N
N

N

HAL

open science

Forecasting the Volatility of the Chinese Gold Market by
ARCH Family Models and extension to Stable Models
Marie-Eliette Dury, Bing Xiao

» To cite this version:

Marie-Eliette Dury, Bing Xiao. Forecasting the Volatility of the Chinese Gold Market by ARCH

Family Models and extension to Stable Models. 2018. hal-01709321

HAL Id: hal-01709321
https://hal.science/hal-01709321

Preprint submitted on 14 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01709321
https://hal.archives-ouvertes.fr

Forecasting the Volatility of the Chinese Gold Marlet by ARCH Family Models and
extension to Stable Models

Marie-Eliette DURY

School of Economics, Clermont Auvergne University
France

m-eliette.dury@uca.fr

Bing XIAO
University Technology Institute (IUT), Aurillac
CRCGM EA 38 49 Clermont Auvergne University
France

bing.xiao@uca.fr

Abstract

Gold plays an important role as a precious meté#h wortfolio diversification; also it is an
underlying asset in which volatility is an importdactor for pricing option. The aim of this
paper is to examine which autoregressive conditibeteroscedasticity model has the best
forecast accuracy applied to Chinese gold prideseéms that the Studentdistribution
characterizes better the heavy-tailed returns thariaussian distribution. Assets with higher
kurtosis are better predicted by a GARCH model Withdent’s distribution while assets with
lower kurtosis are better forecasted by using arAEGH model. Moreover, stochastic
models such as Stable processes appear as goodatasdo take heavy-tailed data into
account. The authors attempt to model and forebastvolatility of the gold prices at the
Shanghai Gold Exchange (SGE) during 2002—-2016 gusamious models from the ARCH
family. The analysis covers from October 30, 209December 7, 2015 and from December
8, 2015 to May 6, 2016 as in-sample and out-of-sarapts respectively. The results have
been estimated with MAE, MAPE and RMSE as the nressof performance.

Keywords: Forecasting, Return, Volatility, Gold Market, ARC GARCH, GARCH-M,
IGARCH, NGARCH, EGARCH, PARCH, NPARCH, TARCH, Studes t distribution,
Symmetric Stable modelsl-self-similar processes
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1. Introduction

Gold is a precious metal which forms an integrat p& many investment portfolios; it has
similar characteristics to money (see Solt and Sean1981). Ciner (2001) indicates that
gold plays an important role as a precious metah \portfolio diversification properties:
holding gold leads to a more balanced portfoliowvtence (2003) finds that gold returns are
less correlated with returns on equities and bahdas other assets. Many researchers and
professionals believe that gold plays the role ofiealge against inflation. Sjaastad and
Scacciavillani (1996) claim that gold is a refugdwe against inflation. Central banks and
international financial institutions hold a largeoportion of gold for their diversification
capacity, and gold is considered as an insuranasmstgmarket crises. According to Smith
(2002), when the economic environment becomes mocertain, gold plays a role as a safe
haven. A number of authors have reported the faat ¢jold reflects the value of the US
dollar, because a depreciation in the dollar mayease interest in gold, Tully and Lucey
(2007) report that a lower US dollar makes golds lexpensive for other international

investors to buy dollar-denominated gold.

The Chinese assets market is one of the emergseisamarkets which offer an opportunity
for international diversification. Since the 199@sforms in regulations as well as in the
attitudes of regulators have rendered the stockaehanore efficient. However, it would seem
that in the Chinese assets market, anomalies p¢ssis Mookerjee and Yu, 1999; Mitchell
and Ong, 2006). This article studies the volatititygold prices in China through gold prices
at the Shanghai Gold Exchange (SGE). As mentiométbang et al. (2015), it is important to
use local gold prices when studying the Chinesel gadrket since it is still forbidden for

Chinese investors to trade gold abroad withoutaigétion.

It has become more important for financial insg&ito consider the volatility of a financial
asset. The movements are usually measured by tagitypand can be seen as the risk of the
asset. One of the problems with modelling the vdlats that it is non-stationary: there are
periods with low movements and then periods withhhmovements. The first model that
assumed that volatility is not constant is ARCH t¢aegressive Conditional
Heteroscedasticity Model) by Engle in 1982. The AR@odel has been transformed and
developed into more sophisticated models, such ARG, EGARCH, PARCH and
TARCH. The questions to ask are: Do the new modafgure the volatility better? If one
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model better captures the volatility, would it letal a more efficient forecast accuracy?
Currently, results of research into the model'sfgrenance are conflicting and confusing.
These observations lead the author to determinevmeithese different models perform in
terms of forecasting volatility and will be asses®ased on the forecasts they produce. This
study focuses on the gold prices at the Shanghll BExchange (SGE); it contributes to the
existing finance literature by investigating their@&@se gold market during the recent period.
In addition, this work opens another suitable waynbdel heavy-tailed data, such as returns.
Heavy-tailed data can be modelled very welldb$table distributions because of the high

variability of the data.

The structure of this article is as follows. Sect provides a brief overview of the existing
literature. Data and methodology are describedeicti&n 3 which firstly recalls the different
ARCH Family models. Then, construction and propsrtof Symmetriai-Stable processes
are presented; the aim is to show the adequadyiofriodel in this context. Next, Section 4
displays the results of this study with the numaricomparison between Student and

Gaussian distribution.

