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INTRODUCTION

In the last decade, the control community has devoted a great deal of attention to the study of hybrid/switched systems [START_REF] Engell | Modelling and analysis of hybrid systems[END_REF][START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]. They represent a powerful tool to describe systems that exhibit switchings between several subsystems, inherently by nature or as a result of external control actions such as in switching supervisory control [START_REF] Morse | Supervisory control of families of linear set-point controllers -part 1: Exact matching[END_REF]. Switched systems and switched multi-controller synthesis have numerous applications in the control of mechanical systems [START_REF] Narendra | Adaptation and learning using multiple models, switching, and tuning[END_REF][START_REF] Chevallereau | Asymptotically stable running for a five-link, four-actuator, planar bipedal robot[END_REF], automotive industry [START_REF] Balluchi | Hybrid control in automotive applications: the cut-off control[END_REF], switching power converters [START_REF] Koning | Brief digital optimal reduced-order control of pulsewidth-modulated switched linear systems[END_REF], aircraft and traffic control [START_REF] Kamgarpour | Hybrid Optimal Control for Aircraft Trajectory Design with a Variable Sequence of Modes[END_REF][START_REF] Glover | A stochastic hybrid model for air traffic control simulation[END_REF], biological systems [START_REF] Vries | Hybrid system modeling and identification of cell biology systems: perspectives and challenges[END_REF][START_REF] Cinquemani | Identification of genetic regulatory networks: A stochastic hybrid approach[END_REF], and many other fields [START_REF] Branicky | Studies in hybrid systems: Modeling, analysis, and control[END_REF]. Remarkable theoretical results involving switched systems have been achieved concerning their stability and stabilizability [START_REF] Lin | Stability and stabilizability of switched linear systems: A survey of recent results[END_REF][START_REF] Liberzon | Switching in Systems and Control. Systems and Control: Foundations and Applications[END_REF], controllability and reachability [START_REF] Sun | Switched Linear Systems: Control and Design[END_REF][START_REF] Sun | Controllability and reachability criteria for switched linear systems[END_REF] and observability [START_REF] Vidal | Observability of linear hybrid systems[END_REF][START_REF] Xie | Necessary and sufficient conditions for controllability and observability of switched impulsive control systems[END_REF][START_REF] Babaali | Observability of switched linear systems in continuous time[END_REF][START_REF] Sun | Switched Linear Systems: Control and Design[END_REF]. The problem of observer design for linear switched systems has been thoroughly investigated by the control community and different approaches have been proposed. The assumptions about the knowledge of the discrete state play a crucial role. In the case of complete knowledge of the discrete state a Luenberger-like switched observer matching the currently active dynamics can be used and the problem is that of guaranteeing the stability of the switched error dynamics. In [START_REF] Alessandri | Switching observers fo continuous-time and discrete-time linear systems[END_REF] it is shown that the observer gain matrices can be selected by solving a set of linear matrix inequalities. In [START_REF] Bejarano | Switched observers for switched linear systems with unknown inputs[END_REF], the approach is generalized to cover linear switched systems with unknown exogenous inputs. In [START_REF] Tanwani | Observability implies observer design for switched linear systems[END_REF], by adopting the notion of observability over an interval, borrowed from [START_REF] Xie | Necessary and sufficient conditions for controllability and observability of switched impulsive control systems[END_REF], an observer is designed for switched systems whose subsystems are not even required to be separately observable. However, in some situations the active mode is unknown and needs to be estimated, along with the continuous state, by relying only on the continuous output measurements. Usually, in such case, the observer consists of two parts: a discrete state (or location) observer, estimating the active mode of operation, and a continuous observer that estimates the continuous state of the switched system. In [START_REF] Balluchi | Design of observers for hybrid systems[END_REF], the architecture of a hybrid observer consisting of both a discrete and continuous state identification part is presented, assuming partial knowledge of the discrete state, i.e. dealing with the case in which some discrete events causing the switchings are supposed to be measurable. When such a discrete output is not sufficient to identify the mode location, the information available from the continuous evolution of the plant is used to estimate the current mode. However, the " distinguishability" of the different modes, i.e. the property concerning the possibility to reconstruct univocally the discrete state, was not analysed. The present work intrinsically differs from [START_REF] Balluchi | Design of observers for hybrid systems[END_REF] in that we consider the case of completely unknown discrete state. In such a case the possibility to obtain an estimate of the current mode in a finite time is clearly important, not to say crucial. This is clear for instance from [START_REF] Pettersson | Designing switched observers for switched systems using multiple lyapunov functions and dwell-time switching[END_REF], where the authors focus on the continuous-time estimation problem and show that a bound to the estimation error can be given if the discrete mode is estimated correctly within a certain time. Additionally, for those switched systems admitting a dwell time, a guaranteed convergence of the discrete mode estimation taking place "sufficiently faster" that the dwell time is needed. In view of these considerations sliding mode-based observers seem to be a suitable tool due to the attractive feature of finite-time convergence charac-terizing the sliding motions [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF][START_REF] Floquet | On sliding mode observers for systems with unknown inputs[END_REF][START_REF] Orlov | Finite time stabilization of a perturbed double integrator -part i: Continuous sliding modebased output feedback synthesis[END_REF][START_REF] Pisano | Sliding mode control: a survey with applications[END_REF]. As a matter of fact, sliding mode observers have been successfully implemented to deal with the problem of state reconstruction for switched systems. In [START_REF] Bejarano | State exact reconstruction for switched linear systems via a super-twisting algorithm[END_REF], an observer is proposed ensuring the reconstruction of the continuous and discrete state in finite time. In [START_REF] Davila | Continuous and discrete state reconstruction for nonlinear switched systems via high-order sliding-mode observers[END_REF], the authors present an observer, based on the high-order sliding mode approach, for nonlinear autonomous switched systems. However in the above works, though guaranteeing the finite-time convergence, the convergence time depends on the initial conditions mismatch, and, as a consequence, the estimation convergence in a certain pre-specified time can be guaranteed only upon the existence of an a-priori known admissible domain for the system initial conditions.

