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Abstract. We present a refinement-based methodology to design cor-
rect by construction distributed systems specified as Event-B models.
Starting from an Event-B machine, the studied process proposes suc-
cessive steps in order to split and schedule the computation of complex
events and then to map them on subcomponents. The specification of
these steps is done through two domain specific languages. From these
specifications, two refinements are generated. Eventually, a distributed
code architecture is also generated. The correctness of the process relies
on the correctness of the refinements and the translation. We target the
distributed BIP framework.

1 Introduction

In this paper, we are concerned with providing tool support to assist system
design using a safe refinement-based process. The considered systems will be
seen as a collection of interacting actors. The first levels of the process provides
a centralized view of the system behavior. It will be built by taking into account
system requirements incrementally, in the form of a series of abstract machines
written in Event-B [3]. Then, we propose dedicated, user guided, refinement gen-
erators to take into account the distributed nature of the designed system. As
a result, we obtain a set of interacting machines of which composition is proven
to conform to the abstract levels. The system can then be executed on a dis-
tributed platform via a translation to the BIP (Behavior, Interaction, Priority)
language [5]. By now, it should be clear that our aim is not to fully automate
the distribution process but to assist it. While keeping modest, the difference
is similar to that between a model checker where the proof of a judgement is
automatic and a theorem proving assistant where the user ha s to compose basic
strategies in order to make his proof. Actually, while a theorem proving assistant
helps to construct the proof of a goal, we intend to help in the elaboration of a
distributed model through refinement patterns [16].

The semantics of Event-B and BIP are based on labeled transition systems
thereby promoting their coupling. Event-B is used for the formal specification
and the decomposition of initially centralized reactive systems. BIP is used for



the implementation and the deployment of distributed systems specified and
verified in Event-B. The skeleton of the BIP code is automatically generated
from Event-B.

Sections 2 and 3 present Event-B composition/decomposition techniques and
the component-based model BIP. Section 4 proposes our development process of
distributed systems by coupling Event-B and BIP. This process is illustrated by
Fig. 1. Section 5 relates our distributed systems development approach to existing
work. We conclude the paper in Sect. 6 and present some perspectives.

Fig. 1. Process steps

2 Event-B

Fig. 2. Event-B develop-
ment step

The Event-B method allows the development of cor-
rect by construction systems and software [3]. To
achieve this, it supports natively a formal develop-
ment process based on a refinement mechanism with
mathematical proofs. Figure 2 illustrates a refine-
ment step where a machine M0 using a context C0
is refined by a machine M1 using an extension C1
of C0. Contexts define abstract data types through
sets, constants and axioms while machines define
symbolic labelled transition systems through vari-
ables and events specifying their evolution while preserving invariant properties.

As a running example, we will consider the electronic hotel key system case
study [15]1. The context (Listing 1.1) introduces basic data structures: guests,
rooms and cards defined as ordered pairs of keys2. State variables (Listing 1.2)
declare the current key of a room (currk), the rooms owned by a guest (owns),
the cards issued by the hotel and cards owned by a guest.

context c h o t e l
s e t s

ROOM GUEST KEY
cons tan t s

CARD
axioms

@crd CARD = KEY × KEY
end

Listing 1.1. Hotel context

machine h o t e l see s c h o t e l
v a r i a b l e s

cu r r k owns i s s u e d ca rd s
i n v a r i a n t s

@cu r r k t y cu r r k ∈ ROOM → KEY
@owns ty owns ∈ ROOM → P(GUEST)
@ i s s u e d t y i s s u e d ∈ P(CARD)
@ca rd s t y c a r d s ∈ GUEST → P(CARD)

Listing 1.2. Hotel state variables

1 The full code is available in https://dl.dropboxusercontent.com/u/98832434/
hotelrefinements.html.

2 prj1 returns the left projection of an ordered pair.



