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Abstract

The problem of designing an observer capable of reconstructing the continuous and
discrete state for a class of switched linear systems is addressed. A stack of dy-
namical observers, based on the Super-Twisting Algorithm (STA) with uniform
convergence (i.e., finite time converging and with a maximal transient duration in-
dependent of the initial conditions) is considered, which provides an estimate of
the continuous state and, at the same time, produces residual signals suitable for
reconstructing the discrete state. An appropriate post-processing of the residuals is
also suggested, which allows to speed up the reconstruction of the discrete state.
Formal “distinguishability” conditions guaranteeing that the discrete state can be
uniquely reconstructed are given. Lyapunov based proofs of convergence, and nu-
merical simulations, support the proposed approach.

Key words: Switched systems; observer design ; second order sliding modes.

1 INTRODUCTION

In the last decade, the control community has devoted a great deal of attention
to the study of hybrid/switched systems [15,18,20]. They represent a powerful
tool to describe systems that exhibit switchings between several subsystems,
inherently by nature or as a result of external control actions such as in switch-
ing supervisory control [23]. Switched systems and switched multi-controller
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synthesis have numerous applications in the control of mechanical systems
[24,8], automotive industry [4], switching power converters [13], aircraft and
traffic control [19,17], biological systems [32,9], and many other fields [7]. Re-
markable theoretical results involving switched systems have been achieved
concerning their stability and stabilizability [22,21], controllability and reach-
ability [28,29] and observability [31,33,2,28].
The problem of observer design for linear switched systems has been thor-
oughly investigated by the control community and different approaches have
been proposed. The assumptions about the knowledge of the discrete state
play a crucial role.
In the case of complete knowledge of the discrete state a Luenberger-like
switched observer matching the currently active dynamics can be used and
the problem is that of guaranteeing the stability of the switched error dynam-
ics. In [1] it is shown that the observer gain matrices can be selected by solving
a set of linear matrix inequalities. In [5], the approach is generalized to cover
linear switched systems with unknown exogenous inputs. In [30], by adopting
the notion of observability over an interval, borrowed from [33], an observer is
designed for switched systems whose subsystems are not even required to be
separately observable.
However, in some situations the active mode is unknown and needs to be
estimated, along with the continuous state, by relying only on the continu-
ous output measurements. Usually, in such case, the observer consists of two
parts: a discrete state (or location) observer, estimating the active mode of
operation, and a continuous observer that estimates the continuous state of
the switched system.
In [3], the architecture of a hybrid observer consisting of both a discrete and
continuous state identification part is presented, assuming partial knowledge
of the discrete state, i.e. dealing with the case in which some discrete events
causing the switchings are supposed to be measurable. When such a discrete
output is not sufficient to identify the mode location, the information avail-
able from the continuous evolution of the plant is used to estimate the current
mode. However, the “ distinguishability” of the different modes, i.e. the prop-
erty concerning the possibility to reconstruct univocally the discrete state, was
not analysed.
The present work intrinsically differs from [3] in that we consider the case of
completely unknown discrete state. In such a case the possibility to obtain an
estimate of the current mode in a finite time is clearly important, not to say
crucial. This is clear for instance from [26], where the authors focus on the
continuous-time estimation problem and show that a bound to the estimation
error can be given if the discrete mode is estimated correctly within a certain
time. Additionally, for those switched systems admitting a dwell time, a guar-
anteed convergence of the discrete mode estimation taking place “sufficiently
faster” that the dwell time is needed.
In view of these considerations sliding mode-based observers seem to be a
suitable tool due to the attractive feature of finite-time convergence charac-
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terizing the sliding motions [11,16,25,27]. As a matter of fact, sliding mode
observers have been successfully implemented to deal with the problem of
state reconstruction for switched systems. In [6], an observer is proposed en-
suring the reconstruction of the continuous and discrete state in finite time.
In [12], the authors present an observer, based on the high-order sliding mode
approach, for nonlinear autonomous switched systems. However in the above
works, though guaranteeing the finite-time convergence, the convergence time
depends on the initial conditions mismatch, and, as a consequence, the estima-
tion convergence in a certain pre-specified time can be guaranteed only upon
the existence of an a-priori known admissible domain for the system initial
conditions.

