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INTRODUCTION

Lusztig defined in [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF] a canonical basis of the quantum group attached to any quiver without loop. This definition was possible thanks to an isomorphism between this quantum group and the Grothendieck group of a category of perverse sheaves, generated by the so-called Lusztig sheaves. Lusztig endowed this Grothendieck group with a structure of Hopf algebra, by means of restriction and induction functors. These functors made it possible for him to perform induction proofs via a nice stratification of his category. This construction yielded a combinatorial structure on the canonical basis which would later be recognized as a Kashiwara crystal.

There are more and more evidences of the relevance of the study of quivers with loops. A particular class of such quivers are the comet-shaped quivers, which have recently been used by Hausel, Letellier and Rodriguez-Villegas in their study of the topology of character varieties, where the number of loops at the central vertex is the genus of the considered curve (see [START_REF] Hausel | Mixed Hodge polynomials of character varieties[END_REF] and [START_REF] Hausel | Arithmetic harmonic analysis on character and quiver varieties II[END_REF]). We can also see quivers with loops appearing in a work of Nakajima relating quiver varieties with branching (see [START_REF] Nakajima | Quiver varieties and branching[END_REF]), as in the work of Okounkov and Maulik about quantum cohomology (see [START_REF] Maulik | Quantum groups and quantum cohomology[END_REF]).

Kang and Schiffmann generalized Lusztig constructions in the framework of generalized Kac-Moody algebra in [START_REF] Kang | Canonical bases for quantum generalized Kac-Moody algebras[END_REF], using quivers with loops. In this case, one has to impose a somewhat unnatural restriction on the definition of a category of perverse sheaves, considering only those attached to complete flags on imaginary vertices.

In this article we consider the general definition of Lustig sheaves for arbitrary quivers, possibly carrying loops. We therefore follow the definition given in [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF], and use the results obtained in this article for quivers with one vertex and multiple loops. Note that the category hence considered is bigger than the one considered in [START_REF] Kang | Canonical bases for quantum generalized Kac-Moody algebras[END_REF], as one may already see in the case of the Jordan quiver. We prove a conjecture raised by Lusztig in [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF], asking if the more "simple" Lusztig perverse sheaves are enough to span the whole Grothendieck group considered. A partial proof was given in [START_REF] Li | Canonical bases of Borcherds-Cartan type[END_REF]. Our proof is also based on induction, still with the help of restriction and induction functors, but with non trivial first steps, consisting in the study of quivers with one vertex but possible loops. We also need to consider regularity conditions on the support of our perverse sheaves to perform efficient restrictions at imaginary vertices. From our proof emerges a new combinatorial structure on our generalized canonical basis, which is more general than the usual crystals, in that there are now more operators associated to a vertex with loops, as in [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF] (see 1.12).

In a second part, we construct and study a Hopf algebra which generalizes the usual quantum groups. The geometric study previously made leads to a natural definition, which includes countably infinite sets of generators at imaginary roots, with higher order Serre relations and commutativity conditions imposed by the Jordan quiver case. We prove that the positive part of this algebra is isomorphic to our Grothendieck group, thanks to the study of a nondegenerate Hopf pairing.

In a final section, we try to build a bridge with the Lagrangian varieties studied in [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF], using our new Hopf algebra, as the classical case suggests (see [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]).
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1. QUIVER VARIETIES 1.1. Preliminaries. Let Q be a quiver, with vertex set I and oriented edge set Ω = {h : s(h) → t(h)}. We will denote by Ω(i) the set of loops at i, and call i

imaginary if ω i = |Ω(i)| ≥ 1, real otherwise.
For every α = i∈I α i i ∈ NI, we fix an I-graded vector space V α of graded dimension α. For every I-graded vector space X, we set:

E X = h∈Ω Hom(X s(h) , X t(h) ),
and E α = E Vα . We also denote by G α the group i∈I GL(V α i i ), naturally acting on E α . Take m > 0 and two sequences i = (i 1 , . . . , i m ) and a = (a 1 , . . . , a m ) of I and N >0 . We write (i, a) α if 1≤k≤m a k i k = α. We set:

F i,a = W = ({0} = W 0 ⊂ . . . ⊂ W m = V α ) ∀k, dim W k W k-1 = a k i k E i,a = {(x, W) | x h (W) ⊆ W} ⊆ E α × F i,a
so that we get a proper morphism π i,a : E i,a → E α induced by the first projection.

Following [START_REF] Lusztig | Introduction to quantum groups[END_REF], we will denote by M G (X) the category of G-equivariant perverse sheaves on an algebraic variety X equipped with an action of an algebraic connected group G.

Thanks to the decomposition theorem of Beilinson, Bernstein and Deligne (see [START_REF] Beilinson | Faisceaux pervers[END_REF]), the complex π i,a ! 1 is semisimple. Denote by P α ⊆ M Gα (E α ) the additive category consisting of sums of G α -equivariant simple perverse sheaves appearing (possibly with a shift) in π i,a ! 1 for some (i, a) α. Here 1 stands for the constant perverse sheaf on E i,a .

Denote by Q α the category of complexes isomorphic to sums of shifts of sheaves of P α .

Let K α be the Grothendieck group of Q α , seen as a Z[v ±1 ]-module by setting v ±1 [P] = [P[±1]], [P] denoting the isoclass of a perverse sheaf P. We will finally denote by B α the finite set of isoclasses of simple perverse sheaves in P α , and we set B = α B α .

For every I-graded subspace W ⊆ V α of dimension β and codimension γ, equipped with two I-graded isomorphisms p :

W ∼ → V β and q : V α /W ∼ → V γ , we have the following diagram: E β × E γ E α (W ) κ o o ι / / E α where E α (W ) = {x ∈ E α | x(W ) ⊆ W }, κ : x → (p * (x W ), q * (x Vα/W
)) and ι is the inclusion. Note that κ is a vector bundle.