The dynamics of the system is described by events, one of which, named
register being given in Listing 1.3.

event register
any g r c
where

@tg g ∈ GUEST
@tr r ∈ ROOM
@tc c ∈ CARD
@g1 owns(r) = ∅
@g2 c �∈ issued
@g3 prj1(c) = currk(r)

then

@a1 currk(r) := prj2(c)
@a2 issued := issued∪{c}
@a3 cards(g) := cards(g)∪{c}
@a4 owns(r) := {g}

end

Listing 1.3. Hotel register event

This is a non-deterministic event, parame-
trized by the variables g for the incoming guest,
r for the room to be chosen and c for the card
to be issued. The where part specifies which of
these triples are allowed: the room should be
free (g1), the card should not have been issued
(g2) and the card should open the door (g3).
The then part specifies how the state space is
updated: the current key of the room will be
the second key of the card (a1), the card has
been issued (a2), is owned by the guest (a3)
which owns the room (a4).

Recently, Event-B has been enhanced by reuse techniques such as generic-
ity [17], abstraction [13], composition and decomposition [4,18]. In this paper, we
are mainly concerned by composition and decomposition. They allow the formal
combination of specifications through the refinement mechanism. Two methods
of composition/decomposition were identified for Event-B: shared variable [19]
and shared event [18]. Shared variable composition/decomposition is suitable for
shared-memory parallel systems whereas shared event composition/decomposi-
tion is suitable for message-passing distributed systems. In this paper, we limit
ourselves to the shared event composition/decomposition approach inspired by
CSP where processes synchronize on the same event and may exchange messages.
In Event-B, subcomponents (sub-specifications) can synchronize through shared
events and exchange data specified by the common value of their parameters.

2.1 Shared Event Composition

The shared event composition of Event-B machines is represented by a new con-
struct called composed machine [18]. This operation requires the disjointness
of the sets of state variables of the machines to be composed. It is defined as a
machine merging subcomponents’ properties: conjunction of invariants, union of
variables and parallel synchronisation of events. The composition of two events
which have common parameters p is defined as follows [18]:

E1 � any p , x where G(p , x ,m1) then S(p , x ,m1) end

E2 � any p , y where H(p , y ,m2) then T(p , y ,m2) end

E1 | | E2 � any p , x , y where G(p , x ,m1)∧H(p , y ,m2) then S(p , x ,m1 ) | |T(p , y ,m2) end

where x, y, p are sets of parameters from the events E1 and E2 and m1 and m2

are the variables of the two subcomponents. Sending a value v can be modeled
by using a guard of the form p = v. The other guards will constrain the sent
value either at the sending point or at the receiving point. This design pattern
originating from CSP has been proposed by Butler for action systems [7] and in
[18] for Event-B.

The composed machine is supposed to satisfy the Event-B standard Proof
Obligations (POs) related to invariants and refinements. Moreover, during the



composition of several subcomponents, it is possible to add a composition invari-
ant relating the states of subcomponents.

Like CSP parallel composition, Event-B shared event composition is
monotonic under refinement [18]. Actually, the composition of refined subcom-
ponents is a refinement of the composition of initial subcomponents.

Semantics. In the following we state the semantics of the product CM of
machines Mi as a labelled transition over the variables of the subcomponents.

(e =‖i∈I Mi.e) ∈ CM (e = any Xi where Gi(Xi) then Si(Xi)) ∈ Mi∧
i∈I Gi(Xi ⊳ p)(vi),

∧
i∈I v′

i = Si(Xi ⊳ p)(vi),
∧

i/∈I v′
i = vi

〈v1, . . . , vn〉
e(p)
−−→ 〈v′

1, . . . , v
′
n〉

where

– vi is the valuation of the variables of the component Mi,
– p is the valuation of the union of the parameters of the component events.

2.2 Shared Event Decomposition

Decomposition is a mean to master the complexity (divide and conquer) or to
introduce architectural aspects (see Sect. 4). It can be seen as the inverse of
composition where an Event-B model is split into several simpler subcompo-
nents. Concretely, decomposition is specified by a set of subcomponent names
and a partition of variables, each class being mapped to a subcomponent. An
important point is that the composition of subcomponents refines the initial
centralized model. However, decomposition fails if a guard or an action refers
to variables mapped to different locations. Within the scope of distributed sys-
tems, we propose a support to help solving these problems. Decomposition can
also fail if the synthesized typing invariant is not strong enough. It could to
badly formed expression where some partial functions are applied outside their
definition domain. We do not consider this problem.

