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Abstract 

 

This paper considers the modelling of insulation material lifespan. This problem is crucial 

in electrical engineering, and specially for aircraft reliability, since about 40% of 

electrical machine failures stem from insulation. According to the material physical 

properties and to the sightings reported in the literature, the proposed model should relate 

the logarithm of the insulation lifespan to the logarithm of the electrical stress factors 

(voltage and frequency) and to the temperature. The possible interactions between these 

three predominant aging factors must also be considered. Moreover, due to a constraint of 

low experimental cost, the number and configuration of experiments should be optimized 

through a design method. Parametric modelling through multilinear regression requires 

the estimation of a potentially high number of parameters in view of the reduced data set. 

The method proposed in this paper thus combines parametric (multilinear regression) and 

non-parametric (regression trees) approaches through so-called hybrid models. First, a 

regression tree automatically classifies the experiments into ranges corresponding to 

relevant operating modes. Second, a multilinear model is associated to each leaf of the 

tree. This approach brings a better understanding of the aging phenomena through the 

hierarchical organization of the factors and also provides simple, specific and thus 

effective multilinear models in each lifespan range. The method performance is analysed 

through real data: training and test sets correspond to experiments on twisted pairs 

covered by an insulating varnish. The proposed method shows improved performance 

with respect to multilinear regression on one hand and to regression trees on the other 

hand. 

 

1. Introduction 
 

In the electrical engineering field, most critical applications, such as urban transports, 

aeronautics, or space, are moving towards more electric systems. Such systems offer 

significant benefits in terms of performance, impact on environment, and operating costs 

[1] but they also require higher electrical power than traditional systems [2]. 

Unfortunately, higher voltages and higher frequencies increase the risk of degradation in 

the electrical insulation [3]-[5] through Partial Discharges (PD) mainly. Given that 

around 40% of electrical machine failures result from insulation failures [5], [6], 

characterizing the lifespan of insulation materials under these new operating conditions 
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becomes  crucial  for  the  assessment  of  the  global  system  reliability.  In  addition  to  

electrical stress, insulation materials are subject to thermal, mechanical and 

environmental stresses acting simultaneously [7], [8]. Several models have been proposed 

to describe the effects of these different stresses on the insulation lifespan [7], [9], [10]. 

However, these models take into account a single stress factor (like the temperature in 

Arrhenius law or the voltage in the inverse power law) or at most two factors (mainly the 

electrothermal stress) at a time. Moreover, they are specifically designed for particular 

materials and their validity is assessed on very restricted factor ranges. Finally, they do 

not include the synergetic effects due to interactions between factors. In real-life, 

insulation materials are subject to a wide variety of operational and environmental 

stresses, thus independently studying the effect of each factor on the material lifespan is 

far too simplistic. 

In this paper, a statistical approach for the insulation lifespan modeling is proposed. 

The twofold objective is to provide a reliable lifespan model with a minimum 

experimental cost. To comply with both the accuracy and the economical constraints, the 

number of experiments and their configuration are specified according to two 

experimental optimization methods: the Design of Experiments (DoE) [11] and the 

Response Surface (RS) [12], [13]. The proposed insulation lifespan models include three 

different stress factors: voltage, frequency and temperature, as they were identified as the 

predominant factors causing PD [3]-[5]. The effect of the three stress factors and of their 

interactions may be studied through classical multi-linear parametric models or with 

piecewise constant non-parametric models such as regression trees. This paper proposes 

an alternative approach: the effects are examined through piecewise linear models. These 

so-called hybrid models combine the classification of the experiments in different ranges 

of the stress factors according to their individual and combined effects on the lifespan and 

the multilinear parametric modelling of the lifespan on these identified ranges.  

 

2. Problem statement and experimental set-up 
2.1 Studied insulating material  

This paper presents results obtained for a 200°C thermal class insulating material 

widely used for electric machine wiring insulation. Note that the conclusions drawn in 

this paper have been confirmed by a second measurement campaign on a different 

insulating material of 220°C thermal class. The insulating material studied in this paper is 

composed of two insulating layers of Poly-Ether-Imide (PEI) and Poly-Amide-Imide 

(PAI). The studied samples are twisted pairs of 0.5mm diameter copper wires covered 

with this insulating material. Twisted pairs (Fig. 1a) were manufactured according to [14] 

as shown in Fig. 1b.  

