  heteroscedasticity  using  the  

ARCH family models (Table A3 in the Appendix). 

The ARCH and GARCH models are easy to identify and estimate. But if « bad news » has a 

more pronounced effect on volatility than « good news » of the same magnitude, the 

symmetric specification such as ARCH or GARCH is not appropriate, because their 

conditional variance is unaffected by the sign of the past period’s errors. It depends only on 

squared errors. Before applying the asymmetric models, we can test the presence of 

asymmetric effects. Engle and Ng (1993) propose various tests to detect the asymmetric 

effects. After the GARCH regression, the squared residual is given by: 

��
� = � + ��I���

� + Y����  (22) 

I���
� = 1 where	���� < 0, and 0 otherwise. If the dummy coefficient is significant and 

positive, this suggests the presence of asymmetric effects. Then we can determine whether the 

size of the negative shock also affects the impact on conditional variance by equation (23). 

For the existence of a size effect, the coefficient must be negative and significant. 

��� = �� + ��I���� ���� + Y����  (23) 

The positive sign bias test determines if the size of a positive shock impacts its conditional 

variance, the regression is given by equation (24). For the size effect to be present, the 

coefficient of  I���� ���� and I���\ ���� must be significant. 

��� = �� + ��I���\ ���� + Y����  (24) 

Tables  3 and 4  present  the  results  of  the  models  fitted  to  the  data  on returns with 

Gaussian distribution and Student’s t distribution. The outputs on returns show that the 

constant is statistically significant in the mean equation. The ARMA(1,1) term is also 

statistically significant for all models except the ARCH(1). The variance equation illustrates 

that all the terms are statistically significant at 1% level of significance which implies that the 

volatility of risk is influenced by past square residual terms. It can be mentioned that the past 

volatility of returns is significantly, influencing the current volatility. The EGARCH variance  
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equation  also signifies  that  an asymmetric  effect  in  volatility  exists, which  means  that  

positive  shocks  are  affecting volatility differently to negative shocks. 

Table 3 presents linear and non-linear GARCH parameter estimations for Chinese gold 

market returns with Gaussian distribution. The coefficients of ARCH and GARCH models are 

statistically significant, and GARCH (1,1) presents better likelihood at 10324. For the 

GARCH model, the coefficient α+β =0.9762251 (0.1211033+0.8551218), indicates the 

volatility shocks of SGE returns are persistent. The coefficients of IGARCH’s mean equation 

are not significant. For the EGARCH model, the asymmetry parameter equals 0.2571219, it is 

significantly positive, the coefficient of the ARCH term is positive at 10%, this indicates the 

positive return shocks will have greater impacts on volatility. TARCH is created to capture 

the negative movements of the volatility that usually is bigger than the positive movements. 

In our case, the coefficient γ is 0.0277673 but significant at 1%.  

Table 4 presents the coefficients obtained with student’s distribution. The likelihood 

parameter is greater than regression with Gaussian distribution, but the coefficients of mean 

equation are not significant. The result of GARCH regression confirms the persistent 

volatility shocks, α+β equals 0.9801919. The asymmetry parameter of the EGARCH model is 

0.1760426 (significant at 1%), this result confirms the asymmetry return shocks. The 

coefficient γ of TARCH model is significant by negative (-0.1333102 at 1%). This is an 

unusual outcome; the result is contradictory in relation to our finding by using Gaussian 

distribution. The negative coefficient means good news has a greater impact than bad news. In 

a general way, the quality of the student’s distribution is not satisfactory, because of poor 

significant coefficients of the mean equation.  According to recent research, the financial 

return time series with high kurtosis was better predicted by using the student’s distribution, 

we will study the forecasting quality of the GARCH type models in the next section.
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Table 3: Estimated coefficients for the ARCH models 

 ARCH(1) GARCH(1,1) IGARCH(1,1) EARCH(1,1) PARCH(1,1) TARCH(1,1) ARCHM(1) NARCH(1) 

Cons_ 0.0004326 

(0.019) 

0.0003881 

(0.011) 