2.3 Shared Event Composition/Decomposition Tool

The Rodin platform provides an interactive tool [19] as a plugin allowing the
shared event composition/decomposition of Event-B specifications. Composition
is defined by editing a composed machine which designates the subcomponents
and defines synchronization events as a product of subcomponent events. Con-
versely, decomposition is built by naming subcomponents and mapping variables
on them. In case of success, the tool generates a machine for each subcompo-
nent and a composed machine. Given that the decomposition of the invariants
depends on the scope of the variables, invariants containing variables distributed
over several subcomponents are discarded.



3 The BIP Component-Based Model

The BIP language [5] allows to build component-based systems. To achieve this,
it offers a means to describe atomic components and composition operators
describing composite components. In BIP, an architecture is a hierarchical model
consisting of a structured collection of components obtained by composition of
atomic components which represent the leaves of the hierarchical model.

3.1 Atomic Components

An atomic BIP component declares data, ports and a behavior. Data variables
(data) are typed. Ports (port) give access to some variables and constitute the
component interface. The behavior is defined by a port, a guard and a variable
update function.

According to the component-based paradigm, a BIP component is a design-
time concept (a type) and a runtime concept (an instance). This is also true for
ports. Listings 1.4 and 1.5 present, respectively, the port types and an atomic
component ty Desk produced by our BIP code generator (see Sect. 4.3).

por t t ype t y emp t y po r t ( )
por t t ype t y r e g i s t e r D e s k ( INT r e g i s t e r g , INT r e g i s t e r c )
por t t ype t y r e g i s t e r G u e s t ( INT r e g i s t e r g , INT r e g i s t e r c )

Listing 1.4. Port types

atom t ype ty Desk ( )
/∗ s t a t e v a r i a b l e s ∗/
data INT cu r r k . . .
/∗ temporary v a r i a b l e s ∗/
data INT r e g i s t e r g
/∗ po r t i n s t a n c e s ∗/
expor t por t t y emp t y po r t c omp u t e r e g i s t e r r ( )
expor t por t t y r e g i s t e r D e s k r e g i s t e r ( r e g i s t e r g , r e g i s t e r c )
p l ace P0
i n i t i a l to P0 do /∗ i n i t i a l i z e v a r i a b l e s ∗/
/∗ t r a n s i t i o n s ∗/
on c ompu t e r e g i s t e r c from P0 to P0 prov ided r e g i s t e r g c ompu t e d
on r e g i s t e r from P0 to P0 prov ided r e g i s t e r g c ompu t e d do /∗ a c t i o n ∗/

end

Listing 1.5. Atomic component ty Desk

3.2 Coordination Between BIP Components

The component-based model BIP has three layers called Behavior, Interaction
and Priority. The Behavior layer describes the behavior of atomic components
(see Sect. 3.1) whilst layers Interaction and Priority describe the architectural
aspects of a component-based system. This separation between behavioral and
architectural aspects is an asset in BIP [5]. The synchronization constraints
between BIP components are expressed through interactions defined by the con-
nector construct whereas scheduling constraints between these interactions are
expressed through the Priority concept.



BIP Connectors. A connector is simultaneously a design-time and a runtime

concept. A BIP connector is defined by:

– a set of ports {p1, ..., pn} of subcomponents involved in an interaction.
– an optional port p with variables exported by the connector allowing to com-

pose the connectors.
– a set of interactions which are subsets of {p1, ..., pn}. Every interaction can

be annotated by a guard, an upstream transfer functions (up) and downstream

transfer functions (down). The guards of the interactions involve variables in
the scope of ports and connector variables. In this work, we limit ourselves to
simple connectors restricted to data transfer (Sect. 4).

