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On the binomial approximation of the American put

We consider the binomial approximation of the American put price in the Black-Scholes model (with continuous dividend yield). Our main result is that the error of approximation is O((ln n) α /n), where n is the number of time periods and the exponent α is a positive number, the value of which may differ according to the respective levels of the interest rate and the dividend yield.

The binomial approximation

Consider the Black-Scholes model, in which the stock price at time t is given by

where, under the risk-neutral probability measure, (B t ) t≥0 is a standard Brownian motion. Here, r is the instantaneous interest rate, and d is the dividend rate (or the foreign interest rate in the case of forex options). We assume r > 0 and d ≥ 0.

Denote by P the price function of the American put with maturity T and strike price K, so that

P (t, x) = sup τ ∈T 0,T -t E x e -rτ f (S τ ) , 0 ≤ t ≤ T, x ∈ [0, +∞),
with f (x) = (K -x) + , and E x = E (• | S 0 = x). Here, T 0,t denotes the set of all stopping times with respect to the Brownian filtration, with values in the interval [0, t].

For technical reasons (especially for the derivation of regularity estimates for the second time derivative of the price function), it is more convenient to use the log-stock price. So, we introduce

X x t = x + µt + σB t , with µ = r -d - σ 2 2 ,
and U(T, x) = sup τ ∈T 0,T E e -rτ ϕ(X x τ ) , with ϕ(x) = (K -e x ) + . We then have P (t, x) = U(T -t, ln(x)), t > 0, x > 0.

Note that U(t, x) satisfies the following parabolic variational inequality max -∂U ∂t + (A -r)U, ϕ -U = 0, with the initial condition U(0, .) = ϕ.

Here, A is the infinitesimal generator of X, namely

A = σ 2 2 ∂ 2 ∂x 2 + µ ∂ ∂x .
Recall that, for each T > 0, there is a real number b(T ) ≤ ln(K) such that U(T, x) > ϕ(x) ⇔ x > b(T ).

In fact, if (b(t), 0 ≤ t ≤ T ) is the exercise boundary of the American put with maturity T , we have b(t) = ln(b(T -t)). We will also need the European value function, defined by Ū (T, x) = E e -rT ϕ(X x T ) .

Note that Ū (0, .) = ϕ and

- ∂ Ū ∂t + (A -r) Ū = 0.
Note that, in Section 3, the function Ū will be denoted by u ϕ . We now introduce the random walk approximation of Brownian motion. To be more precise, assume (X n ) n≥1 is a sequence of i.i.d. real random variables satisfying EX 2 n = 1 and EX n = 0, and define, for any positive integer n, the process B (n) by

B (n) t = T /n [nt/T ] k=1 X k , 0 ≤ t ≤ T,
where [nt/T ] denotes the greatest integer in nt/T .

We will assume the following about the common distribution of the X n 's (cf. hypothesis (H4) of [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF]). Note that, in the binomial case, X 1 takes its values in {-1, +1}.

(H4) The random variable X 1 is bounded and satisfies EX 2 1 = 1 and EX 1 = EX 3 1 = 0.

In the following, we fix S 0 and set P 0 = P (0, S 0 ) = U(T, ln S 0 ).

Note that, if we introduce the notation g(x) = (K -S 0 e σx ) + , we have

P 0 = sup τ ∈T 0,T E e -rτ g(µ 0 τ + B τ ) ,
with µ 0 = µ/σ. We now have a natural approximation of P 0 , given by

P (n) 0 = sup τ ∈T (n) 0,T E e -rτ g(µ 0 τ + B (n) τ ) ,
where T

(n) 0,T denotes the set of all stopping times (with respect to the natural filtration of B (n) ), with values in [0, T ] ∩ {0, T /n, 2T /n, . . . , (n -1)T /n, T }. Our main result is the following.

Theorem 1.1. There exists a positive constant C such that, for all positive integers n,

-C (ln n) ᾱ n ≤ P (n) 0 -P 0 ≤ C (ln n) α n ,
where ᾱ = α = 1 if d > r, and ᾱ = 3/2, α = 5/4 if d ≤ r.

The above estimates improve our previous results (see [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF], Theorem 5.6) which gave an upper bound of the form C √ ln n n 4/5

. Note that, for European options, the error estimate is O(1/n) (see [START_REF] Diener | Asymptotics of the price oscillations of vanilla option in a tree model[END_REF], [START_REF] Walsh | The Rate of Convergence of the Binomial Tree Scheme[END_REF]). We also mention the results of [START_REF] Liang | Optimal Convergence Rate of the Binomial Tree Scheme forAmerican Options with Jump Diffusion and Their Free Boundaries[END_REF] about finite difference schemes, which give the rate O(1/ √ n), but their estimate is uniform over the time interval, while we concentrate on the error estimate for a fixed time. The paper [START_REF] Liang | Optimal Convergence Rate of the Binomial Tree Scheme forAmerican Options with Jump Diffusion and Their Free Boundaries[END_REF] also has results about the approximation of the exercise boundary. We also refer to [START_REF] Silvestrov | American Type Options. Stochastic Approximation Methods[END_REF] and its references for a review of recent results on the approximation of American option prices.

Our approach remains the same as in [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF]: we relate the error estimates to the regularity of the value function. The improvement comes from a refinement of the quadratic estimates for the second order time derivative, in the spirit of Friedman and Kinderlehrer (see [START_REF] Friedman | Parabolic variational inequalities in one space dimension and smoothness of the free boundary[END_REF] and [START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF]). We also exploit the smoothness of the exercise boundary and its asymptotic properties close to maturity.

The constant C in Theorem 1.1 is related to the Berry-Esseen estimate and to the regularity of the value function. Although it is hard to keep track of the constants in the regularity estimates, it may be worth mentioning that they remain uniform with respect to µ and σ as long as (µ, σ) remains in a compact subset of R × (0, ∞). A consequence of this observation is that the bounds in Theorem 1.1 are also valid for variants of the approximation in which the process approximating ln(S t /S 0 ), instead of being µt + σB

(n) t , is given by µ n t+ σ n B (n) t at discrete times t, with µ n = µ + O(1/n) and σ 2 n = σ 2 + O(1/n),
as occurs in the classical risk-neutral approximation. Indeed, standard arguments show that the value function is locally Lipschitz-continuous with respect to σ 2 (away from 0) and µ.

The paper is organized as follows. In the next Section we recall some results of [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF]. Section 3 is devoted to estimates for the derivatives of the value function. The estimates are then used in Sections 4 and 5 to prove Theorem 1.1: in Section 4, we give an upper bound for P (n) 0 -P 0 and in Section 5, we derive the lower bound.
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The value function and the approximating process

As in [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF], we introduce the modified value function

u(t, x) = e -rt U(T -t, ln(S 0 ) + µt + σx), t ≥ 0, x ∈ R.
We have P 0 = u(0, 0) and u(T, x) = e -rT U(0, ln(S 0 ) + µT + σx) = e -rT (K -S 0 e µT +σx ) + and, for t ∈ [0, T ], u(t, x) ≥ e -rt (K -S 0 e µt+σx ) + = e -rt g(µ 0 t + x).

(1)

We will need the European analogue of u, namely

ū(t, x) = e -rt Ū(T -t, ln(S 0 ) + µt + σx) = e -rT E (g(µ 0 T + x + B T -t )) , t ≥ 0, x ∈ R.
We will also use the notation:

h = T n .
With this notation, we have

B (n) t = √ h [t/h] k=1 X k , 0 ≤ t ≤ T.
We have, for all t ∈ {0, h, 2h, . . . , (n -1)h, nh = T } (cf. Proposition 3.1 of [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF]),

u(t, B (n) t ) = u(0, 0) + M t + t/h j=1 Du((j -1)h, B (n) (j-1)h ),
where (M t ) 0≤t≤T is a martingale (with respect to the natural filtration of B (n) ), such that M 0 = 0, and

Du(t, x) = E u t + h, x + √ hX 1 -u(t, x), 0 ≤ t ≤ T -h, x ∈ R.