We will also consider:

E β × E γ E † β,γ p 1 o o p 2 / / E β,γ p 3 / / E α
where:

E † β,γ =            (x, W, r, r) x ∈ E α W ⊆ V α is I-graded and x-stable r : W ∼ → V β r : V α /W ∼ → V γ            E β,γ = (x, W ) x ∈ E α W ⊆ V α is I-graded and x-stable .
These diagrams induce (cf. [Lus10, §9.2]):

Res β,γ = κ ! ι * : Q α → Q γ Q β Ind β,γ = p 3! p 2 p * 1 : Q γ Q β → Q α and: Res β,γ = Res α β,γ [d 1 -d 2 -2 β, γ ] Ind β,γ = Ind α β,γ [d 1 -d 2 ]
where d 1 and d 2 denote the dimensions of the fibers of p 1 and p 2 , and β, γ = i∈I β i γ i . These functors endow K = ⊕ α K α with a Hopf algebra structure (see [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]10]). Setting (γ, β) = h∈Ω γ s(h) β t(h) , observe that:

d 1 -d 2 = (γ, β) + β, γ d 1 -d 2 -2 β, γ = (γ, β) -β, γ .
1.2. Study of an imaginary sink. Let i be an imaginary sink, and (i, a)

α. Take a i = (a k 1 , . . . , a kr ) where k j < k j+1 and {k j } 1≤j≤r = {k | i k = i}. For x ∈ E α , we set x (i) = (x h ) h∈Ω(i) and x = (x h ) h / ∈Ω(i) . Then, we define:

E (i) i,a = {(x, W (i) ) | x (i) (W (i) ) ⊆ W (i) } ⊆ E α × F (i) a i E α = {x ∈ E α | x (i) = 0}
where

F (i)
a i denotes the variety of flags of V α i i of dimension a i . We have the following diagram:

E i,a ψ π i,a % % π i,a / / E (i) i,a Va i π i,a / / E α E i,a φ / / E α × F (i) a i (1.1)
where

E i,a = {(x, W) ∈ E i,a | x (i) = 0}.
Note that ψ and V a i are vector bundles.

1.2.1. A notion of regularity. Put:

E i,rss α = {x ∈ E α | x h is regular semisimple if h ∈ Ω(i)}.
For any constructible subsets

X ⊆ E α , Y ⊆ E i,a and Z ⊆ E (i)
i,a , we put:

X i,rss = X ∩ E i,rss α Y i,rss = Y ∩ π -1 i,a (E i,rss α ) Z i,rss = Z ∩ π i,a
-1 (E i,rss α ). We also write ρ α : E i,rss α → E α for the open inclusion.

Proposition 1.2. Let P be any simple element of P α . Then P = ρ α! * ρ * α P, i.e. if P = IC(Y, L) for some smooth irreducible subvariety Y ⊆ E α and some local system L on Y , then Y i,rss = ∅. Proof. By definition, P appears as a simple summand of π i,a! Q for some simple component Q ⊆ π i,a! 1. Since in 1.1 ψ is a vector bundle and the square is cartesian, Q ⊆ V * a i φ ! 1, and thus Q is of the form IC(X, K) where

X = V -1 a i (Y ) for an irreducible smooth subvariety Y ⊆ E α × F (i) a i , and K = V * a i L for an irreducible local system L on Y .
In the lemma below, we call quasismall a map of algebraic varieties π : X → Y satisfying the following property: there exist stratifications X = j∈J X j , Y = j∈J Y j over a finite set J containing an element 0 such that:

(1) X 0 and Y 0 are dense;

(2) π |X j : X j → Y j is a locally trivial fibration of fiber

F j if j = 0; (3) π |X 0 : X 0 → Y 0 is a finite morphism; (4) 2 dim F j < codim Y Y j if j = 0.
Lemma 1.3. Let S be a smooth irreducible subvariety of E α × F (i)

a i . Put S = V -1
a i (S) and S = π i,a ( S). Then the map π i,a| S : S → S is quasismall.

Proof of the lemma. Put S 0 = S i,rss , which is a nonempty open dense subset of S. Moreover, the restriction of π i,a to S 0 is a finite morphism since a regular semisimple element x h for h ∈ Ω(i) stabilizes only finitely many flags of subspaces of V α i i . Put T = S \ S 0 . To prove that π i,a| S : S → S is quasismall, it now suffices to check that:

dim( T × Eα T ) < dim S.
Let z = (z h,k ) be a r×r-matrix of nonnegative integers such that h z h,k = a k , k z h,k = a h , and set:

( S × Eα S) z = (x, W, W ) ∀h, k dim W h ∩ W k W h-1 ∩ W k + W h ∩ W k-1 = z h,k .
This yields a finite stratification S × Eα S = z ( S × Eα S) z . We use the same notations for S × E α S and T × Eα T . The fibers of V a i | S : S → S being the same

as those of E i,a i → F (i)
a i , we have for any z as above:

(1.4) dim( S × Eα S) z -dim(S × E α S) z = dim( E i,a i × E α i i E i,a i ) z -dim(F (i) 
a i × F (i) a i ) z
and:

dim( T × Eα T ) z -dim(S × E α S) z = dim( E i,a i × U α i i E i,a i ) z -dim(F (i) a i × F (i) a i ) z
where

U α i i = E α i i \ E i,rss α i i . If ω i = 1
, it is very well known that the map E i,a i → E α i i is quasismall, with E i,rss α i i being the only relevant stratum. Indeed, it is true if a i = (1 α i ), and we have the following commutative diagram:

E i,(1 α i ) f / / g # # E α i i E i,a i h = =
where g is projective, hence f quasismall implies h quasismall. It follows that:

dim( E i,a i × U α i i E i,a i ) z < dim E i,a i . (1.5)
By [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF], this strict inequality is also true if ω i ≥ 2. Indeed, the large inequality is true for any z if we replace U α i i by E α i i , and, since dim

U α i i < dim E α i i : dim( E i,a i × U α i i E i,a i ) z < dim( E i,a i × E α i i E i,a i ) z ≤ dim E i,a i , hence 1.5 is still satisfied. But then: dim S -dim( T × Eα T ) z = dim S -dim(S × E α S) z + dim(S × E α S) z -dim( S × Eα S) z = dim S -dim(S × E α S) z -dim( E i,a i × E α i i E i,a i ) z + dim(F (i) a i × F (i) a i ) z [use 1.4] > dim S -dim(S × E α S) z -dim E i,a i + dim(F (i) a i × F (i) a i ) z [use 1.5] = dim S -dim(S × E α S) z -dim F (i) a i + dim(F (i) a i × F (i) a i ) z [use 1.4 with z diagonal] = codim ((E α ×F (i) a i )× E α (E α ×F (i) a i ))z (S × E α S) z -codim E α ×F (i) a i S ≥ 0,
the last inequality being true thanks to the following diagram:

(S × E α S) z / / X / / E α × (F (i) a i × F (i) a i ) z id ×pr 1 S / / E α × F (i) a i
The lemma is proved.