For example, Listing 1.6 defines two connector types3. The first one denotes a
pure synchronization and the second one a synchronization with data exchange.

connector t ype t y c o m p u t e r e g i s t e r r ( t y emp t y po r t Desk , t y emp t y po r t Guest )
de f i n e Desk Guest
on Desk Guest down {}

end

connector t ype t y r e g i s t e r ( t y r e g i s t e r D e s k Desk , t y r e g i s t e r G u e s t Guest )
de f i n e Desk Guest
on Desk Guest down {

Guest . r e g i s t e r c=Desk . r e g i s t e r c ; Desk . r e g i s t e r g=Guest . r e g i s t e r g ;
}

end

Listing 1.6. Connector types

Composite Component. In BIP, a composite component is both present at
design-time and runtime. It includes the following elements:

– atomic or composite components declared by the keyword component;
– connectors which connect the components forming the composite component

declared by the keyword connector;
– priority rules declared by the keyword priority;
– exported ports that define the interface of the composite component.

Listing 1.7 presents a composite component. It contains two atomic compo-
nents and a connector for coordinating them.

compound t ype t y h o t e l d e c ompo s i t i o n ( )
component ty Desk Desk ( )
component t y Gue s t Guest ( )
connector t y r e g i s t e r r e g i s t e r ( Desk . r e g i s t e r , Guest . r e g i s t e r )
. . .

end

Listing 1.7. The Hotel root component type

3 produced by our BIP code generator in Sect. 4.3.



3.3 BIP Execution and Operational Semantics

The BIP execution engine starts with the calculation of executable interactions
(Interaction layer). Then, it schedules these interactions, taking into account the
priority constraints (Priority layer). Finally, the transitions of the atomic compo-
nents involved in the interaction are executed (Behavior layer). We now give the
operational semantics of the composition of a set of components (Ci)i∈1..n con-
nected through a set of connectors γ. First, we sum up the syntax of components
and connectors as follows:

– Ci = 〈Σi, Pi, Xi,→i〉 where Σi are the locations of Ci, Pi its set of ports, Xi

its set of variables, G(Xi) is a set predicates over Xi, A(Xi) is a set of actions
over Xi and →i⊆ Σi × Pi × G(Xi) × A(Xi) × Σi its transitions labelled by a

guard and an action. We will write σi
pi/gi/ai

−−−−−→i σ′
i for an element of →i.

– γ ⊆ {〈I ⊆ 1..n, (pi(xi))i∈I ∈ Πi∈IPi(Xi), p,G, (Di)i∈I , U〉} is a set of connec-
tors where for a given connector, I is the set indexes of interacting components,
(pi(xi))i∈I the selected set of ports (one in each component) with their view
xi on component variables, p the outbound port, G the connector guard, Di

the set of down functions specifying the update of subcomponent states and
U the up function specifying the outbound port data.

Then, the operational semantics of the composition is defined by the following
transitions over locations and valuations vi of the component variables. A con-
nector over enabled ports is selected. The down actions Di of the connector are
performed before the local action ai of each component.

〈I, (pi)i∈I , p,G, (Di)i∈I , U〉 ∈ γ
∧

i∈I σi
pi/gi/ai

−−−−−→i σ′
i ∧

∧
i�∈I σ′

i = σi

(
∧

i∈I gi(vi)) ∧ G(〈xi ⊳ vi | i ∈ I〉)∧
i∈I v′

i = ai(vi <+ Di(〈xj ⊳ vj | j ∈ I〉) ∧
∧

i�∈I v′
i = vi

〈(σ1, v1), . . . , (σn, vn)〉
p(U(〈xi⊳vi|i∈I〉))
−−−−−−−−−−−→ 〈(σ′

1, v
′
1), . . . , (σ

′
n, v′

n)〉

For readability reasons, priorities are not taken into account. We should add that
the fired interaction is not hidden by ready interactions having a lower priority.

3.4 The BIP Tool-Chain

The BIP tool-chain includes translators from other languages to BIP, formal
verification tools and code generators from a BIP model. The BIP language
features a static checker called D-Finder [5]. It is a compositional verification
tool (invariants, deadlock). Likewise, the BIP language has a runtime verification
tool [11]. The code generators take the BIP model and generate single-threaded
or multi-threaded code that can be executed and analyzed [14].