Main contribution and structure of the paper

In the present paper we propose a stack of observers whose output injection is computed by relying on the modified Super-Twisting Algorithm, introduced in [START_REF] Cruz-Zabala | Uniform robust exact differentiator[END_REF], that guarantees the so-called "uniform convergence" property, i.e. convergence is attained in finite-time and an upper bound to the transient time can be computed which does not depend on the initial conditions. We also show that, under some conditions, the discrete mode can be correctly reconstructed in finite-time after any switch independently of the observation error at the switching times. Using the continuous output of the switched system, the observer estimates the continuous state and, at the same time, produces suitable residual signals allowing the estimation of the current mode. We propose a residual "projection" methodology by means of which the discrete state can be reconstructed after a switching instant with a finite and pre-specified estimation transient time, allowing a more quick and reliable reconstruction of the discrete state. Additionally, we give structural "distinguishability" conditions in order to guarantee the possibility to reconstruct the discrete state univocally by processing the above mentioned residuals.

The paper structure is as follows. Section 2 formulates the problems under analysis and outlines the structure of the proposed scheme. Section 3 illustrates the design of the continuus state observers' stack by providing the underlying Lyapunov based convergence analysis. Section 4 deal with the discrete state estimation problem. Two approaches are proposed, one using the " asymptotically vanishing residuals" (Subsection 4.1) and another one, taking advantage of the above mentioned residuals' "projection" methodology ("uniform-time zeroed residuals", Subsection 4.2). Section 4.3 outlines the structural conditions addressing the "distinguishability" issues. Section 5 summarizes the proposed scheme and main results of this paper. Section 6 illustrates some simulation results and Section 7 gives some concluding remarks.

Notation

For a vector

v = [v 1 , v 2 , . . . , v n ] T ∈ R n denote sign(v) = [sign(v 1 ), sign(v 2 ), . . . , sign(v n )] T . (1) 
Given a set D ⊆ R n , let vj (D) be the maximum value that can assume the j-th element of v on D. Denote as M the 2-norm of a matrix M. For a square matrix M, denote as σ(M) the spectrum of M, i.e. the set of all eigenvalues of M. Finally, denote as N ← (M) the left null space of a matrix M.