The above decomposition of u(t, B

(n) t ) (which is in fact Doob's decomposition) can be viewed as a discrete version of Itô's formula, which, for a smooth function v :

[0, T ]×R → R, implies that v(t, B t ) -t 0 δv(s, B s )ds is a (local) martingale, where δv = ∂v ∂t + 1 2 ∂ 2 v ∂x 2 .
It is also easy to check that, if v is smooth and

Dv(t, x) = E v t + h, x + √ hX 1 -v(t, x), we have (1/h) × Dv(t, x) = δv(t, x) + O(h).
The main technical difficulty that we have to deal with is the lack of smoothness of the modfied value function u.

Remark 2.1. The derivatives of u are related to those of U by the following formulas. We have

∂u ∂t (t, x) = e -rt - ∂U ∂t + µ ∂U ∂x -rU (T -t, ln(S 0 ) + µt + σx)
and

∂ 2 u ∂t 2 (t, x) = e -rt ∂ 2 U ∂t 2 -2µ ∂ 2 U ∂t∂x + µ 2 ∂ 2 U ∂x 2 +2r ∂U ∂t -2rµ ∂U ∂x + r 2 U (T -t, ln(S 0 ) + µt + σx).
We also have

δu(t, x) = ∂u ∂t (t, x) + 1 2 ∂ 2 u ∂x 2 (t, x) = e -rt - ∂U ∂t + (A -r)U (T -t, ln(S 0 ) + µt + σx) = e -rt (A -r)ϕ(ln(S 0 ) + µt + σx)1 {ln(S 0 )+µt+σx≤ b(T -t)} ,
where the last equality follows from regularity results (see, for instance, [START_REF] Jaillet | Variational inequalities and the pricing of American options[END_REF]).

We will need a more precise description of the operator D, given by the following proposition (see Proposition 3.4 of [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF]). For convenience, we denote by X a random variable with the same distribution as X 1 , which is independent of the sequence

(X n ) n≥1 . Proposition 2.1. Assume that (H4) is satisfied and that v is a function of class C 3 on [0, T ] × R. For 0 ≤ t ≤ T -h and x ∈ R, define Dv(t, x) = 2 √ h 0 dξ ξ 0 dzE X ξ -X 2 (ξ -z) ∂ 2 v ∂t∂x (t + ξ 2 , x + zX) .
We have

Dv(t, x) = Dv(t, x) + 2 √ h 0 dξ ξ 0 dzE X 2 δv(t + ξ 2 , x + zX) ,
with the notation δv = ∂v ∂t + 1 2

∂ 2 v ∂x 2 ,

and

Dv(t, x) = 2 √ h 0 dξ ξ 0 dz(ξ -z)E X 2 ξ -X 2 (ξ -z) 2 ∂ 3 v ∂t∂x 2 (t + ξ 2 , x + zX) . Remark 2.2. Note that, if δv(s, x + zX) = 0 for all s ∈ [t, t + h] and z ∈ [0, √ h], we have v(t, x) = Dv(t, x).
From the last equality in Proposition 2.1, we derive the following estimates.

Dv(t, x) ≤ 2 √ h 0 ξ 2 dξ ξ 0 dzE X 2 + X 4 2 
∂ 3 v ∂t∂x 2 (t + ξ 2 , x + zX) ≤ √ h √ h 0 2ξdξE ξ 0 dz X 2 + X 4 2 ∂ 3 v ∂t∂x 2 (t + ξ 2 , x + zX) ≤ √ h t+h t dsE dy1 {|y-x|≤ √ h|X|} |X| + |X| 3 2 ∂ 3 v ∂t∂x 2 (s, y) = √ h t+h t ds dyE 1 {|y-x|≤ √ h|X|} |X| + |X| 3 2 ∂ 3 v ∂t∂x 2 (s, y)
We know from Proposition 3.2 of [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF] (based on Berry-Esseen estimates) that, for every k ∈ (1, 3], there exists a positive constant C k (which does not depend on X), such that, for all y ∈ R, n ≥ 1 and j ∈ {1, 2, . . . , n},

E   |X| + |X| 3 2 1 B (n) jh -y ≤ √ h|X|   ≤ C k √ j E (|X| 3 ) 1 + E |X| 3+k 1 + |y| k .
Hence, for j = 1, . . . , n -1,

E Dv(jh, B (n) jh ) ≤ C k,X √ j √ h jh+h jh ds dy 1 + |y| k ∂ 3 v ∂t∂x 2 (s, y) ≤ C k,X h √ 2 jh+h jh ds √ s dy 1 + |y| k ∂ 3 v ∂t∂x 2 (s, y) , ( 2 
)
where, for the last inequality, we used the inequality jh ≥ (j + 1)h/2.

3 Estimates for the second order time derivative

In this section, we refine the regularity results that we used in [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF]. We first establish some elementary L 1 -estimates. Then, we obtain a quadratic estimate for the second order time derivative of the difference Ũ = U -Ū . For the definition of the relevant weighted Sobolev spaces, we will use the notation

ν j (dx) = dx (1 + x 2 ) j/2 , j > 1.
3.1 Some elementary L 1 -estimates Proposition 3.1. Assume that the function ϕ is continuous and satisfies ϕ ∈ L 1 (ν j ), ϕ ′ ∈ L 1 (ν j ) and the second derivative ϕ ′′ is a Radon measure on R, with R

|ϕ ′′ (dz)| (1+z 2 ) j/2 < ∞. Let u ϕ (t, x) = e -rt E(ϕ(X x t )), t ≥ 0, x ∈ R. Then, for all T > 0, there exists a constant C T > 0, such that ∀t ∈ (0, T ], ∂ 2 u ϕ ∂t 2 (t, .) L 1 (ν j ) ≤ C T t .
We will easily deduce this proposition from the following lemma.

Lemma 3.1. If ρ is a Radon measure on R and q a nonnegative integrable function on R, we have

||ρ * q|| L 1 (ν j ) ≤ 2 j/2 R |ρ(dz)| (1 + z 2 ) j/2 ∞ -∞ q(x)(1 + x 2 ) j/2 dx.
We also have, for any measurable function f on R,

∀y ∈ R, ||f (. -y)|| L 1 (ν j ) ≤ 2 j/2 (1 + y 2 ) j/2 ||f || L 1 (ν j ) . Proof: We have ||ρ * q|| L 1 (ν j ) ≤ ∞ -∞ dx (1 + x 2 ) j/2 R |ρ(dz)|q(x -z) = R |ρ(dz)| (1 + z 2 ) j/2 ∞ -∞ q(x -z) (1 + z 2 ) j/2 (1 + x 2 ) j/2 dx = R |ρ(dz)| (1 + z 2 ) j/2 ∞ -∞ q(x) (1 + z 2 ) j/2 (1 + (x + z) 2 ) j/2 dx. Note that z 2 ≤ 2((x + z) 2 + x 2 ),
so that we deduce

1 + z 2 1 + (x + z) 2 ≤ 1 + 2(x + z) 2 + 2x 2 1 + (x + z) 2 ≤ 2(1 + x 2 ). Hence ||ρ * q|| L 1 (ν j ) ≤ 2 j/2 R |ρ(dz)| (1 + z 2 ) j/2 ∞ -∞ q(x)(1 + x 2 ) j/2 dx.
Similarly, we have, for any measurable function f and y ∈ R,

||f (. -y)|| L 1 (ν j ) = |f (x -y)| dx (1 + x 2 ) j/2 = |f (x)| dx (1 + (x + y) 2 ) j/2 = |f (x)| 1 + x 2 1 + (x + y) 2 j/2 dx (1 + x 2 ) j/2 ≤ |f (x)| 1 + 2(x + y) 2 + 2y 2 1 + (x + y) 2 j/2 dx (1 + x 2 ) j/2 ≤ 2 j/2 (1 + y 2 ) j/2 ||f || L 1 (ν j ) . ⋄ Proof of Proposition 3.1: We have u ϕ (t, x) = e -rt ∞ -∞ ϕ(x + y) exp - (y -µt) 2 2σ 2 t dy σ √ 2πt = e -rt p t * ϕ(x), with p t (x) = 1 σ √ 2πt exp - (x + µt) 2 2σ 2 t = 1 σ √ t n x + µt σ √ t .
Here, n denotes the standard normal density function.