4 Towards a Distribution Process

Our goal is to provide a process for guiding the user refinements in order to
map an initial “centralized” design (as explained in Sect. 2) on a distributed
architecture. The proposed process can be seen as a continuation of the basic
methodology which captures requirements as successive refinements of an initial
specification. However, as we target a system engineering process, our aim is
not to propose a fully automatic distribution tool. For example, in the hotel
case study, the behavior of the guest should be mapped on a Guest component.
Figure 1 illustrates the proposed process. It is based on three steps: a splitting
step which splits events in order to allow the incremental and local resolution of
non-determinism, a mapping step which introduces components and mappings

of variables over these components and a distributed code generation step.
We reuse the shared event decomposition plugin [18]. However, it does not

apply on models where guards or actions access variables mapped on different
components as the tool would not know how to split them. Moreover, even if each
guard or action refers to only one variable, the resulting components produced
by this tool would not be usable. Consider two variables a and b mapped on
components C1 and C2 and the event ev:

ev � any p where @g1: a > p @g2: p < b then p1 := p end

Applying [18] is possible: each of C1 and C2 gets a copy of ev with respectively
g1 and g2 as their unique guard, but this leads to another problem: we get two
synchronized events specifying constraints over the parameter p. Their separate
refinement could lead to incompatible choices and thus to a deadlock resulting
from the assembly. The proposed transformations allow the user to avoid this
problem by guiding the refinement process. For this purpose, the user can provide
parameters to automatic refinement tools. As a result, the two constraints will
be located on the same component, while variables will be possibly mapped to
distinct subcomponents. Transformations are organized in three steps presented
in Sects. 4.1, 4.2 and 4.3.

Moreover, as an implementation constraint, we consider that BIP connec-
tors should not perform computations. Data usage in connectors will thus be
restricted to data transfer. This property will lead to a specific refinement of the
Event-B model during the mapping processing step (see Sect. 4.2). These steps
can be automatically performed given some user annotations. In order to sup-
port such a process, we consider two domain specific languages (DSL), one for
specifying event parameters computation order and the other for specifying the
mapping of machine variables and possibly the location of guard computations.
The transformation steps are explicitly specified through the proposed DSLs.
These two specifications are used to generate refined models and projections to
subcomponents automatically. The correctness of the refinements ensures the
correctness of the development. Our process, applied to our example, is illus-
trated by Fig. 3.



Fig. 3. Hotel transformations

4.1 The Event Splitting Step

The splitting step allows the user to inject heuristics for computing event para-
meters specified by a set of constraints: an event can be split in order to allow
the incremental resolution of its non-determinism. This transformation can be
useful if the event is non-deterministic and intended to be shared by several sub-
components. Non-determinism will be constrained to occur on local events so
that data exchanged will be locally computed before. This step is guided by the
user as he may want to control the order in which non-determinism is resolved4.

Fig. 4. Event splitting step

The Event Splitting Plugin.
Figure 4 illustrates the profile of
the transformation implemented
as a Rodin plugin. It takes as
input an Event-B machine and
a splitting specification, whose
structure is described by a domain
specific language.

event ev when p1 . . . pn parameter p init v with g1 . . . gm

when ... parameter ...

We specify for some of the model events, e.g. ev, the parameters (p) to be
computed, the parameters on which it depends (pi), the default value v of p (for
typing purposes) and the guards (gi) acting as the specification of the value of
p. The plugin generates a refinement of the input machine.

Such a specification provides a partial order on event parameters. It is used
to schedule newly introduced events aiming at computing and storing in a state
variable the value of their associated parameter. Ordering constraints are imple-
mented through the introduction of one boolean variable for each parameter, its
computed state. The machine invariant is extended by the properties of the newly
introduced variables: if a variable has been computed, its specification, given by

4 We consider here that non-determinism is only introduced through event parameters.



its guards, is satisfied. When all the parameters of an event have been computed
as state variables, the event itself can be fired. The progress of parameters com-
putation is ensured by a variant defined as the number of parameters remaining
to be computed. More precisely, the previous specification for parameter p of
event ev will produce the following machine contents:

machine gene r a t ed r e f i n e s i npu t mach ine
v a r i a b l e s

ev p ev p computed //witness and status for parameter p of event ev
i n v a r i a n t s

@ev g i ev p computed ⇒ g i // where p is replaced by ev p
v a r i a n t // count of the remaining parameters to compute