End of proof of proposition 1.2. For any stratum S ⊆ Y for IC(Y, L), the subvariety S = V -1 a i (S) is a stratum for Q. By 1.3, the restriction of π i,a to each of these strata is quasismall. By an argument identical to that in [KS07, 1], it follows that π i,a! Q is a perverse sheaf, and that moreover any simple summand of π i,a! Q is an intermediate extension to E α of a simple direct summand of π i,a! (V * a i (L) | S 0 ) for some irreducible local system L on a stratum S. In particular, it is of the form IC(R, J) where R is an open subset of π i,a ( S 0 ) for some S, and J is an irreducible local system on R. The proposition follows from the fact that, by construction,

π i,a ( S 0 ) ⊆ E i,rss α . 1.2.2. A notion of invariance. For any x ∈ E α , put V α = ⊕ j =i V α j j and I i (x) = C x .V α , i.e.
the smallest subspace of V α stable by x and containing V α .

Definition 1.6. Let us write x ∼ i x if the following holds:

(1) x = x ;

(2)

I i (x) ⊆ ∩ h∈Ω(i) ker(x h -x h ); (3) h∈Ω(i) Im(x h -x h ) ⊆ I i (x). Lemma 1.7. ∼ i is an equivalence relation.
Proof.

• Reflexivity is obvious. x) . This implies x ∼ i x.

• Symmetry: if x ∼ i x , then I(x ) = I(x) since C x .V α = C x .V α ⊆ I i (x) and since x (i) |I i (x) = x (i) |I i (
• Transitivity: if x ∼ i x and x ∼ i x , we have x) , and if h ∈ Ω(i):

I i (x) = I i (x ) = I i (x ), x (i) |I i (x) = x (i) |I i (x) = x (i) |I i (
Im(x h -x h ) ⊆ Im(x h -x h ) + Im(x h -x h ) ⊆ I i (x). Hence x ∼ i x .
Observe that equivalence classes are affine spaces. If x ∈ E α , then the equivalence class of x is of dimension equal to ω i γ(α i -γ) where

ω i = |Ω(i)| and γi = codim Vα I i (x).
There is a stratification E α = γ≥0 E α,i,γ where:

E α,i,γ = {x ∈ E α | codim Vα I i (x) = γi}.
Note that E α,i,γ is a union of ∼ i -equivalence classes. This can be made more precise as follows. Fix γ ≤ α i and W ⊆ V α an I-graded subspace of codimension γi.

Let E α,i,γ (W ) = E α,i,γ ∩ E α (W ) be the closed subvariety of E α of elements x ∈ E α such that I i (x) = W . Then, if P = Stab Gα (W ), E α,i,γ = G α × P E α,i,γ (W ),
hence the inclusion ι 0 : E α,i,γ (W ) → E α,i,γ induces an equivalence of categories of perverse sheaves:

ι * 0 [-d] : M Gα (E α,i,γ ) → M P (E α,i,γ (W ))
where d = dim(G α /P ). Observe also that E α,i,γ (W ) is itself a union of ∼ iequivalence classes. Here ι 0 is a restriction of the inclusion ι introduced in 1.1, with γi in place of γ. Now, as in 1.1, fix I-graded isomorphisms W V α-γi and V α /W V γi . We have a natural vector bundle map:

κ 0 : E α,i,γ (W ) → E α-γi,i,0 × E γi
whose fibers are precisely the ∼ i -equivalence classes in E α,i,γ (W ). Again, κ 0 is a restriction of the vector bundle κ introduced in 1.1, with γi in place of γ. There is a fully faithful embedding:

κ * 0 [ω i d] : M G α-γi ×G γi (E α-γi,i,0 × E γi ) → M P (E α,i,γ (W )).
We say that a perverse sheaf

P ∈ M Gα (E α,i,γ ) is σ-invariant (at i) if ι * 0 [-d](P) belongs to the essential image of κ * 0 [ω i d].
Definition 1.8. Let P α,i,≥γ ⊆ P be the set of perverse sheaves supported on E α,i,≥γ . The notation P α,i,>γ is defined likewise, and we set P α,i,γ = P α,i,≥γ \ P α,i,>γ . The terms P α,i,≤γ , P α,i,<γ are defined similarly.

We will need the following technical result:

Proposition 1.9. Let P be any simple element of P α,i,γ . Let m : E α,i,γ → E α,i,≥γ be the open embedding. The perverse sheaf

m * P ∈ M Gα (E α,i,γ ) is σ-invariant at i.
Proof. The proof follows closely that of 1.2, whose notations we keep. In particular P = IC(R, J) where R is an open subset of π i,a ( S 0 ) for some G α -invariant stratum

S ⊆ E α × F (i)
a i . Moreover P appears in some complex:

R = j * ! π i,a! (V * a i L) | S 0
where j : π i,a ( S 0 ) → E α is the inclusion and where L is a certain G α -equivariant local system on S. It suffices to show that R is σ-equivariant. Consider a stratification S = k S(k) where:

S(k) = {(x , W) ∈ S | Im(x ) ∩ V α i i ⊆ W k but Im(x ) ∩ V α i i ⊆ W k-1 }.
Let k be maximal such that S(k) = ∅. Then S(k) is open and dense in S. Denote by S = l S(l) the induced stratification of S. Then S(k) is also open and dense in S. Finally, set:

S(k) = {(x, W) ∈ S(k) i,rss | I i (x) = W k }.
It is easy to see that S(k) is open and dense in S(k), hence in S.

Put γ = l>k a il so that γ = codim V α i i W k for any W ∈ F (i) a i . Let W an I-graded subspace of V α of codimension γi with fixed identifications W V α-γi and V α /W V γi . Consider the following diagram: S(k) S(k) Va i o o π i,a / / E α,i,γ S(k, W ) ? ῑ0 O O S(k, W ) ? ι0 O O κ0 Va i o o π i,a / / E α,i,γ (W ) ? ι 0 O O κ 0 Ξ ∃θ f f π / / E α-γi,i,0 × E γi (1.10)
where:

• S(k, W ) = {(x , W) | W k = W } ∩ S(k) ⊆ S(k); • S(k, W ) = {(x, W) | W k = W } ∩ S(k) ⊆ S(k) ;
• ῑ0 , ι0 and κ0 stand for maps induced by ι 0 and κ 0 ;

• π i,a and V a i (improperly) stand for maps induced by π i,a and V a i ;

• Ξ = κ( S(k, W ) ) ⊆ E (i) i ,a × E (i)
i ,a where (i , a ) α -γi and (i , a ) γi are naturally induced by (i, a) and k. Note the existence of an inclusion θ making commutative the triangle appearing in the diragram.

• π is the restriction of π i ,a × π i ,a to Ξ.