1.1 Main contribution and structure of the paper

In the present paper we propose a stack of observers whose output injection is
computed by relying on the modified Super-Twisting Algorithm, introduced
in [10], that guarantees the so-called “uniform convergence” property, i.e. con-
vergence is attained in finite-time and an upper bound to the transient time
can be computed which does not depend on the initial conditions. We also
show that, under some conditions, the discrete mode can be correctly recon-
structed in finite-time after any switch independently of the observation error
at the switching times. Using the continuous output of the switched system,
the observer estimates the continuous state and, at the same time, produces
suitable residual signals allowing the estimation of the current mode. We pro-
pose a residual “projection” methodology by means of which the discrete state
can be reconstructed after a switching instant with a finite and pre-specified
estimation transient time, allowing a more quick and reliable reconstruction
of the discrete state. Additionally, we give structural “distinguishability” con-
ditions in order to guarantee the possibility to reconstruct the discrete state
univocally by processing the above mentioned residuals.

The paper structure is as follows. Section 2 formulates the problems under
analysis and outlines the structure of the proposed scheme. Section 3 illustrates
the design of the continuus state observers’ stack by providing the underlying
Lyapunov based convergence analysis. Section 4 deal with the discrete state
estimation problem. Two approaches are proposed, one using the “ asymptot-
ically vanishing residuals” (Subsection 4.1) and another one, taking advantage
of the above mentioned residuals’ “projection” methodology (“uniform-time
zeroed residuals”, Subsection 4.2). Section 4.3 outlines the structural con-
ditions addressing the “distinguishability” issues. Section 5 summarizes the
proposed scheme and main results of this paper. Section 6 illustrates some
simulation results and Section 7 gives some concluding remarks.
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1.2 Notation

For a vector v = [v1, v2, . . . , vn]
T ∈ R

n denote

sign(v) = [sign(v1), sign(v2), . . . , sign(vn)]
T . (1)

Given a set D ⊆ R
n, let v̄j(D) be the maximum value that can assume the j-th

element of v on D. Denote as ‖M‖ the 2-norm of a matrix M . For a square
matrix M , denote as σ(M) the spectrum of M , i.e. the set of all eigenvalues
of M . Finally, denote as N← (M) the left null space of a matrix M .

2 PROBLEM STATEMENT

Consider the linear autonomous switched dynamics

ẋ (t) = Aσx (t)

y(t) = Cσx(t)
(2)

where x (t) ∈ R
n represents the state vector, and y(t) ∈ R

p represents the
output vector. The so-called switching law or discrete state σ(t) : [0,∞) →
{1, 2, ..., q} determines the actual system dynamics among the possible q “operating
modes” which are represented, for system (2), by the set of matrix pairs
{A1, C1}, {A2, C2}, ...{Aq, Cq}. Without loss of generality, it is assumed that
the output matrices Ci, ∀i = 1, 2, ..., q are full row rank matrices. The switch-
ing law is a piecewise constant function with discontinuities at the switching
time instants:

σ(t) = σk, tk ≤ t < tk+1, k = 0, 1, ...,∞ (3)

where t0 = 0 and tk (k = 1, 2, . . .) are the time instants at which the switches
take place.

Definition 1 The dwell time is a constant ∆ > 0 such that the switching
times fulfill the inequality tk+1 − tk ≥ ∆ for all k = 0, 1, ....

The objective is to design an observer able to simultaneously estimate the
discrete state σ(t) and the continuous state x(t) of system (2), by relying on
the availability for measurements of the output vector y(t).

We propose a design methodology based on a stack of sliding mode observers
producing estimates of the evolution of the continuous state of the switched
system. At the same time, suitable residuals are provided for identifying the
actual value of the discrete state and, consequently, the specific observer of
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the stack that is producing an asymptotically converging estimate of the con-
tinuous state.
The observer structure, depicted in Fig. 1, mainly consists of two parts: a
location observer and a continuous state observer. The location observer is
devoted to the identification of the discrete state, i.e. the active mode of oper-
ation of the switched system, on the basis of some residuals signals produced
by the continuous observer.
The continuous state observer receives as input the output vector y(t) of the
switching system and, using the location information provided by the location
observer, produces an estimation of the continuous state of the system.

Fig. 1. Observer structure

We assume that the switching time instants fulfill the next

Assumption 1 System (2) admits a minimal dwell time ∆ > 0, where ∆ is
a known constant.

Moreover, it is assumed that:

Assumption 2 The state trajectories x(t) of systems (2)-(3) evolve into an
a priori known, arbitrarily large, compact domain D ⊂ R

n.