2. Literature Review

Engle’s (1982) study was the first to distinguisbtviieen unconditional and conditional
variance. According to the ARCH models, the var@aotthe current error term is a function
of the previous time period’s error terms. Bollews(1986) points out that the ARCH model
has a long lag in the conditional variance equatianavoid problems of negative variance
parameter estimates, his solution was to generdlz dRCH model. Nelson (1991) proposed
the EGARCH model to account for the presence omasgtric effects. Poon and Granger
(2003) noted that models that allowed for asymmoedffects are able to provide better

forecasts owing to the negative relationship betwesatility and shocks.

Most research on volatility modeling has focusedeguity markets and foreign exchange
markets, but Sadorsky (2006) pointed out that gmpe tof market cannot be generalized
across other markets. It seems that stocks withelnigurtosis were better predicted by using
the GARCH model and stocks with lower kurtosis wienrecasted better by using EGARCH.
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Ederington and Guan (2005) showed that the finhmoerket has a longer memory than
explained by the GARCH(1,1) model. Awrtani and @dir(2005) found that the asymmetric
models perform better than the GARCH(1,1) modeteAtomparing the different volatility
models, Koksal (2009) found that the EGARCH(1,1)fqrened best. Bracker and Smith
(1999) studied the volatility of the copper futuresmrket, and concluded that both the
GARCH and EGARCH models best fit this market’'s witsg. Carvalho et al. (2006) found
evidence of asymmetric effects when using the EGAR@del.

However, not all the empirical studies agree witbse findings. Ramasamy and Munisamy
(2012) found that the GARCH models are better &aljgt the volatility of exchange rates and
the EGARCH model does not improve the quality ad threcasts. Marcucci (2005) found
that the GARCH model performs much better thanratiedels in a long time period, but not
in a short time period. Zahangir et al. (2013) stigated the ARCH models for forecasting
the volatility of equity returns. Their study shaléhat based on in-sample statistical
performance, both the ARCH and PARCH models arsidered the best performing model
whereas all models except the GARCH and TARCH n®det regarded as the best model

for the returns series.
3. Data and Methodology

The main motive of this paper is to investigate tis® of the ARCH family models for
forecasting the volatility of the Shanghai Gold Bange (SGE) by using daily data. GARCH,
EGARCH, PARCH, IGARCH, GARCHM and TARCH models arsed for this study.

3.1Data

The data used is the returns on the Shanghai Galdaage (SGE) returns series (Figure 1).
In order to calculate these returns, we use dattherdaily price. Data on prices spans the
period from October 30, 2002 to May 6, 2016, altote8,278 observations. The total data set
is divided into in-sample samples and out-of-sangaleples. The requisite data is obtained
from the Factset database. The price taken asdihe @tice is the last trading price of the

day.

Figure 1 shows the gold prices at the Shanghai Gatthange (SGE) from October 2002 to
May 2016, the crash of 2007 is clearly visible agdl\&s the major long-run rise in the index

in 2002-2011. The index is non-stationary, sinsamean level is not constant and rises over
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time. The daily return on the index appears to tadiamary with a constant mean and
variance. The outliers, namely very large or venals returns, imply that the returns are non-
normal with fat tails and the distribution may Isymmetric.

Figure 1: Chines gold market prices and returns (Ddy, 2002 — 2016)
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A positive skewness of 0.11876799 and negativeokigtof -1.04121692 are revealed in the
gold price summary statistics at the Shanghai G&tdhange (SGE) (Table Al in the
Appendix). At a confidence interval of 99%, the S@idex is non-normal, in accordance
with Jarque-Bera statistics. Therefore, it is neagsto remodel the gold price series into a
return series. Plotting autocorrelation and pa#igbcorrelation of the SGE index designates
the series to be non-stationary (Figures A1 andmihe Appendix). Applying the Dickey-
Fuller test and the Phillips-Perron test to theeseconfirms this (Table A2, A3 in the

Appendix), and suggests that it cannot be usedobeinvolatility.

Movements of stock indices series are not suitidsletudy as they are usually non-stationary
and it is therefore necessary to remodel the dailge into a return series. The SGE index

series is converted into a returns series by usiadollowing equation:
— () _
R, = (PH) (1.1)

The logarithm of the gross return is given by:
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Ln(R,) = 1n(PtP—_t (1.2)

Where,

R;= the rate of return at time t

P, = the price at time t

P,_, = the price just prior to the time t

Statistics on returns are summarized in Table Erevkhe SGE index has a 0.04 average daily
return and a 0.000208 standard deviation. At -0185The skewness coefficient is negative
which is common for most financial time series.e Kurtosis value is higher than 3, implying
that the returns distribution has fat tails. The@{Rfamily of models should, therefore, be
used to account for these characteristics of the. d8hen modelling a series of this sort, it
must be stationary and the data must be mean-imyeftherefore, the Dickey-Fuller test is
used on the returns series (Table A4 in the Appgrdi confirm that the series is, indeed,
stationary. The Phillips-Perron test can also h@iegh to confirm that the series is stationary
and, in addition, for modelling (Table A5 in the gendix).