Observe that the two rightmost squares are cartesian. This is obvious for the top square. For the bottom square, this follows from the fact that for x ∈ E α,i,γ , a flag W ∈ F (i)

a i satisfying W k = I i (x) is x-stable if and only if it is x -stable for any x ∼ i x.
Because S(k) is open and dense in S 0 and π i,a| S 0 is finite, we have:

R = j * ! π i,a! (V * a i L) | S(k)
where j : π i,a ( S(k) ) → E α is the inclusion. Note that by construction R is a direct sum of objects in P α,i,γ . We have:

m * R = j * ! π i,a! (V * a i L) | S(k)
where now j and m denote the inclusions defined by the following commmutative diagram:

π i,a ( S(k) ) s j % % j / / E α E α,i,γ . m = = Furthermore, if j (W ) : π i,a ( S(k, W ) ) → E α,i,γ (W ) denotes the inclusion induced by j , ι * 0 m * R = ι * 0 j * ! π i,a! (V * a i L) | S(k) = j (W ) * ! ι * 0 π i,a! (V * a i L) | S(k) [since ι * 0 is an equivalence of categories] = j (W ) * ! π i,a! (V * a i L) | S(k,W ) [the highest rightmost square in (1.10) being cartesian] = j (W ) * ! π i,a! κ * 0 θ * L |S(k,W ) [the triangle being commutative in (1.10)] = j (W ) * ! κ * 0 π ! θ * L |S(k,W )
[the lowest rightmost square in (1.10) being cartesian]

= κ * 0 λ * ! π ! θ * L |S(k,W )
where λ : π (Ξ) → E α-γi,i,0 × E γi is the inclusion (recall that κ 0 is a vector bundle). It follows that m * R is σ-invariant as wanted. The proposition is proved. 1.3. A crystal type structure on B. We keep the same notations. In particular, i is an imaginary sink and W is an I-graded subspace of V α of codimension γi, with stabilizer P ⊆ G α . We also denote by U the unipotent radical of P .

Proposition 1.11. Set d = dim(G α /P ).

(1) Consider A ∈ P α-γi,i,0 P γi . For every n we have:

supp(H n Ind α-γi,γi A) ⊆ E α,i,γ .
If n = 0, we have:

supp(H n Ind α-γi,γi A) ∩ E α,i,γ = ∅.
Otherwise, the sum of the simple components of H 0 Ind α-γi,γi A belonging to P α,i,γ is nontrivial, and we denote it by ξ(A).

(2) Consider B ∈ P α,i,γ . If n = -2ω i d, we have:

supp(H n Res α-γi,γi B) ∩ E α-γi,i,0 × E γi = ∅.
Otherwise, the sum of the simple components of H -2ω i d Res α-γi,γi B belonging to P α-γi,i,0 P γi is nontrivial, and we denote it by ρ(B).

(3) The functors ξ and ρ are equivalences of categories inverse to each other.

Proof. We will use the following diagram:

G α × P E α,i,γ (W ) p 0 ∼ / / m 0 E α,i,γ m E α,i,γ (W ) ι 0 o o κ 0 / / E α-γi,i,0 × E γi µ G α × P E α (W ) p=p 3 / / E α,i,≥γ E α (W ) ι o o κ / / E α-γi × E γi
To prove (1), we denote by à the perverse sheaf

p 2 p 1 A[(ω i + 1)d]. Therefore Ind α-γi,γi A = p ! Ã[-(ω i + 1)d],
and thus the support of Ind α-γi,γi A is included in the image of p, equal to E α,i,γ . The following sheaf:

m * Ind α-γi,γi A = m * p ! Ã[-(ω i + 1)d] = p 0! m * 0 Ã[-(ω i + 1)d]
is perverse since m 0 is an open embedding, and since p 0 is an isomorphism. The support of H n Ind α-γi,γi A being included in E α,i,γ for all n, we get for n = 0:

m * H n Ind α-γi,γi A = H n m * Ind α-γi,γi A = 0 which proves (1) since Ind α-γi,γi A[(ω i + 1)d] = Ind α-γi,γi A.
To prove (2), we use the fact that m * B is σ-equivariant, which implies that

κ 0! ι * 0 m * B[-(ω i + 1)d] is perverse. But: κ 0! ι * 0 m * B[-(ω i + 1)d] = µ * κ ! ι * B[-(ω i + 1)d] = µ * Res α-γi,γi B[-(ω i + 1)d],
hence µ * Res α-γi,γi B[-2ω i d] is perverse. Since µ is an open embedding, we have, for n = -2ω i d:

µ * H n Res α-γi,γi B = H n µ * Res α-γi,γi B = 0
which ends the proof of (2).

We have the following diagram:

E α,i,γ (W ) _ G α ×E α,i,γ (W ) pr 2,0 o o π P 0 / / _ G α × P E α,i,γ (W ) _ E α (W ) κ G α ×E α (W ) π U pr 2 o o π P / / G α × P E α (W ) E α-γi × E γi G α × U E α (W ) p 2 5 5 p 1 o o
where

κpr 2 = p 1 π U by definition of p 1 , hence pr * 2 κ * = π U * p * 1 , then π U pr * 2 κ * = p * 1 , then p 2 π U pr * 2 κ * = p 2 p *
1 and thus:

π P pr * 2 κ * = p 2 p * 1 since p 2 π U = π P .
From the proof of (2) we have

µ * ρ(B) = κ 0! ι * 0 m * B[-(ω i + 1)d],
from which we get:

m * 0 ρ(B) = m * 0 p 2 p * 1 ρ(B)[(ω i + 1)d] = m * 0 π P pr * 2 κ * ρ(B)[(ω i + 1)d] = π P 0 pr * 2,0 κ * 0 µ * ρ(B)[(ω i + 1)d] = π P 0 pr * 2,0 κ * 0 κ 0! ι * 0 m * B = π P 0 pr * 2,0 ι * 0 m * B. But if we denote by a, b : G α ×E α,i,γ → E α,i,γ
the action of G α on E α,i,γ and the second projection, we have:

π P 0 pr * 2,0 ι * 0 m * B = π P 0 (id Gα ×ι 0 ) * b * m * B = π P 0 (id Gα ×ι 0 ) * a * m * B [by G α -equivariance of B] = π P 0 π P * 0 p * 0 m * B [by definition of p 0 ] = p * 0 m * B.
From the proof of (1), we also have m * ξ(A) = p 0! m * 0 Ã, from which we get:

µ * ρ(ξ(A)) κ 0! ι * 0 m * ξ(A)[-(ω i + 1)d] = κ 0! ι * 0 p 0! m * 0 Ã[-(ω i + 1)d] = κ 0! ι * 0 p 0! π P 0 pr * 2 
,0 κ * 0 µ * A but we have seen earlier that for G α -equivariant sheaves we have pr * 2,0 ι * 0 = π P * 0 p * 0 , hence ι * 0 p 0! = pr 2,0! π P * 0 , and thus:

µ * ρ(ξ(A)) = κ 0! κ * 0 µ * A = µ * A but also: m * ξ(ρ(B)) = p 0! m * 0 ρ(B) = p 0! p * 0 m * B = m * B.