PROBLEM STATEMENT

Consider the linear autonomous switched dynamics

ẋ (t) = A σ x (t) y(t) = C σ x(t) (2) 
where x (t) ∈ R n represents the state vector, and y(t) ∈ R p represents the output vector. The so-called switching law or discrete state σ(t) : [0, ∞) → {1, 2, ..., q} determines the actual system dynamics among the possible q "operating modes" which are represented, for system (2), by the set of matrix pairs {A 1 , C 1 }, {A 2 , C 2 }, ...{A q , C q }. Without loss of generality, it is assumed that the output matrices C i , ∀i = 1, 2, ..., q are full row rank matrices. The switching law is a piecewise constant function with discontinuities at the switching time instants:

σ(t) = σ k , t k ≤ t < t k+1 , k = 0, 1, ..., ∞ (3) 
where t 0 = 0 and t k (k = 1, 2, . . .) are the time instants at which the switches take place.

Definition 1

The dwell time is a constant ∆ > 0 such that the switching times fulfill the inequality t k+1t k ≥ ∆ for all k = 0, 1, ....

The objective is to design an observer able to simultaneously estimate the discrete state σ(t) and the continuous state x(t) of system (2), by relying on the availability for measurements of the output vector y(t).

We propose a design methodology based on a stack of sliding mode observers producing estimates of the evolution of the continuous state of the switched system. At the same time, suitable residuals are provided for identifying the actual value of the discrete state and, consequently, the specific observer of the stack that is producing an asymptotically converging estimate of the continuous state.

The observer structure, depicted in Fig. 1, mainly consists of two parts: a location observer and a continuous state observer. The location observer is devoted to the identification of the discrete state, i.e. the active mode of operation of the switched system, on the basis of some residuals signals produced by the continuous observer.

The continuous state observer receives as input the output vector y(t) of the switching system and, using the location information provided by the location observer, produces an estimation of the continuous state of the system. Finally, the proposed approach requires each subsystem to be observable:

Assumption 3 The pairs (A i , C i ) are observable ∀i = 1, 2, ..., q.
3 Continuous state observer design

Let us preliminarily consider, as suggested in [START_REF] Edwards | Sliding Mode Control: Theory and applications[END_REF], a family of nonsingular coordinate transformations such that the output vector y(t) is a part of the transformed state z(t), i.e.

z(t) =    ξ(t) y(t)    = T σ x(t) (4) 
where ξ(t) ∈ R (n-p) and the transformation matrix is given by

T σ =    (N σ ) T C σ    , (5) 
where the columns of

N i ∈ R n×(n-p) span the null space of C i , i = 1, 2, ..., q.
By Assumption 2, the trajectories z(t) will evolve into some known compact domain D z . The transformation ( 4) is always nonsingular, and the switched system dynamics (2) in the transformed coordinates are:

ż (t) = Āσ z (t) (6) 
where

Āσ = T σ A σ (T σ ) -1 =    Āσ11 Āσ12 Āσ21 Āσ22    (7) 
A stack of q dynamical observers, each one associated to a different mode of the switched system, is suggested as follows:

żi (t) = Āi ẑi (t) + Li ν i (t), if ẑi ∈ D z i = 1, 2, . . . , q, ẑij (t) = zj (D z ), if ẑij ≥ zj (D z ) j = 1, 2, . . . , n (8) 
where ẑi = [ ξi , ŷi ] T is the state estimate provided by the i-th observer, ν i ∈ R p represents the i-th observer injection input, yet to be designed, and Li ∈ R n×p takes the form

Li =    L i -I    (9) 
where L i ∈ R (n-p)×p are observer gain matrices to be designed and I is the identity matrix of dimension p. In the second of [START_REF] Chevallereau | Asymptotically stable running for a five-link, four-actuator, planar bipedal robot[END_REF], which corresponds to a saturating projection of the estimated state, according to the a-priori known domain of evolution D z of vector z(t), the notation ẑij denotes the j-th element of the vector ẑi .