Table 1: Summary statistics for returns

Observations Mean Standard Deviation Min Max Skesgn  Kurtosis

Returns | 3278 0.0004 0.00020864 -0.103765  0.1279620.05748 | 14.00012

The observed pattern in Figure 1 indicates that GARype models are necessary to model
return volatility patterns for SGE index returnsielreturn volatility descriptive statistics
presented in Table 1 indicate a Kurtosis at 14.00@Iince the Kurtosis statistic is greater
than three, the SGE return series is leptokuriiguife2).
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Figure 2: Leptokurtic distribution of SGE return series
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According to recent research, it seems that retwitis higher kurtosis were better predicted

by using GARCH with student’s distribution and metsi with lower kurtosis were forecasted

better by using EGARCH. Skewness is -0.05748, thiicates that return volatiles are

negatively skewed (left skewness). Negative skewneslicates that the upper tail of

distribution is thinner than the lower tail. Thadicates that in the SGE market, prices fall
more often than they rise. The ADF-test, as wellh@sPP-test, are used to get confirmation
regarding whether the return series is stationanyod. The value of the ADF test statistic, -

62.283, is less than its test critical value, -8,44t 5%, level of significance, which implies

that the gold price return series is stationarye Tihdings of the PP test also confirm that the
return series is stationary, since the values efRR test statistic is less than its test critical
value. The plotted autocorrelation and partial eotcelation of squared returns indicate

dependence and hence imply a time-varying vohatiigures A3 and A4 in the Appendix).

3.2 Specification of the Models used in this study

In order to model the volatility of the retsy we need to determine their mean
equation. The return for today will depend on mesuin previous periods (autoregressive
component) and the surprise terms in previous @er{onoving order component). In this
empirical study, plotting the autocorrelation aratt@l autocorrelation of the returns series

can help determine the order of the mean equation.
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Like most financial time series, the returns seaghibits what is referred to as “volatility

clustering” (Figures A5 and A6 in the Appendix).drder to model such patterns of behavior,
the variance of the error term is allowed to dependts history. The classic model of such
behavior is the ARCH model introduced by Engle @98vhich simultaneously models the

mean and variance of a series.

3.2.1 ARCH(q) model

Autoregressive conditional heteroscedasticity (AR@tbdels are used when the error terms
will have a characteristic size or variance. TheCARmodels assume the variance of the
current error term to be a function of the actuegs of the previous time period’s error terms.
The ARCH model is a non-linear model which doesasstume the variance is constant. The
basic linear ARCH model may be presented as:

The error terms are split into a stochastic piexkatime dependent standard deviation:
€t = OtZ ©))

The random variable is a white noise process, ¢hiess? is the volatility of the time series

which changes over time, and (variances of the residual) is modelled by:
0f =g+ a6t + -+ agel g =ag+ X1 a; €l 4)
Wherea, > 0 and a; > 0.

3.2.2 GARCH(p, q) model

The GARCH model is a generalized ARCH model, dgwetb by Bollerslev (1986) and
Taylor (1986) independently. They introduced a mgviaverage term into the ARCH
estimation. A fixed lag structure is imposed. Th®R&H(p, ) model, where p is the order of
the GARCH termg? and q is the order of the ARCH terats

2 _ 2 2 2 2
of =W+ a6 1+t agéi_g + proi + -+ Bpoiy,

=w+ Z?=1 a; Stz—i + Z?=1 ,81' Utz—i (5)
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The form of GARCH(1,1) is given below, the equati(®) is the conditional variance
equation,g? is the one period forecast variance based onip@smation,s? is determined
by a,, €2, andg? ;. Where the news about volatility from the previqueriod ise? ;,

measured as the lag of the squared residual fremeduation (2), and? , is used to be

considered as the last period’s (forecast) variance
of = ag +agf; + Bot (6)

Engle and Bollerslev (1986) indicated that the toeht (a« + ) measures the volatility
shock, when(a + B) is closed to one, the volatility shocks are péesis this means that the

volatility may take long time to return to a quiepdhase.

3.2.3 GARCH-M model

The M in GARCH-M stands for “in the mean”. This nebds an alternative ARCH model
developed by Engle and Bollerslev (1986). GARCHsgVused when the expected financial
time series return is related to the expected asdetThe conditional variance is included in
the conditional mean equation. The GARCH-M (1, \vigten as:

ye = [gCe_)] + f(of1) + & (7)
& = Z;0;

The equation shows that the returpg) has a positive relation to its own volatility. Eagind
Bollerslev proposed to introduce the logarithm afditional variance into the mean

eqguation; the equation (7) can be expressed as:
Y, = X, + 6log(a?) + & (8)
3.2.4 IGARCH
Consider the GARCH model in ARMA equation:
& = Z40¢

of =ay+ Z?=1 ael; + 25;1 ﬁjo-tz_j ®
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Where the parameteris the ARCH parameter affids the GARCH parametes(L) and (L)

is defined polynomials, ang > 0,a; = 0,; = 0 and Y@V (a; + B;) < 1.

3.2.5 EGARCH model

The EGARCH model was developed by Nelson (19919 aslution to avoid problems with
negative variance parameter estimates. If “bad hdwas a more pronounced effect on
volatility than “good news” of the same magnitutteen a symmetric specification such as
ARCH or GARCH is not appropriate since in stand&BCH/GARCH models the
conditional variance is unaffected by the signhef past periods’ errors (it depends only on
squared errors). The logarithmic function ensuhed the conditional variance is positive
and, therefore, the parameters can be allowed ke tsegative values. The form of
GARCH(1,1) is given below:

logo? =w+ Blogo, +y—-=+a lal _ ’Z/n (10)
¢ 1,‘7t2—1

Ot—1

According to Engle and Ng. (1993), the EGARCH maal&ws positive return shocks and
negative return shocks so that there are diffesdfects on volatility; the coefficieny
measures the asymmetry effect. Gokan (2000) inslictttat whery = 0, the goods news
(positives return shocks) has the same effect datility as bad news represents the negative
return shocks.