Finally, the proposed approach requires each subsystem to be observable:

Assumption 3 The pairs (Ai, Ci) are observable ∀i = 1, 2, ..., q.

3 Continuous state observer design

Let us preliminarily consider, as suggested in [14], a family of nonsingular
coordinate transformations such that the output vector y(t) is a part of the
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transformed state z(t), i.e.

z(t) =







ξ(t)

y(t)






= Tσx(t) (4)

where ξ(t) ∈ R
(n−p) and the transformation matrix is given by

Tσ =







(Nσ)
T

Cσ





 , (5)

where the columns of Ni ∈ R
n×(n−p) span the null space of Ci, i = 1, 2, ..., q.

By Assumption 2, the trajectories z(t) will evolve into some known compact
domain Dz.
The transformation (4) is always nonsingular, and the switched system dy-
namics (2) in the transformed coordinates are:

ż (t) = Āσz (t) (6)

where

Āσ = TσAσ(Tσ)
−1 =







Āσ11 Āσ12

Āσ21 Āσ22






(7)

A stack of q dynamical observers, each one associated to a different mode of
the switched system, is suggested as follows:

˙̂zi (t) = Āiẑi (t) + L̄iνi(t), if ẑi ∈ Dz i = 1, 2, . . . , q,

ẑij (t) = z̄j(Dz), if ẑij ≥ z̄j(Dz) j = 1, 2, . . . , n
(8)

where ẑi = [ξ̂i, ŷi]
T is the state estimate provided by the i-th observer,

νi ∈ R
p represents the i-th observer injection input, yet to be designed, and

L̄i ∈ R
n×p takes the form

L̄i =







Li

−I






(9)

where Li ∈ R
(n−p)×p are observer gain matrices to be designed and I is the

identity matrix of dimension p. In the second of (8), which corresponds to a
saturating projection of the estimated state, according to the a-priori known
domain of evolution Dz of vector z(t), the notation ẑij denotes the j-th ele-
ment of the vector ẑi.
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By introducing the error variables

eiξ(t) = ξ̂i(t)− ξ(t), eiy(t) = ŷi(t)− y(t), i = 1, 2, ..., q, (10)

in view of (6) and of the first equation of (8) the next error dynamics can be
easily obtained:

ėiξ (t) = Āi11e
i
ξ(t) + Āi12e

i
y(t) + (Āi11 − Āσ11)ξ(t) + (Āi12 − Āσ12)y(t) + Liνi(t)

(11)

ėiy (t) = Āi21e
i
ξ(t) + Āi22e

i
y(t) + (Āi21 − Āσ21)ξ(t) + (Āi22 − Āσ22)y(t)− νi(t)

(12)

Then, by defining

ϕiσ(e
i
ξ, e

i
y, ξ, y) = Āi21e

i
ξ(t) + Āi22e

i
y(t) + (Āi21 − Āσ21)ξ(t) + (Āi22 − Āσ22)y(t)

(13)
one can rewrite (12) as

ėiy (t) = ϕiσ(e
i
ξ, e

i
y, ξ, y)− νi(t) (14)

Let us consider now the second equation of (8). We know that the trajecto-
ries z(t) evolve inside a compact domain Dz and the ”reset” relation ẑij (t) =
z̄j(Dz) , applied when the corresponding estimate leaves the domain Dz, forces
them to remain in the set Dz. Such a “saturation” mechanism in the observer
guarantees that the estimation errors eiξ and eiy are always bounded. Conse-
quently the functions ϕij are smooth enough, that is there exist a constant Φ
such that the following inequality is satisfied

∥

∥

∥

∥

∥

d

dt
ϕij(e

i
ξ, e

i
y, ξ, y)

∥

∥

∥

∥

∥

≤ Φ, ∀i, j = 1, 2, ..., q (15)

Following [10], the observer injection term νi is going to be specified within
the next Theorem which establishes some properties of the proposed observer
stack that will be instrumental in our next developments.