By introducing the error variables

e i ξ (t) = ξi (t) -ξ(t), e i y (t) = ŷi (t) -y(t), i = 1, 2, ..., q, (10) 
in view of ( 6) and of the first equation of ( 8) the next error dynamics can be easily obtained:

ėi ξ (t) = Āi11 e i ξ (t) + Āi12 e i y (t) + ( Āi11 -Āσ11 )ξ(t) + ( Āi12 -Āσ12 )y(t) + L i ν i (t) (11) ėi y (t) = Āi21 e i ξ (t) + Āi22 e i y (t) + ( Āi21 -Āσ21 )ξ(t) + ( Āi22 -Āσ22 )y(t) -ν i (t) (12) 
Then, by defining

ϕ iσ (e i ξ , e i y , ξ, y) = Āi21 e i ξ (t) + Āi22 e i y (t) + ( Āi21 -Āσ21 )ξ(t) + ( Āi22 -Āσ22 )y(t) (13) one can rewrite (12) as ėi y (t) = ϕ iσ (e i ξ , e i y , ξ, y) -ν i (t) (14) 
Let us consider now the second equation of [START_REF] Chevallereau | Asymptotically stable running for a five-link, four-actuator, planar bipedal robot[END_REF]. We know that the trajectories z(t) evolve inside a compact domain D z and the "reset" relation ẑij (t) = zj (D z ) , applied when the corresponding estimate leaves the domain D z , forces them to remain in the set D z . Such a "saturation" mechanism in the observer guarantees that the estimation errors e i ξ and e i y are always bounded. Consequently the functions ϕ ij are smooth enough, that is there exist a constant Φ such that the following inequality is satisfied

d dt ϕ ij (e i ξ , e i y , ξ, y) ≤ Φ, ∀i, j = 1, 2, ..., q (15) 
Following [START_REF] Cruz-Zabala | Uniform robust exact differentiator[END_REF], the observer injection term ν i is going to be specified within the next Theorem which establishes some properties of the proposed observer stack that will be instrumental in our next developments.

Theorem 1 Consider the linear switched system (2), satisfying the Assumptions 1-3 along with the stack of observers [START_REF] Chevallereau | Asymptotically stable running for a five-link, four-actuator, planar bipedal robot[END_REF], and the observer injection terms set according to

ν i = k 1 φ 1 (e i y ) -ν 2i (16) ν2i = -k 2 φ 2 (e i y ) (17) 
where

φ 1 (e i y ) = |e i y | 1/2 sign(e i y ) + µ|e i y | 3/2 sign(e i y ) (18) 
φ 2 (e i y ) = 1 2 sign(e i y ) + 2µe i y + 3 2 µ 2 |e i y | 2 sign(e i y ) (19) 
with µ > 0 and the tuning coefficients k 1 and k 2 selected in the set:

K = (k 1 , k 2 ) ∈ R 2 |0 < k 1 < 2 √ Φ, k 2 > k 2 1 4 + 4Φ 2 k 2 1 ∪ (k 1 , k 2 ) ∈ R 2 |k 1 < 2 √ Φ, k 2 > 2Φ (20)
Let L i be chosen such that

Re σ Āi11 + L i Āi21 ≤ -γ, γ > 0 (21)
Then, for sufficiently large Φ and γ, there exists an arbitrarily small time T * << ∆ independent of e i y (t k ) such that, for all k = 0, 1, ..., ∞ and for some α > 0, the next properties hold along the time intervals t ∈ [t k + T * , t k+1 ):

e i y (t) = 0 ∀i (22) 
ν i (t) = ϕ iσ (e i ξ , 0, ξ, y) ∀i (23) 
e σ k ξ (t) ≤ αe -γ(t-t k -T * ) (24) 
Proof. The theorem can be proven by showing the uniform (i.e. independent of the initial condition) time convergence of e i y to zero for all the q observers, after each switching, and analyzing the dynamics of the error variables e i ξ once the trajectories are restricted on the surfaces