In equation (10), positive return shocks, namelgdyoews, hagw + y) impacts on return
volatility while the negative return shocks, badveehas gw — y) impacts. Ifw andy are
positive, the good news will have more effect amime than bad news. According to previous
studies in this subject, the coefficignts often negative; this suggests negative retbatlss

have more impact on return volatility than good aew

3.2.6 PARCH model

The PARCH model is a GARCH model with an additionaim to account for the

asymmetries effect. It employs an indicator funtis follows (PARCH(1, 1)):

of =ag+ayef, +PBofty +yvei e, (1)
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The indicator function takes a value of 1 if theoer 0, and 0 otherwise. For the effect of the
previous period’s bad news to be greater thanffieeteof good news of the same magnitude,

v should be significant and have a negative sign.

3.2.7 TARCH model

The Threshold GARCH (TARCH) model by Zakoian (1984pne on conditional standard
deviation instead of conditional variance. The @ffef good and bad news is captured
separately through the two coefficientsandy, respectively. The TARCH model adds a

separate variable for negative shocks.
of =w+Xl, ael + Z?=1 Biolj + Xty et (12)
I,_, equals one if is less than zero and zero if else. The form oRTAI(1,1) is given below:
of =w+agf, +Bofq +yei Iy (13)

In equation (12) and (13), good news (positive rretshocks) and bad news; K 0) have
different impacts on the conditional variance. Besireturn shocks have am-effect on
volatility, while bad news has aw ¢ y)-effect on the conditional variance (volatilityj.y
equals zero, the TARCH model becomes a linear GARSGHhmetric) model. Iy # 0, then

that suggests an asymmetric effect.

3.2.8 NGARCH model
Nonlinear GARCH (NGARCH) is known as nonlinear asyatric GARCH(1,1).
0f = ag + a;(€i—1 — 90o_1)* + Bl (14)
a,B=0;ay>0

For the return series, parameterns positive, it means a leverage effect: negateterns

increase future volatility by a larger amount tipasitive returns of the same magnitude.

3.2.9 Student’s t distribution

One of the problems with forecasting volatilitytie distribution: there are periods with low
movements and periods with high movements. Kok&a09) indicates that the Student’s t

distribution characterizes better the heavy-tailetlirns than the Gaussian distribution. It
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seems that stocks with higher kurtosis were bettedicted by using GARCH with student’s
distribution and stocks with lower kurtosis werdtéeforecasted by using EGARCH model
(see Grek A., 2014).

In the ARCH models, the first part ¢é3 = o;z; with Z,~N(0,1). In the GARCH model with
student distribution, the first part is written part ¢, = o;y; with Y;~t(d) andd is the

degrees of freedom.

3.2.10 Extension to Stable Models

The most famous stochastic model for self-similaerpmena is certainly the Fractional
Brownian Motion (fBm) popularized by Benoit Mandeib in the 60’s. The fractional
Brownian motion is the only H-self-similar center&ghussian process with stationary
increments in dimension 1. There exist several igdizations of the fractional Brownian
motion, such as the multifractional Brownian mot{amBm) defined independently by Peltier

and Lévy-Veéhel, and by Benassi et al.

Such Gaussian models are well known and appliedferent fields. Nevertheless, as soon as
the observed phenomenon has large fluctuationsigir wariability, they are no longer
appropriate. Such limitations lead us to proposblstnon-Gaussian models as those data

present large fluctuations and variability on tbh#ected values.

The stable non-gaussian framework is however muale momplicated than the Gaussian
one. It is richer as there exist at least two dgitmodels of H-self-similar symmetricstable
(SaS) family of processes: the so-called Moving Averaand the Harmonizable stable
process. Actually, they are distinct since theyrfawo disjoint classes of processes, as
proved in Cambanis et al. and in the reference bwio®amorodnitsky and Taqqu. In the
Gaussian case whete= 2, the two classes describe in fact the same, gimee have the
same law, up to a constant. Let us then considbleshon-gaussian stochastic processes; they

are defined in the following way:

Forx,y € R4

d d
H—% H—%
Ipu(x;y)=Ix—yl F—|yl B
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ix.y)—1
fon(iy) = 22D

H+7
lyl"#

for somef > 0. Next we takes = a the stability index, of = a* such that

If « = a* =2, we come back to the Gaussian framework. Tdrstable stochastic processes

are defined as the integral, for a random meaguyref the previous kernels:

X(x) = j GG Mo(dy)  (15)
R

and

Z(x) = f fon(ay) Ma(dy)  (16)
R

where procesX is the Moving Average and processs the harmonizable representation.

3.3Measures of the Statistical Performance of the Mode

After producing the forecasts, they are evaluatg@dmparing out-of-sample forecasts with

historical volatility. To identify the best-perfoing model in both the in-sample data set and
the out-of-sample data set of this study, statibtigperformance measures are applied.
Measures such as MAE (mean absolute error), MAP&(nmabsolute percentage error) and

RMSE (root mean squared error) are used. Theinidiefn and way of computation is:

MAE = (1/n) 3,62 — o?] (17)
MAPE = (1/n) Y1, | (67 — 02) /o?] (18)
RMSE = 1/n \/271'1:1(61'2 —af)? (19)

We detail the empirical findings in next Sectiomen, from this study, we think that Stable
non-Gaussian processes would fit better the healgdtreturns of such data than the
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Gaussian distribution. Actually, consider a non-&aana-Stable procesk with

distributionS, (o, 8, 1), where0 < a < 2 is the stability index,
o = 0 is the scale parameter,
—1 < fp < 1is the skewness parameter,
U € Ris the shift parameter.

