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On the binomial approximation of the American put

DAMIEN LAMBERTON*

This version: February 14th, 2018

Abstract

We consider the binomial approximation of the American put price in the Black-
Scholes model (with continuous dividend yield). Our main result is that the error
of approximation is O((Inn)®/n) where n is the number of time periods and the
exponent « is a positive number, the value of which may differ according to the
respective levels of the interest rate and the dividend yield.

1 The binomial approximation
Consider the Black-Scholes model in which the stock price at time ¢ is given by
5, = Spclri- reen

where, under the risk-neutral probability measure, (B;):>¢ is a standard Brownian motion.
Here, r is the instantaneous interest rate, and d is the dividend rate (or the foreign interest
rate in the case of forex options). We assume r > 0 and d > 0.

Denote by P the price function of the American put with maturity 7" and strike price
K, so that

P(t,x) = sup E, (e‘”f(Sﬁ) , 0<t<T, z€]|0,+00),

T€T0, 17—t

with f(z) = (K —2)%, and E, = E(- | Sp = x). Here 7y; denotes the set of all stopping
times with respect to the Brownian filtration, with values in the interval [0, ¢].

For technical reasons (especially for the derivation of regularity estimates for the second
time derivative of the price function), it is more convenient to use the log-stock price. So,

we introduce
o2

Xy =z +put+obB,, With,u:T—d—?,

and
U(T,z) = sup E (e‘”gp(Xf)) :

TG%’T
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with o(z) = (K — e*)*. We then have
P(t,z) =U(T —t,In(x)), t>0,z>0.

Note that U(t, x) satisfies the following parabolic variational inequality

max —%[Z—I—(A—T)U,go—(] =0,

with the initial condition U(0,.) = ¢.
Here, A is the infinitesimal generator of X, namely
o? 9 0
A= —— —.
2 Ox? * Hox

Recall that, for each T' > 0, there is a real number b(T) < In(K) such that
U(T,z) > ¢(z) < x> b(T).

In fact, if (b(t),0 <t < T') is the exercise boundary of the American put with maturity 7,
we have b(t) = In(b(T — t)). We will also need the European value function, defined by

U(T,r)=E (e*’"Tgo(X%)) :

Note that U(0,.) = ¢ and B
ou -
~ L (A=) =0.
5 tA-T)

Note that, in Section 3, the function U will be denoted by U

We now introduce the random walk approximation of Brownian motion. To be more
precise, assume (X,,),>; is a sequence of i.i.d. real random variables satisfying EX? = 1
and EX,, = 0, and define, for any positive integer n, the process B™ by

[nt/T

]
B™ =.\/T/n kz_:l X, 0<t<T,

where [nt/T] denotes the greatest integer in nt/T.
We will assume the following about the common distribution of the X,,’s (cf. hypothesis
(H4) of [6]).

(H4) The random variable X; is bounded and satisfies EX? = 1 and EX; = EX} = 0.
In the following, we fix Sy and set
Py = P(0,5) =U(T,InSp).
Note that, if we introduce the notation g(z) = (K — Spe”)™, we have

Py= sup E (e‘”g(ugT + BT))
7€T0,T
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with g = p/o. We now have a natural approximation of P, given by

Py = sup E(e""g(uor + BI)).,
TE%(Z)

where 75(}}) denotes the set of all stopping times (with respect to the natural filtration of
B™), with values in [0,7] N {0,T/n,2T/n,...,(n — 1)T/n,T}. Our main result is the
following.

Theorem 1.1. There exists a positive constant C' such that, for all positive integers n,

(Inn) < Pén) _p< C(lnn) |

n n

where a =a=11ifd>r, and o =3/2,a=5/4 ifd <.

—C

The above estimates improve our previous results (see [6], Theorem 5.6) which gave an

Ao\ 4/5 . .
C(¥*) . Note that, for European options, the error estimate

upper bound of the form
is O(1/n) (see [2], [9]).

Our approach remains the same as in [6]: we relate the error estimates to the regularity
of the value function. The improvement comes from a refinement of the quadratic estimates
for the second order time derivative, in the spirit of Friedman and Kinderlehrer (see [3] and
[5]). We also exploit the smoothness of the exercise boundary and its asymptotic properties
close to maturity.

The paper is organized as follows. In the next Section we recall some results of [6].
Section 3 is devoted to estimates for the derivatives of the value function. The estimates
are then used in Sections 4 and 5 to prove Theorem 1.1: in Section 4, we give an upper
bound for Pé”) — P, and in Section 5, we derive the lower bound.

Acknowledgement: The research on this paper has been stimulated by fruitful discus-
sions on the approximation of American options with Martijn Pistorius.

2 The value function and the approximating process

As in [6], we introduce the modified value function
u(t,z) = e ""U(T —t,In(Sp) + ut + ox), t>0, zeR.

We have Py = u(0,0) and u(T,z) = e7""U(0,In(Sp) + uT + ow) = e (K — SpetT+77)+
and, for ¢ € [0, T,

u(t,z) > e K — Spe )T = e gt + ). (1)
We will need the European analogue of u, namely
u(t,z) = e "U(T — t,In(Sy) + pt + ox) = e "'E (g(poT + 2 + Br_y)), t>0,2€R.

We will also use the notation:
h —

T
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With this notation, we have
[t/h]
B =vVhY X, 0<t<T,
k=1
We have, for all t € {0, h,2h,...,(n —1)h,nh =T} (cf. Proposition 3.1 of [6]),
t/h
ut, B{) = u(0,0) + M, + Y Du((j — D)h, B, ),

j=1

where (M,)o<;<7 is a martingale (with respect to the natural filtration of B™), such that
My =0, and

Du(t,x):E(u(t—l—h,x—l—\/ﬁXl)) —u(t,z), 0<t<T—h, z€R

For convenience, we introduce the following notation, for any function u : [0,7] x R — R,

ot 2022
It is easy to check that, if u is smooth and X; bounded,
(1/h) x Du(t, z) = du(t,z) + O(h).

