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Introduction 1. Lusztig quiver varieties 1.1. The case of the Jordan quiver 1.2. The case of the quiver with one vertex and g ≥ 2 loops 1.3. The general case 1.4. Constructible functions 2. Nakajima quiver varieties 2.1. A crystal-type structure 2.2. Extension to the stable locus 2.3. Tensor product on Irr L 2.4. Another Lagrangian subvariety 2.5. Comparison of two crystal-type structures 3. Generalized crystals 3.1. A generalized quantum group 3.2. Kashiwara operators 3.3. Definition of generalized crystals 3.4. The crystal B(∞) 3.5. The crystals B(λ) 3.6. Grand loop argument References INTRODUCTION Lusztig defined in [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF] Lagrangian subvarieties of the cotangent stack to the moduli stack of representations of a quiver associated to any Kac-Moody algebra. The proof of the Lagrangian character of these varieties was obtained via the study of some natural stratifications of each irreducible component, and then proceeding by induction. The particular combinatorial structure thus attached to the set of irreducible components made it possible for Kashiwara and Saito in [START_REF] Kashiwara | Geometric construction of crystal bases[END_REF] to relate this variety to the usual quantum group associated to Kac-Moody algebras, via the notion of crystals. This later led Lusztig in [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF] to define a semicanonical basis of this quantum group, indexed by the irreducible components of these Lagrangian varieties.

There are more and more evidence of the relevance of the study of quivers with loops. A particular class of such quivers are the comet-shaped quivers, which have recently been used by Hausel, Letellier and Rodriguez Villegas in their study of the topology of character varieties, where the number of loops at the central vertex is the genus of the considered curve (see [START_REF] Hausel | Mixed Hodge polynomials of character varieties[END_REF] and [START_REF] Hausel | Arithmetic harmonic analysis on character and quiver varieties II[END_REF]). We can also see quivers with loops appearing in a work of Nakajima relating quiver varieties with branching (see [START_REF] Nakajima | Quiver varieties and branching[END_REF]), as in the work of Okounkov and Maulik about quantum cohomology (see [START_REF] Maulik | Quantum groups and quantum cohomology[END_REF]).

Kang, Kashiwara and Schiffmann generalized these varieties in the framework of generalized Kac-Moody algebra in [START_REF] Kang | Geometric construction of crystal bases for quantum generalized Kac-Moody algebras[END_REF], using quivers with loops. In this case, one has to impose a somewhat unnatural restriction on the regularity of the maps associated to the loops.

In this article we define a generalization of such Lagrangian varieties in the case of arbitrary quivers, possibly carrying loops. As opposed to the Lagrangian varieties constructed by Lusztig, which consisted in nilpotent representations, we have to consider here slightly more general representations. That this is necessary is already clear from the Jordan quiver case. Note that our Lagrangian variety is strictly larger than the one considered in [START_REF] Kang | Geometric construction of crystal bases for quantum generalized Kac-Moody algebras[END_REF] and has many more irreducible components. Our proof of the Lagrangian character is also based on induction, but with non trivial first steps, consisting in the study of quivers with one vertex but possible loops. From our proof emerges a new combinatorial structure on the set of irreducible components, which is more general than the usual crystals, in that there are now more operators associated to a vertex with loops, see 1.14.

In a second section we study Nakajima varieties, still in the context of arbitrary quivers. We construct Lagrangian subvarieties, and generalize the notion of tensor product of their irreducible components, introduced by Nakajima in [START_REF] Nakajima | Quiver varieties and tensor products[END_REF]. The geometric statements obtained in the two first sections give the intuition of the way crystals and their tensor product should be generalized, which is done in a third part. The algebraic definition and study of the crystal B(∞) enable us to define a semicanonical basis for the positive part of the generalized quantum group U + defined in [START_REF] Bozec | Quivers with loops and perverse sheaves[END_REF], where it is already equipped with a canonical basis, built via the theory of Lusztig perverse sheaves associated to quivers with loops. We finally use our study of Nakajima quiver varieties to produce a geometric realization of the generalized crystals B(λ).
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LUSZTIG QUIVER VARIETIES