Theorem 1 Consider the linear switched system (2), satisfying the Assump-
tions 1-3 along with the stack of observers (8), and the observer injection terms
set according to

νi = k1φ1(e
i
y)− ν2i (16)

ν̇2i =−k2φ2(e
i
y) (17)

where
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φ1(e
i
y)= |eiy|1/2sign(eiy) + µ|eiy|3/2sign(eiy) (18)

φ2(e
i
y)=

1

2
sign(eiy) + 2µeiy +

3

2
µ2|eiy|2sign(eiy) (19)

with µ > 0 and the tuning coefficients k1 and k2 selected in the set:

K =

{

(k1, k2) ∈ R
2|0 < k1 < 2

√
Φ, k2 >

k21
4

+
4Φ2

k21

}

∪
{

(k1, k2) ∈ R
2|k1 < 2

√
Φ, k2 > 2Φ

}

(20)

Let Li be chosen such that

Re
{

σ
{

Āi11 + LiĀi21

}}

≤ −γ, γ > 0 (21)

Then, for sufficiently large Φ and γ, there exists an arbitrarily small time
T ∗ << ∆ independent of eiy(tk) such that, for all k = 0, 1, ...,∞ and for some
α > 0, the next properties hold along the time intervals t ∈ [tk + T ∗, tk+1):

eiy(t) = 0 ∀i (22)

νi(t) = ϕiσ(e
i
ξ, 0, ξ, y) ∀i (23)

‖eσk

ξ (t)‖ ≤ αe−γ(t−tk−T
∗) (24)

Proof. The theorem can be proven by showing the uniform (i.e. independent
of the initial condition) time convergence of eiy to zero for all the q observers,
after each switching, and analyzing the dynamics of the error variables eiξ once
the trajectories are restricted on the surfaces

Si
o = {

(

eiξ, e
i
y

)

: eiy = 0}. (25)

Considering the input injection term (16) into (14) the output error dynamics
are given by

ėiy = ϕiσ − k1φ1(e
i
y) + ν2i (26)

By introducing the new coordinates

ψi = ν2i + ϕiσ (27)

and considering (17) one obtains the system

ėiy =−k1φ1(e
i
y) + ψi (28)

ψ̇i =−k2φ2(e
i
y) +

d

dt
ϕiσ (29)

8



In light of (15), system (28)-(29) is formally equivalent to that dealt with in
[10], where suitable Lyapunov analysis was used to prove the uniform-time
convergence to zero of eiy and ψi, i.e. e

i
y = 0 and ψi = 0 on the interval

t ∈ [tk +T
∗, tk+1), where T

∗ is an arbitrarily small transient time independent
of eiy(tk). Consequently ėiy = 0 and, from equation (14), condition (23) is
satisfied too. By substituting (23) into (11) with eiy = 0, it yields the next
equivalent dynamics of the error variables:

ėiξ (t) = Āi11e
i
ξ(t)+(Āi11−Āσ11)ξ(t)+(Āi12−Āσ12)y(t)+Liϕiσ(e

i
ξ, 0, ξ, y) (30)

where

ϕiσ(e
i
ξ, 0, ξ, y) = Āi21e

i
ξ(t) + (Āi21 − Āσ21)ξ(t) + (Āi22 − Āσ22)y(t) (31)

Finally, by defining the following matrices

Ãi = (Āi11 + LiĀi21)

∆Aξ
iσ = (Āi11 − Āσ11) + Li(Āi21 − Āσ21)

∆Ay
iσ = (Āi12 − Āσ12) + Li(Āi22 − Āσ22)

(32)

equation (30) can be rewritten as

ėiξ (t) = Ãie
i
ξ(t) + ∆Aξ

iσξ(t) + ∆Ay
iσy(t) (33)

It is worth noting that for the correct observer (i.e., that having the index
i = σk which matches the current mode of operation σ(t)) one has ∆Aξ

iσ =
∆Ay

iσ = 0. Hence, along every time intervals t ∈ [tk + T ∗, tk+1), with k =
0, 1, ...,∞, the error dynamics of the correct observer are given by

ėσk

ξ (t) = Ãσk
eσk

ξ (t) (34)

which is asymptotically stable by (21). Since by Assumption 3 the pairs
(Ai, Ci) are all observable, the pairs (Āi11, Āi21) are also observable, which
motivates the tuning condition (21). The solution of (34) fulfills the relation
(24).

Remark 1 Equation (34) means that the estimation ξ̂i provided by the “correct”
observer, i.e. the observer associated to the mode σk activated during the in-
terval t ∈ [tk, tk+1), at time tk +T ∗ starts to converge exponentially to the real
continuous state ξ. By appropriate choice of Li the desired rate of convergence
can be obtained.