Remark 2.1. The derivatives of u are related to those of U by the following formulas. We
have

ou — oUu ou
E(t,x) = e <_8t+'u8x_TU> (T'—t,In(Sp) + pt + ox)
and
0%u [ O*U 0*U 0*U
_ — =T -9 2Y >
gz (bw) = ¢ <m2 Motz T oz
oU oU :
—|—27’§ — 2rua—x + 7 U) (T'—t,In(Sp) + pt + ox).
We also have
ou 10%u ( OU

= e "(A—=r)p(In(So) + pt + 02) L1 (50)+pttor<b(T—t)}s
where the last equality follows from regularity results (see, for instance, [4]).

We will need a more precise description of D, given by the following proposition (see
Proposition 3.4 of [6]). For convenience, we denote by X a random variable with the same
distribution as X;, which is independent of the sequence (X,,);>1.
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Proposition 2.1. Assume that (Hj) is satisfied and that v is a function of class C3 on
0,T] xR. For 0 <t<T —h and x € R, define

82
o(t, z) _2/ dg/ QB | X (£ = X2(§ = 2)) 5 (t+ €2, x+zX)]
We have i .
Du(t,z) = Du(t, x) + 2/0 df/o dzR (X251)(t + &%+ zX)) .
and

- vh _ 3
Dul(t, z) :2/0 hdf/;dz(f—z)E [XQ (§—X2(£ . Z>> afaZQ(Hg?,a:HX)] .

Remark 2.2. Note that, if dv(s,z + 2X) = 0 for all s € [t,t+ h] and z € [0, v/A], we have
v(t,x) = Do(t, x).

From the last equality in Proposition 2.1, we derive the following estimates.

o0tox?

\/E/ 26dER [/ dz <X2+>'8(3; 2(t+§2,x+zX)H

t+h X3 v
\/_/ dsE (/dy]l{ly #|<VAIX]} <|X| | 2' >‘3ta 5 (s ?J)D
t+h ’)(’3 O3
— \/E/t ds/dyIE <ﬂ{y—z§x/ﬁx|} <|X| + 5 )) |8t83:2(87y)‘

We know from Proposition 3.2 of [6] that, for every k € (1,3], there exists a positive
constant Cj (which does not depend on X), such that, for all y € R, n > 1 and j €

{1,2,...,n}

Do(t,z)| < 2/ £d£/ dzEKX2+>’ o (t+£2,x+zX>H

IN

IA

IxP E(IX]) (1+E |X[**)

X! <
E(QX“ 2 >“{\B§z>—y\smx}) S

Hence, for j=1,...,n—1,
- (n) Crx Jhth dy v
E (|Du(in. BY)|) < —ME/ ds [ T aiEoo)
ihth ds dy 9%v
< O / )l 2

where, for the last inequality, we used the inequality jh > (j + 1)h/2.



3 Estimates for the second order time derivative

In this section, we refine the regularity results that we used in [6]. We first establish some
elementary Li-estimates. Then, we obtain a quadratic estimate for the second order time
derivative of the difference U = U — U. For the definition of the relevant weighted Sobolev
spaces, we will use the notation

dx

vj(dr) = (14 22)if2’

j>1.

3.1 Some elementary L;-estimates

Proposition 3.1. Assume that the function @ is continuous and satisfies p € Lq(v;),

¢' € Li(vj) and the second derivative ¢" is a Radon measure on R, with e Lo (Qd)zj)/lz) < 00.
Let

up(t,7) = B (p(X)), 20, zeR.
Then, for all T > 0, there exists a constant Cr > 0, such that

*u,
ot? (&)

<
Ly (vy)

vt e (0,17, ‘ C’;T

We will easily deduce this proposition from the following lemma.

Lemma 3.1. If p is a Radon measure on R and q a nonnegative integrable function on R,

we have )
W”ﬂhw»SW”AG+¢Wm[m«ma+xWﬂm.

We also have, for any measurable function f on R,

Vy € Ra ||f( - y)”Ll(Vj) S 2]/2(1 + yQ)j/2||f||L1(Vj)‘

Proof: We have

o0 dz
losally < [ gy o@elate = 2)

_ /(rmwn [ ot E2

1+ 22)i/2 (1+22)72
_ Ip(dz)| [ (1+ 22)/2
_ / (1+22)J/2/ Q(x)(1+(x+z)2)j/2dx.

22 <2((x + 2)? +2?),

Note that

so that we deduce

1+ 22 < 1+2(x + 2)? + 222
1+ (x+2)?2 — 1+ (z+2)?
< 2(1 +2?).
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Hence

- lp(d2)| -
vl <2 [y | a2

Similarly, we have, for any measurable function f and y € R,
Q= y)||L1(Vj) - /’f T = W

B /'f (1+( x+y) HE

B 1+ 2?2 ir2 dx
B /’f <1+ (x4 y)? ) (1+ x2)i/2

- /]f 1+ 2z +y)?+22\” do
< Tt 10 IESE

< PP+ 1z -

Proof of Proposition 3.1: We have

o [ (y—m)*\ dy
wita) = e [ oo s e (VA0 )

= e "'px p(z),

(2) 1 (z + pt)? 1 x+ pt
x) = exp | — = n :
b o/ 2wt P 20%t oVt oVt

Here, n denotes the standard normal density function.
On the other hand, we know that u, satisfies the equation

with

ou
87;0 = (A - r)“%’a

so that

9,
F) = A=

= s [(A= 1)l

It follows from our assumptions that (A — r)p is a Radon measure satisfying

1
/R](A — r)gp(dz)|m < 0.
So that, using Lemma 3.1,

Ou,

E(fﬁ )

IN

Ci [ p@)(1+ falda

- oo ()
= G [ n(y) (Lt lyovE - put)dy
< Ci(1+7).