Let Q be a quiver, defined by a set of vertices I and a set of oriented edges Ω = {h : s(h) → t(h)}. We denote by h : t(h) → s(h) the opposite arrow of h ∈ Ω, and Q the quiver (I, H = Ω Ω), where Ω = { h | h ∈ Ω}: each arrow is replaced by a pair of arrows, one in each direction, and we set (h) = 1 if h ∈ Ω, (h) = -1 if h ∈ Ω. Note that the definition of h still makes sense if h ∈ Ω. We denote by Ω(i) the set of loops of Ω at i, and call i imaginary if ω i = |Ω(i)| ≥ 1, real otherwise. Denote by I im (resp. I re ) the set of imaginary vertices (resp. real vertices). Finally, set H(i) = Ω(i) Ω(i).

We work over the field of complex numbers C.

For any pair of I-graded C-vector spaces V = (V i ) i∈I and V = (V i ) i∈I , we set:

Ē(V, V ) = h∈H Hom(V s(h) , V t(h) ).

For any dimension vector ν = (ν i ) i∈I , we fix an I-graded C-vector space V ν of dimension ν, and put Ēν = Ē(V ν , V ν ). The space Ēν = Ē(V ν , V ν ) is endowed with a symplectic form:

ω ν (x, x ) = h∈H Tr( (h)x h x h)
which is preserved by the natural action of G ν = i∈I GL ν i (C) on Ēν . The associated moment map µ ν : Ēν → g ν = ⊕ i∈I End(V ν ) i is given by:

µ ν (x) = h∈H (h)xhx h .
Here we have identified g * ν with g ν via the trace pairing. Definition 1.1. An element x ∈ Ēν is said to be seminilpotent if there exists an

I-graded flag W = (W 0 = V ν ⊃ . . . ⊃ W r = {0}) of V ν such that: x h (W • ) ⊆ W •+1 if h ∈ Ω, x h (W • ) ⊆ W • if h ∈ Ω. We put Λ(ν) = {x ∈ µ -1 ν (0) | x seminilpotent}. Lemma 1.2. The variety Λ(ν) is isotropic.
Proof. We use the following general fact (see e.g. [KS94, §8.3]):

Proposition 1.3. Let X be a smooth algebraic variety, Y a projective variety and Z a smooth closed algebraic subvariety of X × Y . Consider the Lagrangian subvariety

Λ = T * Z (X × Y ) of T * (X × Y ).
Then the image of the projection

q : Λ ∩ (T * X × T * Y Y ) → T * X is isotropic. We apply this result to X = ⊕ h∈Ω End(V ν s(h) , V ν t(h) ), Y the I-graded flag variety of V ν and: Z = {(x, W) ∈ X × Y | x(W • ) ⊆ W •+1 }.
In this case, we get:

T * X = Ēν T * Y = {(W, ξ) ∈ Y × g ν | ξ(W • ) ⊆ W •+1 } Λ =    (x, W, ξ) ξ = h∈H (h)xhx h ∀h ∈ Ω, x h (W • ) ⊆ W •+1 and xh(W • ) ⊆ W •    Im q = x ∈ Ēν µ ν (x) = 0 and there exists W ∈ Y such that ∀h ∈ Ω, x h (W • ) ⊆ W •+1 and xh(W • ) ⊆ W • ,
hence Λ(ν) ⊆ Im q, which proves the lemma.

1.1. The case of the Jordan quiver. This case is very well known. For ν ∈ N, we have:

Λ(ν) = {(x, y) ∈ (End C ν ) 2 | x nilpotent and [x, y] = 0} = λ T * O λ (End C ν ),
where O λ is the nilpotent orbit associated to the partition λ of ν. Therefore Λ(ν) is a Lagrangian subvariety of (End C ν ) 2 , and its irreducible components are the closures of the conormal bundles to the nilpotent orbits.

