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Abstract

We consider the binomial approximation of the American put price in the Black-
Scholes model (with continuous dividend yield). Our main result is that the error
of approximation is O((Inn)®/n), where n is the number of time periods and the
exponent « is a positive number, the value of which may differ according to the
respective levels of the interest rate and the dividend yield.

1 The binomial approximation
Consider the Black-Scholes model, in which the stock price at time ¢ is given by
2
St — Soe(rfdf(’FT)tJrUBt7

where, under the risk-neutral probability measure, (B;):> is a standard Brownian motion.
Here, r is the instantaneous interest rate, and d is the dividend rate (or the foreign interest
rate in the case of forex options). We assume r > 0 and d > 0.

Denote by P the price function of the American put with maturity 7" and strike price
K, so that

P(t,z) = sup E, (e_”f(ST)) , 0<t<T, z€]0,+),

T€To, 71—t

with f(z) = (K — )", and E, = E(- | Sy = z). Here, 7o, denotes the set of all stopping
times with respect to the Brownian filtration, with values in the interval [0, ¢].

For technical reasons (especially for the derivation of regularity estimates for the second
time derivative of the price function), it is more convenient to use the log-stock price. So,

we introduce )
Xy =x+ut+oBy, With,u:'r’—d—%,

and
U(T,2) = sup B (e o(XD))

7€T0,T

*Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), UPEM,
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with p(z) = (K — e*)". We then have
P(t,x) =U(T —t,In(x)), t>0,z>0.

Note that U(t, x) satisfies the following parabolic variational inequality

max —%—Z—F(A—T)U,(p—(] =0,

with the initial condition U(0,.) = .
Here, A is the infinitesimal generator of X, namely

Recall that, for each T > 0, there is a real number b(T) < In(K) such that
U(T,z) > ¢(z) < x> b(T).

In fact, if (b(t),0 <t < T) is the exercise boundary of the American put with maturity 7',
we have b(t) = In(b(T — t)). We will also need the European value function, defined by

U(T,2) =E (e"p(X7)) .

Note that U(0,.) = ¢ and )
ou -
—— 4+ (A- = 0.
5 +(A-r)U=0

Note that, in Section 3, the function U will be denoted by Ug.

We now introduce the random walk approximation of Brownian motion. To be more
precise, assume (X,,),>1 is a sequence of i.i.d. real random variables satisfying EX? = 1
and EX,, = 0, and define, for any positive integer n, the process B™ by

nt/T]

[
B™ = \/T/n ; X, 0<t<T,

where [nt/T] denotes the greatest integer in nt/T.
We will assume the following about the common distribution of the X,,’s (cf. hypothesis
(H4) of [6]). Note that, in the binomial case, X takes its values in {—1,+1}.

(H4) The random variable X; is bounded and satisfies EX? = 1 and EX; = EX} = 0.
In the following, we fix Sy and set
Py = P(0,Sy) = U(T,1n Sp).
Note that, if we introduce the notation g(z) = (K — Spe”)*, we have

Py= sup E (e’”g(,uoT + BT)) :
TE%,T
2



with py = p/o. We now have a natural approximation of P, given by

Po(n) = sup E (e*”g(uoT + Bg"))) ,

TE 7?)(77})

where 7(')(}) denotes the set of all stopping times (with respect to the natural filtration of
B™), with values in [0,T] N {0,T/n,2T/n,...,(n — 1)T/n,T}. Our main result is the
following.

Theorem 1.1. There exists a positive constant C' such that, for all positive integers n,

o)t e p o o)
n n

)

where a =a=11ifd>r, and o =3/2,a =5/4 ifd <r.

The above estimates improve our previous results (see [6], Theorem 5.6) which gave an

upper bound of the form C (@ 4/5. Note that, for European options, the error estimate
is O(1/n) (see [2], [11]). We also mention the results of [8] about finite difference schemes,
which give the rate O(1/4/n), but their estimate is uniform over the time interval, while
we concentrate on the error estimate for a fixed time. The paper [8] also has results about
the approximation of the exercise boundary. We also refer to [9] and its references for a
review of recent results on the approximation of American option prices.

Our approach remains the same as in [6]: we relate the error estimates to the regularity
of the value function. The improvement comes from a refinement of the quadratic estimates
for the second order time derivative, in the spirit of Friedman and Kinderlehrer (see [3] and
[5]). We also exploit the smoothness of the exercise boundary and its asymptotic properties
close to maturity.

The constant C' in Theorem 1.1 is related to the Berry-Esseen estimate and to the
regularity of the value function. Although it is hard to keep track of the constants in the
regularity estimates, it may be worth mentioning that they remain uniform with respect
to 1 and o as long as (i, o) remains in a compact subset of R x (0,00). A consequence
of this observation is that the bounds in Theorem 1.1 are also valid for variants of the

approximation in which the process approximating In(.S;/Sp), instead of being ut + aBt("),

is given by pnt+ 0, B™ at discrete times ¢, with g, = p+0(1/n) and 02 = 024+ 0(1/n), as
occurs in the classical risk-neutral approximation. Indeed, standard arguments show that
the value function is locally Lipschitz-continuous with respect to o2 (away from 0) and p.

The paper is organized as follows. In the next Section we recall some results of [6].
Section 3 is devoted to estimates for the derivatives of the value function. The estimates
are then used in Sections 4 and 5 to prove Theorem 1.1: in Section 4, we give an upper
bound for PO(") — P, and in Section 5, we derive the lower bound.

Acknowledgement: The research on this paper has been stimulated by fruitful dis-
cussions on the approximation of American options with Martijn Pistorius, to whom the
author is very grateful.



2 The value function and the approximating process
As in [6], we introduce the modified value function
u(t,r) = e ""U(T — t,In(Sy) + ut + oz), t>0, x€R.