7

L1 (vj)




On the other hand, by differentiating (3), we have

Ou, Oy

o = (A—r) 5 = e (A —=7)py) x (A —1)p.

Hence, using Lemma 3.1, and the definition of py,

0%u 00 -
| at;(ta-) o) < Cj[w|(A—T)Pt($)|(1+|$|])d93
Cyo
< 7(1+t9).

3.2 Quadratic estimates

Recall the notation:

Ut,2) = sup E, (e 770(X,)),  uplt.z) = e "Eu(0(Xy), 20,2 €R.

Te%yt

with p(z) = (K — e”)". We now introduce the difference U = U — u,, (which corresponds
to the early exercise premium). We have the following Ls-estimate for the second time
derivative of U = U — .

Theorem 3.1. Fix T > 0 and j > 1. There exists a constant C' > 0 such that, for all
£ € (0,17,

/§T<t—£>‘

For the proof of Theorem 3.1, we need some preliminary estimates on the derivatives
920 d 820
Ox? otox”

820' 3/27 Zfd < r,

W(tv )

dt < C (1+ g, wz‘thﬁ{

La(vj)

1, ifd>r.

Lemma 3.2. Fiz T > 0 and j > 1. For any € € (0,1/4), there exists a constant C > 0
such that, for all t € (0,T],

. -
HaaU(t’ ) <CVt and ’ 8—[5(@ ) < Ct.
t LQ(Vj) x LQ(Vj)
Proof: We know that U solves the equation
oU -
——+A—-n1U=h

with initial condition U(0,.) = 0, where h is given by

h(t,z) = (A —r)p(x)l,guy, >0, zeR
8



We have the following identity (which can be viewed as a form of the early exercise premium
formula).

t
U(t,.) = —/0 e =) p,_ % h(s,.)ds,

pu(a) = — exp<_(x+ﬂt)2) 1 (x—l—,ut)’

= — = n
o/ 2wt 202t oVt oVt

with n denoting the standard normal density function. It is straightforward to check that

where

oU t oh
el - _ —r(t—s) i
e (t,.) /0 e Di_g * 826(8’ .)ds,

and, with the notation d, for the Dirac measure at a point z,

Ooh

%(t ) = (A=) @)Ly — (A= 1)p(3)05 (7)
= —r(t, ) + ()5 (2), (4)
with s(t,2) = —(A4 — r)¢' (@)L and (1) = —(A - r(b(t)). Note that x is a

bounded function on (0,00) x R and + is a continuous, nonnegative and bounded function
on (0,400). At this stage, it is clear that ||p_, * 2%(s,.)||oc < C//t — s, so that

ou
Ha(t, ) < CVL.
v La(vy)
On the other hand, we have
8217 ! —r(t—s) /
7| LS | e Pros % 505|085+ 1160 0
2(v;
with
t
C(ta ) = eir(tis)’y(s)p:‘,—s * 5B(s)d8

t

e "y (s)p_y(. — b(s))ds.

S— S—

We have, using Lemma 3.1,

P # R(s,.)

= H/pis(y)fi(s,- —y)dy
La(vy)

[ 1@ s, = )l dy

294|155, M1y [ 1P| (1+ 92y,

L2 (VJ)

IN

IN



Note that, since  is bounded and j > 1, sup,.|(|&(s,.)||1,(,) < o0, so that, for some
constant C' > 0 (which may vary from line to line)

‘ La(vj) S C/|p:€—s(y)|(1—}—y2)1/4dy
(y+u<t—5>

= [ o (=

/

Phg # R(s,.)

o

= C/ a\/tl——s In' (2)] (1 + (—u(t — s) + oVt — s2)%)7/*dz
. e

Hence, if 0 <t < T,

t
/ e—’r(t—s)
0

We now estimate ||((t, .)||L2(Vj).
We have, using the boundedness of ~,

) = | [ eI splulw— Bs))ds

t 1 (= b(s) + p(t —s)
= C/o 02(t—s)n< ot—s )

Recall that n/(z) = —zn(z). Therefore

£ B

t C/ |z — b(s) ( _BS)+M(t_S)>d5.

= 20V/1.

i, * k(s, )’

ds < C’/tds
La(vy) - 0 Vt—s

ds

t—s

Note that

1'2

n(xy + x2) = n(xy) exp (—22 — x1x2> < n(xy) exp(—x1x9)
:L‘% 2 x2
< n(x1) exp VIR A n(z1/v?2)e
Hence, for t € (0,7),

(o) < C/ ds /|x—bg/2 (\/g;\/i%)ds.

Note that, for all o > 0, there exists C, > 0, such that, for all y € R, n(y/v2) < Co/|y[*.
Hence, for t € (0,7,

i e —bs) _(t—9)°
|C(ta )| < C\/E"'Ca 0 (t—$)3/2 ]x—5(3)|20‘

= C\/_—l-C/’xt_S 2 ds

’204 1

1 1

= CVt+ Cat“—a/ - du
0 (1—uw)2 %z — b(tu)[2e-1
10




Now, take @ = 5 + ¢ (with 0 < ¢ < 1/4) and put 3(¢,x) = |z — 5(t)|1_2a = |z — 6(t)|_25.