 
 

 
 

Fig. 1b. Manufacturing process of twisted 

pairs from copper wires 
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Fig. 1a. A twisted pair as a test sample  

2.2 Considered stress factors 

This study focusses on insulation aging caused by PD. The authors of [3]-[5] point out 

that electrical and thermal stresses are the predominant factors causing PD in electrical 

insulation. Therefore, three aging factors are considered in our study: the applied voltage 

(the amplitude V of a square wave voltage), its frequency F and the ambient temperature 

T. According to [10], the lifespan logarithm, Log(L), follows a multilinear model 

depending on Log(10V), Log(F) and exp(-bT), with b = 4.825 10-3. In order to get 

achievable lifespan measurements, the material is tested under higher-than-nominal stress 

levels ensuring PD regime. Temperature covers a wide range of operating conditions, 

realistic for an embedded electrical machine, but does not exceed the material thermal 

class. Table I lists the factors and specifies their ranges. Test samples are disposed in a 

climatic chamber where the temperature can be tuned to the desired value. A power 

electronic system generates a square voltage controlled in amplitude and in frequency. 

The lifespan of a test sample is defined as the failure time at which a short circuit occurs 

in the twisted pair. The experimental setup is displayed on Fig. 2. 30 experiments were 

carried out. Among them, 18 were specified according to a classical design method 

described in section 3, while the others have random values for V, F and T. For each 

experimental configuration, 6 twisted pairs were tested simultaneously.  

 

TABLE I 

STRESS FACTOR RANGES 

Factor 
Min. 

Value 
Max. Value 

V 1 kV 3 kV 

F 5 kHz 15 kHz 

T -55°C 180°C 
 

 
 

Fig. 2. Test bench: climatic chamber 

and power electronics 

 

3 Theroretical background: parametric and non-parametric lifespan 

models 

The classical approach to evaluate the effects of the factors and their interactions 

consists in computing a full parametric model. In the following, first and second order 

parametric models with interaction terms are developed. As previously stated, in order to 

reduce the experimental cost while ensuring the best model accuracy, experiments 

composing the model training set are specified according to two optimization methods: 

DoE  for  first  order  models  and  RS  for  second  order  models.  The  remaining  random  

experiments are then used to test the model accuracy. 

3.1 Parametric models from design optimization methods 

3.1.1 Principle 

In the context of an electro-thermal aging study on insulation materials, experimental 
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data sets required for lifespan model estimation are restricted due to various experimental 

constraints: cost of tested materials, cost and availability of the test bench, limited 

experimental time, etc. Therefore, the number and the configuration of experiments 

needed to compute a full parametric lifespan model must be optimized to minimize 

experimental cost while ensuring the best model accuracy.  

The most efficient method to evaluate the effects of several factors and their 

interactions on a response variable is the basic Design of Experiment (DoE) [11]. This 

method consists in assigning only 2 levels (normalized to 1) to each factor. Therefore, 2k 

experiments are needed to compute a parametric model including k factors and all their 

possible interactions. Each configuration is one of the 2k combinations between the two 

levels of the k factors. The obtained design is then called 2k Full Factorial Design (FFD2) 

having an orthogonal experimental matrix [11] that provides the best statistical properties 

of the model in terms of coefficient accuracy [11]. With 3 factors, 8 experiments are 

required and the DoE lifespan model can be written as (1): 

Log(L)DoE = M + EVXV + EFXF + ETXT + IVFXVXF + IVTXVXT + IFTXFXT + 

IVFTXVXFXT 
(1) 

where L is the lifespan (in (s)), XV, XF and XT are the three factor levels corresponding to 

the values of Log(V), Log(F) and exp(-bT). M is the model constant, EV, EF and ET are the 

three factor effects, IVF, IVT, IFT and IVFT are the different interaction effects. Model (1) is 

a first order model with interaction terms. However, it may be of interest, for a better 

approximation of the lifespan model, to include quadratic terms of the main factors. The 

appropriate optimization method for second order models with interactions is the 

Response Surface (RS) method [12] [13]. RS lifespan model can be written as (2): 

Log(L)RS = M + EVXV + EFXF + ETXT + IVV(XV)2 + IFF(XF)2 + ITT(XT)2 + 

IVFXVXF + IVTXVXT + IFTXFXT 
(2) 

where IVV, IFF and ITT are the quadratic effects of the factors. 