Remark 2 It is worth stressing that the time T ∗ is independent of the initial
error at each time tk and can be made as small as desired (and in particular
such that T ∗ << ∆) by tuning the parameters of the observers properly.
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4 Discrete state estimation

In the previous section it was shown that there is one observer in the stack that
provides the asymptotic reconstruction of the continuous state of the switched
system (2). However, the index of such “correct” observer is the currently
active mode, which is still unknown to the designer, hence the scheme needs
to be complemented by a discrete mode observer. In the next subsections we
present two methods for reconstructing the discrete state of the system by
suitable processing of the observers’ output injections.

4.1 Asymptotically vanishing residuals

Along the time intervals [tk + T ∗, tk+1) the observers’ output injection vectors
(23) satisfy the following relationship:

νi(t) =











Āσk21e
σk

ξ (t) for i = σk

Āi21e
i
ξ(t) + (Āi

i21 − Āσk21)ξ(t) + (Āi22 − Āσk22)y(t) for i 6= σk

(35)
It turns out that along the time intervals [tk+T

∗, tk+1) the norm of the injection
term of the correct observer will be asymptotically vanishing in accordance
with

‖νσk
(t)‖ ≤ AM21αe

−γ(t−tk−T
∗) → 0, (36)

where

AM21= sup
i∈{1,2,...,q}

‖Āi21‖. (37)

The asymptotic nature of the convergence to zero of the residual vector cor-
responding to the correct observer is due to the dynamics (34) of the error
variable eσk

ξ (t), which in fact tends asymptotically to zero.

4.2 Uniform-time zeroed residuals

By making the injection signals insensitive to the dynamics of eiξ(t) it is pos-
sible to obtain a uniform-time zeroed residual for the correct observer, i.e. a
residual which is exactly zeroed after a finite time T ∗ following any switch,
independently of the error at the switching time. Let us make the next as-
sumption.
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Assumption 4 For all i = 1, 2, ..., q, the submatrices Āi21 are not full row
rank.

The major consequence of Assumption 4 is that N←
(

Āi21

)

is not trivial. Let

Ui be a basis for N←
(

Āi21

)

(i.e. UiĀi21 = 0) and denote

ν̄i(t) = Uiνi(t) (38)

Clearly, by (35), on the interval [tk + T ∗, tk+1) one has that

ν̄i(t) =











0 for i = σk

−UiAσk21ξ(t) + Ui(Āi22 − Āσk22)y(t) for i 6= σk

(39)

It turns out that starting from the time tk+T
∗ the norm of the injection term

of the correct observer will be exactly zero, i.e. ‖ν̄σk
(t)‖ = 0 ∀t ∈ [tk+T

∗, tk+1).

In order to reconstruct univocally the discrete state, it must be guaranteed that
the “wrong” residuals cannot stay identically at zero. In the following section
we shall derive a structural condition on the system matrices guaranteeing
that the uniform-time zeroed residuals associated to the “wrong” observers
cannot stay at the origin.

4.3 Uniqueness of the reconstructed switching law

The main property allowing the discrete mode reconstruction is that, af-
ter a finite time T ∗ following any switch, the residual corresponding to the
“correct” observer converges to zero, according to (35), or it is exactly zero if
the uniform-time zeroed residuals (38) are used. In order to reconstruct the
discrete state univocally, all the other residuals (i.e. those having indexes cor-
responding to the non activated modes) must be separated from zero. In what
follows the uniform-time zeroed residuals (38) are considered as they provide
better performance and faster reconstruction capabilities. Nevertheless, ana-
logue considerations can be made in the case of the asymptotically vanishing
residuals (35).

Definition 2 Given the switched system (2), a residual ν̄i(t) is said to be non
vanishing if x(t) 6= 0 almost everywhere implies ν̄i(t) 6= 0 almost everywhere
∀i 6= σk, that is the residuals corresponding to the “wrong” observers cannot be
identically zero on a time interval unless the state of the system is identically
zero in the considered interval.
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Next Lemma establishes an “observability-like” requirement guaranteeing that
that the uniform-time zeroed residuals (39) are non vanishing.

Lemma 1 The uniform-time zeroed residuals ν̄i(t) in (39) are non vanishing
if and only if the pairs (Āj, C̄ij) are observable ∀i 6= j, where Āj (j = 1, 2, ..., q)

are the state matrices of system (6) and C̄ij =
[

−UT
i Āj21 U

T
i (Āi22 − Āj22)

]

.