On the other hand, we know that u ϕ satisfies the equation

∂u ϕ ∂t = (A -r)u ϕ , (3) 
so that

∂u ϕ ∂t (t, .) = e -rt (A -r)p t * ϕ = e -rt p t * [(A -r)ϕ].
It follows from our assumptions that

(A -r)ϕ is a Radon measure satisfying R |(A -r)ϕ(dz)| 1 (1 + z 2 ) j/2 < ∞.
So that, using Lemma 3.1,

∂u ϕ ∂t (t, .) L 1 (ν j ) ≤ C j ∞ -∞ p t (x)(1 + |x| j )dx = C j ∞ -∞ 1 σ √ t n x + µt σ √ t (1 + |x| j )dx = C j ∞ -∞ n (y) (1 + |yσ √ t -µt| j )dy ≤ C j 1 + t j .
On the other hand, by differentiating (3), we have

∂ 2 u ϕ ∂t 2 = (A -r) ∂u ϕ ∂t = e -rt ((A -r)p t ) * (A -r)ϕ.
Hence, using Lemma 3.1, and the definition of p t ,

∂ 2 u ϕ ∂t 2 (t, .) L 1 (ν j ) ≤ C j ∞ -∞ |(A -r)p t (x)|(1 + |x| j )dx ≤ C j t 1 + t j . ⋄

Quadratic estimates

Recall the notation:

U(t, x) = sup τ ∈T 0,t E e -rτ ϕ(X x τ ) , u ϕ (t, x) = e -rt E(ϕ(X x t )), t ≥ 0, x ∈ R,
with ϕ(x) = (K -e x ) + . We now introduce the difference Ũ = U -u ϕ (which corresponds to the early exercise premium). We have the following L 2 -estimate for the second time derivative of Ũ = U -u ϕ .

Theorem 3.1. Fix T > 0 and j > 1. There exists a constant C > 0 such that, for all ξ ∈ (0, T ],

T ξ (t -ξ) ∂ 2 Ũ ∂t 2 (t, .) 2 L 2 (ν j ) dt ≤ C 1 + | ln ξ| β , with β =      3/2, if d ≤ r, 1, if d > r.
This estimate is closely related to Theorem 2.4 of [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF], a variant of results due to Friedman and Kinderlehrer (see [START_REF] Friedman | Parabolic variational inequalities in one space dimension and smoothness of the free boundary[END_REF], Lemma 4.1, and [START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF], Chapter VIII). Note that by considering the difference Ũ = U -u ϕ , we are able to derive a logarithmic upper bound, instead of a power of ξ, which would come up by considering U (see Theorem 2.4 of [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF]). For the proof of Theorem 3.1, we need some preliminary estimates on the derivatives

∂ 2 Ũ ∂x 2 and ∂ 2 Ũ ∂t∂x . Lemma 3.2. Fix T > 0 and j > 1.
For any ε ∈ (0, 1/4), there exists a constant C > 0 such that, for all t ∈ (0, T ],

∂ Ũ ∂x (t, .) L 2 (ν j ) ≤ C √ t and ∂ 2 Ũ ∂x 2 (t, .) L 2 (ν j ) ≤ Ct ε .
Proof: We know that Ũ solves the equation

- ∂ Ũ ∂t + (A -r) Ũ = h,
with initial condition Ũ (0, .) = 0, where the function h is given by

h(t, x) = (A -r)ϕ(x)1 {x≤ b(t)} , t > 0, x ∈ R.
We have the following identity (which can be viewed as a form of the early exercise premium formula). Ũ (t, .) = -t 0 e -r(t-s) p t-s * h(s, .)ds, where

p t (x) = 1 σ √ 2πt exp - (x + µt) 2 2σ 2 t = 1 σ √ t n x + µt σ √ t ,
with n denoting the standard normal density function. It is straightforward to check that

∂ Ũ ∂x (t, .) = - t 0 e -r(t-s) p t-s * ∂ h ∂x (s, .)ds,
and, with the notation δ z for the Dirac measure at a point z,

∂ h ∂x (t, x) = (A -r)ϕ ′ (x)1 {x≤ b(t)} -(A -r)ϕ(x)δb (t) (x) = -κ(t, x) + γ(t)δb (t) (x), (4) 
with

κ(t, x) = -(A -r)ϕ ′ (x)1 {x≤ b(t)} and γ(t) = -(A -r)ϕ( b(t))
. Note that κ is a bounded function on (0, ∞) × R and γ is a continuous, nonnegative and bounded function on (0, +∞). At this stage, it is clear that

||p t-s * ∂ h ∂x (s, .)|| ∞ ≤ C/ √ t -s, so that ∂ Ũ ∂x (t, .) L 2 (ν j ) ≤ C √ t.
On the other hand, we have

∂ 2 Ũ ∂x 2 (t, .) L 2 (ν j ) ≤ t 0 e -r(t-s) p ′ t-s * κ(s, .) L 2 (ν j ) ds + ||ζ(t, .)|| L 2 (ν j ) , with ζ(t, .) = t 0 e -r(t-s) γ(s)p ′ t-s * δb (s) ds = t 0 e -r(t-s) γ(s)p ′ t-s (. -b(s))ds.
We have, using Lemma 3.1,

p ′ t-s * κ(s, .) L 2 (ν j ) = p ′ t-s (y)κ(s, . -y)dy L 2 (ν j ) ≤ |p ′ t-s (y)| ||κ(s, . -y)|| L 2 (ν j ) dy ≤ 2 j/4 ||κ(s, .)|| L 2 (ν j ) |p ′ t-s (y)|(1 + y 2 ) j/4 dy.
Note that, since κ is bounded and j > 1, sup s>0 ||κ(s, .)|| L 2 (ν j ) < ∞, so that, for some constant C > 0 (which may vary from line to line)

p ′ t-s * κ(s, .) L 2 (ν j ) ≤ C |p ′ t-s (y)|(1 + y 2 ) j/4 dy = C 1 σ 2 (t -s) n ′ y + µ(t -s) σ √ t -s (1 + y 2 ) j/4 dy = C 1 σ √ t -s |n ′ (z)| (1 + (-µ(t -s) + σ √ t -sz) 2 ) j/4 dz ≤ C √ t -s 1 + (t -s) j/2 . Hence, if 0 < t < T , t 0 e -r(t-s) p ′ t-s * κ(s, .) L 2 (ν j ) ds ≤ C t 0 ds √ t -s = 2C √ t.
We now estimate ||ζ(t, .)|| L 2 (ν j ) . We have, using the boundedness of γ,

|ζ(t, x)| = t 0 e -r(t-s) γ(s)p ′ t-s (x -b(s))ds ≤ C t 0 1 σ 2 (t -s) n ′ x -b(s) + µ(t -s) σ √ t -s ds Recall that n ′ (x) = -xn(x). Therefore |ζ(t, x)| ≤ C t 0 |x -b(s) + µ(t -s)| (t -s) 3/2 n x -b(s) + µ(t -s) σ √ t -s ds ≤ C t 0 ds √ t -s + C t 0 |x -b(s)| (t -s) 3/2 n x -b(s) + µ(t -s) σ √ t -s ds. Note that n(x 1 + x 2 ) = n(x 1 ) exp - x 2 2 2 -x 1 x 2 ≤ n(x 1 ) exp(-x 1 x 2 ) ≤ n(x 1 ) exp x 2 1 4 + x 2 2 = n(x 1 / √ 2)e x 2 2 .
Hence, for t ∈ (0, T ),

|ζ(t, x)| ≤ C t 0 ds √ t -s + C T t 0 |x -b(s)| (t -s) 3/2 n x -b(s) √ 2σ √ t -s ds.
Note that, for all α > 0, there exists