{FALSE �→ 1 , TRUE �→ 0}( ev p computed ) + . . .
events

event INITIALISATION extends INITIALISATION
then

@ev p ev p := v
@ev p comp ev p computed := FALSE

end

convergent event compute ev p // computes parameter p of event ev
any p where

@gi g i // guards acting as p speci f icat ion
@pi ev p i computed = TRUE //parameters , p depends on, have been computed
@p ev p computed = FALSE // p remains to be computed

then

@a ev p := p //computed value stored in state variable ev p
@computed ev p computed := TRUE // makes the variant decrease

end

event ev r e f i n e s ev
when

@p comp ev p computed = TRUE
with

@p p = ev p // parameter p of inherited event i s refined to ev p
then

@pi ev p i computed := FALSE // for a l l ev pi with updated guards
. . . // replace p by ev p in actions of the refined event

end

end

Listing 1.8. Generated machine for the splitting refinement

An important point is that we get a refinement of the input machine. It
should be proved by the user by discharging the standard proof obligations
generated by Rodin and has actually been proved for the hotel example. Three
main properties should be established: convergent events refine skip as they do
not modify inherited state variables and preserve the invariant. They cannot
be launched indefinitely as they make the variant (a natural number) decrease.
Lastly, the event ev is refined as new state variables which take place of the
parameters of the inherited event satisfy their guards. The refined invariant is
also preserved thanks to the reset of the computed state of parameters which
depend on guards using updated variables. We can also prove that absence of
deadlock is preserved: if the guards of an abstract event are true, the parameters
of this event can be or have been computed and lastly the refined event itself
can be launched.



Application to Our Example. With respect to our example, the register

event (see Listing 1.3) has three parameters: g,r,c. We specify that the parame-
ter g should be computed first as the arrival of a guest is supposed to trigger the
various actions. Then, a room is chosen in r and its associated card is computed
in c. For each parameter, we specify its initial value and the name of guards
which constitute its specification. The dependencies for the register event (see
Listing 1.3) are specified as follows:

s p l i t t i n g h o t e l s p l i t t e d
r e f i n e s h o t e l
events

event r e g i s t e r
parameter g i n i t g0 with tg // tg does ’ t depend on r , c
when g parameter r i n i t r0 with t r g1 // f ired after computation of g
when g r parameter c i n i t c0 with t c g2 g3 // f ired after g , r

end

Listing 1.9. Splitting specification

4.2 The Mapping Step

The aim of this step is to set a distributed implementation over subcompo-
nents of an Event-B centralized model. As for the splitting step, the mapping
step takes as input a machine and a mapping specification described using a
dedicated domain specific language. The user can thus provide a set of subcom-
ponent names and declare a mapping from machine variables and possibly event
guards to subcomponents. Then, the tool generates a refinement of the input
machine and one projection machine for each subcomponent. This step has two
phases: the first one, called the replication phase, replicates the variables over the
components in order to allow a local access to remote variables; the second one,
called the projection phase, isolates each component as such. The first phase gen-
erates a refinement of the input machine which is in turn refined by the product
of its projections, thanks to the shared event decomposition mechanism [19].

The Replication Phase. Given the mapping of machine variables to subcom-
ponents, this phase builds a refinement of the input machine by introducing local
copies of distant variables accessed by guards. It maps each guard or action to
a component and performs some renaming.

Fig. 5. Local copies and distant access

We suppose in the following that
variables vi are mapped on compo-
nents Ci. The convergent events are
shared by source (Ci) and destinations
(Cj) of variables remotely accessed
by guards. Refinements of inherited
events are shared by the sources (Ci)
of local copies (on Cj) of variables
accessed by guards and by compo-
nents (Ck) owning variables remotely accessed by actions. Figure 5 presents a
component-based view of the transformed model. The focus is put on event ev of



component Cj . Its guard reads the local copy of vi while the action has remote
access to vk. Event synchronization ensures the local copy of vi is up-to-date
and gives access to vk by constraining the event parameter (lk in the figure,
local vk in the code pattern).