0.0003732 

(0.016) 

0.0004771 

(0.007) 

0.0003918 

(0.013) 

0.0004503 

(0.010) 

0.0022644 

(0.000) 

0.0003865 

(0.047) 

AR(L1) -0.5587494 

(0.000) 

-0.7068501 

(0.005) 

0.7353978 

(0.284) 

-0.9887848 

(0.000) 

-0.7230892 

(0.002) 

-0.7066202 

(0.002) 

-0.6623146 

(0.000) 

-0.5795511 

(0.000) 

MA(1) 0.4949706 

(0.000) 

0.6787811 

(0.009) 

-0.7264394 

(0.297) 

0.9958122 

(0.000) 

0.6942069 

(0.004) 

0.6761211 

(0.005) 

0.5985465 

(0.000) 

0.5111406 

(0.000) 

Variance equation 

Cons_ 0.0001086 

(0.000) 

4.26e-06 

(0.000) 

3.04e-06 

(0.000) 

-0.334647 

(0.000) 

8.12e-07 

(0.056) 

3.98e-06 

(0.000) 

0.0001015 

(0.000) 

0.000108 

(0.000) 

ARCH(L1) 0.2366763 

(0.000) 

0.1211033 

(0.000) 

0.1420618 

(0.000) 

0.0112612 

(0.087) 

0.113781 

(0.000) 

0.107985 

(0.000) 

0.3098583 

(0.000) 

0.2381519 

(0.000) 

GARCH(L1)  0.8551218 

(0.000) 

0.8579351 

(0.000) 

0.9610151 

(0.000) 

0.8464523 

(0.000) 

0.8576062 

(0.000) 

  

Alpha    0.2571219 

(0.000) 

    

Power     2.359485 

(0.000) 

   

TARCH(L1)      0.0277673 

(0.001) 

  

ARCHM(σ²)       -14.72094 

(0.000) 

 

NARCH (k)        0.0015396 

(0.000) 

likelihood 10011.67 10324.82 10317.69 10305.09 10326.75 10326.24 10026.58 10013.13 

p-values are given in parentheses. 
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Table 4: Estimated coefficients for the ARCH models (Student distribution) 

 ARCH(1) GARCH(1,1) IGARCH(1,1) EGARCH(1,1) PARCH(1,1) TARCH(1,1) ARCHM(1) NARCH(1,1) 

Cons_ 0.000677 

(0.000) 

0.0006195 

(0.000) 

0.0006202 

(0.000) 

0.0006417 

(0.000) 

0.0006812 

(0.000) 

0.0006775 

(0.000) 

0.0006564 

(0.004) 

0.0006234 

(0.000) 

AR(L1) -0.240092 

(0.281) 

-0.2711803 

(0.343) 

-0.2691433 

(0.349) 

-0.2181451 

(0.404) 

-0.2378837 

(0.284) 

-0.1672472 

(0.487) 

-0.2691172 

(0.348) 

-0.2240068 

(0.335) 

MA(1) 0.1850198 

(0.417) 

0.2158731 

(0.457) 

0.2131997 

(0.464) 

0.1571124 

(0.552) 

0.1824761 

(0.421) 

0.1151906 

(0.637) 

0.2138958 

(0.462) 

0.1712863 

(0.470) 

Variance equation 

Cons_ 0.0001107 

(0.000) 

3.25e-06 

(0.000) 

2.54e-06 

(0.000) 

-0.1617319 

(0.000) 

0.0002089 

(0.622) 

0.0098154 

(0.000) 

3.24e-06 

(0.000) 

0.0001083 

(0.000) 

ARCH(L1) 0.275836 

(0.000) 

0.0957356 

(0.000) 

0.1114599 

(0.000) 

0.0205378 

(0.065) 

0.2775119 

(0.000) 

0.3175995 

(0.000) 

0.0955799 

(0.000) 

0.274595 

(0.000) 

GARCH(L1)  0.8844563 

(0.000) 

0.8885376 

(0.000) 

0.9806184 

(0.000) 