S i o = { e i ξ , e i y : e i y = 0}. ( 25 
)
Considering the input injection term ( 16) into ( 14) the output error dynamics are given by ėi

y = ϕ iσ -k 1 φ 1 (e i y ) + ν 2i (26) 
By introducing the new coordinates

ψ i = ν 2i + ϕ iσ (27) 
and considering (17) one obtains the system

ėi y = -k 1 φ 1 (e i y ) + ψ i (28) ψi = -k 2 φ 2 (e i y ) + d dt ϕ iσ (29) 
In light of [START_REF] Engell | Modelling and analysis of hybrid systems[END_REF], system (28)-( 29) is formally equivalent to that dealt with in [START_REF] Cruz-Zabala | Uniform robust exact differentiator[END_REF], where suitable Lyapunov analysis was used to prove the uniform-time convergence to zero of e i y and ψ i , i.e. e i y = 0 and ψ i = 0 on the interval t ∈ [t k + T * , t k+1 ), where T * is an arbitrarily small transient time independent of e i y (t k ). Consequently ėi y = 0 and, from equation ( 14), condition ( 23) is satisfied too. By substituting ( 23) into ( 11) with e i y = 0, it yields the next equivalent dynamics of the error variables:

ėi ξ (t) = Āi11 e i ξ (t)+( Āi11 -Āσ11 )ξ(t)+( Āi12 -Āσ12 )y(t)+L i ϕ iσ (e i ξ , 0, ξ, y) (30) 
where

ϕ iσ (e i ξ , 0, ξ, y) = Āi21 e i ξ (t) + ( Āi21 -Āσ21 )ξ(t) + ( Āi22 -Āσ22 )y(t) (31) 
Finally, by defining the following matrices

Ãi = ( Āi11 + L i Āi21 ) ∆A ξ iσ = ( Āi11 -Āσ11 ) + L i ( Āi21 -Āσ21 ) ∆A y iσ = ( Āi12 -Āσ12 ) + L i ( Āi22 -Āσ22 ) (32) 
equation ( 30) can be rewritten as ėi ξ (t) = Ãi e i ξ (t) + ∆A ξ iσ ξ(t) + ∆A y iσ y(t)

It is worth noting that for the correct observer (i.e., that having the index i = σ k which matches the current mode of operation σ(t)) one has ∆A ξ iσ = ∆A y iσ = 0. Hence, along every time intervals t ∈ [t k + T * , t k+1 ), with k = 0, 1, ..., ∞, the error dynamics of the correct observer are given by

ėσ k ξ (t) = Ãσ k e σ k ξ (t) (34) 
which is asymptotically stable by [START_REF] Liberzon | Switching in Systems and Control. Systems and Control: Foundations and Applications[END_REF]. Since by Assumption 3 the pairs (A i , C i ) are all observable, the pairs ( Āi11 , Āi21 ) are also observable, which motivates the tuning condition [START_REF] Liberzon | Switching in Systems and Control. Systems and Control: Foundations and Applications[END_REF]. The solution of (34) fulfills the relation [START_REF] Narendra | Adaptation and learning using multiple models, switching, and tuning[END_REF].

Remark 1 Equation (34) means that the estimation ξi provided by the "correct" observer, i.e. the observer associated to the mode σ k activated during the interval t ∈ [t k , t k+1 ), at time t k + T * starts to converge exponentially to the real continuous state ξ. By appropriate choice of L i the desired rate of convergence can be obtained.

Remark 2 It is worth stressing that the time T * is independent of the initial error at each time t k and can be made as small as desired (and in particular such that T * << ∆) by tuning the parameters of the observers properly.

Discrete state estimation

In the previous section it was shown that there is one observer in the stack that provides the asymptotic reconstruction of the continuous state of the switched system (2). However, the index of such "correct" observer is the currently active mode, which is still unknown to the designer, hence the scheme needs to be complemented by a discrete mode observer. In the next subsections we present two methods for reconstructing the discrete state of the system by suitable processing of the observers' output injections.