The caser = 2 can be added, but it comes back to the Gaussiarefvork as whefi = 0

then this Stable distribution corresponds to theno law S, (o, 0, 1) == N(u,202).

A symmetrica-stable non-Gaussian procéggs with distributionS, (o, 0,0) fora < 2

satisfies an important characteristic property
P(1X| > x)~% ce0%~* whenx >+ (20)

Namely, the tails of the distribution decay likp@wver function while it is an exponential
decay for a Gaussian process. Consequstdlye non-Gaussian processes exhibits more
variability than Gaussian ones. Thus, the smallé¢he highest is the variability: as described
in the books of Taqqu et al., a Stable proceskedylto take values far away from the
median, which is called the Noah Effect (definedvndelbrot for “very severe flood”).

This high variability is given by the following pperty of the order-p moments

E(IX|?P) =4x, Vp = a. (21)

Property (21) will entail in particular an infinitariance. This high variability of Stable
distributions is one of the reasons they play goartant role in modeling. Stable non-

Gaussian processes appear as good candidateg totmlccount heavy-tailed data.

4. Empirical Findings (Analysis and Results)

Our aim is to determine how well these differentdels perform in terms of forecasting
volatility. The forecasting approach used is sudt the last 100 observations of the sample
are used to assess out-of-sample forecasts. Tthe gtuwiod contains 3, 279 trading days. The

in-sample data set covers from October 30, 200Reécember 7, 2015 and includes 3, 179
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observations, whereas the out-of-sample data sefrg€drom December 8, 2015 to May 6,

2016 and incorporates 100 observations.

Ouir first step is to identify the mean equation tfog returns. The autocorrelation and partial
autocorrelation function for the returns shows thatitocorrelations and partial
autocorrelations up to the fifth lag are significaWe, therefore, propose using an
autoregressive moving average ARMA(1,1) mean egndth model volatility in the ARCH
models. The main criterion to choose our mean eémué the log likelihood. We noticed that
the AR model and the ARMA model provide the besilidy of regression in terms of log
likelihood. The rest of the models obtained the esdavel of likelihood, of around 9862
against 9874 for AR(1) model and ARMA(1,1) modebr Four mean equation, we chose
arbitrarily the ARMA(1,1) model for forecasting. &estimated ARMA(1,1) equation for the
mean is found to be a significant t-value for tleflicients. The residuals of the mean

equation indicate the absence of autocorrelgficgures A7 and A8 in the Appendix).
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Table 2: Mean equation estimated

AR(1) ARMA(1,1) AR(2) ARMA(2,2) AR(3) ARMA(3,3) AR(4) ARMA(4,4) AR(5) ARMA(5,5)
9862.54 9862.525 9864.74 9864.856
Log likelihood 9873.992 9874.152 9862.642 9862.172 9862.607 9862.8
c 0.000427 0.0004271 0.0004272 0.0004272 0.0004271 0.000427 0.0004272 0.0004272 0.0004275 0.000428
ons
(0.031) (0.033) (0.044) (0.046) (0.040) (0.039) (0.044) (0.044) (0.05) (0.055)
AR -0.0844319 -0.2212373 0.0152087 0.2311969 -0.0156923 0.2676657 0.0125475 -0.0764161 0.0388731 0.2769624
(0.000) (0.070) (0.178) (0.758) (0.126) (0.652) (0.39) (0.931) (0.000) (0.323)
MA 0.1380424 -0.2151455 -0.2855026 0.0890251 -0.2387045
(0.260) (0.775) (0.628) (0.920) (0.404)
AR(6) ARMA(6,6) AR(7) ARMA(7,7) AR(8) ARMA(8,8) AR(9) ARMA(9,9) AR(10) ARMA(10,10)
o 9863.369 9866.058 9862.366 9862.42
Log likelihood 9862.868 9864.543 9862.59 9862.593 9862.27 9862.79
c 0.0004269 0.0004212 0.000427 0.0004269 0.0004267 0.0004272 0.0004275 0.0004274 0.0004274 0.0004272
ons
(0.037) (0.016) (0.039) (0.039) (0.041) (0.042) (0.046) (0.043) (0.044) (0.046)
AR -0.0192116 0.9011165 -0.0141387 0.0228311 -0.0020933 -0.7500928 0.0259658 -0.8711368 0.0079391 -0.3105028
(0.067) (0.000) (0.221) (0.985) (0.854) (0.043) (0.089) (0.000) (0.494) (0.812)
MA -0.917304 -0.0370078 0.761945 0.8948036 0.3198109
(0.000) (0.975) (0.037) (0.000) (0.806)
p-values are given in parentheses
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There is second-order dependence in the squarsifluags of the mean equation and,
hence, the presence of conditional heterosdedgsh the returns (Figures A7 and A8 in
the Appendix). Further, the ARCH-Lagrange Mullar (LM) test confirms the presence
of ARCH effects and the need to model this dittonal heteroscedasticity using the
ARCH family models (Table A3 in the Appendix).