Proof. Along the time interval [tk + T ∗, tk+1), the “wrong” residuals ν̄i(t) in
(39), i.e. those with index i 6= σk, are related to the state z(t) of system (6) as

ν̄i(t) = C̄iσk
z(t) (40)

where z(t) is the solution of

ż (t) = Āσk
z (t) (41)

It is well known that if the pair (Āσk
, C̄iσk

) of system (40)-(41) is observable,
then ν̄i(t) is identically zero if and only if z(t) (and, thus, x(t)) is null. There-
fore, to extend this property over all the intervals tk + T ∗ ≤ t < tk+1 with
k = 0, 1, ...,∞, all the pairs (Āj , C̄ij) ∀i 6= j have to be observable.

Assumption 5 The state trajectories x(t) in (2) are not zero almost every-
where and all the residuals ν̄i(t) in (38) are non vanishing according to Defi-
nition (2).

Thus if Assumption 5 is fulfilled, only the residual associated to the correct
observer will be zero, while all the others will have a norm separated from
zero. It is clear that if such a situation can be guaranteed, then the discrete
mode can be univocally reconstructed by means of simple decision logic, as
discussed in Theorem 2 of the next Section.

Remark 3 If Assumption 4 is not satisfied the residual (38) cannot be consid-
ered. Nevertheless, by considering the asymptotically vanishing residuals (35),
similar structural conditions guaranteeing that the “wrong” residuals cannot
be identically zero can be given. Consider the following extended vector:

zie(t) =















eiξ(t)

ξ(t)

y(t)















(42)

From (6), (33) and (35) the following system can be considered on the interval
[tk + T ∗, tk+1):
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żie(t) = Aiσk
zie(t)

νi(t) = Ciσk
zie(t)

(43)

where

Aiσk
=







Ãi ∆A
ξ
iσk

∆Ay
iσk

0 Āσk





 Ciσk
=















Āi21

Āi21 − Āσk21

Āi22 − Āσk22















T

(44)

The asymptotically vanishing residuals (35) are non vanishing if the pairs
(Aij, Cij) are observable ∀i 6= j.

5 Continuous and discrete state observer

The proposed methodology of continuous and discrete state estimation is sum-
marized in the next

Theorem 2 Consider the linear switched system (2), fulfilling the Assump-
tion 1-5, and the observer stack (8) described in the previous Theorem 1.
Consider the next evaluation signal

ρ̄i(t) =
∫ t

t−ǫ
‖ν̄i(τ )‖dτ. (45)

where ǫ, is a small time delay, and the next active mode identification logic:

σ̂(t) = argmini∈{1,2,...,q}ρ̄i(t) (46)

Then, the discrete state estimation will be such that

σ̂(t) = σ(t), tk + T ∗ + ǫ ≤ t ≤ tk+1, k = 0, 1, ...,∞ (47)

and the continuous state estimation given by

x̂(t) = (Tσ̂)
−1







ξ̂σ̂(t)

ŷσ̂(t)






(48)

13



will be such that

‖x̂(t)− x(t)‖ ≤ αe−γ(t−tk−T
∗) ∀t ∈ [tk + T ∗, tk+1) (49)

Proof.

By considering (39) which, specified for the correct observer (i = σk), guaran-
tees that

ν̄σk
(t) = 0, tk + T ∗ ≤ t ≤ tk+1 (50)

along with the Assumption 5 , whose main consequence is that ν̄i(t) cannot
be identically zero over an interval when i 6= σ(t), it follows that it is always
possible to find a threshold η such that for the evaluation signals ρ̄i(t) in (45)
one has

ρ̄i(t)>η, tk + T ∗ + ǫ ≤ t < tk+1, i 6= σk (51)

ρ̄σk
(t)≤ η, tk + T ∗ + ǫ ≤ t < tk+1. (52)

Thus the mode decision logic (46) provides the reconstruction of the discrete
state after the finite time T ∗ + ǫ successive to any switching time instant, i.e.

σ̂(t) = σk, tk + T ∗ + ǫ ≤ t < tk+1 (53)

The second part of the Theorem 2 concerning the continuous state estimation
can be easily proven by considering the coordinate transformation (4) and
Theorem 1, which imply (49).

Remark 4 We assumed that the state trajectories are not zero almost every-
where (Assumption 5). As a result the wrong residuals can occasionally cross
the zero value. This fact motivates the evaluation signal introduced in (45):
considering a window of observation for the residuals, all the wrong residuals
will be separated from zero, while only the correct one can stay close to zero
during a time interval of nonzero length.