We have Py = u(0,0) and u(T,z) = e "TU(0,In(Sp) + puT + ox) = e "1 (K — SperTtor)*+
and, for t € [0,T7,

u(t,z) > e (K — Spe! )T = e g(ut + ). (1)
We will need the European analogue of u, namely
u(t,r) = e " U(T — t,In(Sy) + pt + ox) = e ""E (g(poT + = + Br_y)), t>0,z€R.

We will also use the notation:
T
h=—.
n
With this notation, we have

it/h]
B =VhY Xi, 0<t<T.
k=1

We have, for all t € {0, h,2h,...,(n —1)h,nh =T} (cf. Proposition 3.1 of [6]),

t/h
u(t, B{") = u(0,0) + M, + 3 Du((j — 1)h, B 1,,),
j=1

where (M;)o<;<7 is a martingale (with respect to the natural filtration of B™), such that
My =0, and

Du(t,x):E(u<t+h,x+\/ﬁX1)) —u(t,x), 0<t<T—h, zeR

The above decomposition of w(t, Bt")) (which is in fact Doob’s decomposition) can be
viewed as a discrete version of It6’s formula, which, for a smooth function v : [0, T| xR — R,
implies that v(t, B;) — [y 6v(s, Bs)ds is a (local) martingale, where

v 10%

=5t 2o

It is also easy to check that, if v is smooth and Dv(t,z) = E (v (t +h,x+ \/EXI)) —v(t,x),
we have

(1/h) x Du(t,x) = dv(t,z) + O(h).

The main technical difficulty that we have to deal with is the lack of smoothness of the
modfied value function u.



Remark 2.1. The derivatives of u are related to those of U by the following formulas. We
have

Sy = et (<50 uGE U ) (T () + gt + o)
and
Pu, o (PU L PO
gz T e T Hatar T a2
+2T%—(t] — QTMaa—U + T2U> (T —t,In(So) + pt + ox).

We also have

du 10%u . U
5 —(t,x) + 2@@’”@) = e <_E + (A - )U) (T —t,In(Sp) + ut + ox)

= e (A —nr)p(In(Sy) + pt + TL) L 10 (50) 4 pt-+rw <HT—0))

du(t,z) =

where the last equality follows from regularity results (see, for instance, [4]).

We will need a more precise description of the operator D, given by the following
proposition (see Proposition 3.4 of [6]). For convenience, we denote by X a random variable
with the same distribution as X, which is independent of the sequence (X,,)n>1.

Proposition 2.1. Assume that (Hj) is satisfied and that v is a function of class C3 on
[0,T] x R. For0 <t <T —h and x € R, define

t:c—2/ dg/dzE

Du(t,z) = Du(t, x) + 2/0\/E d¢ /06 dzE (X25v(t + &%z + zX)) )

0%*v
otox

(6= X*¢-2) <t+§2,x+zX)].

We have

with the notation dv = % + %%, and

_ NG _
Du(t,z) = 2/0 hd{/ogdz(f—z)E l)@ <§—X2(§ > Z)> 8?;;)2 (t+§2,x+zX)] .

Remark 2.2. Note that, if dv(s,z +2X) = 0 for all s € [t,t+ h] and z € [0, V], we have
v(t,z) = Du(t, x).

From the last equality in Proposition 2.1, we derive the following estimates.

Vh 3 X4 P
2 [* e | dZEl<X2+_>‘8t6 |
\/E/ﬂggdgE [/ (X2 )‘af; 2@%27“%)”
| X|?
f/ dsE (/dy]l{y VI <\X|+ 2 )’&01)2(87”‘)
| X|? o?
_ \/E/t ds/dyE <]1{yx§ﬁx|} <\X|+ : )) }ata;(&y)‘
5
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We know from Proposition 3.2 of [6] (based on Berry-Esseen estimates) that, for every
k € (1,3], there exists a positive constant Cy (which does not depend on X), such that,
forally e R,n>1and j € {1,2,...,n},

e G E(IX1?) (1 +E X[+
(1) o) = F

Hence, for j=1,....,n—1,

. C gh+h dy Pv
E(|D BM) < kX
(oG BR) < ﬂ\/ﬁ/jh ds 1+ [y|F 91022 > Y)
jhth ds dy P
< h 2/ il 2

where, for the last inequality, we used the inequality jh > (j + 1)h/2.

3 Estimates for the second order time derivative

In this section, we refine the regularity results that we used in [6]. We first establish some
elementary Li-estimates. Then, we obtain a quadratic estimate for the second order time
derivative of the difference U = U — U. For the definition of the relevant weighted Sobolev
spaces, we will use the notation

dx

vj(dr) = 1 2)7

7> 1

3.1 Some elementary L;-estimates

Proposition 3.1. Assume that the function ¢ is continuous and satisfies ¢ € Ly(v;),

| (dz)]
(1+22)/2

¢' € Li(v;) and the second derivative ¢" is a Radon measure on R, with [
Let

< 00.

up(t,x) = "E(p(XF), >0, ek

Then, for all T > 0, there exists a constant Cr > 0, such that

2
0%u,,

C
() <z

L1 (vj) ot

vt € (0,77, |

We will easily deduce this proposition from the following lemma.

Lemma 3.1. If p is a Radon measure on R and q a nonnegative integrable function on R,

we have )
. p z [e’e) )
||'0*Q||L1(Vj) = 2]/2/Rm/ q(z)(1 +$2)j/2d$-

—00

We also have, for any measurable function f on R,

VyeR, |[If(-= Wy <220+ 9V fllw)-
6



Proof: We have

00 dx
losdlly < [ gy, lot@)late = 2)

+ 22)i/?
_ p(dz)| > (L+22)"2
B /(1+z2 3/2/ A= Dt

)
p(dz)| o (1+ 2%)7/2
/f1+%wﬂ/ )y ot ™

22 <2((z + 2)* + 2%),

Note that

so that we deduce
1+ 22 < 1+ 2(x + 2)? + 222
1+ (x+2)?2 — 1+ (x4 2)?
< 2(142%).