We get

1
2

g ! 1
Using Lemma 3.1, we have

dzx
+ 2)i/2’

A ~ i/2 1
|B(tu, -)||22(Vj) < /2 (1 + b(tU)Q) / 2[4 (1

Since € < 1/4, the integral on the righthand side is finite, and the lemma easily follows. ©

We now turn to the study of gt%:' Recall that 0U/0t solves the parabolic equation

—0v/0t 4+ (A — r)v = 0 in the set {(t,z) | t > 0,2 > b(t)}. Since the exercise boundary
is differentiable and OU/0t is continuous and vanishes on the exercise boundary, it follows

that g:TZ; is continuous “up to the boundary”, i.e. on the set {(t,z) | t > 0,2 > b(t)} (see

[3], Lemma 4.5). We first show that gf—a(i is nonnegative along the exercise boundary.

Lemma 3.3. We have, for anyt > 0,

0*U

i (t,b(t)) > 0.

Proof: We have, for all ¢ > 0, due to the smooth fit property,

o (0.50) = 0(0),

so that, by differentiating with respect to ¢,

gtgx (8,6(0) + ig@, b))V (1) = " (b)) (1)

and

U - PU . - o\ -
t,0(t)) = — t,0(t)) — " (b(t)) | V().
s 150 = = (G 0500 = 60 ) 710
Observe that, for each ¢ > 0, the function x — U(t, z) —p(x) is C* on the interval [b(t), 00)
and has a minimum at b(¢). Therefore, its second derivative must be nonnegative at this

point. Since lNJ’(t) < 0, the lemma is proved. o

Lemma 3.4. Fiz T > 0 and j > 1. There exists a constant C > 0 such that, for all
ty € (0,7 A 1],
T
J,

For the proof of Lemma 3.4, we will need the bilinear form associated with the operator

A—r.

920 2

otox (t-)

dt < Cln(1/ty).
La(vy)
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We first introduce the relevant weighted Sobolev spaces. For j > 1, let H; = L*(R, v;)
and V; = {f € H; | f' € H;}. The inner product on H; will be denoted by (-,-); and the
associated norm by |- |;. The natural norm on V; will be denoted by || - ||;. Thus, we have

00 d
1= [ PO

and || f|[F = | /5 + [/}
Recall that the partial differential operator A is defined by

2F o
2 Ox2 “ax‘

We associate with the operator A — r a bilinear functional on V}, defined by

A:

o° [ , dz o , x
a;(f.9) = 5/ f'(x)g (x)m - % _Oof(x)g(l‘)mdx

dx 00 dx
[ P@9E I
so that, if f' €V},
a;j(f,9) =—((A=r)f,9);
It will be convenient to write a;(f, g) as a;(f,g) = a;(f,g) + a;(f,g), with

a;j(f,9) =5 (f9);+(f,9);] and a;(f,9) =a;(f,9) — a;(f,9) (5)

o?
2
With these notations, it is easy to check that |a;(f,¢)] < C||f||;lgl; and |a;(f,g)] <
Cllgll;]f1;, for some constant C' which does not depend on f nor g.

Proof of Lemma 3.4: In order to rule out regularity issues, we introduce a C'°*°, nonneg-
ative function p on R x R, with [ p(¢, x)dtdz = 1 and supp p C [—1,0] x [—1,+1] and set,
for any positive integer m, pm(t,r) = m?p(mt, mz).

Now, let W = W, = W pp, and h,,, = hx p,,. For each m > 0, the functions W,,,,

8x ’
h,, are C*° with bounded derivatives and we have
oW, oh,,
——t+ (A =—rW,, = —.
ot * ) ox

Multiply by 0W,, /0t and integrate with respect to v; to get, for any fixed ¢ > 0,

B (agzm(t’ ); ag?”(t’ )>] — 4 <Wm(t7 s 88‘/‘?1@, )) = ag;m (t,x) ag;m (t,z)v;(dz).

Note that

0, (Wm(t,.),ag?"(t,.)) . (Wm(t,.),agzm(t,.)>+&j (Wm(t,.),am”(t,.)>




By integrating with respect to time, we get, if 0 < t; < T,
2

T\ oW, 1 N
- ’ W(t") dt+§(aj (Wm(tlﬂ')’Wm(tb')) — aj (Wm(Tv')an(Ta'))) =
! J
T oW, T (Oh,y, oW,
/t1 aj (Wm(t, ), W(t, .)) dt + . ( o (t,.), 5 (¢, .))jdt.
Hence
oW, | 1 T oW,
—(t,. < —a; . ) = a; ), —(t,.
/tl 815 (tv )j dt = 2&] (Wm(th )7Wm(t17 )) /t1 a] (Wm(t7 )7 0t (t, )) dt

T (0h ow,
_ LY T W L d
(e ) a

1 T oW,
< —a; . . I |—(t, .
< 5 (Vs Wy, )+ [ IVt )1 2520,
T (Ohy, W,
— —(t,.), —=—(¢,. dt.
t1 <a$ ( ’ )’ at (7 )>]
Using the inequality
Wy, W, P 1 >
M =2t )| < e | —2(t,. — Wi (t, )7
2 Wt ) 0. 0] < | 2500 + 21
we get
1 rlow,, | 1. T ,
= —(Z,. < —a, . . NP
3, || A gE Vet Wt )+ C [ Wt )
T (Ohyy, oW,
-/ (8:)5 (t), =, (t,.))jdt.
We have

i (W(ts, ), Win(t,.)) < Cl[Win(t, )If;

and, using Lemma 3.1,
Wanlts Nl < [ ot = L) IW (L. = )l dedy
< [ pults =t g2 W didy.
Using Lemma 3.2, we have (for € € (0,1/4)) [[W(¢t,.)[|; < Ct*. Hence
a; (Win(tr, ), Winlt1,.)) < C/pm(tl — 1, y)202(1 + 2 2% dtdy

= C [ ot )21+ 2P|t — 1ty

2\ J/2
= C [ oty <1+ Y )

m2

2e
dtdy

t— —
m

< O(1+1t%).
13



We also have

/ Wit )| dt =
i

T 2

< /t /dsdypm(t—s,y)IIW(Sw—y>|’jdt
1
T . .