The architecture of the observer is shown in Fig. 2.

Remark 5 It is possible to develop the same methodology if the residual (35)
is considered instead of (38). The evaluation signal

ρi(t) =
∫ t

t−ǫ
‖νi(τ )‖dτ. (54)
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Fig. 2. Continuous and discrete state observer

can be used to identify the discrete state. However, the time to identify the
discrete mode will be bigger than the one of Theorem 2 since the vanishing
transient of the error variable eiξ is needed to last for a while, starting from
the finite time tk + T ∗.

6 SIMULATION RESULTS

In this section, we discuss a simulation example to show the effectiveness of
our method. Consider a switched linear system as in (2) with q = 3 modes
described by the matrices

A1 =















0.1 0.6 −0.4

−0.5 −0.8 1

0.1 0.4 −0.7















, A2 =















−0.2 0.3 −0.8

−0.2 −0.4 0.8

1 0.6 −0.3















, A3 =















−0.8 −0.5 0.2

−0.5 −0.1 −0.5

−0.3 −0.2 0.3















(55)

C1 =







1 0 0

0 1 0





 , C2 =







1 0 0

0 0 1





 , C3 =







0 0 1

0 1 0





 (56)

The system starts from the mode 1 with the initial conditions x(0) = [−3,−1, 6]T
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and evolves switching between the three modes according to the switching
law shown in Fig. 3. After the coordinate transformation (4) obtained by the
transformation matrices

T1 =















0 0 1

1 0 0

0 1 0















, T2 =















0 −1 0

1 0 0

0 0 1















, T3 =















−1 0 0

0 0 1

0 1 0















(57)

the system is in the proper form to apply our estimation procedure. Since the
pairs (Ai, Ci) are all observable for i = 1, 2, 3, the stack of observers (8) can be
implemented. By properly tuning the parameters of the STA-based observers
according to (20), the components of the vector error ey are exactly zero for
each observer after a time T ∗ subsequent to any switch (Fig. 4) as proven in
Theorem 1. On the contrary, the error eξ at time tk + T ∗ starts to converge
exponentially to zero only for the correct observer, as shown in Fig. 5. Notice
that the three signals occasionally cross the zero, but only the one correspond-
ing to the correct observer remains zero on a time interval. The gains of the
observers Li are chosen such that the eigenvalues of the matrices Ãi in (32)
governing the error dynamics (33) are located at −5.
Since Assumption 5 is satisfied, the discrete mode can be univocally identified.
To this end let us consider the asymptotically vanishing residuals (35) and the
uniform-time zeroed residuals (39). The simulations confirm that both signals
stay at zero only for the correct observer. Moreover, the signal corresponding
to the asymptotically vanishing residual is in general “slower” than the signal
corresponding to the uniform-time zeroed residual. In order to highlight the
different behaviours of the two signals, we reported in Fig. 6 the dynamics of
the two residuals provided by the third observer when the mode 3 becomes
active at t = 20. The evaluation signal obtained with the uniform-time ze-
roed residuals allows us a faster estimation of the switching law, as compared
to their asymptotic counterparts. In Fig. 7 the actual and the reconstructed
switching law are depicted by using the two different evaluation signals.

0 5 10 15 20 25 30

0

1

2

3

Time

 

 
σ

Fig. 3. Actual switching signal.
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Fig. 4. Estimation vector error ey corresponding to the three observers.
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Fig. 5. Estimation error eξ corresponding to the three observers.
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ρ3

Fig. 6. Evaluation signal used to estimate the discrete state.

7 CONCLUSIONS

The problem of simultaneous continuous and discrete state reconstruction has
been tackled for linear autonomous switched systems. The main ingredient
of the proposed approach is an appropriate stack of high-order sliding mode
observers used both as continuous state observers and as residual generators
for discrete mode identification. As a novelty, a procedure has been devised
to algebraically process the residuals in order to reconstruct the discrete state
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Fig. 7. Actual and reconstructed switching signals.

after a finite time that can be arbitrarily small, and, additionally, conditions
ensuring the identifiability of the system modes are derived in terms of the
original system matrices. An original “projection” procedure has been pro-
posed, leading to the so-called uniform-time zeroed residuals, which allows a
faster reconstruction of the active mode as compared to the (however feasible)
case when such projection is no adopted. The same observer can be designed
in the case of forced switched systems, too. However, further investigation
is needed concerning the underlying conditions to univocally reconstruct the
discrete state, which would be affected by the chosen input too.