The estimation of the quadratic term factors requires additional experimental points and 

thus  additional  factor  levels  with  respect  to  DoE.  According  to  [13],  it  is  impossible  to  

achieve the orthogonal experimental matrix property for second order designs. However, 

orthogonality can be obtained if the experimental matrix is excluded from the constant 

term. The design is then called “almost orthogonal”. There are two popular almost 

orthogonal RS designs for the second order models with interaction terms [13]:  

 3.3k Full Factorial Designs (FFD3): The number of required experiments is 

3k.(three levels for each factor). The design is almost orthogonal if the three 

levels are –1, 0 and +1 [13]. 

 Central Composite Designs (CCD):  a  CCD  requires  less  experimental  points  

than a full 3k design. However, five levels of each factor are needed instead of 

three.  A CCD is composed of [12],  [13]:  a complete 2k DoE design, two axial  

points on the axis of each factor at a distance  from the design center, defining 

two  extra  levels  ( ),  N0 central  points  at  the  design  center.  An  almost  

orthogonal CCD is obtained if [12], [13]: 

2k(2k + 2k + N0) = (2 2 + 2k)2 (3) 

Organized experiments were specified according to a CCD. The CCD is composed of 

the 8 experiments of the 23 FFD, 4 central points and 6 axial points with  = 2 to satisfy 

(3). Organized (blue and red points) and random (green points) experiments are 
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represented in Fig. 3. Factors levels are given in Table II for organized experiments. Note 

that random experiments have factor levels belonging to the respective factor domains 

given  in  Table  I.  Models  (1)  and  (2)  have  the  general  form  of  multi-linear  regression  

models relating a response Y = Log(L) to the explanatory variables. Therefore, model 

coefficients can be estimated by the Ordinary Least Square (OLS) method [15]. 

 

 TABLE II 

STRESS FACTORS LEVELS 

Level 
Log(10V - 

kV) 

Log(F - 

kHz) 
exp(–bT - °C) 

– 2 Log(10*1) Log(5) exp(55b) 

–1 Log(10*1.174) Log(5.872) exp(34.82b) 

0 Log(10*1.73) Log(8.7) exp(–26.12b) 

+1 Log(10*2.554) Log(12.77) exp(–119.74b) 

+ 2 Log(10*3) Log(15) exp(–180b) 

 

3.1.2 Model Prediction Performance 

The validity of parametric DoE and RS models in the factor domains given in Table I 

can be checked by applying them to the test set composed by the randomly configured 

experiments. The prediction performance of the models can be evaluated by comparing 

the predicted and measured values of Y and L through relative errors 
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Fig. 3 3D representation of factor levels 

 

For each experiment we have performed 6 measurements of the lifespan logarithms 

(Ymeas). The set of Ymeas corresponding to the same experiment can be averaged leading to 

Yav and a 95% Confidence Interval (CI) of Yav can be computed by assuming a normal 

distribution of the set of repeated Ymeas. This CI represents the variability of the measured 

lifespan logarithms in each experiment. The evaluation criteria of the model prediction 

performance on the test set are: 

- Relative errors between predicted and measured average Log(L): 

 

REY = 100 Yav – Ypred /Yav 
(4) 

- Relative errors between measured average L in the original scale (Lav) and predicted 

L (Lpred) obtained by applying the logarithmic back transformation on Ypred: 

 (5) 
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REL = 100 Lav – Lpred /Lav 

3.1.3 Parametric Lifespan Models 

The first order lifespan model with interactions has the form of (1) where L is in (s). It 

is estimated from the 8 blue points of the 23 FFD2 of Fig. 3. The second order model with 

interactions has the form of (2) and is estimated using the 18 points of the CCD of Fig. 3 

(blue and red points with 4 replications of the center). The estimated coefficients of DoE 

and RS models are given by the diagrams of Fig. 4.  
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Fig. 4a.  DoE model coefficients Fig. 4b.  RS model coefficients 

 

From these diagrams, we can observe that voltage has the highest effect on the lifespan. 