The ARCH and GARCH models are easy to identify astiinate. But if « bad news » has a
more pronounced effect on volatility than « goodvee of the same magnitude, the
symmetric specification such as ARCH or GARCH ist rappropriate, because their
conditional variance is unaffected by the signhef past period’s errors. It depends only on
squared errors. Before applying the asymmetric tspdee can test the presence of
asymmetric effects. Engle and Ng (1993) proposéouartests to detect the asymmetric

effects. After the GARCH regression, the squarsditeal is given by:
gt =ag+ ayl;_, + error (22)

I;_; =1 whereg,_; <0, and O otherwise. If the dummy coefficient is #igant and
positive, this suggests the presence of asymmeffects. Then we can determine whether the
size of the negative shock also affects the impactonditional variance by equation (23).
For the existence of a size effect, the coefficranst be negative and significant.

g2 =ay+azl;_i5_1 +error (23)

The positive sign bias test determines if the siza positive shock impacts its conditional
variance, the regression is given by equation (Z#). the size effect to be present, the

coefficient of I,_,s,_, andI;~&,_, must be significant.
g =ay+azl} 5 1 +error (24)

Tables 3 and 4 present the results of theletso fitted to the data on returns with
Gaussian distribution and Student’s t distributidie outputs on returns show that the
constant is statistically significant in the meaguation. The ARMA(1,1) term is also
statistically significant for all models except tARCH(1). The variance equation illustrates
that all the terms are statistically significantl&b level of significance which implies that the
volatility of risk is influenced by past squareicesl terms. It can be mentioned that the past

volatility of returns is significantly, influencinthe current volatility. The EGARCH variance
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equation also signifies that an asymmetric atffen volatility exists, which means that
positive shocks are affecting volatility diffete to negative shocks.

Table 3 presents linear and non-linear GARCH patamestimations for Chinese gold
market returns with Gaussian distribution. The ioeihts of ARCH and GARCH models are
statistically significant, and GARCH (1,1) preserdstter likelihood at 10324. For the
GARCH model, the coefficienti+f =0.9762251(0.1211033+0.8551218), indicates the
volatility shocks of SGE returns are persistente Thefficients of IGARCH’s mean equation
are not significant. For the EGARCH model, the asyetry parameter equals 0.2571219, it is
significantly positive, the coefficient of the ARCidrm is positive at 10%, this indicates the
positive return shocks will have greater impactsvofatility. TARCH is created to capture
the negative movements of the volatility that uued bigger than the positive movements.

In our case, the coefficieptis 0.0277673 but significant at 1%.

Table 4 presents the coefficients obtained withdesttis distribution. The likelihood
parameter is greater than regression with GausBssnbution, but the coefficients of mean
equation are not significant. The result of GARCegression confirms the persistent
volatility shocksa+p equals 0.9801919. The asymmetry parameter of 8&RECH model is
0.1760426 (significant at 1%), this result confirttee asymmetry return shocks. The
coefficienty of TARCH model is significant by negative (-0.1382 at 1%). This is an
unusual outcome; the result is contradictory iratreh to our finding by using Gaussian
distribution. The negative coefficient means goed:s has a greater impact than bad news. In
a general way, the quality of the student’s disiiitm is not satisfactory, because of poor
significant coefficients of the mean equation. @uctng to recent research, the financial
return time series with high kurtosis was bettexdpted by using the student’s distribution,
we will study the forecasting quality of the GARCtipe models in the next section.
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Table 3: Estimated coefficients for the ARCH models

ARCH(1) GARCH(1,1) IGARCH(1,1) EARCH(1,1) PARCH(1,1) TARCH(1,1) ARCHM(1) NARCH(1)
Cons_ 0.0004326 0.0003881 0.0003732 0.0004771 0.0003918 0.0004503 0.0022644 0.0003865
(0.019) (0.011) (0.016) (0.007) (0.013) (0.010) (0.000) (0.047)
AR(L1) -0.5587494 -0.7068501 0.7353978 -0.9887848 -0.7230892 -0.7066202 -0.6623146 -0.5795511
(0.000) (0.005) (0.284) (0.000) (0.002) (0.002) (0.000) (0.000)
MA(1) 0.4949706 0.6787811 -0.7264394 0.9958122 0.6942069 0.6761211 0.5985465 0.5111406
(0.000) (0.009) (0.297) (0.000) (0.004) (0.005) (0.000) (0.000)
Variance equation
Cons_ 0.0001086 4.26-06 3.04-06 -0.334647 8.1Z-07 3.98-06 0.0001015 0.000108
(0.000) (0.000) (0.000) (0.000) (0.056) (0.000) (0.000) (0.000)
ARCH(L1) 0.2366763 0.1211033 0.1420618 0.0112612 0.113781 0.107985 0.3098583 0.2381519
(0.000) (0.000) (0.000) (0.087) (0.000) (0.000) (0.000) (0.000)
GARCH(L1) 0.8551218 0.8579351 0.9610151 0.8464523 0.8576062
(0.000) (0.000) (0.000) (0.000) (0.000)
Alpha 0.2571219
(0.000)
Power 2.359485
(0.000)
TARCH(L1) 0.0277673
(0.001)
ARCHM(c?) -14.72094
(0.000)
NARCH (k) 0.0015396
(0.000)
likelihood 10011.67 10324.82 10317.69 10305.09 60832 10326.24 10026.58 10013.13

p-values are given in parentheses.
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Table 4: Estimated coefficients for the ARCH model¢Student distribution)