< / dt/dsdypm(t—S7y)2j/2(1+y2)]/2||W(S,-)H§
t1

1

T+1
< [T s W s I [ didypn(t — .52 (04 )
t1

2

T
/dsdypm(t — s, y)W(s,. —y)|| dt

Since [T [|W (s, )||j2 ds < 0o, we deduce that

T oW, 2
e (t,-)j

it < C(1+t§€)—/

t1

T (8hm oW,

3 (), (t,.))jdt.

It follows from the proof of Lemma 3.2 (see (4)) that

Oh,,
a—x(t,x) = —Kkm(t, ) + Ym(t, ),

where k,, = k * p,,, and k is a bounded function, and

nlt2) = [ pt =7, = b)) ().

Hence

T (0Ohy, oW, 71 OW,, T oW,
— . . < —(,. — ), —(t, .
(e ) = e [T an [ (suie 0. 0]

t1
— d
; <7m(t,.), ot (t,.))j t,

2
—"(t, .)‘ dt + C*T —
J

2
where we have used C"aw’” t, )‘ <1 ’%(t, )’ + C?. Therefore
j

T oW, T ow,
- — @) dt < C(1 tZE—/ m(t,.), ——(t,.) | dt 6
i), 7] (i) = [ (mte 0. Z200) ©)
Note that
Wn 0*U,, B *u,,
ot Otox  otdz’
where
Un=Uxpy and Uy = Uy, * pm,
so that . o
- <7m(t7)7m(t>)> dt:Jr(r})—i_Jr(r?)?
t1 at j

14



T 02U T 0%u
M _ _ m (2 _ m
1= [ (e Ggte)) ar ona 32 = [ (st e ))

We have

. 0*U,,
= -/tl /szj/ﬂm >8ta (t,)
= —/dT/dS/dy]l{t1<T+s<T}7(T)pm< )gta (T+S b( >+y) (1+ (y _|_1B(7-))2)J/2
_ ;+m7(7)?7m(7)d77
where
T—7 dy 82U
w = | s Ve M0+

2

_ [ Pm(s,y)dy 92U
— /tl_T dS/(1+(y+b( ]/2//d5dy)0m(5 y)é)t@ (T+s—5,b(1)+y—1).

Note that aataU — 0 on the open set S = {(t,z) | t > 0,z < b(t)} (which is the interior set

of the stopping region), so that

T- )d
pm(s,y) y L
/tl / (1+ (y +b(r ]/z//deypmS YIW(rs =5y =),

_ 82U 3

Since 88(] (7,b(1)) > 0, for 7 > 0, we have

ot
T— !
/ ds///pmsydypms y)dsdyD(T’S_S,w_y,)’
- /2
+5())?)

where

where o 2U
D(1,0,z) = <8t8x (T+60,b(1)+ 2) — B (T, b(T))> L)1 225(r10))-

Hence (since v > 0)

T+
T < = [T @)en(nr,

t1

with

/ /
em(T) = ds///pmsydypm y)deyD(T,s—s',y—y’).
= L+ (g o)



We have

e < [ Du(r)ds = (T — 1) Dy (),

t1—7
where
Dn(r)=  sup (|D<T, 0,2)| Liary siirion)) -

10|1<1/m,|z|<2/m

Due to the continuity properties of 2 8t8 , as m — oo, the function D,, converges to 0,
uniformly on the interval [t;,T + 1]. Therefore, we have

limsup JV < 0. (7)

m—ro0

We now examine J{2). We have, using the boundedness of 7,

2

T dx 0°u
1< [ e
< [fanf o Q)j/mm(t,xn o 1.
N 9%u,,
< PR— —
< C 5 dt/ J/Q/dwm 7,2 — b(7)) @t8x<t )|
Note that o 52 c
U, u%’
. . < —.
| oo )Hw = | otz )HOO =5
Hence
T N
|J7(73)| < C it/dl‘/dTpm(t—T,fL‘—b(T)) = Cln?. (8)
t1 1

It follows from (6), (7) and (8) that

- 2
lim sup %(t, )
m—00 t1 at §

T
it < C(1+t§€+1nt>,

1

which proves the lemma. o

3.3 Proof of Theorem 3.1
For the proof of Theorem 3.1, we will work on the equation satisfied by dU Jot. Let

oU
V = e
We have 5V ok
_Zr A— _ Y
o TATIV =50
where

ht,z) = (A=r)p(@)lgpey. >0, zeR

The following lemma will clarify the computation of the derivative 0h/0t in the sense of

distributions.
16



Lemma 3.5. Define the function I on (0,4+00) x R by

The distribution OI /0t applied to a compactly supported C™ function p on (0,4+00) X R is

given by o1
(Spoe) = [ V(. be)dr

This can be written (less precisely): % (t,.) = O ()05 -

Proof: We have

O = 1%

— —/dt/dxl(t,x)gf@ﬂ?)

Let J be the range of b. We have J = (b(c0),b(0)). Note that, if z < b(oo), I(t,z) = 1 for all
t >0 and if x > b(0) I(t,x) = 0 for all > 0, so that, in both cases, [ I(t,x)2%(t, x)dt = 0.
Therefore

ol dp
<Eup> = —/de/dﬂl{xg}(t)}g(tﬁ)
dp
= _/de/dt]]‘{tgifl(m)}a(t?x)
= —/ dep(b (), z
J
= [Vt bt

Here, we have used the fact that b is strictly decreasing (which is proved in [8]), but we
can also approximate b by the strictly decreasing functions b () = —et+ b( ) to derive the
formula. In fact, we only need b to be C: indeed, we can replace b(t) by b, (t) = —put +b(t)
and choose p so that INJM is strictly increasing in a neighborhood of the time projection of
the support of p. o

We now proceed with the proof of Theorem 3.1. As in the proof of Lemma 3.4, we
introduce a regularizing sequence p,,, and set

Vm =V m d m = 5, ™
* pand  x i
so that v,
— T Qa, A — Vm = Xm
5 TA-T) X

Note that the functions V,,, x,, are C*° with bounded derivatives. For any fixed ¢ > 0,
multiply by 0V, /0t and integrate with respect to v; to get

oV, |
o )

—q (Vm(t, ), Om ) /Xm (£, 2) S (¢, 2 (da).