C α > 0, such that, for all y ∈ R, n(y/ √ 2) ≤ C α /|y| 2α . Hence, for t ∈ (0, T ), |ζ(t, x)| ≤ C √ t + C α t 0 |x -b(s)| (t -s) 3/2 (t -s) α |x -b(s)| 2α ds = C √ t + C α t 0 (t -s) α-3 2 |x -b(s)| 2α-1 ds = C √ t + C α t α-1 2 1 0 1 (1 -u) 3 2 -α |x -b(tu)| 2α-1 du. Now, take α = 1 2 + ε (with 0 < ε < 1/4) and put β(t, x) = |x -b(t)| 1-2α = |x -b(t)| -2ε . We get ||ζ(t, .)|| L 2 (ν j ) ≤ C √ t + Ct ε 1 0 1 (1 -u) 1-ε ||β(tu, .)|| L 2 (ν j ) du.
Using Lemma 3.1, we have

||β(tu, .)|| 2 L 2 (ν j ) ≤ 2 j/2 1 + b(tu) 2 j/2 1 |x| 4ε dx (1 + x 2 ) j/2 .
Since ε < 1/4, the integral on the righthand side is finite, and the lemma easily follows. ⋄

We now turn to the study of ∂ 2 Ũ ∂t∂x . Recall that ∂U/∂t solves the parabolic equation

-∂v/∂t + (A -r)v = 0 in the set {(t, x) | t > 0, x > b(t)}.
Since the exercise boundary is differentiable and ∂U/∂t is continuous and vanishes on the exercise boundary, it follows that ∂ 2 U ∂t∂x is continuous "up to the boundary", i.e. on the set {(t, x) | t > 0, x ≥ b(t)} (see [START_REF] Friedman | Parabolic variational inequalities in one space dimension and smoothness of the free boundary[END_REF], Lemma 4.5). We first show that ∂ 2 U ∂t∂x is nonnegative along the exercise boundary. Lemma 3.3. We have, for any t > 0,

∂ 2 U ∂t∂x (t, b(t)) ≥ 0.
Proof: We have, for all t > 0, due to the smooth fit property,

∂U ∂x (t, b(t)) = ϕ ′ ( b(t)),
so that, by differentiating with respect to t,

∂ 2 U ∂t∂x (t, b(t)) + ∂ 2 U ∂x 2 (t, b(t)) b′ (t) = ϕ ′′ ( b(t)) b′ (t) and ∂ 2 U ∂t∂x (t, b(t)) = - ∂ 2 U ∂x 2 (t, b(t)) -ϕ ′′ ( b(t)) b′ (t).
Observe that, for each t > 0, the function

x → U(t, x) -ϕ(x) is C 2 on the interval [ b(t), ∞)
and has a minimum at b(t). Therefore, its second derivative must be nonnegative at this point. Since b′ (t) ≤ 0, the lemma is proved. ⋄ Lemma 3.4. Fix T > 0 and j > 1. There exists a constant C > 0 such that, for all

t 1 ∈ (0, T ∧ 1], T t 1 ∂ 2 Ũ ∂t∂x (t, .) 2 L 2 (ν j ) dt ≤ C ln(1/t 1 ).
For the proof of Lemma 3.4, we will need the bilinear form associated with the operator A -r.

We first introduce the relevant weighted Sobolev spaces. For j > 1, let

H j = L 2 (R, ν j ) and V j = {f ∈ H j | f ′ ∈ H j }.
The inner product on H j will be denoted by (•, •) j and the associated norm by | • | j . The natural norm on V j will be denoted by || • || j . Thus, we have

|f | 2 j = +∞ -∞ f 2 (x) dx (1 + x 2 ) j/2 ,
and ||f || 2 j = |f | 2 j + |f ′ | 2 j .
Recall that the partial differential operator A is defined by

A = σ 2 2 ∂ 2 ∂x 2 + µ ∂ ∂x .
We associate with the operator A -r a bilinear functional on V j , defined by

a j (f, g) = σ 2 2 ∞ -∞ f ′ (x)g ′ (x) dx (1 + x 2 ) j/2 - jσ 2 2 ∞ -∞ f ′ (x)g(x) x (1 + x 2 ) (j/2)+1 dx -µ ∞ -∞ f ′ (x)g(x) dx (1 + x 2 ) j/2 + r ∞ -∞ f (x)g(x) dx (1 + x 2 ) j/2 , so that, if f ′ ∈ V j , a j (f, g) = -((A -r)f, g) j .
It will be convenient to write a j (f, g) as a j (f, g) = ãj (f, g) + āj (f, g), with

ãj (f, g) = σ 2 2 [(f ′ , g ′ ) j + (f, g) j ] and āj (f, g) = a j (f, g) -ãj (f, g). ( 5 
)
With these notations, it is easy to check that |ā j (f, g)| ≤ C||f || j |g| j and |ā j (f, g)| ≤ C||g|| j |f | j , for some constant C which does not depend on f nor g. 

- ∂W m ∂t + (A -r)W m = ∂h m ∂x .
Multiply by ∂W m /∂t and integrate with respect to ν j to get, for any fixed t > 0,

- ∂W m ∂t (t, .), ∂W m ∂t (t, .) j -a j W m (t, .), ∂W m ∂t (t, .) = ∂h m ∂x (t, x) ∂W m ∂t (t, x)ν j (dx).
Note that

a j W m (t, .), ∂W m ∂t (t, .) = ãj W m (t, .), ∂W m ∂t (t, .) + āj W m (t, .), ∂W m ∂t (t, .) = 1 2 d dt (ã j (W m (t, .), W m (t, .))) + āj W m (t, .), ∂W m ∂t (t, .) .
By integrating with respect to time, we get, if 0 < t 1 < T , 

- T t 1 ∂W m ∂t (t, .) 2 j dt + 1 2 (ã j (W m (t 1 , .), W m (t 1 , .)) -ãj (W m (T, .), W m (T, .))) = T t 1 āj W m (t,
∂h m ∂x (t, x) = -κ m (t, x) + γ m (t, x),
where κ m = κ * ρ m , and κ is a bounded function, and 

γ m (t, x) = ρ m (t -τ, x -b(τ ))γ(τ )dτ.

Hence

∂t = ∂ 2 U m ∂t∂x - ∂ 2 u m ∂t∂x ,
where

U m = U * ρ m and u m = u ϕ * ρ m , so that - T t 1 γ m (t, .), ∂W m ∂t (t, .) j dt = J (1) m + J (2) m ,
with

J (1) m = - T t 1 γ m (t, .), ∂ 2 U m ∂t∂x (t, .) j dt and J (2) m = T t 1 γ m (t, .), ∂ 2 u m ∂t∂x (t, .) j dt.
We have

J (1) m = - T t 1 dt dx (1 + x 2 ) j/2 γ m (t, x) ∂ 2 U m ∂t∂x (t, x) = - T t 1 dt dx (1 + x 2 ) j/2 dτ γ(τ )ρ m (t -τ, x -b(τ )) ∂ 2 U m ∂t∂x (t, x) = -dτ ds dy1 {t 1 <τ +s<T } γ(τ )ρ m (s, y) ∂ 2 U m ∂t∂x (τ + s, b(τ ) + y) 1 (1 + (y + b(τ )) 2 ) j/2 = - T + 1 m t 1 γ(τ )η m (τ )dτ, where η m (τ ) = T -τ t 1 -τ ds dy (1 + (y + b(τ )) 2 ) j/2 ρ m (s, y) ∂ 2 U m ∂t∂x (τ + s, b(τ ) + y) = T -τ t 1 -τ ds ρ m (s, y)dy (1 + (y + b(τ )) 2 ) j/2 ds ′ dy ′ ρ m (s ′ , y ′ ) ∂ 2 U ∂t∂x (τ + s -s ′ , b(τ ) + y -y ′ ). Note that ∂ 2 U ∂t∂x = 0 on the open set S = {(t, x) | t > 0,
x < b(t)} (which is the interior set of the stopping region), so that