Hence

~ p(dz)] = ‘
[l qHLl(Vj) <2 /R m [m q(z)(1 + $2)j/2d$-

Similarly, we have, for any measurable function f and y € R,

=Dy = [1@=y) -Tigyﬁ

- /'f (1+( a:+y) )i/?

_ /\f ( 1+ 22 )j/z dx
1+ (z+y)? (14 22)7/2

. /‘f 14+ 2 +9)?+22)” do
1+ (x +y)2 (1 +22)i/2

< PP+ Iy,

Proof of Proposition 3.1: We have

Lot [ —pt)*\  dy
P / (y—p
upltix) = e [ ¢lrty)ewp ( 202t ) gv/ort

= e "'px p(z),

() 1 . (z + pt)? 1 T+ put
= - = n )
b o/ 27t P 202t oVt oVt

Here, n denotes the standard normal density function.

with

7



On the other hand, we know that u,, satisfies the equation

Ouq,

52 = (A= 1ug, )

so that

Ouy

St = (A r)pg

= e px [(A—r)ypl.
It follows from our assumptions that (A — r)¢ is a Radon measure satisfying

[ =D s < o

So that, using Lemma 3.1,

e, = o et
= G /O:o ai/fn (xat}zt> Sl
= G [ (@) (- lyovi— )y
< C(1+4).

On the other hand, by differentiating (3), we have

0*u,,
ot?

= (A=) = (A=) + (A=)

Hence, using Lemma 3.1, and the definition of p,

0*u % ~
|Gzt oS G A= n et
Col
< 7(1+tﬂ).

3.2 Quadratic estimates

Recall the notation:

U(t,z) = sup E (e‘”@(Xf)) . ug(t,z) =e "E(p(X])), t>0, z€eR,

T€T0,t

with p(z) = (K — e”)". We now introduce the difference U = U — u,, (which corresponds
to the early exercise premium). We have the following Lo-estimate for the second time
derivative of U = U — u,,.

8



Theorem 3.1. FizT' > 0 and j > 1. There exists a constant C' > 0 such that, for all
§ € (0,71,

[ &)(

This estimate is closely related to Theorem 2.4 of [6], a variant of results due to Friedman
and Kinderlehrer (see [3], Lemma 4.1, and [5], Chapter VIII). Note that by considering
the difference U = U — u,, we are able to derive a logarithmic upper bound, instead of a
power of &, which would come up by considering U (see Theorem 2.4 of [6]) For the proof

2 3/2, ifd <,
cngc(uwmaﬂ, with B =
La(vj) 1, ifd>r.

O*U
— ()

.. . . . 207
of Theorem 3.1, we need some preliminary estimates on the derivatives aa [2] and gtaz

Lemma 3.2. Fiz T > 0 and j > 1. For any ¢ € (0,1/4), there exists a constant C' > 0
such that, for all t € (0,T],

PU

< Cvt d ||=(t,. < Cte.
|| \/_ an ‘ 8372( ) ) La(vs) —
Proof: We know that U solves the equation
ou -
—+(A—r)U=nh

with initial condition U (0,.) = 0, where the function h is given by

We have the following identity (which can be viewed as a form of the early exercise premium
formula).

~ t ~
U@):—A =r(t=5)p, % R(s, .)ds,

() 1 (z + pt)? 1 T+t
) = exp | — = n ,
be o/ 2mt P 202t oVt o\t

with n denoting the standard normal density function. It is straightforward to check that

where

oU t oh
= - _ —r(t—s) i
e (t,.) /0 e Di_s * 8x(s, )ds,
and, with the notation ¢, for the Dirac measure at a point z,
oh ,
1) = (A=) @iy — (A= 1)ol(e)d (2)
= —k(t,x)+ fy(t)ég(t) (x), (4)
with s(t,z) = —(A — )¢ (@) L0y and (1) = —(A — r)o(b(t)). Note that x is a

bounded function on (0,00) x R and « is a continuous, nonnegative and bounded function
n (0,400). At this stage, it is clear that ||p;_s * —x( Moo < C/\/t — s, so that

}

ou

8x< ) <OV

Lé (v5)




On the other hand, we have

57
‘ 8 U S /t e—T’(t—S)
0

/

Phs % K(s,.)]|

)

ds + ||C(t7 ')||L2(Vj) ’

0x? La(vy)

La(vj)

with

t
C<t7 ) = /0 eir(tis)f}/(‘s)p:ffs * 5B(s)d8

We have, using Lemma 3.1,

/ —
’pt_s*/{(s")’ La(vj) - H/pt s )dy La(vj)
< /|p;,s (s, - = )y
< 27183, ) 1y, /\pt W)+ y?) dy.

Note that, since £ is bounded and j > 1, sup,.(|&(s,.)|[1,(,) < o0, so that, for some
constant C' > 0 (which may vary from line to line)

| oy S C I+ )y
2(”])

1 / y+#(t_5)
- C/Uz(t—s) n(

oVt—s
- ¢f =l

Pi # K (s,.)|

o

+ (—pu(t — s) + o/t — 52)?)/4dz

C ,
_ 5)i/?
< = (1+(t—sy7?).
Hence, if 0 <t < T,
t
/ et pifs*/f(s, ) . C/ = 20/t
0 2(”]

We now estimate ||((¢, .)||L2(Vj).
We have, using the boundedness of ~,

t

Cta)l = | ) e "y (s)p)_ (= b(s))ds

t 1 /
< C / n
0o o%(t—s)
Recall that n'(x) = —zn(x). Therefore

< /\:c—b +u(t—s)\n<:c—53)+u(t—s)>d$

t— 5)3/2

t ds tle —b(s)| [z —b(s)+ plt—s)
C/o t—s+C/o (t—s)3/2n< oVt —s )ds.
10
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Note that

I‘Q

n(xy + x3) = n(ry) exp (—32 - x1x2> < n(xy) exp(—z1x2)

< n(a:) exp (“”z + x) = n(e/V2)e.

Hence, for t € (0,7,

Cal = of E=vor | z:sgj/)ln<\/g;\/b%>ds

Note that, for all o > 0, there exists C,, > 0, such that, for all y € R, n(y/v2) < Co/|y|**.