We finally get (3).

Proposition 1.12. With the same hyoptheses and notations:

(1) Let B be a simple object of P α,i,γ . We have:

Res α-γi,γi B (A C) ⊕ (⊕ j∈Z L j [j])
where A is a simple object of P α-γi,i,0 , C a simple object of P γi , and L j is the tensor product of an element of P α-γi,i,>0 and an element of P γi for all j.

(2) Let (A, C) be a pair of simple objects of P α-γi,i,0 × P γi . We have:

Ind α-γi,γi (A C) B ⊕ (⊕ j∈Z L j [j]
) where B is a simple object of P α,i,γ and L j ∈ P α,i,>γ for all j.

(

3) The maps [B] → ([A], [C]) and ([A], [C]) → [B] induced by (1) and (2)

are inverse bijections between B α,i,γ and B α-γi,i,0 × B γi .

Proof. As in [Lus10, 10.3.2], the proof relies on 1.11, using the Fourier-Deligne transform (the result [Lus10, 10.3.1] remains true in our setting).

We are now able to answer a question asked by Lusztig in [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF]7]. We put

1 ai = π i,a ! 1: Proposition 1.13. The elements [1 ai ] generate K (i ∈ I, a ∈ N ≥1 ).
Proof. We proceed by induction on α. Let B be a simple object of P α . Using the Fourier-Deligne transform, we may assume that there is a sink i such that B ∈ P α,i,γ for some γ > 0 (see [Lus91, 7.2]). We then proceed by descending induction on γ. If i is real, we can conclude as in [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]7.3]. If i is imaginary, the second part of 1.12 together with the one vertex quiver case enable us to conclude. Indeed, the case of the Jordan quiver is well known (see e.g. [START_REF] Schiffmann | Lectures on canonical and crystal bases of Hall algebras[END_REF]), and the case of the quiver with one vertex and multiple loops is treated in [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF].

A GENERALIZED QUANTUM GROUP

2.1. Generators. Let (-, -) denote the symmetric Euler form on ZI: (i, j) is equal to the opposite of the number of edges of Ω between i and j for i = j ∈ I, and (i, i) = 2 -2ω i . We will denote by I re (resp. I im ) the set of real (resp. imaginary) vertices, and by I iso ⊆ I im the set of isotropic vertices: vertices i such that (i, i) = 0, i.e. such that ω i = 1. We also set I ∞ = (I re × {1}) ∪ (I im × N ≥1 ), and (ι, j) = l(i, j) if ι = (i, l) ∈ I ∞ and j ∈ I. For α = α i i ∈ ZI, we set: ht(α) = α i its height;

v α = v α i i if v i = v (i,i)/2
. We endow F ⊗ F with the following multiplication:

(a ⊗ b)(c ⊗ d) = v (|b|,|c|) (ac) ⊗ (bd).
and equip F with a comultiplication δ defined by:

δ(E i,l ) = t+t =l v tt i E i,t ⊗ E i,t
where (i, l) ∈ I ∞ .

Proposition 2.2. For any family (ν ι ) ι∈I∞ , we can endow F with a bilinear form -,such that:

x, y = 0 if |x| = |y|; E ι , E ι = ν ι for all ι ∈ I ∞ ; ab, c = a ⊗ b, δ(c) for all a, b, c ∈ F.
Proof. Strictly analogous to [Lus10, Proposition 1.2.3] or [START_REF] Michael | Green's theorem on Hall algebras[END_REF]3].

Notations 2.3. Take i ∈ I im and c a composition (i.e. a tuple of positive integers) or a partition (i.e. a decreasing tuple of positive integers). We put E i,c = j E i,c j , ν i,c = j ν i,c j , and |c| = c j .

Relations.

Proposition 2.4. Consider (ι, j) ∈ I ∞ × I re . The element:

t+t =-(ι,j)+1 (-1) t E (t) j E ι E (t ) j (2.5)
belongs to the radical of -, -.

Proof. Analogous to [Lus10, Proposition 1.4.3] or [START_REF] Michael | Quantum Serre relations[END_REF].

Remark 2.6. Some higher order Serre relations are studied in [START_REF] Lusztig | Introduction to quantum groups[END_REF]Chapter 7],

where some conditions are given to belong to the radical. However the proofs cannot be directly adapted to our setting.

The following definition is motivated by the previous proposition and our knowledge of the Jordan quiver case, which is related to the classical Hall algebra (see e.g. [START_REF] Schiffmann | Lectures on Hall algebras[END_REF]). We know that the commutators [E i,l , E i,k ] lie in the radical if i is isotropic.

Definition 2.7. We denote by Ũ + the quotient of F by the ideal spanned by the elements 2.5 and the commutators [E i,l , E i,k ] for every isotropic vertex i, so that -,is still defined on Ũ + . We denote by U + the quotient of Ũ + by the radical of -, -.

Definition 2.8. Let Û be the quotient of the algebra generated by K ± i , E ι , F ι (i ∈ I and ι ∈ I ∞ ) subject to the following relations:

K i K j = K j K i K i K - i = 1 K j E ι = v (j,ι) E ι K j K j F ι = v -(j,ι) F ι K j t+t =-(ι,j)+1 (-1) t E (t) j E ι E (t ) j = 0 (j ∈ I re ) t+t =-(ι,j)+1 (-1) t F (t) j F ι F (t ) j = 0 (j ∈ I re ) [E i,l , E i,k ] = 0 (i ∈ I iso ) [F i,l , F i,k ] = 0 (i ∈ I iso ).
We extend the graduation by

|K i | = 0 and |F ι | = -|E ι |, and we set K α = i K α i i for every α ∈ ZI.
We endow Û with a comultiplication ∆ defined by:

∆(K i ) = K i ⊗ K i ∆(E i,l ) = t+t =l v tt i E i,t K t i ⊗ E i,t ∆(F i,l ) = t+t =l v -tt i F i,t ⊗ K -ti F i,t .
We extend -,to the subalgebra Û ≥0 ⊆ Û spanned by (K ± i ) i∈I and (E ι ) ι∈I∞ by setting xK i , yK j = x, y v (i,j) for x, y ∈ Ũ + .