We have

0, (Vm(t,.), %‘j”(t,.)) _ Ld

By integrating with respect to time, we get, if 0 < t; < T,

/T
t1

2

OV dt+ ; (@) (Vin(t1, ), Vin(t1, ) — @ (Vin(T,.), Vin(T, )] =

W(tv )

/tlT a; <Vm(t, s %(t, .)) a [ <Xm(t’ s E);"(t, .))jdt,

t1

Hence

/T
t1

oV

ov,,
W@’ y

2 T—
dt < cnvm(tl,.)uj—/t aj (Vnlt, ), S8 ) ) dt
j 1

T OV
— " (Xm(t, ), W(t, ))J dt

c <||vm<t1, N+ [ Wantt,

IA

with

Tn(t1, T) = —/T (Xm(t, ), %(t, .)) d.

t1
Using the inequality

2

ov,, oV, 1 2
N —(t, )] <e|—(t,. — Blip
2[Vin 8. )| | S5 1 )L _s] i 0:)] + 2 IVt
we derive
1 T 8‘/m ? 2 T 2
- —(t,. < I I T).
2, o] @ (ORI AR ) R

We now study J,,(t1,7"). Note that, for any fixed ¢ > 0,
av, av, oh
mtv'aimta' = i(d 7mta a, mta
(entt 0. F00) = [t e« it 2

We have
oh ol

—(t,.) = (A—r)o—(t,.
Mty = (A=l ),
so that, using Lemma 3.5, and the notation y(t) = —(A — r)p(b(t))

O e ot ) = = [ drput =72~ HEDF (),
18
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Recall that «(7) > 0. Hence

(. G200) = = [t 0.0) [ arpnte - o = B )

- - [ [ e anlt = s =B (0

_ . dy oV, o IR
N /d /(1+(y+5(7.))2)j/2 ot (t,y—i—b( ))pm(t ,y)b( )7( )

Going back to J,,(t1,T), we have

T OV, 5 _
IntnT) = = [t [dr [yt y+o)pnlt = 7.y ).

with
1 -

A+ b’ )

’7j<7—7 y) - =
Note that 7,(7,y) > 0. We have
oV . _
In(tn,T) = = [ar [t [ dyliaen =0y + Bt = 7005 0)

oV, - _
= = [ar [ ds [ ayincorueny ST + 5.y + 5)pn(s, )77 v).

Observe that

jT (Vm(T +s,y+ 5(7’))) = athm(T + 5,9y +b(1)) + 8@‘/;(7_ + 5,9+ b(T))V' (1),

so that

oV, d Py Vm 7 7’

(,T(T 5,y (1) = o (Va7 + 5,9+ B())) = 5 (7 + 5,9+ ()l (7).
Hence A -

I (t1, T) = J(t1,T) + Jon(t1, T),
with
d ~ _
tla /dT / dS / dy]l{t1<'r+s<T} d (Vm(T + S5, Y + b(T))> pm(87 y)’yj (7—7 y)

and

= oV, Y _
Tt T) =+ [ dr [ds [ dyLg,croery S (0 + 5,5+ HEDY (D), 57 (7.9).

We have, using integration by parts,

T, T) = —/dé’/dypm(s,y) (/tT a (Vinl(7 + 5,5+ b(7)) ) 75 (7, y)dT)

1—S dT
= —/dS/dypmsy (T, y + (T — $)%(T — s,y)
+/d8/dypm $,Y) Vin(tr, y +b(t1 — 8))7,(t — 5, 9)

T—s - a_,
+/ds/dypm(87y) - Vm(8+ﬂy+b(7))a%j(ﬂ y)dr.
19



Note that, due to the continuity of V(= 90U /9t) on (0, 00) x R, the sequence V,, converges
uniformly to V' on compact sets. We also have the continuity of 7; and 97;/97 (due to the
fact that b is C?). We easily deduce thereof that

lim J,,(t, T) = =V (T,b(T));(T,0) + V(t1, b(t1))7;(t1,0) + TV(T, B(T))a%

m—0o0 t1 6’7'

(7,0)dr,(10)

and the convergence is uniform with respect to ¢, as long as ¢; remains in a compact set
of the form [£, T, where 0 < £ < T'. For J,,(t1,7T), we have
jm(tl,T) == jr(r})(tl,T) —|— jr(r%)(tl,T%

with

- 0?U,, = NTy _
TOT) =+ [ [ ds [yl ceroer 5" 0 + 5,5+ HEDY (D)pm(s, 57 (7.9)

and
2

_ O0“Uyy, ~ ~, _
@, T) == [dr [ds [y covseny 5 om0 4 5,5+ W)Y (0)pm(s,9)5 (7, 0)

We deal with J{(¢1,T) in the same way as for the proof of (7). Using the fact that
V' (1)7;(7,y) <0, we have J((t,, T) < JD (¢, T), with

JD(t,7T) /dT/dS/dyﬂ{t1<T+s<T}//ds Ay pm(s',y)D(1, 5 — &',y — ) (T) pn (3, )73 (T, ),

where o o
Due to the continuity properties of 2 8t8 , we have
lim JY (¢, T) =0,
m—0o0

and the convergence is uniform with respect to 1, as long as t; remains in [{,T]. On the

other hand, due to the continuity of gté};, we have
lim JQ(t T)=— Td Ou (1 b( ))5'( ) (7,0)
M—00 1, - Tatax T T 73 T? )

uniformly with respect to t; € [§, T]. At this stage, we can state that J,,(t1, 7)) < Ji (1, T),
with Jo,(t1, T) = Jp(ty, T) + JW (¢, T) + JP (¢, T), and

lim sup ’j (t1,T) — j(tl,T)‘zo,

where
j(tl,T) = —V(T,E(T))%-(T,O)—i—V(tl,E(tl))%(tl,O)—i— tlTV(T’E(T))%Z'j(T’ 0)dr
T o%u ,
- dr&m( 7, b(r)V (7)7;(7, 0).