Asymptotically vanishing residuals

Along the time intervals [t k + T * , t k+1 ) the observers' output injection vectors [START_REF] Morse | Supervisory control of families of linear set-point controllers -part 1: Exact matching[END_REF] satisfy the following relationship:

ν i (t) =      Āσ k 21 σ k ξ (t) for i = σ k Āi21 e i ξ (t) + ( Āi i21 -Āσ k 21 )ξ(t) + ( Āi22 -Āσ k 22 )y(t) for i = σ k (35) 
It turns out that along the time intervals [t k +T * , t k+1 ) the norm of the injection term of the correct observer will be asymptotically vanishing in accordance with

ν σ k (t) ≤ A M 21 αe -γ(t-t k -T * ) → 0, (36) 
where

A M 21 = sup i∈{1,2,...,q}
Āi21 .

The asymptotic nature of the convergence to zero of the residual vector corresponding to the correct observer is due to the dynamics (34) of the error variable e σ k ξ (t), which in fact tends asymptotically to zero.

Uniform-time zeroed residuals

By making the injection signals insensitive to the dynamics of e i ξ (t) it is possible to obtain a uniform-time zeroed residual for the correct observer, i.e. a residual which is exactly zeroed after a finite time T * following any switch, independently of the error at the switching time. Let us make the next assumption.

Assumption 4 For all i = 1, 2, ..., q, the submatrices Āi21 are not full row rank.

The major consequence of Assumption 4 is that N ←

Āi21 is not trivial. Let U i be a basis for N ← Āi21 (i.e. U i Āi21 = 0) and denote

νi (t) = U i ν i (t) (38) 
Clearly, by (35), on the interval [t k + T * , t k+1 ) one has that

νi (t) =      0 for i = σ k -U i A σ k 21 ξ(t) + U i ( Āi22 -Āσ k 22 )y(t) for i = σ k (39)
It turns out that starting from the time t k + T * the norm of the injection term of the correct observer will be exactly zero, i.e. νσ k (t) = 0 ∀t ∈ [t k +T * , t k+1 ).

In order to reconstruct univocally the discrete state, it must be guaranteed that the "wrong" residuals cannot stay identically at zero. In the following section we shall derive a structural condition on the system matrices guaranteeing that the uniform-time zeroed residuals associated to the "wrong" observers stay at the origin.

Uniqueness of the reconstructed switching law

The main property allowing the discrete mode reconstruction is that, ter a finite time T * following any switch, the residual corresponding to the "correct" observer converges to zero, according to (35), or it is exactly zero if the uniform-time zeroed residuals (38) are used. In order to reconstruct the discrete state univocally, all the other residuals (i.e. those having indexes corresponding to the non activated modes) must be separated from zero. In what follows the uniform-time zeroed residuals (38) are considered as they provide better performance and faster reconstruction capabilities. Nevertheless, analogue considerations can be made in the case of the asymptotically vanishing residuals (35).

Definition 2 Given the switched system (2), a residual νi (t) is said to be non vanishing if x(t) = 0 almost everywhere implies νi (t) = 0 almost everywhere ∀i = σ k , that is the residuals corresponding to the "wrong" observers cannot be identically zero on a time interval unless the state of the system is identically zero in the considered interval.

Next Lemma establishes an "observability-like" requirement guaranteeing that that the uniform-time zeroed residuals (39) are non vanishing.

Lemma 1

The uniform-time zeroed residuals νi (t) in (39) are non vanishing if and only if the pairs ( Āj , Cij ) are observable ∀i = j, where Āj (j = 1, 2, ..., q)

are the state matrices of system ( 6) and Cij = -U T i Āj21 U T i ( Āi22 -Āj22 ) .