Listing 1.10 presents the transformation pattern focused on component Ci.
The resulting machine should refine the input machine. This is for the moment
verified by discharging the proof obligations generated by Rodin. As previously,
we plan to establish this result at the meta-level and the arguments will be very
similar to those given for the splitting transformation.

machine gene r a t ed r e f i n e s i npu t mach ine
v a r i a b l e s

v i // inherited variables , on Ci
C j v i // copy of vi mapped on Cj (used by a Cj guard)
v i f r e s h // true i f vi has been copied , on Ci

i n v a r i a n t s

@C j v i f v i f r e s h = TRUE ⇒ C j v i = v i // copy is synchronized
v a r i a n t

{FALSE �→ 1 , TRUE �→ 0}( v i f r e s h ) + . . .
events

convergent event s h a r e v i // shared by Ci and Cj
any l o c a l v i
where

@g v i f r e s h = FALSE // on Ci
@l l o c a l v i = v i // on Ci

then

@to Cj C j v i := l o c a l v i // on Cj
@done v i f r e s h := TRUE // on Ci

end

event ev r e f i n e s ev // shared by Ci ,Cj ,Ck
any l o c a l v k
where

@v j a c c e s s l o c a l v k = vk // on Ck, access to remote variables
@ v i f r e s h v i f r e s h = TRUE // on Ci , copy to Cj has been done
@g [ v i := C j v i ] g // inherited guard on Cj , access to loca l copy of vi

then

@a v j := [ v i := C j v i | | vk := l o c a l v k ] e // on Cj
end

end

Listing 1.10. replication phase

Furthermore, as for the splitting plugin, the freshness of copies is reset when
the source variable is updated by an action.

The Projection Phase. It generates a machine for each component, as would
do the shared event decomposition plugin [19]. However, thanks to the repli-
cation phase, guards and actions over remote variables are now accepted. For
component Cj , we get the following code template:



machine Cj
v a r i a b l e s v j C j v i
i n v a r i a n t s // keep only those referring vj and Cj vi
events

event s h a r e v i // sync with Ci event , import vi
any l o c a l v i then

@to Cj C j v i := l o c a l v i
end

event s h a r e v j // sync with Cl event , export vj
any l o c a l v j then

@to Cl l o c a l v j := v j
end

event ev
any l o c a l v k // read by some Cj action
where

@v j f r e s h v j f r e s h = TRUE // needed by Cl , vj has been exported
@g [ v i := C j v i ] g // mapped on Cj , access to copy of vi

then

@a v j := [ v i := C j v i ; vk:=l o c a l v k ] e
end

end

Listing 1.11. Projection phase

We have to note that some invariants may be lost: we only keep those who refer
variables local to the considered component. It means that the correctness of the
resulting machines (i.e. the fact that events preserve the remaining invariants)
should be proven. If this is not possible, invariants should be added by the user.
However, the composition of the projections, as defined in [19], to which lost
invariants are added is, by construction, the machine we had before decompo-
sition. As a consequence, thanks to the monotony of composition, the design
process can be pursued on each component machine.

Application to Our Example. Listing 1.12 specifies hotel subcomponents and
the mapping of the variables currk owns issued on the component Desk and
the variable cards on the component Guest.

components Desk Guest
mappings

v a r i a b l e s cu r r k owns i s s u e d �→ Desk ;
v a r i a b l e ca r d s �→ Guest ;

Listing 1.12. Hotel components and mapping specification

4.3 The Code Generation Step

This step assumes that the input Event-B model conforms to a subset of Event-
B, we called Event-B0, which plays the role of the subset B0 of the B language
that is translated to C. In the considered subset, shared events should be those
resulting from the application of the replication phase of the mapping step.
Furthermore, we suppose that subcomponent machines do not need to be refined.
Events should be deterministic (parameters should have a value) and use a subset



of the Event-B expression and predicate languages for which their exists a direct
mapping to their BIP counterparts. For this purpose, we require that used set
expressions and predicates have been refined to calls to a set library [10] of
which signature has a C implementation within the BIP framework. Here, we
present how the architectural part of the BIP code is generated. The generator
takes as input the mapping specification (subcomponent names, variable and
guards mappings) and the refined machine produced by the mapping step.