20



Since QU /9t vanishes along the exercise boundary, we have V(t,b(t)) = 8““” 2 (t, b(t)), s
that

=V(T,0(T))7(T. 0) + V(t1,b(t1))7;(t1, 0 +/ (7, (7)) ( 0)dr =

Ohe (1B (7,0) — e 1, B0, 0) ~ [ a“@ b)) 22 7,0
= [ (G s oy
so that
ity = [ (G i) - Seeioie| o
= [ e by o)

We now go back to (9) and integrate with respect to ¢; to derive

;/{ /tl i, |dt < C(/ | Vin(t1, ) |dt1+/ (/ [\z¢ |dt>dt1>

+/ dtyJn(t1,T).
13

Hence
L PUn 2d ol 2004 [ dt Tt T
— — . < Sl .
S RCSIE=C >|j < O [ IWalt )it [ dind(n,T)
Note that
. T 2
Jim Ve = [ VeI

< C<1+ln§>,

where the last inequality follows from Lemma 3.4. Moreover,

T ~
77%1—1;%0/5 dtljm(tl,T) = / dtl tl,

Hence
2
T T Pu, -
(t,.)| dt < 1+In~— /t— 2 (¢, b(t))7;(t,0)dt.
020 ’>L < cftrmp)+ - 000
Theorem 3.1 now follows from the following lemma, which relies on the asymptotic behavior

of the exercice boundaty near maturity (see [1], [7]).
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Lemma 3.6. We have

T aZU ~ ~ 3/27 Zfd S r,
/(t—f) atf(t,b(t))’|b'(t)|dt < C(1+[mgl’), with § =
¢ 1, ifd>r.
Proof: We have o cllo
(7 U
e e e
Hence
T 32 / o€
_ <
/ﬁ(t &) |5 kBt ‘|b )dt < C/E It

T 1 .
< c/5 Sl
Now, since /() < 0, we have
T 1 . T 1 .
/E Sl = —/5 Nk

- (b(T)\/—Tb(O) - b@\;zbm)) _ ; gT t31/2<5<f> — B(0))dt

- b(O) (T) s / G b))t

If d < r, we have b(0) — b(t) < C'\/t|Int| for t close to 0, so that

T ~
/5 t31/2(b( ) — dt<C’/ —\/|Int|dt < C(1+|Ing*?).

If d > 7, we have b(0) — b(t) < C'v/t for t close to 0, so that

[ t31/2 (b(0) —b(1))dt < C /i ' 1dt = C'In(T/¢).

4 Upper bound for Po(n) — F

In order to derive an upper bound for PO(") — Py, we relate this quantity to u using (1) as
follows:

P"—p = supE (e‘”g(p(ﬂ' + BS”)) —u(0,0)
7'67:)(21)
< sup E(u(r, B™) — u(0,0))
7675(2)
T/h
= sup E (ZDU((] —1)h, B(?)l) )) :
reTyy  \i=1

22



We observe that Du < Du, and recall from [6] (Lemma 4.1) that SUPg<j<p1 E ‘Du(jh, B](Z))’ <
Ch, so that

n—2
P"m-p < E (Z Du(jh, B](-Z))‘) + O(h)
7j=1

T-h ds dy
< h 2/ a5
< GV R T

Here, we have a regularity problem, since u is not C3. This problem can be fixed
as follows. By convolution, one can approximate u by a sequence u,, which is smooth,
uniformly bounded and satisfies du,, < 0, and Du,, < Du,,. We need the following variant
of Lemma 3.1.

3u
Otox?

<s,y>\ com.

Lemma 4.1. If p is a Radon measure on (0,T) xR and q a nonnegative integrable function
on (0,T) x R, with q(t,z) =0 fort ¢ (0,a), where a satisfies 0 < a < h, we have

Thds dy B2 T—h p(dt, d2)| »
/ WM*Q(&?JHSQ /h_a \/_1+Z“/2/ / (s,2)(142*)""*dz.

Proof: We have

T—h ds dy
SEE S <
/ A e P el s

ThdS
/ H‘yyk/g//’pdt dz)| (s —t,y — 2)
Thds dy
—//|Pdtd2|/ WQ( —t,y—2)
dy

/ /\pdtdz\/ / Hk/Qq@y z)

T=h ]p (dt, dz / / (1 + 22 k/2d$ 6.2
k)2 |p( dt ,dz)| / / b2
= /h Vil a2 Jy @) dr+ ) a0, @),
where the last inequality follows from ﬁ < 2(142?). o

Using Lemma 4.1 and the fact that 9%u/(0tdz?) is a Radon measure, we derive the
correct version of (11), namely

u

Otox?

n Thl 1

(ds, dy)| +O(h). (12)
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If we introduce the function @ := v — u, we have, using the fact that du = 0,