Hence, for t € (0,7,

lz —b(s)| (t—s)*
T

C(t,z)| < C\f+C/

_3
2

oo, [,
X

2a—1
1 1
= OVi+ Gt /

Now, take v = 2 + ¢ (with 0 < e < 1/4) and put B(t,z) = |z — b(t)|' "2 =

We get
1

1
16 Mgy < OVEHCE [ s 18 Ml

Using Lemma 3.1, we have

) /2 =, 9 j/2/ 1 dx
1800 My <27 (L 500 | o

< = du
0 (1 —wu)2%x — b(tu)|?*!

o — b(t)| 7.

Since £ < 1/4, the integral on the righthand side is finite, and the lemma easily follows. ©

We now turn to the study of 2U - Recall that OU /Ot solves the parabolic equation

otox

—0v/0t + (A —r)v = 0 in the set {(t,x) | t > 0,2 > b(t)}. Since the exercise boundary
is differentiable and OU/0t is continuous and vanishes on the exercise boundary, it follows
that £ is continuous “up to the boundary” i.e. on the set {(t,z) |t > 0,2 > b(t)} (see

otox

[3], Lemma 4.5). We first show that 2 (,M is nonnegative along the exercise boundary.

Lemma 3.3. We have, for anyt > 0,

9*U
0tox

(1,B(1)) > 0.

Proof: We have, for all ¢ > 0, due to the smooth fit property,

O (t.b0) = ¢/ (B0,
11



so that, by differentiating with respect to ¢,

;gﬁj@”+%g@ﬁ®ﬁﬁ%:¢@@ﬁw)

and

otox

Observe that, for each ¢ > 0, the function x — U(t, z) — () is C* on the interval [b(t), 00)
and has a minimum at b(t). Therefore, its second derivative must be nonnegative at this
point. Since V'(t) < 0, the lemma is proved. o

w000 = - (G5 050) - 60 ) 710

Lemma 3.4. Fiz T > 0 and j > 1. There exists a constant C > 0 such that, for all
ty € (0,T A 1],
T
J

For the proof of Lemma 3.4, we will need the bilinear form associated with the operator
A—r.

We first introduce the relevant weighted Sobolev spaces. For j > 1, let H; = L*(R, v;)
and V; = {f € H; | f' € H;}. The inner product on H; will be denoted by (-,-); and the
associated norm by |- |;. The natural norm on V; will be denoted by || - ||;. Thus, we have

2

02U )
otox

dt < C'ln(1/ty).
La(vy)

+oo d
= PO

and [|f|[F = [f[; + [/}
Recall that the partlal differential operator A is defined by

o? O 0

A=5 2 6:p2+”8x

We associate with the operator A — r a bilinear functional on V}, defined by

xXr
2/ fla 1+ﬁﬂﬂ_ / F@e@ e
d;z: d;z:

so that, if f' €V},
a;(f,9) = =((A=7)f,9);
It will be convenient to write a;(f, g) as a;(f,g9) = a;(f, g) + a;(f, g), with

B0 = T+ (Lo md () = a(fo)~alfe) )

With these notations, it is easy to check that |a;(f,¢)| < C||fl|l;l9]; and |a;(f,¢g)] <
Cllgll;j|f];, for some constant C' which does not depend on f nor g.
12



Proof of Lemma 3.4: In order to rule out regularity issues, we introduce a C'*°, nonneg-
ative function p on R x R, with [ p(¢, x)dtdz = 1 and supp p C [—1,0] x [—1, +1] and set,
for any positive integer m, p,(t, r) = m?p(mt, mz).

Now, let W = %—g, W, = Wk pp, and h,, = ﬁ*pm. For each m > 0, the functions W,,,,
h,, are C* with bounded derivatives and we have

OW,y, Ol
o AT =

Multiply by OW,, /0t and integrate with respect to v; to get, for any fixed ¢ > 0,

- <88@(t, ), %(t, .))j — a, (Wm(t, ), %(t, .)) = a;; (t, x)ag’” (t, z)v;(dz).

Note that

a (Wm(t,.),a%(t,.)) = q (Wm(t,.),%(t,.)>+&j (Wm(t,.),%(t,.g

1d
= ——(a; Wph(t,.), Wpn(t,. a; | Wi(t,.), ——(t,.) | .
34t @ V(00,0000 1 (Wt 2520
By integrating with respect to time, we get, if 0 < t; < T,
2

T\ oWy, 1 -
- s W(tv ) dt + 5 (aj (Wm(tlv ')7 Wm<t17 )) — Gy (Wm<T7 ')7 Wm<T7 ))) =

! J

T ow,, T (Oh,, ow,,
/tl a; (Wm(t7 ')7 W(ta )) dt + 40 ( ox (ta ')7 ot (t7 ))Jdt
Hence
T OW,, | 1 T W,
L) < 5 (Wt ) Wt ) - | (Wm(t, ) S .)) dt

T (Ohy, oW,
- (W(t")’—at (t,.))jdt

1 T W,
< —a; . . I |—(t, .
< 5 Wt Wt ) + € [ W (el |75 >}jdt
T Wi
_/tl (83: (t.). =, (t,.))jdt.
Using the inequality
W W 1 :
N l——, )| <e|——(¢. - I
2 Wt ) .| < €| 0] + 2N,
we get
1 Tow,,, | 1 T )
= —(Z,. < —a; . . NP
=G )| d < 5 (Wl W N +C [ AWt I dt

T (Oh,, ow,,
( oy, 2 <t,.>),dt.

¢
! J

13



We have
i (Win(tr, ), Wanlts, ) < Cl[Win(ty, )]}
and, using Lemma 3.1,
Wanlts, My < [ pnlts = £9) WL = )] dedy
/4 215 /4
< [ pults =t g2 (U g2 W (] dedy.
Using Lemma 3.2, we have (for ¢ € (0,1/4)) [[W(¢,.)]|; < Ct°. Hence
dj (Wm(th ')7 Wm<t17 )) S C/pm(tl - t, y)2]/2(1 + y2>j/2t2€dtdy
= O [ omlt.)2 (1 + )t — tfdtdy
' y2 /2
— C/p(t,y)zf/2 (1 + W)

< CO+t).