  0.8846665 

(0.000) 

 

Alpha    0.1760426 

(0.000) 

    

Power     1.858312 

(0.000) 

   

TARCH(L1)      -0.1333102 

(0.004) 

  

ARCHM(σ²)       -0.3989969 

(0.004) 

 

NARCH (k)        0.002783 

(0.015) 

likelihood 10410.54 10543.41 10540.86 10550.85 10410.58 10411.7 10543.43 10413.6 

df.  3.332802 4.416499 3.997225 4.271666 3.331899 3.328959 4.416377 3.34935 

p-values are given in parentheses. 
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We test for the presence of asymmetric effects. The sign bias test yields the following results: 

��
� = 0.0001273 + 0.000305l���

� + Y���� 

   p-value (0.000)      (0.120) 

��
� = 0.0001579 − 0.000305l���

\ + Y���� 

   p-value (0.000)      (0.120) 

A positive but not significant coefficient indicates the presence of leverage effects, implying 

the positive and negative shocks may have a different effect on the conditional variance. 

Estimating the negative and positive sign bias tests yields the following results: 

��
� = 0.0000751 − 0.0170669l���

� ���� + Y���� 

   p-value (0.000) (0.000) 

��
� = 0.0001372 + 0.0012538l���

\ ���� + Y���� 

   p-value (0.000) (0.352) 

Significant coefficients on the negative sign bias-test imply that there are sign effects and size 

effects. Positive and negative shocks do have a different effect on the conditional variance and 

the negative effect on the variance depends on the size of the shocks. 

4.1 In-Sample Statistical Performance 

The following tables present the comparison of the in-sample statistical performance results 

of the selected models. For the models with Gaussian distribution, they reveal that the 

EGARCH has the lowest MAE and the lowest MAPE, the GARCH model and the IGARCH 

model have the lowest RMSE at 3.53e-07. Based on the Student’s t distribution, the GARCH 

and ARCHM model have the lowest MAE and the lowest MAPE. The IGARH model has the 

lowest RMSE.  

So, it can be said that, based on the outputs of in-sample statistical performance the GARCH 

and EGARCH models are the best models for Gaussian distribution and the ARCHM model 

is the best model for Student distribution.  The ARCH, PARCH and NARCH models have the 

worst MAE, MAPE and RMSE. 
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Table 5: In-sample statistical performance results (Gaussian distribution) 

Model MAE MAPE RMSE 

ARCH(1) 0.000193 8173.961 3.60e-07 

GARCH(1,1) 0.0001914 5421.735 3.53e-07 

EGARCH(1,1) 0.0001905 5156.383 3.55e-07 

PARCH(1,1) 0.0001964 5437.983 3.55e-07 

TARCH(1,1) 0.0001944 5345.467 3.55e-07 

ARCHM(1) 0.0001925 8077.519 3.64e-07 

IGARCH(1,1) 0.0002 5589.213 3.53e-07 

NARCH(1) 0.0001932 8195.746 3.61e-07 

p-values are given in parentheses. 

 

Table 6: In-sample statistical performance results (Student distribution) 

Model MAE MAPE RMSE 

ARCH(1) 0.0001945 8490.761 3.56e-07 

GARCH(1,1) 0.0001944 5385.746 3.57e-07 

EGARCH(1,1) 0.0001917 5197.358 3.57e-07 

PARCH(1,1) 0.0001945 8486.639 3.57e-07 

TARCH(1,1) 0.0001981 8691.579 3.74e-07 

ARCHM(1) 0.0001944 5383.354 3.57e-07 

IGARCH(1,1) 0.000201 5798.238 3.55e-07 

NARCH(1) 0.0001972 8520.639 3.57e-07 

 

 

4.2 Out-Sample Statistical Performance 

Having  estimated  the  models,  our  next  step  is  to  assess  their forecasts. We use the 

models to make dynamic forecasts of volatility for the next 100 observations. For the 

Gaussian distribution, the GARCH model has the lowest MAE at 0.000126 and the lowest 