η m (τ ) = T -τ t 1 -τ ds ρ m (s, y)dy (1 + (y + b(τ )) 2 ) j/2 ds ′ dy ′ ρ m (s ′ , y ′ ) W (τ, s -s ′ , y -y ′ ), where W (τ, θ, z) = ∂ 2 U ∂t∂x (τ + θ, b(τ ) + z)1 { b(τ )+z≥ b(τ +θ)} . Since ∂ 2 U ∂t∂x (τ, b(τ )) ≥ 0, for τ > 0, we have η m (τ ) ≥ T -τ t 1 -τ ds ρ m (s, y)dyρ m (s ′ , y ′ )ds ′ dy ′ 1 + (y + b(τ )) 2 j/2 D(τ, s -s ′ , y -y ′ ),
where

D(τ, θ, z) = ∂ 2 U ∂t∂x (τ + θ, b(τ ) + z) - ∂ 2 U ∂t∂x (τ, b(τ )) 1 { b(τ )+z≥ b(τ +θ)} .
Hence (since γ ≥ 0)

J (1) m ≤ - T + 1 m t 1 γ(τ )ε m (τ )dτ, with ε m (τ ) = T -τ t 1 -τ ds ρ m (s, y)dyρ m (s ′ , y ′ )ds ′ dy ′ (1 + (y + b(τ )) 2 ) j/2 D(τ, s -s ′ , y -y ′ ). We have |ε m (τ )| ≤ T -τ t 1 -τ D m (τ )ds = (T -t 1 )D m (τ ),
where

D m (τ ) = sup |θ|≤1/m,|z|≤2/m |D(τ, θ, z)| 1 { b(τ )+z≥ b(τ +θ)} .
Due to the continuity properties of ∂ 2 U ∂t∂x , as m → ∞, the function D m converges to 0, uniformly on the interval [t 1 , T + 1]. Therefore, we have

lim sup m→∞ J (1) m ≤ 0. (7) 
We now examine J (2) m . We have, using the boundedness of γ,

|J (2) m | ≤ T t 1 dt dx (1 + x 2 ) j/2 |γ m (t, x)| ∂ 2 u m ∂t∂x (t, x) ≤ C T t 1 dt dx (1 + x 2 ) j/2 dτ ρ m (t -τ, x -b(τ )) ∂ 2 u m ∂t∂x (t, x) .
Note that, since ϕ is Lipschitz, we have

∂ 2 uϕ ∂t∂x (t, .) ∞ ≤ C t and, since supp ρ ⊂ [-1, 0] × [-1, +1], ∂ 2 u m ∂t∂x (t, .) ∞ ≤ dτ dyρ m (τ, y) ∂ 2 u ϕ ∂t∂x (t -τ, .) ∞ ≤ C t .
Hence

|J (2) m | ≤ C T t 1 dt t dx dτ ρ m (t -τ, x -b(τ )) = C ln T t 1 . ( 8 
)
It follows from ( 6), ( 7) and ( 8) that

lim sup m→∞ T t 1 ∂W m ∂t (t, .) 2 j dt ≤ C 1 + t 2ε 1 + ln T t 1 ,
which proves the lemma. ⋄

Proof of Theorem 3.1

For the proof of Theorem 3.1, we will work on the equation satisfied by ∂ Ũ /∂t. Let

V = ∂ Ũ ∂t .
We have

- ∂V ∂t + (A -r)V = ∂ h ∂t , where h(t, x) = (A -r)ϕ(x)1 {x≤ b(t)} , t > 0, x ∈ R.
The following lemma will clarify the computation of the derivative ∂ h/∂t in the sense of distributions.

Lemma 3.5. Define the function I on (0, +∞) × R by

I(t, x) = 1 {x≤ b(t)} , t > 0, x ∈ R.
The distribution ∂I/∂t applied to a compactly supported

C ∞ function ρ on (0, +∞) × R is given by ∂I ∂t , ρ = b′ (t)ρ(t, b(t))dt.
This can be written (less precisely): ∂I ∂t (t, .) = b′ (t)δb (t) .

Proof: We have

∂I ∂t , ρ = -I, ∂ρ ∂t = -dt dxI(t, x) ∂ρ ∂t (t, x)
Let J be the range of b. We have J = ( b(∞), b(0)). Note that, if x ≤ b(∞), I(t, x) = 1 for all t > 0 and if x ≥ b(0) I(t, x) = 0 for all t > 0, so that, in both cases, I(t, x) ∂ρ ∂t (t, x)dt = 0. Therefore

∂I ∂t , ρ = - J dx dt1 {x≤ b(t)} ∂ρ ∂t (t, x) = - J dx dt1 {t≤ b-1 (x)} ∂ρ ∂t (t, x) = - J dxρ( b-1 (x), x) = b′ (t)ρ(t, b(t))dt.
Here, we have used the fact that b is strictly decreasing (which is proved in [START_REF] Villeneuve | Options américaines dans un modèle de Black-Scholes multidimensionnel[END_REF]), but we can also approximate b by the strictly decreasing functions bε (t) = -εt + b(t) to derive the formula. In fact, we only need b to be C 1 : indeed, we can replace b(t) by bµ (t) = -µt + b(t)

and choose µ so that bµ is strictly increasing in a neighborhood of the time projection of the support of ρ. ⋄

We now proceed with the proof of Theorem 3.1. As in the proof of Lemma 3.4, we introduce a regularizing sequence ρ m , and set

V m = V * ρ m and χ m = ∂ h ∂t * ρ m , so that - ∂V m ∂t + (A -r)V m = χ m
Note that the functions V m , χ m are C ∞ , with bounded derivatives on any subset [t 1 , T ]×R, with 0 < t 1 < T . This is due to the fact that V is bounded on such subsets. For any fixed t > 0, multiply by ∂V m /∂t and integrate with respect to ν j to get

- ∂V m ∂t (t, .) 2 j -a j V m (t, .), ∂V m ∂t (t, .) = χ m (t, x) ∂V m ∂t (t, x)ν j (dx).
We have

a j V m (t, .), ∂V m ∂t (t, .) = 1 2 d dt (ã j (V m (t, .), V m (t, .))) + āj V m (t, .), ∂V m ∂t (t, .) .
By integrating with respect to time, we get, if 0 < t 1 < T ,

- T t 1
∂V m ∂t (t, .)

2 j dt + 1 2 [ã j (V m (t 1 , .), V m (t 1 , .)) -ãj (V m (T, .), V m (T, .))] = T t 1 āj V m (t, .), ∂V m ∂t (t, .) dt + T t 1 χ m (t, .), ∂V m ∂t (t, .) j dt. Hence T t 1 ∂V m ∂t (t, .) 2 j dt ≤ C ||V m (t 1 , .)|| 2 j - T t 1 āj V m (t, .), ∂V m ∂t (t, .) dt - T t 1 χ m (t, .), ∂V m ∂t (t, .) j dt ≤ C   ||V m (t 1 , .)|| 2 j + T t 1 ||V m (t, .)|| j ∂V m ∂t (t, .) j dt   + J m (t 1 , T ), with J m (t 1 , T ) = - T t 1 χ m (t, .), ∂V m ∂t (t, .) j dt.
Using the inequality

2 ||V m (t, .)|| j ∂V m ∂t (t, .) j ≤ ε ∂V m ∂t (t, .) 2 j + 1 ε ||V m (t, .)|| 2 j ,
we derive

1 2 T t 1 ∂V m ∂t (t, .) 2 j dt ≤ C ||V m (t 1 , .)|| 2 j + T t 1 ||V m (t, .)|| 2 j dt + J m (t 1 , T ). (9) 
We now study J m (t 1 , T ). Note that, for any fixed t > 0,

χ m (t, .), ∂V m ∂t (t, .) j = ν j (dx) ∂V m ∂t (t, x) ∂ h ∂t * ρ m (t, x) We have ∂ h ∂t (t, .) = (A -r)ϕ ∂I ∂t (t, .),
so that, using Lemma 3.5, and the notation