2e

t
m

We also have

LWz =

2

dt

(t —s,y)W(s,.—y)

J
T

/t /dsdypm(t — s, y) [[W(s,. — )| dt
1

T i .
< / dt / dsdypm(t — 5,1)2/2(1+ ) [[W (s, )|
t1

IA

T+
< [T asIW s I [ didypn(t — 5,220+ )
t1

Since [ T {|W (s, )||j ds < 0o, we deduce that

dt < C(1+t§€)—/

t1

T oW, r

1 @) T W
2 t1 81: . j

), (t,.))jdt.

It follows from the proof of Lemma 3.2 (see (4)) that

Oh,, B
E@’ x) = —Kp(t, ) + ym(t, x),

where k,, = k * p,,, and k is a bounded function, and

Yot ) = / ot — 7,2 — B(T))y(7)dr.

Hence
T (Oh,, oW, T oW, T oW,
— . . < —(t,. — ), ——(t,.
[ (G e >)jdt < o' | %, >|jdt [ (. 25 >)jdt
T | oW, ? oW,
< = — (¢, )| dt+C?*T — w(t, ), —=(t, dt,
< 3 [T averm [ (e, )

14



2
where we have used C ‘BW'” t, )‘ <3 ‘%(t, )‘ _+ C?. Therefore
J

T 2 T
i/ Qgﬁ@)jﬁ < c@+¢%)_llﬁma,%%%yuqldp (6)

Note that

ow,, U, 0*un,

ot otor  otox’
where
Un=Ux*pn and u, = Uy, * pp,
so that .
- (Vmaw),gﬂﬁﬁa,)> dt = JW + J@),
t ot ;

with

We have

PU,
n - _ "
It == dt/ 1+ )/va( ) aiar &)
- OPUn,
= - dt/m/dTv(T)pm(t—T,x—b(T))atax (t,x)
0*U,, - 1
= = [ar [ds [ dytucrecrriom(s.) Giger + 5,00 + D)
T+

= — | A®na(r)dr,

where

2

Y dy 0°Up,
n(T) = /t ds/ T oo, +8,61) +9)

Y pm (s, y)dy // 0*U , < ,
N /t /1+ Wb | WY g T s =S by —y).

Note that gtaU — 0 on the open set S = {(t,z) | t > 0,2 < b(t)} (which is the interior set

of the stopping region), so that

T )d ]
pm(s:y)dy , L
/m— / (1+ (y +b(1))?) a/2//d3dypm(s yIW (s =5y =),

where
0*U

W(T 0,z) = 510

(T + 97 E<T) + z)]l{l;(r)-i-zzi)('r-i-e)}'

15



Since 2 a U(r, b(t)) >0, for 7 > 0, we have

T— /
/ dS///pmsydypms y)éffdym Y
-7 (1+ (y +b(7))?)

where PU 2U
D(T7 07 Z) = (at&x (T + 07 b(T) + Z) - 8tax (7_7 b(T))> ]]‘{E(T)+ZZB(T+9)}'

Hence (since v > 0)

T+
TP < = [T en(nr,

t1

with - L
:/ ds///pmsydypm y)dsdyD(T’s_S,’y_y,)'
=t L+ (y+b(7))?)i/2
We have o
lem ()] < . Dy (1)ds = (T — t1) Dy (1),
where
Du(r) = sup  (ID(r,0,2)| L) sirray ) -

[0|<1/m,|z|<2/m
Due to the continuity properties of gt(;] , as m — oo, the function D,, converges to 0,

uniformly on the interval [t;,T 4 1]. Therefore, we have

lim sup J{M < 0. (7)

m—r0o0

We now examine J'2). We have, using the boundedness of +,

T dx 0*u
(2) - m

gCtldt/ T [ drenlt == 50)

*u,,

otox (*, x)‘ ’

Note that, since ¢ is Lipschitz, we have Hgtg‘” (t, )H < & 7 and, since supp p C [—1,0] x
[_1’ +1]’

0u 0*u C
(¢, . < drdyp,, 2(t—T,. < =,
|Goztes| = [ Jarammutorn) | Tzte—ro| <6
Hence
T ~ T
2 < ¢ %/dw/dTpm(t—T,x—b(T)):C’lnt—. ®)
t1 1
It follows from (6), (7) and (8) that
T 2 T
lim sup %(t, Jdat < C (1 + 17 +1In —> ,
m—»0o0 t1 8t j tl
which proves the lemma. o

16



3.3 Proof of Theorem 3.1
For the proof of Theorem 3.1, we will work on the equation satisfied by 0U /dt. Let

U
We have -
ov oh
9 A -
o TATTIV =5
where

The following lemma will clarify the computation of the derivative dh /Ot in the sense of
distributions.

Lemma 3.5. Define the function I on (0,+00) x R by

The distribution 01 /0t applied to a compactly supported C> function p on (0,4+00) x R is

given by or
(Spo0) = [ V(. b))

This can be written (less precisely): SH(t,.) = V' (1)) -

Proof: We have

ol B dp

- / dt / dxf(t,x)%(t,x)

Let J be the range of b. We have J = (b(c0), b(0)). Note that, if # < b(c0), I(t,z) = 1 for all
t >0 and if 2 > b(0) I(t,z) =0 for all ¢ > 0, so that, in both cases, [ I(t, )%g(t,x)dt = 0.
Therefore

ol op
<@’p> = —/dﬂf/dﬂl{xg@)}a(ta x)

Here, we have used the fact that b is strictly decreasing (which is proved in [10]), but we
can also approximate b by the strictly decreasing functions b, (t) = —et+ b( ) to derive the
formula. In fact, we only need b to be C: indeed, we can replace b(t) by b, (t) = —put +b(t)

17



and choose p so that Eu is strictly increasing in a neighborhood of the time projection of
the support of p. o

We now proceed with the proof of Theorem 3.1. As in the proof of Lemma 3.4, we
introduce a regularizing sequence p,,, and set
oh

Vo=V xp, and sza*pm,

so that
ov,,

ot

Note that the functions V,,,, x., are C°°, with bounded derivatives on any subset [t;, T] X R,
with 0 < ¢; < T. This is due to the fact that V' is bounded on such subsets. For any fixed
t > 0, multiply by 0V, /0t and integrate with respect to v; to get

+ (A_T)Vm = Xm

2

ov,,
- W(t, y j

—q (vm(t,.),%(t,.)> - /Xm(t,x)%(t,x)yj(dx).