MAPE at 129.4682, the ARCH model has the lowest RMSE at 6.34e-08. Using Student’s t 

distribution, the GARCH and ARCHM models have the lowest MAE, MAPE and RMSE. 
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Table 7: Out of sample statistical performance results (Gaussian distribution) 

Model MAE MAPE RMSE 

ARCH(1) 0.0001322 154.084 6.34e-08 

GARCH(1,1) 0.000126 129.4682 6.69e-08 

EGARCH(1,1) 0.0001314 142.6208 6.68e-08 

PARCH(1,1) 0.0001266 131.3939 6.76e-08 

TARCH(1,1) 0.0001276 133.4691 6.72e-08 

ARCHM(1) 0.0001323 145.0933 6.37e-08 

IGARCH(1,1) 0.0001279 137.4174 6.77e-08 

NARCH(1) 0.0001329 153.1993 6.36e-08 

p-values are given in parentheses. 

 

Table 8: Out of sample statistical performance results (Student distribution) 

Model MAE MAPE RMSE 

ARCH(1) 0.0001359 158.3068 6.37e-08 

GARCH(1,1) 0.0001254 127.5605 6.67e-08 

EGARCH(1,1) 0.0001284 133.2779 6.59e-08 

PARCH(1,1) 0.0001358 157.9436 6.35e-08 

TARCH(1,1) 0.0001345 154.4988 6.32e-08 

ARCHM(1) 0.0001254 127.5211 6.07e-08 

IGARCH(1,1) 0.0001348 135.4212 7.03e-08 

NARCH(1) 0.0001351 156.5947 6.41e-08 

 

5. Conclusion 

This study has implications for investors who wish to price, hedge and speculate in the 

Chinese gold market. Gold is an underlying asset in which volatility is an important factor 

when pricing options. Secondly, the investor may use the Gold futures contracts to hedge their 

underlying Gold position. Forecasting volatility may be important for investors for adjusting 

their hedging strategies. In a general way, understanding how information (bad news and 

good news) impacts on return volatility improves the performance of portfolio management. 

For example, this knowledge allows the investors to have a better portfolio selection in asset 

pricing and allows them a more efficient risk management. In addition, the Chinese gold 

market offers an opportunity for international diversification.  
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Our study has attempted to model gold prices at the Shanghai Gold Exchange (SGE) return 

and assess the forecasting ability of the ARCH family of models. We have used historical 

volatility for modeling purposes through the ARCH family of models and made dynamic 

forecasts of future volatility. The analysis covers from October 30, 2002 to December 7, 2015 

and from December 8, 2015 to May 6, 2016 as in-sample and out-of-sample sets respectively. 

For the Gaussian distribution, the results of the in-sample statistical performance show that 

the GARCH and EARCH models are selected as the best performing models for the returns. 

According to the outcomes of MAE and MAPT, the EGARCH model is better than the 

GARCH model in explaining the return (modeling the volatility), furthermore, using t-student 

distribution, the EGARCH model gets the best MAPE estimation of all models. This finding 

confirms our asymmetric effect analysis. Outcomes of the out-of-sample statistical 

performance demonstrate that the GARCH is considered to be the best model. Based on 

Student’s t distribution, the GARCH and the ARCHM models are the best models for in and 

out-of-samples. This result confirms the power of the GARCH model in prediction volatility 

by using t-student distribution. At the same time, the ARCHM model shows good predicting 

capacity, in our study, volatility shocks appear persistent for the Gold return series as the sum 

of the coefficients α and β is close to unity for all estimated models. According to Engle and 

Bollerslev (1986, 1987), including conditional variance in the conditional mean equation is 

more appropriate for financial time series when the expected return on an asset is related to 

the expected asset risk. At the same time, the ARCHM model shows good predicting 

capacity, this result corroborates the finding of Zou, Rose and Pinflod (2007), in which they 

conclude the EGARCH and ARCHM models outperform all other models in capturing the 

dynamic return volatility for Australian Three-Year T-Bond futures contracts. Two other facts 

have caught our attention: firstly, the specification of mean equation by using t-student 

distribution is not satisfactory; this study demonstrates that it is necessary to improve the 

quality of the mean equation estimates. Secondly, the quality of PARCH regression is not 

satisfactory, according to the PARCH model, the power term allows the capture volatility by 

changing the influence of the extreme value. But, according to new literature review, when 

the return is non-normally distributed, the use of a power transformation is not appropriate. 