Proof. Along the time interval [t k + T * , t k+1 ), the "wrong" residuals νi (t) in (39), i.e. those with index i = σ k , are related to the state z(t) of ( 6) as

νi (t) = Ciσ k z(t) (40) 
where z(t) is the solution of

ż (t) = Āσ k z (t) (41) 
It is well known that if the pair ( Āσ k , Ciσ k ) of system (40)-( 41) is observable, then νi (t) is identically zero if and only if z(t) (and, thus, x(t)) is null. Therefore, to extend this property over all the intervals t k + T * ≤ t < t k+1 with k = 0, 1, ..., ∞, all the pairs ( Āj , Cij ) ∀i = j have to be observable.

Assumption 5

The state trajectories x(t) in (2) are not zero almost everywhere and all the residuals νi (t) in (38) are non vanishing according to Definition (2).

Thus if Assumption 5 is fulfilled, only the residual associated to the correct observer will be zero, while all the others will have a norm separated from zero. It is clear that if such a situation can be guaranteed, then the discrete mode can be univocally reconstructed by means of simple decision logic, as discussed in Theorem 2 of the next Section.

Remark 3 If Assumption 4 is not satisfied the residual (38) cannot be considered. Nevertheless, by considering the asymptotically vanishing residuals (35), similar structural conditions guaranteeing that the "wrong" residuals cannot be identically zero can be given. Consider the following extended vector:

z i e (t) =        e i ξ (t) ξ(t) y(t)        (42) 
From ( 6), ( 33) and (35) the following system can be considered on the interval

[t k + T * , t k+1 ): żi e (t) = A iσ k z i e (t) ν i (t) = C iσ k z i e (t) (43) 
where

A iσ k =    Ãi ∆A ξ iσ k ∆A y iσ k 0 Āσ k    C iσ k =        Āi21 Āi21 -Āσ k 21 Āi22 -Āσ k 22        T (44) 
The asymptotically vanishing residuals (35) are non vanishing if the pairs (A ij , C ij ) are observable ∀i = j.

Continuous and discrete state observer

The proposed methodology of continuous and discrete state estimation is summarized in the next Theorem 2 Consider the linear switched system (2), fulfilling the Assumption 1-5, and the observer stack [START_REF] Chevallereau | Asymptotically stable running for a five-link, four-actuator, planar bipedal robot[END_REF] described in the previous Theorem 1.

Consider the next evaluation signal

ρi (t) = t t-ǫ νi (τ ) dτ . ( 45 
)
where ǫ, is a small time delay, and the next active mode identification logic:

σ(t) = argmin i∈{1,2,...,q} ρi (t) (46) 
Then, the discrete state estimation will be such that

σ(t) = σ(t), t k + T * + ǫ ≤ t ≤ t k+1 , k = 0, 1, ..., ∞ (47) 
and the continuous state estimation given by

x(t) = (T σ ) -1    ξσ (t) ŷσ (t)    (48) 
will be such that

x(t) -x(t) ≤ αe -γ(t-t k -T * ) ∀t ∈ [t k + T * , t k+1 ) (49)
Proof.

By considering (39) which, specified for the correct observer (i = σ k ), guarantees that νσ k (t) = 0,

t k + T * ≤ t ≤ t k+1 (50) 
along with the Assumption 5 , whose main consequence is that νi (t) cannot be identically zero over an interval when i = σ(t), it follows that it is always possible to find a threshold η such that for the evaluation signals ρi (t) in (45) one has ρi (t) > η,

t k + T * + ǫ ≤ t < t k+1 , i = σ k (51) ρσ k (t) ≤ η, t k + T * + ǫ ≤ t < t k+1 . (52) 
Thus the mode decision logic (46) provides the reconstruction of the discrete state after the finite time T * + ǫ to any switching time instant, i.e.

σ(t) = σ k , t k + T * + ǫ ≤ t < t k+1 (53) 
The second part of the Theorem 2 concerning the continuous state estimation can be easily proven by considering the coordinate transformation (4) and Theorem 1, which imply (49).

Remark 4

We assumed that the state trajectories are not zero almost everywhere (Assumption 5). As a result the wrong residuals can occasionally cross the zero value. This fact motivates the evaluation signal introduced in (45): considering a window of observation for the residuals, all the wrong residuals will be separated from zero, while only the correct one can stay close to zero during a time interval of nonzero length.