We have

a; (vm@, ), %(t, .)) - %% (@ (Vin(t,.), Vin(t, ) + @ <Vm(t, D) %(t, .)) .

By integrating with respect to time, we get, if 0 < t; < T,

2

1oV, 1. B
- ] ot <t7'> dt + 5 [aj (Vm<t17'>7vm<t17')) —a; (Vm<T7'>7Vm<T7'))] =
! j
T _ ov,, T ov,,
Hence
oV, | , (T oV,
g < IIE = : Dy (.
[ e a < e - [ (vt e a

T OV
_ " (Xm(t, )7 W(t, ))] dt

c (||vm<t1, N+ [ WVantt,

IA

oV
W(t,.)}}dt) + I (t1, 1),
J

with

T, T) = —/T <Xm(t, D) aaﬁ(t, .)) dt.

t1 t
Using the inequality
2

1 2
— | Vin(t, .
[Vt )

j )
J

oV oV
—(t, )| <e|—(t,.
)] <[

18
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we derive

10V,
W(t, y j

We now study J,,(t1,7). Note that, for any fixed ¢ > 0,

dt < (J<||vm(t1,.)||§+/:||vm(t,.)||§dt>+Jm(t1,T). (9)

(0. 52000) = [ G s e

We have _
oh 8]

so that, using Lemma 3.5, and the notation y(t) = —(A — r)p(b(t))

oh

Recall that v(7) > 0. Hence

oV, B
(xmu,.),ﬁa,.))j = — [0 21,2 [drpnt -1z
dx OV,
B _/dT/ v a2iP g ()emlt=

O pultoa) = = [[drpult — 7.2~ H)F (7).

— b(r)b'(7)¥(7)
7,2 = b(r) (1)7(7)

— i dy Vo (1 4 B(r))pun(t — 7, ) ().

(14 (+ b2 ot

Going back to J,,(t1,7T), we have

It 7) = = [Vt [ [ @y + 50 gt = 0 r0),

with
1 .

AT e )

ﬁj(T7 y) = =

Note that ¥;(7,y) > 0. We have

OV, =
Inltn,T) = = [dr [dt [ dyLcen 5ty +5)pn(t -

T, y)ﬁ] (7-7 y)

oV, ~ _
= —/dT/dS/dy]l{t1<T+s<T}W<T+ 8,y + (7)) pm (5, ) Vi (T, ).

Observe that

% (Vm(7+ 5,y + Z;(T))) = 88%(7 + 5,y +b(1)) + %(T + 5,y 4 b(T))V (1),

so that

P (7 45,y +5(r) = = (Vi + 5,5+ B(7) -

ot 19 ox

%(T + 8,y + b(7)V (7).



Hence

Jm(tlaT) = jm(tlaT) + jm(tlaT)a
with

d ~ _
tla /dT/ds/dy]l{t1<T+s<T}d (Vm(7+37y+b(7))) Pm(sa?/)%‘(ﬂ y)

and

. oV, S .
Tn(t, T) = + / dr / ds / ALy <reaery 5 (7 + 5.y + B (7)o (5.9)7(7, ).

We have, using integration by parts,

In(t 1) = = s [ampaton) ([ 4 (Valr 450+ 800) 3t

1—S8 d'T
= —/dS/dypmsy (T y + (T = 5))3;(T — 5,9)
+/d8/dypm 8, ) Vin(t1, y 4+ b(t1 — 8))9;(t — 5,9)

-5 - o0~
+ s [avpn(s,n) [ Vals+ 7y +50) D )ar,
Note that, due to the continuity of V(= dU /0t) on (0, 00) x R, the sequence V,, converges
uniformly to V' on compact sets. We also have the continuity of 7; and 97;/97 (due to the
fact that b is C?). We easily deduce thereof that
_ T v
lim J,(t, T) = =V (T,b(T))7;(T,0) + V(t1,b(t1))3;(t1,0) + [ V(7,b(1)) =2

m—00 t1 or

(1,0)d7,(10)

and the convergence is uniform with respect to f;, as long as ¢; remains in a compact set
of the form [¢,T], where 0 < ¢ < T. For J,,(t1,T), we have

jm<t17T) = jfi)(tl,T) + jg)(t17T>7

with
- 02U, N _
TO@T) =+ [ [ds [yl corsen G (0 + 5,y + 5o (D) (5,177 )
and
@) Py, _
TOW.T) = = [dr [ds [ dyLicrsien G (7 + 5,y Ho)F (Don(s.9)5(7.0)

We deal with J(t1,T) in the same way as for the proof of (7). Using the fact that
V(1)7;(1,y) <0, we have JI) (¢, T) < JV(t;,T), with

JD(t,, T /dT/ds/dy]l{t1<T+S<T}//dsldy pm(s',y)D(7,s — 8",y — YV (7) pm (5, y) 75 (T, ),

where o 2U
D(T7 97 Z) = (8t8x (T + 97 b<7-> + Z) o Mox (T’ b<7-)>> ]1{5(7)4'226(74‘9)}'
20




Due to the continuity properties of 2 ata , we have

lim JU (¢, T) =0,

m—o0

and the convergence is uniform with respect to t1, as long as ¢; remains in [, 7]. On the

ata £ we have
fim T (0.7) = — [ dr 2z, b)) (7)3,(. 0
300 LA, T@t@x (RRENERS

uniformly with respect to t; € [§, T]. At this stage, we can state that J,,(t1, 7)) < Ji(t1, T),
with Jo,(t1, T) = Jo (81, T) + JP (¢4, T) + J@(t1,T), and

lim sup ’J tl,T)—j(tl,T)’:O,

m%oot €l T]

where

J(t1,T) = =V(T,6(T))7(T,0) + V(tr,b(t1))7;(t1, 0) + TV(T b(r ))a:yj

t1 87_ ( O)dT

_ /tT dr gt 5; (7, b)) (7)7, (7, 0).