γ(t) = -(A -r)ϕ( b(t)) ∂ h ∂t * ρ m (t, x) = -dτ ρ m (t -τ, x -b(τ )) b′ (τ )γ(τ ), Recall that γ(τ ) ≥ 0. Hence χ m (t, .), ∂V m ∂t (t, .) j = -ν j (dx) ∂V m ∂t (t, x) dτ ρ m (t -τ, x -b(τ )) b′ (τ )γ(τ ) = -dτ dx (1 + x 2 ) j/2 ∂V m ∂t (t, x)ρ m (t -τ, x -b(τ )) b′ (τ )γ(τ ) = -dτ dy (1 + (y + b(τ )) 2 ) j/2 ∂V m ∂t (t, y + b(τ ))ρ m (t -τ, y) b′ (τ )γ(τ ).
Going back to J m (t 1 , T ), we have

J m (t 1 , T ) = - T t 1 dt dτ dy ∂V m ∂t (t, y + b(τ ))ρ m (t -τ, y)γ j (τ, y), with γj (τ, y) = - 1 (1 + (y + b(τ )) 2 ) j/2 b′ (τ )γ(τ ).
Note that γj (τ, y) ≥ 0. We have

J m (t 1 , T ) = -dτ dt dy1 {t 1 <t<T } ∂V m ∂t (t, y + b(τ ))ρ m (t -τ, y)γ j (τ, y) = -dτ ds dy1 {t 1 <τ +s<T } ∂V m ∂t (τ + s, y + b(τ ))ρ m (s, y)γ j (τ, y).
Observe that

d dτ V m (τ + s, y + b(τ )) = ∂V m ∂t (τ + s, y + b(τ )) + ∂V m ∂x (τ + s, y + b(τ )) b′ (τ ), so that ∂V m ∂t (τ + s, y + b(τ )) = d dτ V m (τ + s, y + b(τ )) - ∂V m ∂x (τ + s, y + b(τ )) b′ (τ ).
Hence

J m (t 1 , T ) = Ĵm (t 1 , T ) + Jm (t 1 , T ), with Ĵm (t 1 , T ) = -dτ ds dy1 {t 1 <τ +s<T } d dτ V m (τ + s, y + b(τ )) ρ m (s, y)γ j (τ, y)
and

Jm (t 1 , T ) = + dτ ds dy1 {t 1 <τ +s<T } ∂V m ∂x (τ + s, y + b(τ )) b′ (τ )ρ m (s, y)γ j (τ, y).
We have, using integration by parts,

Ĵm (t 1 , T ) = -ds dyρ m (s, y) T -s t 1 -s d dτ V m (τ + s, y + b(τ )) γj (τ, y)dτ = -ds dyρ m (s, y)V m (T, y + b(T -s))γ j (T -s, y) + ds dyρ m (s, y)V m (t 1 , y + b(t 1 -s))γ j (t 1 -s, y) + ds dyρ m (s, y) T -s t 1 -s V m (s + τ, y + b(τ )) ∂γ j ∂τ (τ, y)dτ.
Note that, due to the continuity of V (= ∂ Ũ /∂t) on (0, ∞) × R, the sequence V m converges uniformly to V on compact sets. We also have the continuity of γj and ∂γ j /∂τ (due to the fact that b is C 2 ). We easily deduce thereof that

lim m→∞ Ĵm (t 1 , T ) = -V (T, b(T ))γ j (T, 0) + V (t 1 , b(t 1 ))γ j (t 1 , 0) + T t 1 V (τ, b(τ )) ∂γ j ∂τ (τ, 0)dτ,( 10 
)
and the convergence is uniform with respect to t 1 , as long as t 1 remains in a compact set of the form [ξ, T ], where 0 < ξ < T . For Jm (t 1 , T ), we have

Jm (t 1 , T ) = J(1) m (t 1 , T ) + J(2) m (t 1 , T ), with J(1) m (t 1 , T ) = + dτ ds dy1 {t 1 <τ +s<T } ∂ 2 U m ∂t∂x (τ + s, y + b(τ )) b′ (τ )ρ m (s, y)γ j (τ, y)
and

J(2) m (t 1 , T ) = -dτ ds dy1 {t 1 <τ +s<T } ∂ 2 u m ∂t∂x (τ + s, y + b(τ )) b′ (τ )ρ m (s, y)γ j (τ, y).
We deal with J(1) m (t 1 , T ) in the same way as for the proof of [START_REF] Lamberton | Critical price near maturity for an American option on a dividend paying stock (avec S. Villeneuve)[END_REF]. Using the fact that b′ (τ )γ j (τ, y) ≤ 0, we have J( 1)

m (t 1 , T ) ≤ J(1) m (t 1 , T ), with J(1) m (t 1 , T ) = dτ ds dy1 {t 1 <τ +s<T } ds ′ dy ′ ρ m (s ′ , y ′ )D(τ, s -s ′ , y -y ′ ) b′ (τ )ρ m (s, y)γ j (τ, y),
where

D(τ, θ, z) = ∂ 2 U ∂t∂x (τ + θ, b(τ ) + z) - ∂ 2 U ∂t∂x (τ, b(τ )) 1 { b(τ )+z≥ b(τ +θ)} .
Due to the continuity properties of 

Jm (t 1 , T ) -J(t 1 , T ) = 0,
where

J(t 1 , T ) = -V (T, b(T ))γ j (T, 0) + V (t 1 , b(t 1 ))γ j (t 1 , 0) + T t 1 V (τ, b(τ )) ∂γ j ∂τ (τ, 0)dτ - T t 1 dτ ∂ 2 u ∂t∂x (τ, b(τ )) b′ (τ )γ j (τ, 0).
Since ∂U/∂t vanishes along the exercise boundary, we have

V (t, b(t)) = -∂uϕ ∂t (t, b(t)), so that -V (T, b(T ))γ j (T, 0) + V (t 1 , b(t 1 ))γ j (t 1 , 0) + T t 1 V (τ, b(τ )) ∂γ j ∂τ (τ, 0)dτ = ∂u ϕ ∂t (T, b(T ))γ j (T, 0) - ∂u ϕ ∂t (t 1 , b(t 1 ))γ j (t 1 , 0) - T t 1 ∂u ϕ ∂t (τ, b(τ )) ∂γ j ∂τ (τ, 0)dτ = T t 1 d dτ ∂u ϕ ∂t (τ, b(τ )) γj (τ, 0)dτ, so that J (t 1 , T ) = T t 1 d dτ ∂u ϕ ∂t (τ, b(τ )) - ∂ 2 u ϕ ∂t∂x (τ, b(τ )) b′ (τ ) γj (τ, 0)dτ = T t 1 ∂ 2 u ϕ ∂t 2 (τ, b(τ ))γ j (τ, 0)dτ.
We now go back to [START_REF] Silvestrov | American Type Options. Stochastic Approximation Methods[END_REF] and integrate with respect to t 1 to derive where the last inequality follows from Lemma 3.4. Moreover,

1 2 T ξ dt 1 T t 1 ∂ 2 Ũm ∂t 2 (t, .) 2 j dt ≤ C T ξ ||V m (t 1 , .)||
lim m→∞ T ξ dt 1 Jm (t 1 , T ) = T ξ dt 1 J (t 1 , T ) = T ξ (t -ξ) ∂ 2 u ϕ ∂t 2 (t, b(t))γ j (t, 0)dt.
Hence

1 2 T ξ (t -ξ) ∂ 2 Ũ ∂t 2 (t, .) 2 j dt ≤ C 1 + ln T ξ + T ξ (t -ξ) ∂ 2 u ϕ ∂t 2 (t, b(t))γ j (t, 0)dt.
Theorem 3.1 now follows from the following lemma, which relies on the asymptotic behavior of the exercice boundary near maturity (see [START_REF] Barles | Critical Stock Price near expiration[END_REF], [START_REF] Lamberton | Critical price near maturity for an American option on a dividend paying stock (avec S. Villeneuve)[END_REF]).

Lemma 3.6. We have

T ξ (t -ξ) ∂ 2 u ϕ ∂t 2 (t, b(t)) | b′ (t)|dt ≤ C 1 + | ln ξ| β , with β =      3/2, if d ≤ r, 1, if d > r.
Proof: We first note that, since ϕ is bounded and Lipschitz continuous, we have

∂ 2 u ϕ ∂t 2 (t, .) ∞ ≤ C t 3/2 .
This can be seen by arguing, as in the proof of Proposition 3.1, that u ϕ (t, .) = e -rt p t * ϕ, so that and ∂ 2 uϕ ∂t 2 (t, .) = (A -r) 2 u ϕ . In order to estimate the x-derivatives of u ϕ up to the order 4, we may differentiate p t three times and use the boundedness of ϕ ′ .