This explains why the interaction effects IVF and IVT are more important than IFT (effect of 

the interaction between the least important factors). The 3-order interaction has also a 

very low effect on the lifespan. RS model shows in addition that the temperature has the 

most important quadratic effect (ITT).  

These  models  are  then  applied  on  the  test  set  points  (green  points  on  Fig.  3).  Fig.  5  

shows, for these points, the predicted lifespan logarithms with respect to the 

corresponding measured Yav and their 95% CI. Table III summarizes model prediction 

performance on the test set. 

1 2 3 4 5 6 7 8 9 10 11 12
1.2

1.6

2

2.4

2.8

3.2

Test set experiment number

Y

 

 

Measured Y
av

 and its 95% CI

Y
pred

 by DoE model

Y
pred

 by RS model

 
Fig. 5. Test set measured and predicted Log(L) 

 

TABLE III 

TEST SET PREDICTION PERFORMANCE OF DOE MODEL 

Model 
Max 

(REY) 

Mean 

(REY) 

Max 

(REL) 

Mean 

(REL) 

DoE 9.7% 3.1% 35.0% 14.0% 

RS 11.5% 5.7% 45.1% 27.2% 
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Therefore,  DoE  model  shows  good  prediction  performance  on  the  test  set  with  an  

average error of 3% for predicted Y and  of  14%  for  predicted  L. Note that this error 

increase is due to the logarithmic back transformation applied on Y. However,  the  RS  

model presents higher errors on the test set with respect to DoE model. Therefore, the 

addition of 3 levels,  3 quadratic terms and 10 experimental  points to the training set  of 

DoE model over-fits the data and thus does not improve its prediction quality. Indeed, the 

oversizing of the model surely leads to an extremely accurate modelling of the training 

data. However, the counterpart is a decrease of the model flexibility and thus of its 

capacity to adapt to different experiment scenarios as those comprised in the test set [15]. 

From this test campaign, we can deduce that a first order parametric model estimated 

with  only  the  8  experiments  of  a  2-level  FFD  is  sufficient  for  a  good  prediction  of  

lifespan in the same experimental domain. Second order models with additional factor 

levels, quadratic terms and training set points can over-fit the data and lead to higher 

errors when applied on the test set.  

3.2 Non-parametric models: regression trees 

3.2.1 Principle 

Previous models assume a multi-linear relationship between Log(L) and the three main 

factors, their quadratic forms and their interactions, allowing to quantify their respective 

effects. However, the interactions are introduced as independent explanatory variables 

through the product of the corresponding factors. This choice has no physical 

justification. Therefore, the interpretation of the resulting coefficients is not 

straightforward. Thus, it may be of interest to define another lifespan-stress relationship 

using the RS training set that could be more easily interpreted and could better fit the data 

than a second order model. Non-parametric Regression Trees (RT) present a first 

alternative approach to linear regression models and are especially appropriate when 

interactions exist between factors. To date, RT have never been applied in insulation 

aging studies. Classification and regression trees were introduced by Breiman in 1984 

[16]. They allow to explain the relationship between a single response variable (output) 

and  a  set  of  predictor  variables  (inputs).  The  principle  of  RT  is  to  recursively  split  the  

training data set into smaller and more homogeneous groups by selecting, at each node, 

the best separating variable and its best splitting value according to the model prediction 

performance. At each node, the splitting explanatory variable and its corresponding 

threshold value are selected so that the homogeneity of the two resulting groups is 

maximized. At the end, each leaf is characterized by the mean value of the response in 

the corresponding final group [16]. For a new observation, the response can be easily 

predicted by following the appropriate path throughout the tree. The order of appearance 

of the variables in the tree allows to compare their relative importance.  

 

3.2.2 Regression Trees applied to Lifespan Modeling 

RT will be constructed using the RS training sets (18 blue and red experimental points 

of the CCD in Fig. 4) with factor levels XV, XF and XT as inputs and Log(L) as an output. 

For a better readability, factors will be represented in the tree by V, F and T instead of XV, 

XF and XT. RT performance will be evaluated on test sets (green points of Fig. 4). The RT 

is  shown in  Fig.  6a.  This  RT is  first  split  by  the  voltage  at  its  root  and  is  composed  of  
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three voltage zones: 

- Low Voltage (LV) where XV < -0.5 (V < 1.43 kV), 

- High Voltage (HV) where XV > 0.5 (V > 2.10 kV), 

- Medium Voltage (MV) where -0.5 < XV < 0.5. 