1.2. The case of the quiver with one vertex and g ≥ 2 loops. For ν ∈ N, Λ(ν) is the subvariety of (End C ν ) 2g with elements (x i , y i ) 1≤i≤g such that: there exists a flag

W of C ν such that x i (W • ) ⊆ W •+1 and y i (W • ) ⊆ W • ; 1≤i≤g [x i , y i ] = 0.
We will denote by C ν the set of compositions of ν, i.e. tuples c = (c 1 , . . . , c r ) of N >0 such that:

|c| = 1≤k≤r c k = ν.
We will also often forget the index 1 ≤ i ≤ g in the rest of this section, which is dedicated to the proof of the following theorem:

Theorem 1.4. The subvariety Λ(ν) ⊆ (End C ν ) 2g is Lagrangian. Its irreducible components are parametrized by C ν . Notations 1.5. For (x i , y i ) ∈ Λ(ν), we define W 0 (x i , y i ) = C ν , then by induction W k+1 (x i , y i ) the smallest subspace of C ν containing x i (W k (x i , y i )) and stable by (x i , y i ). By seminilpotency, we can define r to be the first power such that W r (x i , y i ) = {0}. Although r depends on (x i , y i ) we don't write it explicitly.

Let c(x i , y i ) denotes the composition associated to the flag W • (x i , y i ):

c k (x i , y i ) = dim W k-1 (x i , y i ) W k (x i , y i ) .
For every c ∈ C ν , we define a locally closed subvariety:

Λ(c) = (x i , y i ) ∈ Λ(ν) | dim W •-1 (x i , y i ) W • (x i , y i ) = c ⊆ Λ(ν).
Then, if δ = (δ 1 , . . . , δ r-1 ) ∈ N r-1 , let Λ(c) δ ⊆ Λ(c) be the locally closed subvariety defined by:

dim 1≤i≤g ker ξ → y (k) i ξ -ξy (k+1) i = δ k ,
where:

y (k) i ∈ End W k-1 (x i , y i ) W k (x i , y i )
is induced by y i and:

ξ ∈ Hom W k (x i , y i ) W k+1 (x i , y i ) , W k-1 (x i , y i ) W k (x i , y i ) .
Set l = c 1 , then:

Λ(c) δ =      (x i , y i , X, β, γ) (x i , y i ) ∈ Λ(c) δ W 1 (x i , y i ) ⊕ X = C ν β : W 1 (x i , y i ) ∼ → C ν-l and γ : X ∼ → C l     
, and:

π c,δ Λ(c) δ → Λ(c -) δ -× (End C l ) g (x i , y i , X, β, γ) → (β * (x i , y i ) W 1 , γ * (y i ) X ))
where c -= (c 2 , . . . , c r ) and δ -= (δ 2 , . . . , δ r-1 ). Let finally

(Λ(c -) δ -× (End C l ) g ) c,δ denote the image of π c,δ .
Proposition 1.6. The morphism π c,δ is smooth over its image, with connected fibers of dimension

ν 2 + (2g -1)l(ν -l) + δ 1 whenever Λ(c) δ = ∅. Proof. Let (x i , y i , z i ) ∈ (Λ(c -) δ -× (End C l ) g ) c,δ .
Let W and X be two supplementary subspaces of C ν such that dim X = l, together with two isomorphisms:

β : W ∼ → C ν-l and γ : X ∼ → C l .
We identify x i , y i and z i with β * (x i , y i ) and γ * z i , and define an element (X i , Y i ) in the fiber of (x i , y i , z i ) by setting:

(X i , Y i ) W = (x i , y i ) (X i , Y i ) X = (0, z i ) (X i , Y i ) |W |X = (u i , v i ) ∈ Hom(X, W) 2g . Then: µ ν (X i , Y i ) = 0 ⇔ φ(u i , v i ) = g i=1 (x i v i + u i z i -y i u i ) = 0,
and, for ξ ∈ Hom(W, X):