We then have -P 0 , we relate this quantity to the modified value function u using (1) as follows:

T ξ (t -ξ) ∂ 2 u ϕ ∂t 2 (t, b(t)) | b′ (t)|dt ≤ C T ξ t -ξ t 3/2 | b′ (t)|dt ≤ C T ξ 1 √ t | b′ (t)|dt. Now, since b′ (t) ≤ 0, we have T ξ 1 √ t | b′ (t)|dt = - T ξ 1 √ t b′ (t)dt = - b(T ) -b(0) √ T - b(ξ) -b(0) √ ξ - 1 2 T ξ 1 t 3/2 ( b(t) -b(0))dt ≤ b(0) -b(T ) √ T + 1 2 T ξ 1 t 3/2 ( b(0) -b(t))dt 22 If d ≤ r, we have b(0) -b(t) ≤ C t| ln t| for t close to 0, so that T ξ 1 t 3/2 ( b(0) -b(t))dt ≤ C T ξ 1 t | ln t|dt ≤ C(1 + | ln ξ| 3/2 ). If d > r, we have b(0) -b(t) ≤ C √ t for t close to 0, so that T ξ 1 t 3/2 ( b(0) -b(t))dt ≤ C T ξ 1 t dt = C ln(T /ξ). ⋄ 4 
P (n) 0 -P 0 = sup τ ∈T (n) 0,T E e -rτ g(µ 0 τ + B (n) τ ) -u(0, 0) ≤ sup τ ∈T (n) 0,T E u(τ, B (n) τ ) -u(0, 0) = sup τ ∈T (n) 0,T E   τ /h j=1 Du((j -1)h, B (n) (j-1)h )   .
We observe that Du ≤ Du, and recall from [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF] (Lemma 4.1) that sup 0≤j≤n-1 E Du(jh, B

(n) jh ) ≤ Ch, so that

P (n) 0 -P 0 ≤ E   n-2 j=1 Du(jh, B (n) jh )   + O(h) ≤ C k,X h √ 2 T -h h ds √ s dy 1 + |y| k ∂ 3 u ∂t∂x 2 (s, y) + O(h). (11) 
Here, we have a regularity problem, since u is not C 3 . This problem can be fixed as follows. By convolution, one can approximate u by a sequence u m which is smooth, uniformly bounded and satisfies δu m ≤ 0, and Du m ≤ Du m . We need the following variant of Lemma 3.1. Lemma 4.1. If ρ is a Radon measure on (0, T )×R and q a nonnegative integrable function on (0, T ) × R, with q(t, x) = 0 for t / ∈ (0, a), where a satisfies 0 < a < h, we have

T -h h ds √ s |ρ * q(s, y)| (1 + |y| 2 ) k/2 dy ≤ 2 k/2 T -h h-a R |ρ(dt, dz)| √ t(1 + z 2 ) k/2 a 0 ds ∞ -∞ q(s, x)(1 + x 2 ) k/2 dx. Proof: We have T -h h ds √ s dy (1 + |y| 2 ) k/2 |ρ * q(s, y)| ≤ T -h h ds √ s dy (1 + |y| 2 ) k/2 |ρ(dt, dz)| q(s -t, y -z) = |ρ(dt, dz)| T -h h ds √ s dy (1 + |y| 2 ) k/2 q(s -t, y -z) ≤ T -h h-a |ρ(dt, dz)| a 0 dθ √ t + θ dy (1 + |y| 2 ) k/2 q(θ, y -z) ≤ T -h h-a |ρ(dt, dz)| √ t a 0 dθ dy (1 + |y| 2 ) k/2 q(θ, y -z) = T -h h-a |ρ(dt, dz)| √ t(1 + z 2 ) k/2 a 0 dθ (1 + z 2 ) k/2 dx (1 + |x + z| 2 ) k/2 q(θ, x) ≤ 2 k/2 T -h h-a |ρ(dt, dz)| √ t(1 + z 2 ) k/2 a 0 dθ dx(1 + x 2 ) k/2 q(θ, x),
where the last inequality follows from 1+z 2 1+(x+z) 2 ≤ 2(1 + x 2 ). ⋄ Using Lemma 4.1 and the fact that ∂ 3 u/(∂t∂x 2 ) is a Radon measure (see (13) and the comment below), we derive the correct version of (11), namely

P (n) 0 -P 0 ≤ C k,X h √ 2 T -h h 1 √ s 1 1 + |y| k ∂ 3 u ∂t∂x 2 (ds, dy) + O(h). ( 12 
)
If we introduce the function ũ := u -ū, we have, using the fact that δū = 0,

T -h h 1 √ s 1 1 + |y| k ∂ 3 u ∂t∂x 2 (ds, dy) ≤ T -h h 1 √ s 1 1 + |y| k ∂ 3 ũ ∂t∂x 2 (ds, dy) +2 T -h h ds √ s dy 1 + |y| k ∂ 2 ū ∂t 2 (s, y) ≤ T -h h 1 √ s 1 1 + |y| k ∂ 3 ũ ∂t∂x 2 (ds, dy) +2C T T -h h ds √ s(T -s) ≤ T -h h 1 √ s 1 1 + |y| k ∂ 3 ũ ∂t∂x 2 (ds, dy) + C T | ln h|,
where we have used Proposition 3.1.

We now need to estimate T -h The modification of τ 1 into τ is motivated by the unboundedness of ∂u/∂t near T . We have, due to the definition of τ 1 , P (n) -P ≥ E e -rτ g(µ 0 τ + B (n) τ ) -u(0, 0) = E e -rτ g(µ 0 τ + B (n) τ ) -u(τ, B (n) τ ) + u(τ, B (n) τ ) -u(0, 0) .

h 1 √ s 1 1+|y| k ∂ 3 ũ ∂t∂x 2 (ds, dy) . Recall from Remark 2.1 that ∂ ũ ∂t (t, x) + 1 2 ∂ 2 ũ ∂x 2 (t, x) = ζ(t,
We have 

E

Proof of Lemma 3 . 4 :

 34 In order to rule out regularity issues, we introduce a C ∞ , nonnegative function ρ on R × R, with ρ(t, x)dtdx = 1 and supp ρ ⊂ [-1, 0] × [-1, +1] and set, for any positive integer m, ρ m (t, x) = m 2 ρ(mt, mx).Now, let W = ∂ Ũ ∂x , W m = W * ρ m , and h m = h * ρ m .For each m > 0, the functions W m , h m are C ∞ with bounded derivatives and we have

  In order to derive an upper bound for P (n) 0

  u(τ, B (n) τ ) -u(0, 0) = E equality follows from Lemma 4.1 of[START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF]. Now, if j < (τ /h) ∧ (n -2), we haved(B (n) jh , I jh+h ) > √ h||X|| ∞ + |µ 0 |h, so that B (n) jh > b(jh + h) + √ h||X|| ∞ + |µ 0 |h.We then have, for s ∈ [jh, jh + h] and z ∈ [0,jh + zX > b(jh + h) + zX + √ h||X|| ∞ + |µ 0 |h ≥ b(jh + h) + |µ 0 |h = b(s) + b(jh + h) + µ 0 (jh + h) -( b(s) + µ 0 s) -µ 0 (jh + h -s) + |µ 0 |h ≥ b(s),the last inequality coming from the fact that t → b(t) + µ 0 t is increasing. We can now assert that, for j < (τ /h) ∧ (n -2), Du(B(n) jh , jh) = Du(B (n) jh , jh), so that E u(τ, B (n) τ ) -u(0, 0) ≤ E α = 1 if d >r and α = 5/4 if d ≤ r, as follows from the discussion in the previous section.