As for parametric RS model, the voltage appears with RT as the most important 

variable since it first splits the data. The temperature is the next splitting variable in both 

LV and MV zones  and  finally  comes  the  frequency.  This  order  is  coherent  with  factor  

effects estimated by RS model in Fig. 4b. However, frequency and temperature order of 

influence is inverted in HV zone. This fact reveals that the lifespan model is different in 

this voltage zone and that two different models exist depending on the voltage range: one 

corresponding to HV and the other to LV and MV zones that can be combined in one 

zone called MV&LV. 

When used to predict the test set lifespan logarithms (Y) of this campaign (green points 

of Fig. 3), the RT displayed on Fig. 6a is less accurate than RS parametric model, with 

relative errors (ERY) up to 33%. Intrinsically, RT are piecewise constant models and thus 

have lower prediction accuracy than parametric continuous models.  

To illustrate this, Fig. 6b compares the measured Yav of the test set points, their values 

predicted by the RT of Fig. 6a and by a linear model computed from the same training set 

and including only the three main factor terms (XV, XF and XT). It  is  clear  from Fig.  6b  

that the linear model better fits the test set points than the RT. 

 
 

Fig. 6a.  Regression tree constructed from the RS training set 
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Fig. 6b. Prediction 

performance of the regression 

tree and of a linear model 

including only the main factor 

terms  

 

In conclusion, we can confirm that RT have lower prediction accuracy than parametric 

models since they are piecewise constant. However, RT allow to identify different ranges 

of the main factor corresponding to different models.  

 

4. Proposed approach: the hybrid models 

4.1 Motivation 

In light of the above, we can see that each presented model has its advantages and 

drawbacks. Parametric DoE and RS models allow quantifying the effects of each factor, 

of their quadratic terms and of their interactions on the lifespan with good prediction 

performance  on  the  test  set  points  belonging  to  the  same  experimental  domain  as  the  

training set points. However, the second order models appear to over-fit the data although 
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estimated from an optimized training set. On the other hand, interpretation of the 

interaction effects through the product terms is not obvious.  

With RT, a simple and graphical life-stress relationship is obtained. Relative importance 

of the main factors can be deduced from the hierarchical structure of the RT. This 

structure also allows to identify ranges of the main factor where more specific and thus 

more accurate models can be derived. However, RT are piecewise constant and have 

lower prediction performance on the test set than parametric models.  

Therefore, we suggest in this section to combine these two approaches in a piecewise 

linear model in order to benefit from the advantages of the two methods and to overcome 

their drawbacks. The proposed model is thus called Hybrid Model (HM) and is presented 

as an original method based on RT for the lifespan modeling of insulation materials.   

4.2 Principle  

The principle of HM is related to the so-called model trees [17]. The basic idea is to 

derive a multilinear model for each leaf of the tree. Many sophisticated algorithms 

exist to build model trees. However, they are complex and the gain in performance is 

conditional upon the data size. In our case, where few experimental points are 

available, we propose a very simple implementation called hybrid model. first to 

identify the most important factor and its splitting values through the RT. Then, by the 

means of dummy variables, one coefficient for each of the two other factors is defined 

in each range of the main factor. This model structure allows to: 

 Refine the parametric model by examining the life-stress relationship in each 
identified range 

 Explicit interactions with the main factor by examining the effect of the main 

factor range on the coefficients of the other two factors, (interaction between the 

least important two factors have a very low effect according to parametric 
models), 

 Improve the prediction quality of regression trees. 

As RT, HM will be computed from the RS training set (blue and red points in Fig. 3) 

using the factor levels XV, XF and XT as predictors and Log(L) as a response where L is in 

(s). Then the model prediction performance will be evaluated on the corresponding test 

set (green points of Fig. 43). 