∀(u i , v i ), Tr(ξφ(u i , v i )) = 0 ⇔ ∀i, ∀u i , Tr(ξ(u i z i -y i u i )) = 0 ∀i, ∀v i , Tr(ξx i v i ) = 0 ⇔ ∀i, ∀u i , Tr((z i ξ -ξy i )u i ) = 0 ∀i, ∀v i , Tr(ξx i v i ) = 0 ⇔ ∀i, z i ξ = ξy i ∀i, ξx i = 0 ⇔ W 1 (x i , y i ) ⊆ ker ξ ∀i, z i ξ (1) = ξ (1) y (1) i
where ξ (1) denotes the map W/W 1 (x i , y i ) → X induced by ξ. Since (x i , y i , z i ) is in the image of π c,δ , the image of φ is of codimension δ 1 , and thus its kernel is of dimension (2g -1)l(ν -l) + δ 1 . Moreover, if we denote by u

(1) i the map X → W/W 1 (x i , y i ) induced by u i , W 1 (X i , Y i ) = W if
and only if the space spanned by the action of (y

(1) i ) i on i Im u (1)
i is W/W 1 (x i , y i ). This condition defines an open subset of ker φ.

We end the proof noticing that the set of elements (W, X, β, γ) is isomorphic to GL ν (C).

Proposition 1.7. The variety Λ(c) 0 is not empty.

Proof. Fix W of dimension c and define x 1 such that

x 1 (W • ) ⊆ W •+1 x 1 |W k /W k+1 |W k-1 /W k = 0.
We define inductively an element y 1 stabilizing W such that: the action of y 1 (k+1) on Im x 1

|W k /W k+1 |W k-1 /W k spans W k /W k+1 ; Spec y 1 (k) ∩ Spec y 1 (k+1) = ∅.
We finally set x 2 = -x 1 , y 2 = y 1 and x i = y i = 0 for i > 2. This yields an element (x i , y i ) in Λ(c) 0 .

Corollary 1.8. For any c ∈ C ν , Λ(c) 0 is irreducible of dimension gν 2 .

Proof. We argue by induction on r. If c = (ν), we have Λ(c) 0 = Λ(c) = (End C ν ) g which is irreducible of dimension gν 2 . For the induction step, 1.6 and 1.7 ensure us that Λ(c) 0 is irreducible of dimension:

ν 2 + (2g -1)l(ν -l) + dim(Λ(c -) 0 × (End C l ) g ) c,0 = ν 2 + (2g -1)l(ν -l) + g(ν -l) 2 + gl 2
since (Λ(c -) 0 × (End C l ) g ) c,0 is a non empty subvariety of Λ(c -) 0 × (End C l ) g , irreducible of dimension g(ν -l) 2 + gl 2 by our induction hypothesis. Moreover,

Λ(c) 0 → Λ(c) 0
being a principal bundle with fibers of dimension ν 2 -l(ν -l), we get that Λ(c) 0 is irreducible of dimension

ν 2 + (2g -1)l(ν -l) + g(ν -l) 2 + gl 2 -ν 2 + l(ν -l) = gν 2 .
Lemma 1.9. Let V and W be two vector spaces, and k ≥ 0. For any (u, v) ∈ End V × End W , we set:

C(u, v) = {x ∈ Hom(V, W ) | xu = vx} (End V × End W ) k = {(u, v) ∈ End V × End W | dim C(u, v) = k}.
Then we have

codim(End V × End W ) k ≥ k.
Proof. The restriction of an endomorphism a to a generalized eigenspace associated to an eigenvalue η will be denoted by a η = η id +ã η . As usual, the nilpotent orbit associated to a partition ξ will be denoted by O ξ . We have:

codim(End V × End W ) k = codim{(u, v) | α,β dim C(u α , v β ) = k} = codim{(u, v) | α∈Spec u∩Spec v dim C(u α , v α ) = k} = codim{(u, v) | α dim C(ũ α , ṽα ) = k} = codim (u, v) (ũ α , ṽα ) ∈ O λα × O µα α j (λ α ) j (µ α ) j = k Thus, codim(End V × End W ) k ≥ k ⇔ α (codim O λα + codim O µα -1) ≥ α j (λ α ) j (µ α ) j ⇔ α ( j (λ α ) 2 j + j (µ α ) 2 j -1) ≥ α j (λ α ) j (µ α ) j ,
which is clear.