ARCH(1) GARCH(1,1) IGARCH(1,1) EGARCH(1,1) PARCH(1,1) TARCH(1,1) ARCHM(1) NARCH(1,1)
Cons_ 0.000677 0.0006195 0.0006202 0.0006417 0.0006812 0.0006775 0.0006564 0.0006234
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.004) (0.000)
AR(L1) -0.240092 -0.2711803 -0.2691433 -0.2181451 -0.2378837 -0.1672472 -0.2691172 -0.2240068
(0.281) (0.343) (0.349) (0.404) (0.284) (0.487) (0.348) (0.335)
MA(1) 0.1850198 0.2158731 0.2131997 0.1571124 0.1824761 0.1151906 0.2138958 0.1712863
(0.417) (0.457) (0.464) (0.552) (0.421) (0.637) (0.462) (0.470)
Variance equation
Cons_ 0.0001107 3.25-06 2.54-06 -0.1617319 0.0002089 0.0098154 3.24-06 0.0001083
(0.000) (0.000) (0.000) (0.000) (0.622) (0.000) (0.000) (0.000)
ARCH(L1) 0.275836 0.0957356 0.1114599 0.0205378 0.2775119 0.3175995 0.0955799 0.274595
(0.000) (0.000) (0.000) (0.065) (0.000) (0.000) (0.000) (0.000)
GARCH(L1) 0.8844563 0.8885376 0.9806184 0.8846665
(0.000) (0.000) (0.000) (0.000)
Alpha 0.1760426
(0.000)
Power 1.858312
(0.000)
TARCH(L1) -0.1333102
(0.004)
ARCHM(c?) -0.3989969
(0.004)
NARCH (k) 0.002783
(0.015)
likelihood 10410.54 10543.41 10540.86 10550.85 08 10411.7 10543.43 10413.6
df. 3.332802 4.416499 3.997225 4.271666 3.331899 .328359 4.416377 3.34935

p-values are given in parentheses.
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We test for the presence of asymmetric effects.sldpe bias test yields the following results:
e =0.0001273 + 0.000305S,_; + error
p-value (0.000) (0.120)
g2 =0.0001579 — 0.000305S;" ; + error
p-value (0.000) (0.120)

A positive but not significant coefficient indicatéhe presence of leverage effects, implying
the positive and negative shocks may have a difteeffect on the conditional variance.

Estimating the negative and positive sign biastg&ids the following results:
g2 =0.0000751 — 0.0170669S;_,&,_, + error
p-value (0.000) (0.000)
g2 =0.0001372 + 0.0012538S;" ,&,_, + error
p-value (0.000) (0.352)

Significant coefficients on the negative sign biestimply that there are sign effects and size
effects. Positive and negative shocks do haveferdift effect on the conditional variance and
the negative effect on the variance depends onitleeof the shocks.

4.1In-Sample Statistical Performance

The following tables present the comparison ofitheample statistical performance results
of the selected models. For the models with Gansdiatribution, they reveal that the
EGARCH has the lowest MAE and the lowest MAPE, RCH model and the IGARCH
model have the lowest RMSE at 3.53e-07. Based eistadent’s t distribution, the GARCH
and ARCHM model have the lowest MAE and the lowdstPE. The IGARH model has the
lowest RMSE.

So, it can be said that, based on the outputs-s&mmple statistical performance the GARCH
and EGARCH models are the best models for Gausssanbution and the ARCHM model
is the best model for Student distribution. TheG¥R PARCH and NARCH models have the
worst MAE, MAPE and RMSE.

Marie-Eliette Dury, Bing Xiao 21



Table 5: In-sample statistical performance result§Gaussian distribution)

Model MAE MAPE RMSE
ARCH(1) 0.000193 8173.961 3.%07
GARCH(1,1) 0.0001914 5421.735 38w
EGARCH(1,1) 0.0001905 5156.383 38y
PARCH(1,1) 0.0001964 5437.983 38y
TARCH(1,1) 0.0001944 5345.467 3557
ARCHM(1) 0.0001925 8077.519 3.%a7
IGARCH(1,1) 0.0002 5589.213 3507
NARCH(1) 0.0001932 8195.746 3%a7
p-values are given in parentheses.
Table 6: In-sample statistical performance resultgStudent distribution)
Model MAE MAPE RMSE
ARCH(1) 0.0001945 8490.761 3567
GARCH(1,1) 0.0001944 5385.746 357
EGARCH(1,1) 0.0001917 5197.358 387
PARCH(1,1) 0.0001945 8486.639 387
TARCH(1,1) 0.0001981 8691.579 35700
ARCHM(1) 0.0001944 5383.354 3507
IGARCH(1,1) 0.000201 5798.238 3567
NARCH(1) 0.0001972 8520.639 3507

4.2 Out-Sample Statistical Performance

Having estimated the models, our next steptad assess their forecasts. We use the
models to make dynamic forecasts of volatility ftve next 100 observations. For the
Gaussian distribution, the GARCH model has the BIWAAE at 0.000126 and the lowest
MAPE at 129.4682, the ARCH model has the lowest EME 6.34e-08. Using Student’s t
distribution, the GARCH and ARCHM models have theést MAE, MAPE and RMSE.
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Table 7: Out of sample statistical performance redts (Gaussian distribution)

Model MAE MAPE RMSE
ARCH(1) 0.0001322 154.084 6.3@8
GARCH(1,1) 0.000126 129.4682 65698
EGARCH(1,1) 0.0001314 142.6208 6768
PARCH(1,1) 0.0001266 131.3939 6508
TARCH(1,1) 0.0001276 133.4691 657128
ARCHM(1) 0.0001323 145.0933 6.308
IGARCH(1,1) 0.0001279 137.4174 65708
NARCH(1) 0.0001329 153.1993 6368

p-values are given in parentheses.