We use the Drinfeld double process to define Ũ as the quotient of Û by the relations:

a (1) , b (2) ω(b (1) )a (2) = a (2) , b (1) a (1) ω(b (2) ) (2.9)
for any a, b ∈ Ũ ≥0 , where ω is the unique involutive automorphism of Û mapping E ι to F ι and K i to K -i , and where we use the Sweedler notation, for example ∆(a) = a (1) ⊗ a (2) .

Setting x -= ω(x) for x ∈ Ũ , we define -,on the subalgebra Ũ -⊆ Ũ spanned by (F ι ) ι∈I∞ by setting x, y = x -, y -for any x, y ∈ Ũ -. We will denote by U -(resp. U ) the quotient of Ũ -(resp. Ũ ) by the radical of -,restricted to Ũ -(resp. restricted to Ũ -× Ũ + ).

Proposition 2.10. [START_REF] Xiao | Drinfeld double and Ringel-Green theory of Hall algebras[END_REF] We can define S, S op : U → U op (the antipode and the skew antipode) such that:

m(S ⊗ 1)∆ = m(1 ⊗ S)∆ = 1 m(S op ⊗ 1)∆ op = m(1 ⊗ S op )∆ op = 1,
where m denotes the multiplication, denotes the counit, which is equal to 1 on U 0 , and 0 on U -× U + , and ∆ op denotes the composition of ∆ and op :

U ⊗ U → U ⊗ U , x ⊗ y → y ⊗ x.
We also know that S op = S -1 .

2.3.

The case of the quiver with one vertex and multiple loops.

Lemma 2.11. We have

E i,|c| , E i,c = v k<j c k c j i ν i,c .
Proof. By induction, using the definitions.

Proposition 2.12. Let i ∈ I be a nonisotropic imaginary vertex. Assume that for every l ≥ 1 we have:

E i,l , E i,l ∈ 1 + v -1 N[[v -1 ]]. (2.13)
Then, for any compositions c and c',

E i,c , E i,c ∈ δ c,c + v -1 N[[v -1 ]].
Proof. For clarity, we forget the indices i in this proof. Notice that by definition of δ, of the multiplication on F ⊗ F, and since (i, i) < 0, we already have:

E c , E c ∈ N[[v -1 ]].
Hence, we can work modulo v -1 , and then, setting c = (c 1 , . . . , c r ), c = (c 1 , . . . , c s ), c = (c 2 , . . . , c r ) and c = (c 2 , . . . , c s ), we get:

E c , E c = E c 1 ⊗ E c, 1≤j≤s δ(E c j ) = E c 1 ⊗ E c, 1≤j≤s (E c j ⊗ 1 + 1 ⊗ E c j ) mod v -1 = 0 mod v -1 if c 1 = c 1 E c, E c mod v -1 otherwise
the second equality coming from the definition of δ, and from (i, i) < 0; the last equality coming from the definition of the multiplication on F ⊗ F, from (i, i) < 0, from 2.11, and from the hypothesis of the proposition. We end the proof by induction.

Corollary 2.14. Under the assumption 2.13, the restriction of -,to F[Ni] is nondegenerate.

Notations 2.15. We denote by C i,l the set of compositions c (resp. partitions) such that |c| = l if (i, i) < 0 (resp. (i, i) = 0).

2.4.

Quasi R-matrix.

Proposition 2.16. For any imaginary vertex i and any l ≥ 1, there exists a unique element a i,l ∈ F[li] such that, if we set b i,l = a - i,l , we get:

(1) E i,l | l ≥ 1 = a i,l | l ≥ 1 and F i,l | l ≥ 1 = b i,l | l ≥ 1 as algebras; (2) a i,l , z = b i,l , z -= 0 for any z ∈ E i,k | k < l ; (3) a i,l -E i,l ∈ E i,k | k < l and b i,l -F i,l ∈ F i,k | k < l ; (4) āi,l = a i,l and bi,l = b i,l ; (5) ∆(a i,l ) = a i,l ⊗ 1 + K li ⊗ a i,l and ∆(b i,l ) = b i,l ⊗ K -li + 1 ⊗ b i,l ; (6) S(a i,l ) = -K -li a i,l and S(b i,l ) = -b i,l K li .
Proof. The properties 2 and 3 enable us to define a i,l uniquely, and imply the other ones.

Notations 2.17. Consider i ∈ I im and c ∈ C i,l . We set τ i,l = a i,l , a i,l , a i,c = j a i,c j , and

τ i,c = j τ i,c j . Notice that {a i,c | c ∈ C i,l } is a basis of F[li].
Definition 2.18. We denote by δ i,c , δ i,c : F → F the linear maps defined by:

δ(x) = c∈C i,l δ i,c (x) ⊗ a i,c + obd δ(x) = c∈C i,l a i,c ⊗ δ i,c (x) + obd
where "obd" stands for terms of bidegree not in NI × Ni in the former equality, Ni × NI in the latter one.

Proposition 2.19. The maps δ i,c and δ i,c preserve the radical of -, -.

Proof. First consider the case where i is isotropic and x is a commutator [E i,l , E i,k ], then we have δ(x) = 0, and thus δ i,c (x) = δ i,c (x) = 0. Thus, we can assume that -,is nondegenerate on F[Ni]. Consider x in the radical of -, -. If |c| = l, we have, for all y ∈ F:

0 = x, ya i,c = δ(x), y ⊗ a i,c = |c |=l δ i,c (x) ⊗ a i,c , y ⊗ a i,c = |c |=l δ i,c (x), y a i,c , a i,c .
The result comes from the nondegeneracy of the restriction of -,to F[Ni].

Lemma 2.20. We have:

(1) a i,l , a i,c = δ (l),c τ i,l ;

(2) a i,l y, z = τ i,l y, δ i,l (z) for any y, z ∈ F;

(3) ya i,l , z = τ i,l y, δ i,l (z) for any y, z ∈ F.

Proof. The first point is a direct consequence of the definition of the a i,l , and the rest comes from it.

Definition 2.21. Let U ⊗U be the completion of U ⊗ U with respect to the following sequence (t ≥ 1):

F t = U + U 0 |α|≥t U -[α] ⊗ U + U ⊗ U -U 0 |α|≥t U + [α] .
Proposition 2.22. For any α ∈ NI, let B α be a basis of U + [α] = {x ∈ U + , |x| = α}, and {b * |b ∈ B α } the dual basis with respect to -, -. Set:

Θ α = b∈Bα b -⊗ b * .
Then, the element Θ = Θ α ∈ U ⊗U satisfies:

∆(u)Θ = Θ ∆(u) for all u ∈ U
where ∆(u) = ∆(u) if u → u denotes the unique involutive Q-morphism of U stabilizing E ι and F ι , and mapping K i to K -i , and v to v -1 .