We think using stable process distribution would be a solution to this issue, the extension to 

Stable Models opens up new paths for this research, this approach allows us to represent high 
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volatility. Next step is the simulation of the model for which we have to develop the computer 

programming.  
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Appendix: 

Tables 

Table A1: Summary statistics for SGE Index 

 Obs Mean Std. Dev. Skewness Kurtosis 

SGE Index 3279 211.5135 79.11776 0.11876799 -1.04121692 

 

Table A2: Dickey-Fuller test for SGE index 

Test statistic 1% critical value 5% critical value 10% critical value p-value for Z(t) 

-1.544 -3.430 -2.860 -2.570 0.5119 

 

Table A3: Phillips-Perron test for SGE index 

 Test statistic 1% critical value 5% critical value 10% critical value 

Z(rho) -2.785 -20.700 -14.100 -11.300 

Z(t) -1.494 -3.430 -2.860 -2.570 

MacKinnon approximate p-value for Z(t) = 0.5364 

Table A4: Dickey-Fuller test for returns 

Test statistic 1% critical value 5% critical value 10% critical value p-value for Z(t) 

-62.283 -3.430 -2.860 -2.570 0.0000 

 

Table A5: Phillips-Perron test for returns 

 Test statistic 1% critical value 5% critical value 10% critical value 

Z(rho) -3595.529 -20.700 -14.100 -11.300 

Z(t) -62.222 -3.430 -2.860 -2.570 

MacKinnon approximate p-value for Z(t) = 0.0000 

 

Table A6: LM test for autoregressive conditional heteroscedasticity 

Lags(p) Chi² Df Prob. > Chi² 

1 241.180 1 0.0000 

H0: No ARCH effects vs. ARCH(p) disturbance 



 

    Marie-Eliette Dury, Bing Xiao                                                               30 

 

 

-0
.5

0
0.

00
0.

50
1.

00
A

ut
oc

or
re

la
tio

ns
 o

f c
lo

se
pr

ic
e

s

0 10 20 30 40
Lag

Bartlett's formula for MA(q) 95% confidence bands

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

P
ar

tia
l a

ut
oc

or
re

la
tio

ns
 o

f c
lo

se
pr

ic
es

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

-0
.1

0
0.

00
0.

10
0.

20
0.

30
A

ut
oc

or
re

la
tio

ns
 o

f R
en

t2

0 10 20 30 40
Lag

Bartlett's formula for MA(q) 95% confidence bands

-0
.1

0
0.

00
0.

10
0.

20
0.

30
P

ar
tia

l a
ut

o
co

rr
e

la
tio

ns
 o

f R
en

t2

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

-0
.1

0
-0

.0
5

0.
00

0.
05

A
ut

oc
o

rr
el

at
io

ns
 o

f R
en

t

0 10 20 30 40
Lag

Bartlett's formula for MA(q) 95% confidence bands

-0
.1

0
-0

.0
5

0.
00

0.
05

P
ar

tia
l a

ut
oc

or
re

la
tio

ns
 o

f R
en

t

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

Figures 

Figure A1: AC of SGE index  Figure A2: PAC of SGE index 

 

 

 

 

 

 

 

 

Figure A3: AC of squared returns   Figure A4: PAC of squared returns 

 

 

 

 

 

 

 

 

Figure A5: AC of Returns    Figure A6: PAC of Returns 
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Figure A7: AC of res. mean equation   Figure A8: PAC of res. mean equation 

 

 

 

 

 

 

 

Figure A9: AC of res.² mean equation   Figure A10: PAC of res.² mean 

equation 

 

 

 

 

 

 

 

 

 