Since QU /0t vanishes along the exercise boundary, we have V(t,b(t)) = —%“t‘ﬁ(t, b(t)), so
that

VBT BT, 0) + Vit 50,0 + [ Vi) P (7, 0)dr =
8;;"(T b(T))7,(T, 0)—88—@1,“1 )7 (t1,0) /t a% b %”TJ(T 0)dr

= [ 2 (G o) oy

sty = [ | (G ) - Sz s oy
T u,, -
t,  Ot?

We now go back to (9) and integrate with respect to ¢; to derive

%/5 /t " t,.| dit < 0(/ [Vin(tr, )12 dt1+/ (/ [Vl )2 dt)dt1>

Hence




Note that

T
nggrgo/ Wit M de = [ 1V (1 at

< C(l#—ln%),

where the last inequality follows from Lemma 3.4. Moreover,

T ~
7711—1;%0/5 dtljm(tl,T) = / dtl tl,

82%,
= [ -9 b e

Hence

K

Theorem 3.1 now follows from the following lemma, which relies on the asymptotic behavior
of the exercice boundary near maturity (see [1], [7]).

Lemma 3.6. We have

2
Oy,

8t2 t,.)| it < C<1+1n%>+/;(t—§) Sl (D)1, 0)dr

2 3/27 Zfd S r,
T o0“u ~ ~
[ 0-9 G| ol < o1+ me), -
¢ 1, ifd>r.
Proof: We first note that, since ¢ is bounded and Lipschitz continuous, we have

0%u C
8t2¢(ta)|| S W

This can be seen by arguing, as in the proof of Proposition 3.1, that u,(t,.) = e "'p; * ¢,

so that and 882‘;’ (t,.) = (A —r)?uy,. In order to estimate the z-derivatives of u, up to the

order 4, we may differentiate p; three times and use the boundedness of ¢'.

We then have

[[a-9|Grnio| o < ¢ [ o
< C/;%@’(tﬂdt.
Now, since ¥/(t) < 0, we have
/;%ﬁ)’(t)\dt _ —/j%f)’(t)dt
_ _<5(T)& b(0)  b(E) — ) : / L5 (b(0) — B0yt
< 0D #(6@) by



If d < r, we have b(0) — b(t) < C'\/t|Int| for t close to 0, so that
Tl 7 Tl 3/2
L 2 (b(0) = b(t))dt < c/5 S/Imtldt < C(L+ [ Ingf*?).
If d > r, we have b(0) — b(t) < Cv/t for t close to 0, so that

[ 0 - b0)de < C [ Gde = (T

4 Upper bound for P\" — P,

In order to derive an upper bound for Po(n) — P, we relate this quantity to the modified
value function u using (1) as follows:

P"_py = sup E (e g(poT + B("))) —u(0,0)
7'675(’2)
< sup E(u () —uOO))
7676(3)
7/h
= sup E Du(( ]—lhB(] 1))).
7'6'76(3) Jj=1

We observe that Du < Du, and recall from [6] (Lemma 4.1) that SUPg<j<p1 B ‘Du(jh, BJ(Z))‘ <
Ch, so that

n—2
A" ~P < E (Z [ Dujh, B§Z’>\) +0(h)
j=1

T-h ds dy
< h 2/
< CexhV2 Vsl 1+ [yl

Here, we have a regularity problem, since u is not C®. This problem can be fixed
as follows. By convolution, one can approximate u by a sequence wu,, which is smooth,
uniformly bounded and satisfies du,,, < 0, and Du,, < Du,,. We need the following variant
of Lemma 3.1.

83
otox?

(s, >\ com. ()

Lemma 4.1. If p is a Radon measure on (0,T) xR and q a nonnegative integrable function
on (0,T) x R, with q(t,z) =0 fort ¢ (0,a), where a satisfies 0 < a < h, we have

Thds p*q(sy X _|p(dt,dz)|
2/2/ / / (5,2)(1 4 2 2dg.
/ L+ h-a JE VE(L+ 222 ’f/2 )
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Proof: We have

T- hds dy
—_ <

/ TENPRLE [P q(s,y)| <
T=h ds dy
/ W//|Pdtdz)|Q(3—ty—Z)

T- hds dy
_//|pdtdz|/ Wé]( —ty—2)
dy

g/ /\p (dt, dz) |/ W +|y| ),Wq(@,y—z)

L)

p(dt,dz)] 1 + 22k 2y
/ i e et 2R
h— —|—z2k/2 (14 |z + z|?)*/
(dt,dz)|
< k/2/ |/) / / 2\k/2
2 - NEESTE dl | dx(1+27)"=q(8, x),
where the last inequality follows from Hl(;riizﬁ < 2(1 4 2?). o

Using Lemma 4.1 and the fact that 93u/(0t0x?) is a Radon measure (see (13) and the
comment below), we derive the correct version of (11), namely

T—-h 1 1 o
PM _p < O ih 2/ —/
0 b < Cxhv2 no Vs 1+ |ylF |0toa?