8 ACKOWLEDGMENTS

A. Pisano gratefully acknowledges the financial support from the Ecole Cen-
trale de Lille under the 2013 ECL visiting professor program.

References

[1] A. Alessandri and P. Coletta. Switching observers fo continuous-time and
discrete-time linear systems. In Proceedings of the 2001 American Control
Conference, pages 2516–2521, Arlington, Virginia, 2001.

[2] M. Babaali and G. J. Pappas. Observability of switched linear systems in
continuous time. In Proceedings of the 8th international conference on Hybrid
Systems: computation and control, HSCC’05, pages 103–117, Berlin, Heidelberg,
2005. Springer-Verlag.

[3] A. Balluchi, L. Benvenuti, M.D. Di Benedetto, and A.L. Sangiovanni-
Vincentelli. Design of observers for hybrid systems. In Hybrid Systems:
Computation and Control, volume 2289 of LNCS, pages 76–89. Springer-Verlag,
2002.

[4] Andrea Balluchi, Maria Domenica Di Benedetto, Claudio Pinello, C. Rossi, and
Alberto L. Sangiovanni-Vincentelli. Hybrid control in automotive applications:
the cut-off control. Automatica, 35(3):519–535, 1999.

18



[5] F. Bejarano and A. Pisano. Switched observers for switched linear systems
with unknown inputs. IEEE Transactions on Automatic Control, 56(3):681–
686, 2011.

[6] Francisco J. Bejarano and Leonid Fridman. State exact reconstruction for
switched linear systems via a super-twisting algorithm. Intern. J. Syst. Sci.,
42(5):717–724, 2011.

[7] M.S. Branicky. Studies in hybrid systems: Modeling, analysis, and control. PhD
thesis, 1995.

[8] C. Chevallereau, E. R. Westervelt, and J. W. Grizzle. Asymptotically stable
running for a five-link, four-actuator, planar bipedal robot. International
Journal of Robotics Research, 24:431–464, 2005.

[9] E. Cinquemani, A. Milias, and John Lygeros. Identification of genetic regulatory
networks: A stochastic hybrid approach. IFAC World Congress, 17, 2008.

[10] E. Cruz-Zabala, J.A. Moreno, and L.M. Fridman. Uniform robust exact
differentiator. IEEE Transactions on Automatic Control, 56(11):2727–2733,
June 2011.

[11] J. Davila, L. Fridman, and A. Levant. Second-order sliding-mode observer for
mechanical systems. IEEE Trans. Automat. Contr., 50(11):1785–1789, 2005.

[12] J. Davila, A. Pisano, and E. Usai. Continuous and discrete state
reconstruction for nonlinear switched systems via high-order sliding-mode
observers. International Journal of Systems Science, 42(5):725–735, 2011.

[13] Willem L. De Koning. Brief digital optimal reduced-order control of pulse-
width-modulated switched linear systems. Automatica, 39(11):1997–2003, 2003.

[14] C. Edwards and S.K. Spurgeon. Sliding Mode Control: Theory and applications.
Taylor and Francis, London, 1998.

[15] S. Engell. Modelling and analysis of hybrid systems. Mathematics and
Computers in Simulation, 46:445–464, 1998.

[16] Thierry Floquet, Chris Edwards, and Sarah Spurgeon, K. On sliding mode
observers for systems with unknown inputs. International Journal of Adaptive
Control and Signal Processing, 21(8-9):638–656, 2007.

[17] William Glover and John Lygeros. A stochastic hybrid model for air traffic
control simulation. HSCC, 2993:372–386, 2004.

[18] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid dynamical systems. IEEE
Control Systems Magazine, 29:28–93, 2009.

[19] M. Kamgarpour, M. Soler, C.J. Tomlin, J. Olivares, and J. Lygeros. Hybrid
Optimal Control for Aircraft Trajectory Design with a Variable Sequence of
Modes. IFAC World Congress, 2011.

[20] D. Liberzon and A.S. Morse. Basic problems in stability and design of switched
systems. IEEE Control Systems Magazine, 19:59–70, 1999.

19



[21] Daniel Liberzon. Switching in Systems and Control. Systems and Control:
Foundations and Applications. Birkhäuser, Boston, MA, 2003.
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