Port Type Generation. For each shared event and each component of which
variables are referenced by this event, we generate a port type taking as parame-
ter the type of exported variables (variables mapped to this component and used
by guards or actions mapped to other components). A port type for synchro-
nisation purpose only is generated for all events that do not export variables.
Listing 1.5 provides port types generated for our example.

Connector Type Generation. For each event which uses variables of several
components, we generate a connector type taking as parameters ports specified
by the previously introduced port types. They are supposed to be synchronous.
They define a down action which copies (via the ports) variables of one compo-
nent to their copies located in components which need them. Listing 1.6 illus-
trates the application of this rule in our example.

Subcomponent Skeleton Generation. For each subcomponent, we generate
an atomic BIP component. It contains:

– variables mapped to this component as well as variables of other components
referenced by guards or actions mapped to this component.

– instances of the port types associated to this component
– for each event, a transition synchronized on the corresponding port instance,

and the BIP translation of guards and actions mapped to this component.

As an illustration, Listing 1.5 gives an extract of the atomic component type
ty Desk generated by our plugin.

Composite Component Generation. The root component contains an
instance of each subcomponent and connector. Each connector instance takes
as parameter a port instance defined in one of the concerned subcomponents.
Listing 1.7 provides the code of our example resulting from this step.

The generated BIP architecture should for now be completed manually by
the data types and behaviors of atomic components. To achieve this, we envision
to use the Theory component [10] of the Rodin platform. Indeed, the Theory
component allows to develop proved mathematical theories (datatypes, oper-
ators, rewrite rules, inference rules). This allows the extension of Event-B by
useful data structures such as arrays, linked lists and hash tables.

5 Related Work

Over the last years, several formalisms such as process algebra, input/output
automata, UNITY and TLA+ have been proposed to model and mostly to reason



over concurrent and distributed systems. However, to the best of our knowledge,
their effective use within development frameworks leading to a distributed imple-
mentation has not yet been a general tendency. The automatic generation of
source code from formal specifications is supported by few formal methods such as
B and Event-B. In [6], an approach is developed allowing the generation of efficient
code from B formal developments by using an imperative intermediate language
B0. Several Event-B source code generators have been proposed [9,12,20]. Indeed,
an Event-B model can represent sequential, concurrent or distributed code as well
as reactive, distributed or hybrid systems. The work described in [20] proposes a
set of plugins for the Rodin development tool that automatically generate impera-
tive sequential code from an Event-B formal specification. These works do not take
into account Event-B composition. Whereas the works described in [9] generate
concurrent Ada code restricted to binary synchronization. The automatic refine-
ment of B machines is also possible thanks to the Bart tool [8]. Also, in Event-B,
the atomicity decomposition plugin [16] defines a DSL to parametrize the refine-
ment generator. However, the refinement pattern is dedicated to event splitting
and does not apply to our problem.

6 Conclusion

In this paper, we have presented a distribution process for system designs for-
mally expressed as Event-B models. Starting from an Event-B machine, the
studied process proposes successively the splitting step and the mapping step.
The specification of these two steps is done through two domain specific lan-
guages. Eventually, a distributed Event-B model and a distributed BIP code
architecture are also automatically generated. As we said in the introduction,
our primary aim is provide tools to assist the user in the design of distributed
systems. Providing a fully automatic process is not in our objectives as we target
system engineering and requirements may provide constraints in functions/data
to component mapping. Each proposed step generates refinements. The proof
obligations generated by Rodin for these refinements remain to be discharged in
order to assert the correctness of the developed model.

As future work, we envision to enhance the tooling of our process. Currently,
the splitting and mapping steps have been implemented with the xtext [2] lan-
guage infrastructure, the refinements and the BIP code have been generated
with the accompanying xtend language [1] which provides support for writing
code generators5. We are interested in achieving a distributed code generator
plugin for the Rodin platform by taking into account types and the translation
of Event-B expression and predicate languages.

We are also interested in studying how the proof obligations generated by the
refinements can be discharged definitively at the meta level. In the long term,
we seek to enrich the set of transformations and to provide a library of certified
transformations dedicated to the development of distributed systems for various
architectures.

5 The generated code is available at
https://dl.dropboxusercontent.com/u/98832434/hotelrefinements.html.
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