Proposition 1.10. If δ = 0, we have dim Λ(c) δ < gν 2 .

Proof. It's enough to show that if δ 1 > 0, we have:

dim(Λ(c -) δ -× (End C l ) g ) c,δ + δ 1 < dim(Λ(c -) 0 × (End C l ) g ).
This is a consequence of the previous lemma (recall that g ≥ 2). Indeed, if we set :

((End V ) g × (End W ) g ) k = {(u i , v i ) | dim ∩ i C(u i , v i ) = k},
we have:

((End V ) g × (End W ) g ) k ⊆ g i=1 (End V × End W ) k i
for some k i ≥ k, and thus:

codim((End V ) g × (End W ) g ) k ≥ i codim(End V × End W ) k i ≥ i k i ≥ gk > k.
The following proposition concludes the proof of theorem 1.4:

Proposition 1.11. Every irreducible component of Λ(c) is of dimension larger than or equal to gν 2 .

Proof. We first prove the result for the following variety:

Λ(c) = {((x i , y i ), W) ∈ Λ(ν) × Y c | x i (W • ) ⊆ W •+1 and y i (W • ) ⊆ W • }
where Y c denotes the variety of flags of C ν of dimension w. We use the following notations, analogous to 1.2:

X = {(x i ) 1≤i≤g ∈ (End C ν ) g } Z = {((x i ) 1≤i≤g , W) | x i (W • ) ⊆ W •+1 } ⊆ X × Y c .
We get:

T * X = {(x i , y i ) 1≤i≤g ∈ (End C ν ) 2g } T * Y c = {(W, K) ∈ Y c × End C ν | K(W • ) ⊆ W •+1 }
and:

T * Z (X × Y c ) =      ((x i , y i ), F, K) 1≤i≤g [x i , y i ] = K x i (W • ) ⊆ W •+1 and y i (W • ) ⊆ W •      which is a pure Lagrangian subvariety of T * (X × Y c ), of dimension gν 2 + dim Y c . Since T * Y c is irreducible of dimension 2 dim Y c
, the irreducible components of the fibers of T * Z (X×Y c ) → T * Y c are of dimension larger than or equal to gν 2 -dim Y c . We denote by ΛW the fiber above (W, 0), and by P the stabilizer of W in G ν . Since G ν and P are irreducible, we get that the components of:

Λ(c) = G ν × P ΛW are of dimension larger than or equal to dim Y c + (gν 2 -dim Y c ) = gν 2 .
We extend this result to Λ(c), noticing that:

Λ(c) → Λ(c) (x i , y i ) → (x i , y i , W • (x i , y i ))
defines an open embedding.

1.3. The general case. Denote by a i,j the number of edges of Ω such that s(h) = i and t(h) = j, and denote by: C = (2δ i,j -a i,j -a j,i ) the Cartan matrix of Q. For every ν, β ∈ N I and j ∈ I, we put:

ν, β = i∈I ν i β i e j = (δ i,j ) i∈I .
Definition 1.12. For every subset i ∈ I, and every x ∈ Λ(ν), we denote by I i (x) the subspace of V ν spanned by the action of x on ⊕ j =i V j . Then, for l > 0, we set:

Λ(ν) i,l = {x ∈ Λ(ν) | codim I i (x) = le i }.
Remark 1.13. By the definition of seminilpotency, we have:

Λ(ν) = i∈I,l≥1 Λ(ν) i,l .
Indeed, if x ∈ Λ(ν), there exists an I-graded flag (W 0 ⊃ . . . ⊃ W r ) such that (x, W) satisfies 1.1. Therefore there exists i ∈ I and l > 0 such that W 0 /W 1 V le i , and thus x ∈ ∪ k≥l Λ(ν) i,k .