Table 8: Out of sample statistical performance redts (Student distribution)

Model MAE MAPE RMSE
ARCH(1) 0.0001359 158.3068 67308
GARCH(L,1) 0.0001254 127.5605 6%
EGARCH(1,1) 0.0001284 133.2779 6518
PARCH(L,1) 0.0001358 157.9436 673
TARCH(L,1) 0.0001345 154.4988 6318
ARCHM(1) 0.0001254 1275211 6.008
IGARCH(L,1) 0.0001348 135.4212 7%
NARCH(1) 0.0001351 156.5947 6408

5. Conclusion

This study has implications for investors who wishprice, hedge and speculate in the
Chinese gold market. Gold is an underlying assethich volatility is an important factor

when pricing options. Secondly, the investor mag/thie Gold futures contracts to hedge their
underlying Gold position. Forecasting volatility ynee important for investors for adjusting

their hedging strategies. In a general way, undedshg how information (bad news and
good news) impacts on return volatility improves fierformance of portfolio management.
For example, this knowledge allows the investorkdwe a better portfolio selection in asset
pricing and allows them a more efficient risk magagnt. In addition, the Chinese gold

market offers an opportunity for international disiécation.
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Our study has attempted to model gold prices atStmenghai Gold Exchange (SGE) return
and assess the forecasting ability of the ARCH Hami models. We have used historical
volatility for modeling purposes through the ARCHInfily of models and made dynamic
forecasts of future volatility. The analysis coversn October 30, 2002 to December 7, 2015
and from December 8, 2015 to May 6, 2016 as in-$apd out-of-sample sets respectively.
For the Gaussian distribution, the results of tireample statistical performance show that
the GARCH and EARCH models are selected as thepseiirming models for the returns.
According to the outcomes of MAE and MAPT, the EGHR model is better than the
GARCH model in explaining the return (modeling tlaatility), furthermore, using t-student
distribution, the EGARCH model gets the best MAREneation of all models. This finding
confirms our asymmetric effect analysis. Outcomds tlme out-of-sample statistical
performance demonstrate that the GARCH is considéwebe the best model. Based on
Student’s t distribution, the GARCH and the ARCHMatels are the best models for in and
out-of-samples. This result confirms the powerhef GARCH model in prediction volatility
by using t-student distribution. At the same tiries ARCHM model shows good predicting
capacity, in our study, volatility shocks appearspstent for the Gold return series as the sum
of the coefficientsy andf is close to unity for all estimated models. Aceogdto Engle and
Bollerslev (1986, 1987), including conditional \&rce in the conditional mean equation is
more appropriate for financial time series when ekpected return on an asset is related to
the expected asset risk. At the same time, the ARQHodel shows good predicting
capacity, this result corroborates the finding oliZRose and Pinflod (2007), in which they
conclude the EGARCH and ARCHM models outperformadiier models in capturing the
dynamic return volatility for Australian Three-YeatBond futures contracts. Two other facts
have caught our attention: firstly, the specifioatiof mean equation by using t-student
distribution is not satisfactory; this study dentoates that it is necessary to improve the
quality of the mean equation estimates. Secontly,quality of PARCH regression is not
satisfactory, according to the PARCH model, the goterm allows the capture volatility by
changing the influence of the extreme value. Batoeading to new literature review, when
the return is non-normally distributed, the useagfower transformation is not appropriate.
We think using stable process distribution wouldab&olution to this issue, the extension to
Stable Models opens up new paths for this reseérshapproach allows us to represent high
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volatility. Next step is the simulation of the mbéte which we have to develop the computer

programming.
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Appendix:

Tables

Table Al: Summary statistics for SGE Index

Obs

Mean

Std. Dev.

Skewness

Kurtosis

SGE Index

3279

211.5135

79.11776

0.11876799

-11892

Table A2: Dickey-Fuller test for SGE index

Test statistic

1% critical value

5% critical value

10% critical value

p-value for Z(t)

-1.544

-3.430

-2.860

-2.570

0.5119

Table A3: Phillips-Perron test for SGE index

Test statistic

1% critical value

5% critical value

10% critical value

Z(rho)

-2.785

-20.700

-14.100

-11.300

Z(1)

-1.494

-3.430

-2.860

-2.570

MacKinnon approximate p-value for Z(t) = 0.5364

Table A4: Dickey-Fuller test for returns

Test statistic

1% critical value

5% critical value

10% critical value

p-value for Z(t)

-62.283

-3.430

-2.860

-2.570

0.0000

Table A5: Phillips-Perron test for returns

Test statistic 1% critical value 5% critical value| 10% critical value
Z(rho) -3595.529 -20.700 -14.100 -11.300
Z(t) -62.222 -3.430 -2.860 -2.570
MacKinnon approximate p-value for Z(t) = 0.0000
Table A6: LM test for autoregressive conditional hé&eroscedasticity
Lags(p) Chiz2 Df Prob. > Chi2
1 241.180 1 0.0000

HO: No ARCH effects vs. ARCH(p) disturbance
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Figures

Figure Al: AC of SGE index
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Figure A5: AC of Returns
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Figure A6: PAC of Retumns
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Figure A7: AC of res. mean equation Figure A8: P& of res. mean equation
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Figure A9: AC of res.2 mean equation Figure A10: PAC of res.2 mean
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