4.3 Hybrid models applied to Lifespan Modeling 

Voltage was identified as the most important stress factor dividing RS training set into 

two ranges: HV and MV&LV at XV = 0.5. The HM can thus be written as (5): 

Log(L)HM = M + EVXV + EF/HV HV.XF + EF/MV&LV MV&LV.XF + ET/HV HV.XT + 

ET/MV&LV MV&LV.XT  
(5) 

where HV (respectively MV&LV) is a dummy variable equal to 1 when XV belongs to HV 

(respectively MV&LV) zone and 0 elsewhere. Equation (5) has the general form of a 

multi-linear regression model between the response Log(L) and the predictor variables 

XV, HV.XF, MV&LV.XF, HV.XT and MV&LV.XT. Model coefficients can thus be estimated by 

OLS method. The coefficients of HM (5) estimated from the 18 points of RS training set 

(blue and red points of fig. 3) are represented in the diagram of Fig. 7.  
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Fig. 7 Hybrid Model coefficients 

 

This model confirms once again that voltage is the most important factor for the studied 

material. It also confirms the existence of interactions between the voltage and the 

frequency (respectively the temperature) since two different coefficients exist for the 

frequency (respectively the temperature) depending on the voltage zone. In addition, the 

relative effects of frequency and temperature in each zone are coherent with their order in 

the RT of Fig. 6a: the frequency effect is lower than the temperature effect in MV&LV, 

but higher in HV.  

HM (5) prediction performance on the test set (green points of Fig. 3) is summarized in 

Fig. 8 and Table IV. Obviously, HM model improves the prediction quality of both RT 

and RS models regarding the test set. Therefore, with the 18 points of an organized CCD 

as a training set, a piecewise first order model (HM) is more appropriate for data fitting 

than a second order model with interaction terms (RS).  
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Fig. 8 Test set measured and predicted Log(L) 

 

TABLE IV 

TEST SET PREDICTION PERFORMANCE OF HM 

Max 

(REY) 

Mean 

(REY) 

Max 

(REL) 

Mean 

(REL) 

8.7% 3.8% 35.6% 16.8% 

 

From the test campaign, it was confirmed that a HM shows better prediction quality than 

RS parametric model, both being estimated from the same organized training set. In 

addition, experimental matrices of HM (5) and (6) are orthogonal since no quadratic 

terms are included. This property remains satisfied for all  CCD, regardless to N0 and , 

and 3-level FFD3 as training sets for HM having the same form as (5) and (6). This 

property is an additional advantage for HM over RS models. It offers more flexibility for 
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the  choice  of  the  organized  design  of  the  training  set.  In  both  test  campaigns,  HM  

prediction performance is very close to that of DoE models computed from 2-level FFDs. 

However, HM involves a smaller number of variables than DoE model (6 instead of 8). 

All these variables are important and more easily interpretable than those of DoE model. 

Therefore, with k factors and only two levels per factor that can be tested, the best 

lifespan model configuration in terms of accuracy and experimental cost is a first order 

model  with  interaction  terms  computed  from  the  2k experiments  of  the  2-level  FFD.  If  

more levels per factor can be tested so that a CCD or a 3-level FFD can be established, 

the best lifespan model is a HM configured after identifying the different regions of the 

main stress factor with a RT constructed on the same training set.  

Conclusion and Future Work 

In conclusion, this paper proposed an original approach for the lifespan modeling of 

insulation materials under PD regime. This method was validated on an insulation 

material in an experimental domain corresponding to accelerated aging conditions. The 

presented models relate the lifespan logarithm to three main aging factors through three 

different forms: parametric, non-parametric and hybrid models. These models allow to 

evaluate the effects of the three factors and of their interactions. While parametric forms 

are commonly used in modeling tasks, non-parametric regression trees and hybrid models 

provide original life-stress relationships that have never been investigated in insulation 

aging studies before. These different models were compared and the optimal use of each 

was defined accordingly. In future work, the presented methodology will be applied to 

the lifespan modeling of other thermal class insulating materials and other critical parts of 

electrical machines. On the other hand, more stress factors will be considered in the 

insulation lifespan models such as pressure, humidity or mechanical vibrations. Finally, 

as prognostic is the final goal of this lifespan modelling, model prediction of long life 

aging during almost normal conditions will be investigated. For this objective, materials 

will be tested in domains below the PD regime in order to test the validity of the 

presented models at lower stress levels that are closer to normal conditions. 
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