U af;;(ds’dy>| A af;i(‘“’dy)‘
_ 3.~
= hThjg 1+1|y]k a(za;(ds’dy)‘
+20 [
- T—h\}g 1+1|y’k af;ZQ(dg,dy)|+CT|lnh|,

where we have used Proposition 3.1.
We now need to estimate fT h L f 1+\y|k

8t8$2 4 (ds, dy)‘ Recall from Remark 2.1 that

ot 10%u
5 (t x) + 2@(15715) = C(tax)]l{:cgi)(t)}’

where ¢(t,2) = e (A — r)p(In(Sy) + pt + ox) and b(t) = (Z;(T —t) — pt — ln(50)> /o. By
differentiating wit respect to t, we derive the following expression

92 | ac o
@(t»x) + 5@(%@ = E(t»x)ﬂ{xg;(t)} + C(£, b(E)V'(£) 034y, (13)

where we have used Lemma 3.5. Note that

a¢
a(t $)

sup

< oo and sup ’Ctb )‘ 00.
z<b(t)

o<t<T

Moreover, |b/(t)| < |I/(T — t)| + |i1/0], so that

T dt ., T/2 dt ( dt (
[ war < [ S o+ [ BT - o)+ 2uolvT

- T/2 (t -
< su V(T —t / ++\/7/ V(T — t)|dt + 2|u/o|NT
< swp W@=0l [ 4y, BT oldt+2l/o]

y e (2.
_ O<stl<1%2|b(T—t)|/0 7t = (b(0) = B(T/2)) + 20/ VT < oc.

Hence we have

31
otox?

T-h ] 1

Vs 1yl

0%t

T=h (s 1 (5.1)
— S .
atz ) y

Vs 1T+ |yl

<ds,dy)| < or+2f

24



Now, using the Cauchy-Schwarz inequality and Theorem 3.1, we have

Thds [ ody |0 Th s V2 (e h |6
< S — e _ _—
7 T et y)‘ = O</h s(T—s—’;>> J, T3
1/2
T-4% h 0% 2
< Oy (/h ds(T =5 = 5) aﬁ(s,.))
k
1/2
T—h h 0% ’
— ¢y/|lnh| (/W at(t - 5) W(T—t,.)k)

< /| Inh|H+5,

with § = 1if d > r and = 3/2 if d < r. The last inequality follows from Theorem 3.1
and Lemma 3.4, and the connection between the derivatives of the functions U and @ (see

Remark 2.1; we also use the classical bounds |[0U/0t(t,.)||ee + ||0?U/02%(t, .)||oe < C/Vt).

We conclude that
Inn)®

P"_p < o nn)”
n

withao=1ifd>rand a=5/4ifd <r.

5 Lower bound for P\" — P,

For the derivation of the lower bound, we use the stopping time introduced in [6] (see the
proof of Theorem 5.6). Namely

T =71 <r—ny + TL{r =71},
where

n=inf{te[0,7—h | t/heN and d(B", L) < Vh|[X]oo + ol h} -

Here, I, = {x € R | u(t,z) = g(t, x + pot)}. Note that, if t < T, I, = (—o0, b(t)].
The modification of 7; into 7 is motivated by the unboundedness of du/dt near T'. We
have, due to the definition of 7,

P — P > E(eg(por + B™M) - u(0,0))
= E(e""g(por + BM™) — u(r, B™) + u(r, BI) = u(0,0)) .

25
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We have
7/h
E (u(r, B™) = u(0,0)) = (Zpu (j — Dh. B ), ))
7j=1
(T/h)A(n—2) -
j=1

x) (nm} > Duljh—h, B§z>_h>)

j=n—1

(r/h)A(n-2)
= E[ X Du(ih-nBY,) | +0Mm),

j=1

where the last equality follows from Lemma 4.1 of [6]. Now, if j < (7/h) A (n—2), we have
d(BJ(Z)’ Ijh—i—h) > \/EHXHOO + | o), so that

B > b(jh + h) + V|| X[ + |o|h-

We then have, for s € [jh, jh + h] and z € [0, V]

BY +2X > b(h+h) + 2X + V]| X]|e + |1olh
> b(jh+h) + |polh
= b(s) + b(jh + h) + po(jh + h) — (b(s) + pos) — po(jh+h — ) + |uo|
> b(s),

the last inequality coming from the fact that ¢t — lA)(t) + Mot is increasing. We can now
assert that, for j < (7/h) A (n — 2), Du(B](-Z),jh) = ﬁu(B iy ,]h) so that

J

E (u(r, B!) —u(0,0)) < E (nf Du(jh, B§§?)\) + O(h)

O(ln n)a’
n

with « = 1if d > r and a = 5/4 if d < r, as follows from the discussion in the previous
section.
We now want a lower bound for

E (" g(por + BE) - u(r, B)).
We have, using the equality {7 > T — h} = {r =T},

u(r, BM) = e gluor + BY) = (ulr, BY) = e g(uor + BM)) Lrerony
= (u(r+h, BS”)) e77g(nom + B™M)) Lrar oy
+ (u(r, B&) = u(r + h, BI)) L erony.
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On the set {7 < T — h}, we have d(B™, I.,4) < Vh||X||e + |u|h. Tt follows from
Proposition 2.6 of [6] that

Using the estimate ‘

The

(VAIIX |l + ru|h)2_

u(t + h, BI) — e " g(por + BM) < C
T—717—h

%(t, )H < C/v/T —t, we obtain
1

— T —

E (u(T, Bﬁ”)) — e "Tg(pot + B@)) < ChE ( h]l{T<T—2h}> .

estimate P — P > —C % is now an easy consequence of Lemma 5.7 and Remark

5.8 of [6], which can be summarized in the following statement.

Lemma 5.1. There exists a positive constant C' such that

1
B 1y | <C (A’
(T h{<T2h}>_ (Inh)

J— ’7— —
with
3/2, ifd <,
b=
1, ofd>r.
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