If we introduce the function @ := v — u, we have, using the fact that du = 0,

(ds, dy)

+O(h). (12)

_ 3 — 3
: h% 1+1|y|k 8?;;2@3,@)‘ < h% 1+1|y|k 8%32@3,@)‘
T—h 35
= ), % 1+1|y|k afaZ2(dS’dy)|
—h
w20 [ s
T_h% 1+1|y|k 8?;22(d3,dy)‘+CT|lnh|,

where we have used Proposition 3.1.
We now need to estimate th_h % S/ H‘ly'k

du 10%a

(9258:22 (

ds dy)’ Recall from Remark 2.1 that

where ((t,x) = e (A —r)o(In(Sy) + pt + o) and b(t) = (Z;(T —t) — pt — ln(So)) /o. By
differentiating wit respect to t, we derive the following expression
01 1 9 ¢ A
o (bo) + 5o (the) = 3_5“’ D)1 ey + (D) ()55, (13)
4




where we have used Lemma 3.5. Note that

¢
o —(t, x)

sup
x<b(t)

< oo and sup ‘Ctb ))’ 0.
0<t<T

Moreover, |V (t)] < |0/(T — )| + |p/o], so that
T dt A T/2 dt
S/ V(T —t) +/ V(T —t)] + 2|u/o|VT
[ wor < [ Sp@ o [ ST - ol 2ol
T/2 dt
< sup |H(T —t\/ +f2 / (T — t)|dt + 2|p/o|VT

0<t<T/2

T/2 dt -
= sup |W(T—1t) \/ \/> (6(0) = B(T/2)) + 2u/o|VT < oo.
0<t<T/2
Therefore, the righthand side of (13) is a Radon measure and since, due to Theorem 3.1,
0?1/0t? is locally integrable, it follows that 934/0t0x? is a Radon measure.
Moreover, we have

T-h 1 P T—h (s 1 0?1
ds,d < 2/ — | —— | = .
7] T g y)| G2l ) T 6t2(5’y)|
Now, using the Cauchy-Schwarz inequality and Theorem 3.1, we have
T—hﬁ dy 32~( )
Ve Tl oY
1/2
T—h ds V2o h |0%* ?
o[t V[ |2
<h 3(T—s—%)> (h s(T=s=3) 8t2< >k
1/2
- ho|lota, |
<o/ / T—s— 2|2,
¢ |nh\(h ds(T — s~ ) aﬁ(s,)k)

T h
N /h/2 dt(t - 3) 8t2

< O] A1+,

with = 1if d > r and § = 3/2 if d < r. The last inequality follows from Theorem 3.1
and Lemma 3.4, and the connection between the derivatives of the functions U and @ (see
Remark 2.1; we also use the classical bounds ||[0U/0t(t, .)||e + |[|0*U/022(t, .)||oe < C/V/1).
We conclude that

(Inn)*

)

P"m_p<cC
witha=1ifd>rand a=5/4if d <r.

n

5 Lower bound for P\" — P,

For the derivation of the lower bound, we use the stopping time introduced in [6] (see the
proof of Theorem 5.6). Namely

T=mlircrpny + Tl =7y,
25



where

y=inf{t€[0,7—h] | t/heN and d(B{"” Isn) < VA X||o + |1olh} .

Here, I, = {z € R | u(t,z) = g(t, z + pot)}. Note that, if t < T, I, = (—o0, b(t)].
The modification of 7; into 7 is motivated by the unboundedness of Ou/dt near T'. We
have, due to the definition of 7,

P™—P > E(eg(uor + B™M) — u(0,0))
=k <e_rTg(M07_ + B7(-N)) - U(T, B7(_n)) + U(Ta Bgn)) - u(o’ O)) )
We have

7/h

E(u(T,B@)—u(o,O)) = (2:1Du (j — 1D, B(J 1 ))
J
(/)A(n—2)

= IE( S Du(jh—h, B§Zlh)>

J=1

+E (%:T} > Du(jh—h, B§Z>_h>)

j=n—1

(r/n)A(n-2)
- E( 3 Du(jh—h,B](Z’h)) +O(h),

J=1

where the last equality follows from Lemma 4.1 of [6]. Now, if j < (7/h) A (n—2), we have
A(BJY Linin) > VAIIX || + [piolh, so that

B > b(jh + h) + V]| Xl + |uo] .

We then have, for s € [jh, jh + h] and z € [0, VA

B](»Z)—l—zX > Z;(jh+h)+zX—i—\/_HX||oo+|,uo|h
> b(jh A+ h) + |polh
= b(s) + b(ih+ h) + po(jh + h) — (b(s) + os) — po(jh + h — s) + |pao| o
> b(s),

the last inequality coming from the fact that ¢t — l;(t) + Mot is increasing. We can now
assert that, for j < (7/h) A (n — 2), Du(B(h ,jh) = f)u(th ,7h), so that

E (u(r, B™) —u(0,0)) < E (g‘@u(jh, BJ(.’,?)‘) +O(h)

C(ln n)o‘7

n

with « = 1if d > r and a = 5/4 if d < r, as follows from the discussion in the previous

section.
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We now want a lower bound for
E (e ""g(por + B™) — u(r, BIM)).
We have, using the equality {r > T — h} = {7 =T},
u(r, B™) — e g(uor + B™) = (u(r, BM) — e "g(uor + B™M)) Lirarony
= ( (7 + A, Bgn ) — e "Tg(poT + Bgn))) Lirer—ny

+ (u(r, B™) = u(r + h, BI)) Lirer_py.

On the set {r < T — h}, we have d(B™, I.,1) < vVh||X|ls + |u|h. Tt follows from
Proposition 2.6 of [6] that

2
VX oo + [1ulh)

u(T+h, BM) — e g (por + BY) < C<
T—717—h

%(t, )H < C//T —t, we obtain

Using the estimate ‘

1
E (u(T, Bgn)) — e_T’Tg(,uOT + Bg_"))) S ChE (ﬁﬂ{TSTQh}> .

The estimate P™ — P > —C % is now an easy consequence of Lemma 5.7 and Remark
5.8 of [6], which can be summarized in the following statement.

Lemma 5.1. There exists a positive constant C' such that

1
E{————1cpom | <C(Inh)?,
with
3/2, ifd <,
8=
1, ifd>r.
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