The architecture of the observer is shown in Fig. 2.

Remark 5 It is possible to develop the same methodology if the residual (35) is considered instead of (38). The evaluation signal can be used to identify the discrete state. However, the time to identify the discrete mode will be bigger than the one of Theorem 2 since the vanishing transient of the error variable e i ξ is needed to last for a while, starting from the finite time t k + T * .

ρ i (t) = t t-ǫ ν i (τ ) dτ . (54) 

SIMULATION RESULTS

In this section, we discuss a simulation example to show the effectiveness of our method. Consider a switched linear system as in (2) with q = 3 modes by the matrices

A 1 =        0.1 0.6 -0.4 -0.5 -0.8 1 0.1 0.4 -0.7        , A 2 =        -0.2 0.3 -0.8 -0.2 -0.4 0.8 1 0.6 -0.3        , A 3 =        -0.8 -0.5 0.2 -0.5 -0.1 -0.5 -0.3 -0.2 0.3        (55) 
C 1 =    1 0 0 0 1 0    , C 2 =    1 0 0 0 0 1    , C 3 =    0 0 1 0 1 0    (56) 
The system starts from the mode 1 with the initial conditions x(0) = [-3, -1, 6] T and evolves switching between the three modes according to the switching law shown in Fig. 3. After the coordinate transformation (4) obtained by the transformation matrices

T 1 =        0 0 1 1 0 0 1 0        , T 2 =        0 -1 0 1 0 0 0 0 1        , T 3 =        -1 0 0 0 0 1 0 1 0        ( 57 
)
the system is in the proper form to apply our estimation procedure. Since the pairs (A i , C i ) are all observable for i = 1, 2, 3, the stack of observers ( 8) can be implemented. By properly tuning the parameters of the STA-based observers according to [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF], the components of the vector error e y are exactly zero for each observer after a time T * subsequent to any switch (Fig. 4) as proven in Theorem 1. On the contrary, the error e ξ at time t k + T * starts to converge exponentially to zero only for the correct observer, as shown in Fig. 5. Notice that the three signals occasionally cross the zero, but only the one corresponding to the correct observer remains zero on a time interval. The gains of the observers L i are chosen such that the eigenvalues of the matrices Ãi in [START_REF] Vries | Hybrid system modeling and identification of cell biology systems: perspectives and challenges[END_REF] governing the error dynamics ( 33) are located at -5.

Since Assumption 5 is satisfied, the discrete mode can be univocally identified.

To this end let us consider the asymptotically vanishing residuals (35) and the uniform-time zeroed residuals (39). The simulations confirm that both signals stay at zero only for the correct observer. Moreover, the signal corresponding to the asymptotically vanishing residual is in general "slower" than the signal corresponding to the uniform-time zeroed residual. In order to highlight the different behaviours of the two signals, we reported in Fig. 6 the dynamics of the two residuals provided by the third observer when the mode 3 becomes active at t = 20. The evaluation signal obtained with the uniform-time zeroed residuals allows us a faster estimation of the switching law, as compared to their asymptotic counterparts. In Fig. 7 the actual and the reconstructed switching law are depicted by using the two different evaluation signals. 

CONCLUSIONS

The problem of simultaneous continuous and discrete state reconstruction has been tackled for linear autonomous switched systems. The main ingredient of the proposed approach is an appropriate stack of high-order sliding mode observers used both as continuous state observers and as residual generators for discrete mode identification. As a novelty, a procedure has been devised to algebraically process the residuals in order to reconstruct the discrete state after a finite time that can be arbitrarily small, and, additionally, conditions ensuring the identifiability of the system modes are derived in terms of the original system matrices. An original "projection" procedure has been proposed, leading to the so-called uniform-time zeroed residuals, which allows a faster reconstruction of the active mode as compared to the (however feasible) case when such projection is no adopted. The same observer can be designed in the case of forced switched systems, too. However, further investigation is needed concerning the underlying conditions to univocally reconstruct the discrete state, which would be affected by the chosen input too.
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