Proof. It's enough to check the relation on generators. For those of real degree, the proof is identical to the one of [Lus10, Theorem 4.1.2]. Consider i ∈ I im and l ≥ 1. We have:

∆(a i,l )Θ = Θ ∆(a i,l ) ⇔ b∈B {a i,l b -⊗ b * + K li b -⊗ a i,l b * -b -a i,l ⊗ b * -b -K -li ⊗ b * a i,l } = 0 ⇔ ∀z ∈ U + , b∈B {a i,l b -b * , z + K li b -a i,l b * , z -b -a i,l b * , z -b -K -li b * a i,l , z } = 0 ⇔ ∀z ∈ U + , b∈B {a i,l b -b * , z + K li b -τ i,l b * , δ i,l (z) -b -a i,l b * , z -b -K -li τ i,l b * , δ i,l (z) } = 0 ⇔ ∀z ∈ U + , a i,l z -+ τ i,l K li δ i,l (z) -= z -a i,l + τ i,l δ i,l (z) -K -li
which is the relation (2.9) with a, b = a i,l , z. The equivalence before the last one comes from 2.20. The computations are the same for U ≤0 :

∆(b i,l )Θ = Θ ∆(b i,l ) ⇔ b∈B {b i,l b -⊗ K -li b * + b -⊗ b i,l b * -b -b i,l ⊗ b * K li -b -⊗ b * b i,l } = 0 ⇔ ∀z ∈ U + , b∈B { a i,l b, z K -li b * + b, z b i,l b * -ba i,l , z b * K li -b, z b * b i,l } = 0 ⇔ ∀z ∈ U + , b∈B {τ i,l b, δ i,l (z) K -li b * + b, z b i,l b * -τ i,l b, δ i,l (z) b * K li -b, z b * b i,l } = 0 ⇔ ∀z ∈ U + , τ i,l K -li δ i,l (z) + b i,l z = τ i,l δ i,l (z)K li + zb i,l
which matches (2.9) -with a, b = a i,l , z.

Remark 2.23. As in [Lus10, 4.1.2], one can prove that Θ is the only element satisfying Θ 0 = 1 ⊗ 1 and ∆(u)Θ = Θ ∆(u) for all u ∈ U . 2.5. Casimir operator. Definition 2.24. We denote by C the category of U -modules satisfying:

(1)

M = ⊕ α∈ZI M α where M α = {m ∈ M | ∀i, K i m = v (α,i) m};
(2) For any m ∈ M , there exists p ≥ 0 such that xm = 0 as soon as x ∈ F [α] and ht(α) ≥ p.

Proposition 2.25. Set Ω ≤p = m(S ⊗ 1)( ht(α)≤p Θ α ), and M ∈ C. Then, for every m ∈ M , the value of Ω(m) = Ω ≤p (m) does not depend on p for p large enough, and we have the following identities of operators on M :

K i Ω = ΩK i K -li a i,l Ω = K li Ωa i,l b i,l K li ΩK li = Ωb i,l
for any i ∈ I and l ≥ 1.

Proof. The computations are strictly analogous to those in [Lus10, 6.1.1], thanks to the definition of a i,l and b i,l (see 2.16).

Definition 2.26. For any α ∈ ZI, we define a Verma module:

M (α) = U ι∈I∞ U E ι + i∈I U (K i -v (i,α) ) ∈ C.
Proposition 2.27. Under the assumption 2.13, we have Ũ -U -.

Proof. The proof follows [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF], [START_REF] Lusztig | Introduction to quantum groups[END_REF] and more specifically [SVDB01, Proposition 2.4]. The maximal degrees of the primitive elements of the kernel of the map Ũ -→ U -are the same as those of the primitive elements of:

ker (i,l)∈I∞ • b i,l : (i,l)∈I∞ M (-li)→M (0) .
By maximality, if α is such a degree, we get (α, i) ≥ 0 for any vertex i. Indeed, [SVDB01, §2, properties 1.,2.,3.,4.] are still satisfied in our case, in particular the second one, thanks to the higher order Serre relations.

Let C denote the Q(v)-linear map defined on M = ⊕ (i,l)∈I∞ M (-li) by:

Cm = v f (α) Ωm if m ∈ M α ,
where f (α) = (α, α + 2ρ) and ρ is defined by (i, 2ρ) = (i, i) for every i ∈ I.

Notice that:

f (α -li) -f (α) + 2l(i, α) = l(l -1)(i, i).
For any (i, l) ∈ I ∞ , since Ωb i,l = b i,l ΩK 2li , we get:

Cb i,l m = v f (α-li) Ωb i,l m = v f (α-li) b i,l ΩK 2li m = v f (α-li)+2l(i,α) b i,l Ωm = v f (α-li)+2l(i,α)-f (α) b i,l Cm = v l(l-1)(i,i) b i,l Cm if i ∈ I im b i,l Cm if i ∈ I re .
Hence, if m is a primitive vector of the kernel of the map ⊕ (i,l)∈I∞ M (-li)→M (0) with |m| = α ∈ -NI, we have:

f (α) = 1≤k≤r l k (l k -1)(i k , i k ) (2.28)
where i∈I im α i i = 1≤k≤r l k i k . Since (α, i) ≥ 0 for any real vertex i, we also have:

(α, α + 2ρ) = i∈I α i (i, α + i) = i∈I re α i (i, α) + 2 i∈I re α i + i∈I im α i (i, α + i) ≤ 2 i∈I re α i + i∈I im α i (i, α + i).
Combining with 2.28, we get:

1≤k≤r l k (l k -1)(i k , i k ) ≤ 2 i∈I re α i + i∈I im α i (i, α + i) = 2 i∈I re α i + i∈I im α i (α i + 1)(i, i) + i∈I im j =i α i α j (i, j)
and thus:

0 ≤ 2 i∈I re α i + i∈I im j =i α i α j (i, j) + i∈I im (i, i) α i (α i + 1) - i k =i l k (l k -1) . Since i k =i l k = -α i , we have: α i (α i + 1) - i k =i l k (l k -1) = |α i |(|α i | -1) - i k =i l k (l k -1) ≥ 0.
But we also have α i ≤ 0, (i, j) ≤ 0 when i = j, and (i, i) ≤ 0 when i is imaginary, hence:

2 i∈I re α i + i∈I im j =i α i α j (i, j) + i∈I im (i, i) α i (α i + 1) - i k =i l k (l k -1) ≤ 0.
Finally every term in the sum is equal to 0, and -α is a sum of pairwise othogonal imaginary vertices. Since the restriction of -,to Ũ -[-Ni] is nondegenerate for any imaginary vertex i, the proof is over.