  ||W (t, .)|| j ≤ Ct ε . Hence ãj (W m (t 1 , .), W m (t 1 , .)) ≤ C ρ m (t 1 -t, y)2 j/2 (1 + y 2 ) j/2 t 2ε dtdy = C ρ m (t, y)2 j/2 (1 + y 2 ) j/2 |t 1 -t| 2ε dtdy

	We have										
	ãj (W Using Lemma 3.2, we have (for ε ∈ (0, 1/4)) = C ρ(t, y)2 j/2 1 +	y 2 m 2	j/2	t 1 -	t m	2ε	dtdy
								≤ C(1 + t 2ε 1 ).
	We also have								
	T t 1	||W m (t, .)|| 2 j dt =	T t 1				j dsdyρ 2	dt
	.), ãj (W T ∂W m ∂t (t, .) dt + T t 1 t 1 -1 2 T t 1 ∂h m ∂x (t, .), ∂W m (t, .) dt āj W m (t, .), ∂h m ∂x (t, .), ∂W m ∂t ∂W m (t, .) ∂t (t, .) dt ≤ T t 1 dsdyρ Since T +1 Hence T t 1 ∂W m ∂t (t, .) 2 j dt ≤ 0 ||W (s, .)|| 2 j ds < ∞, we deduce that ∂t j ≤ 1 2 ãj (W T t 1 ||W m (t, .)|| j ∂W m j ∂t (t, .) dt 1 2 T t 1 ∂W m ∂t (t, .) 2 j dt ≤ C 1 + t 2ε 1 -T t 1 ∂h m ∂x (t, .), ∂W m ∂t (t, .)
						-	T t 1		∂h m ∂x	(t, .),	∂W m ∂t	(t, .)
	Using the inequality							
			2 ||W m (t, .)|| j	∂W m ∂t	(t, .)	j	≤ ε	∂W m ∂t	(t, .)	2 j	+	1 ε	||W m (t, .)|| 2 j ,
	we get										
	1 2	T t 1	∂W m ∂t	(t, .)	2 j	dt ≤	1 2	ãj (W m (t 1 , .), W m (t 1 , .)) + C	T t 1	||W m (t, .)|| 2 j dt
								-	T t 1	∂h m ∂x	(t, .),	∂W m ∂t	(t, .)

j dt. m (t 1 , .), W m (t 1 , .))m (t 1 , .), W m (t 1 , .)) + C j dt. j dt. m (t 1 , .), W m (t 1 , .)) ≤ C ||W m (t 1 , .)||

2 j and, using Lemma 3.1, ||W m (t 1 , .)|| j ≤ ρ m (t 1 -t, y) ||W (t, . -y)|| j dtdy ≤ ρ m (t 1 -t, y)2 j/4 (1 + y 2 ) j/4 ||W (t, .)|| j dtdy. m (t -s, y)W (s, . -y) m (t -s, y) ||W (s, . -y)|| 2 j dt ≤ T t 1 dt dsdyρ m (t -s, y)2 j/2 (1 + y 2 ) j/2 ||W (s, .)|| 2 j ≤ T + 1 m t 1 ds ||W (s, .)|| 2 j dtdyρ m (t -s, y)2 j/2 (1 + y 2 ) j/2 . j dt. It follows from the proof of Lemma 3.2 (see (4)) that

  and the convergence is uniform with respect to t 1 , as long as t 1 remains in [ξ, T ]. On the other hand, due to the continuity of ∂ 2 uϕ ∂t∂x , we have uniformly with respect to t 1 ∈ [ξ, T ]. At this stage, we can state that J m (t 1 , T ) ≤ Jm (t 1 , T ),

			∂ 2 U ∂t∂x , we have
			lim m→∞	J(1) m (t 1 , T ) = 0,
	lim m→∞	J(2) m (t 1 , T ) = -	T t 1	dτ	∂ 2 u ϕ ∂t∂x	(τ, b(τ )) b′ (τ )γ j (τ, 0),
	with Jm (t 1 , T ) = Ĵm (t 1 , T ) + J(1) m (t 1 , T ) + J(2) m (t 1 , T ), and
		lim m→∞	sup t 1 ∈[ξ,T ]			

  Moreover, | b′ (t)| ≤ | b′ (T -t)| + |µ/σ|, so thatTherefore, the righthand side of (13) is a Radon measure and since, due to Theorem 3.1, ∂ 2 ũ/∂t 2 is locally integrable, it follows that ∂ 3 ũ/∂t∂x 2 is a Radon measure.Moreover, we have∂ 3 ũ ∂t∂x 2 (ds, dy) ≤ C T + 2Now, using the Cauchy-Schwarz inequality and Theorem 3.1, we have The last inequality follows from Theorem 3.1 and Lemma 3.4, and the connection between the derivatives of the functions Ũ and ũ (see Remark 2.1; we also use the classical bounds ||∂U/∂t(t, .)|| ∞ + ||∂ 2 U/∂x 2 (t, .)|| ∞ ≤ C/ √ t).For the derivation of the lower bound, we use the stopping time introduced in[START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF] (see the proof of Theorem 5.6). Namelyτ = τ 1 1 {τ 1 <T -h} + T 1 {τ 1 =T -h} ,whereτ 1 = inf t ∈ [0, T -h] | t/h ∈ N and d(B , I t+h ) ≤ √ h||X|| ∞ + |µ 0 |h .Here, I t = {x ∈ R | u(t, x) = g(t, x + µ 0 t)}. Note that, if t < T , I t = (-∞, b(t)].

	T We conclude that 0 dt √ t | b′ (t)| ≤ ≤ = T -h h 1 √ s 1 + |y| k T /2 0 sup 0≤t≤T /2 dt √ t | b′ (T -t)| | b′ (T -t)| + T /2 0 sup 0≤t≤T /2 | b′ (T -t)| T /2 0 1 T -h h ds √ s dy 1 + |y| k ∂ 2 ũ ∂t 2 (s, y) ≤ C T -h h ds s(T -s -h 2 ) 1/2   T -h T /2 T dt √ t dt √ t h ds(T -s -dt √ t | b′ (T -t)| + 2|µ/σ| + + 2 T T T /2 | b′ (T -t)|dt + 2|µ/σ| √ T + 2 T b(0) -b(T /2) + 2|µ/σ| √ T < ∞. √ T T -h h ds √ s 1 1 + |y| k ∂ 2 ũ ∂t 2 (s, y) . h 2 ) ∂ 2 ũ ∂t 2 (s, .) 2 k   1/2 ≤ C | ln h|   T -h 2 h ds(T -s -h 2 ) ∂ 2 ũ ∂t 2 (s, .) 2 k   1/2 = C | ln h|   T -h h/2 dt(t -h 2 ) ∂ 2 ũ ∂t 2 (T -t, .) 2 k   1/2 P (n) 0 -P 0 ≤ C (ln n) α n , with α = 1 if d > r and α = 5/4 if d ≤ r. 5 Lower bound for P (n) 0 -P 0 (13) where we have used Lemma 3.5. Note that sup x≤ b(t) ∂ζ ∂t (t, x) < ∞ and sup (n)

x)1 {x≤ b(t)} ,

where ζ(t, x) = e -rt (A -r)ϕ(ln(S 0 ) + µt + σx) and b(t) = b(T -t) -µt -ln(S 0 ) /σ. By differentiating wit respect to t, we derive the following expression

∂ 2 ũ ∂t 2 (t, x) + 1 2 ∂ 3 ũ ∂t∂x 2 (t, x) = ∂ζ ∂t (t, x)1 {x≤ b(t)} + ζ(t, b(t)) b′ (t)δ b(t) , 0<t<T ζ(t, b(t)) < ∞. ≤ C | ln h| 1+β , with β = 1 if d > r and β = 3/2 if d ≤ r. t

We now want a lower bound for E e -rτ g(µ 0 τ + B (n) τ ) -u(τ, B (n) τ ) .

We have, using the equality {τ ≥ T -h} = {τ = T },

Using the estimate ∂u ∂t (t, .)

The estimate

is now an easy consequence of Lemma 5.7 and Remark 5.8 of [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF], which can be summarized in the following statement.