Theorem 2.29. We have an isomorphism of Hopf algebras Ψ :

U + Z ∼ → K defined by: E i,a → [1 ai ] if i ∈ I im E (a) i → [1 ai ] if i ∈ I re
and mapping -,to the geometric form {-, -}.

Proof. First, Ψ is defined. Indeed, we know from the Jordan quiver case that the elements (1 ai ) a≥1 commute if i is isotropic. Moreover the higher order Serre relations are satisfied for real vertices (see [START_REF] Lusztig | Introduction to quantum groups[END_REF]7]), and, applying the Fourier transform on the imaginary vertices, we can assume that we are working with nilpotent representations. Hence we have 1 ai = Q l{0 a} as if there were no loops, and the higher order Serre relations are still satisfied. For the same reason, we know that:

{1 ai , 1 ai } ∈ 1 + v -1 N[[v -1 ]].
Hence, setting E i,a , E i,a = {1 ai , 1 ai }, -,is nondegenerate (thanks to 2.12). Therefore Ψ is injective, and since Ψ is also surjective by 1.13, we get the result.

RELATION WITH CONSTRUCTIBLE FUNCTIONS

We denote by h : t(h) → s(h) the opposite arrow of h ∈ Ω, and Q the quiver (I, H = Ω Ω), where Ω = { h | h ∈ Ω}: each arrow is replaced by a pair of arrows, one in each direction, and we set

(h) = 1 if h ∈ Ω, (h) = -1 if h ∈ Ω.
For any pair of I-graded C-vector spaces V = (V i ) i∈I and V = (V i ) i∈I , we set:

Ē(V, V ) = h∈H Hom(V s(h) , V t(h) ).
For any dimension vector α = (α i ) i∈I , we fix an I-graded C-vector space V α of dimension α, and put Ēα = Ē(V α , V α ). The space Ēα = Ē(V α , V α ) is endowed with a symplectic form:

ω α (x, x ) = h∈H Tr( (h)x h x h)
which is preserved by the natural action of G α on Ēα . The associated moment map µ α : Ēα → g α = ⊕ i∈I End(V α ) i is given by:

µ α (x) = h∈H (h)xhx h .
Here we have identified g * α with g α via the trace pairing.

Definition 3.1. An element x ∈ Ēα is said to be seminilpotent if there exists an I-graded flag W = (W 0 = {0} ⊂ . . . ⊂ W r = V α ) of V α such that:

x h (W • ) ⊆ W •-1 if h ∈ Ω, x h (W • ) ⊆ W • if h ∈ Ω.
We put Λ(α) = {x ∈ µ -1 α (0) | x seminilpotent}. The following is proved [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF]:

Theorem 3.2. The subvariety Λ(α) of Ēα is Lagrangian.

Following [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF], we denote by M(α) the Q-vector space of constructible functions Λ(α) → Q, which are constant on any G α -orbit. Then, we set M = ⊕ α≥0 M(α) which is a graded algebra once equipped with the product * defined in [Lus00, 2.1].

For Z ∈ Irr Λ(α) and f ∈ M(α), we put ρ

Z (f ) = c if Z ∩ f -1 (c
) is an open dense subset of Z.

If i ∈ I im and (l) denotes the trivial composition or partition of l, we denote by 1 i,l the characteristic function of the associated irreducible component Z i,(l) ∈ Irr Λ(le i ) (the component of elements x such that x h = 0 for all h ∈ Ω(i)). If i / ∈ I im , we just denote by 1 i the function mapping to 1 the only point in Λ(e i ).

We have 1 i,l ∈ M(le i ) for i ∈ I im and 1 i ∈ M(e i ) for i / ∈ I im . We denote by M • ⊆ M the subalgebra generated by these functions.

The following was proved in [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF]:

Proposition 3.3. For every Z ∈ Irr Λ(α), there exists f ∈ M • (α) such that ρ Z (f ) = 1 and ρ Z (f ) = 0 if Z = Z.

Proposition 3.4. There exists a surjective morphism Φ : U + v=1 → M • defined by: E i,a → 1 i,l if i ∈ I im

E i → 1 i if i ∈ I re .
Proof. The morphism is well defined: first, the higher order Serre relations are mapped to 0. Indeed, they are for real vertices (see [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]12.11] and [Lus10, chapitre 7]), and we work with semi-nilpotent representations. Hence they are still satisfied by definition of Z i,(l) ∈ Irr Λ(le i ) (x such that x h = 0 for all h ∈ Ω(i)).

On the other hand, the commutators [E i,l , E i,k ] are also mapped to 0 if i is isotropic, thanks to the following lemma:

Lemma 3.5. Let Q be the Jordan quiver. We set I = {•} and 1 k = 1 •,k . We have [1 m , 1 n ] = 0 for all m, n ∈ N.

Proof. Consider (x, y) ∈ Λ(n + m), and set V = C n+m . We have:

1 m * 1 n (x, y) = χ            W ∈ Grass n V W is (x, y)-stable x |W |W = 0 x |V /W |V /W = 0            .
This is equal to 0 except if x ∈ O λ , where λ = (λ 1 ≥ λ 2 ). Then:

1 m * 1 n (x, y) = χ W ∈ Grass n-λ 2 kerx | W ȳ-stable
where ¯stands for the quotient by Im x. Also:

1 n * 1 m (x, y) = χ W ∈ Grass m-λ 2 kerx | W ȳ-stable .
Since n -λ 2 + m -λ 2 = λ 1 -λ 2 = dim kerx, we get the result by duality:

End(kerx) ∼ → End((kerx) * ) ȳ → [φ → φ • ȳ].
Finally, the surjectivity comes from the definition of M • .

We conjecture that Φ is an isomorphism, which should be proved by comparing the two "crystal" structures on K and M • given by the following sets of bijections: B α,i,γ ∼ → B α-γi,i,0 × B γi Irr Λ(α) i,γ ∼ → Irr Λ(α -γi) i,0 × Irr Λ(γi), the latter being obtained in [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF]. To that end, the notion of crystal should be generalized, and results analogous to those obtained in [START_REF] Kashiwara | Geometric construction of crystal bases[END_REF] should be proved.

Definition 2. 1 .

 1 Let F denote the Q(v)-algebra generated by (E ι ) ι∈I∞ , naturally NI-graded by deg(E i,l ) = li for (i, l) ∈ I ∞ . We put F[A] = {x ∈ F | |x| ∈ A} for any A ⊆ NI, where, for convenience, we denote by |x| the degree of an element x.