Proposition 1.14. There exists a variety Λ(ν) i,l and a diagram:

Λ(ν) i,l q i,l z z p i,l ( ( Λ(ν) i,l Λ(ν -le i ) i,0 × Λ(le i )
such that p i,l and q i,l are smooth with connected fibers, inducing a bijection:

Irr Λ(ν) i,l ∼ → Irr Λ(ν -le i ) i,0 × Irr Λ(le i ).
Proof. In this proof we will denote by I(V, V ) the set of I-graded isomorphisms between two I-graded spaces V and V of same I-graded dimension. We set:

Λ(ν) i,l =      (x, X, β, γ) x ∈ Λ(ν) i,l
X I-graded and

I i (x) ⊕ X = V ν β ∈ I(I i (x), V ν-le i ) and γ ∈ I(X, V le i )     
and:

p i,l Λ(ν) i,l → Λ(ν -le i ) i,0 × Λ(le i ) (x, X, β, γ) → (β * (x I i (x) ), γ * (x X )).
We study the fibers of p i,l : take y ∈ Λ(ν -le i ) i,0 and z ∈ Λ(le i ) and consider I and X two supplementary I-graded subspaces of V ν such that dim X = le i , together with two isomorphisms:

β ∈ I(I, V ν-le i ) and γ ∈ I(X, V le i ).
We identify y and z with β * y and γ * z, and we define a preimage x by setting

x |I |I = y, x |X |X = z and x |I |X = η ∈ Ē(X, I).
In order to get µ ν (x) = 0, η must satisfy the following relation:

φ(η) = h∈H:s(h)=i (h)(yhη h + ηhz h ) = 0.
We need to show that φ is surjective to conclude. Consider ξ ∈ Hom(I i , X i ) such that Tr(φ(η)ξ) = 0 for every η. For every edge h such that s(h) = i = j = t(h) and every η h , we have:

0 = Tr(yhη h ξ) = Tr(ξyhη h )
Hence ξyh = 0, and Im yh ⊆ ker ξ. Now consider a loop h ∈ H(i). For every η h , we have:

0 = Tr (η h zh -yhη h )ξ = Tr η h (zhξ -ξyh) .
Hence ξyh = zhξ and therefore ker ξ is stable by yh. As codim I i (y) = 0, we get ξ = 0, which finishes the proof.

We can now state the following theorem, which answers a question asked in [Li]:

Theorem 1.15. The subvariety Λ(ν) of Ēν is Lagrangian.

Proof. Since this subvariety is isotropic by 1.2 we just have to show that the irreducible components of Λ(ν) are of dimension ν, (1 -C/2)ν . We proceed by induction on ν, the first step corresponding to the one vertex quiver case which has already been treated: we have seen that Λ(le i ) is of dimension le i , (1 -C/2)le i .

Next, consider C ∈ Irr Λ(ν) for some ν. By 1.13, there exists i ∈ I and l ≥ 1 such that C ∩ Λ(ν) i,l is dense in C. Let Č = (C 1 , C 2 ) the couple of irreducible components corresponding to C via the bijection obtained in 1.14:

Irr Λ(ν) i,l ∼ → Irr Λ(ν -le i ) i,0 × Irr Λ(le i ).
We also know by the proof of 1.14 that the fibers of p i,l are of dimension:

ν, ν + ν -le i , (1 -C)le i .
Since q i,l is a principal bundle with fibers of dimension ν, ν -le i , ν -le i , we get:

dim C = dim Č + ν -le i , (2 -C)le i . But Λ(ν -le i ) i,0 is open in Λ(ν -le i )
, so we can use our induction hypothesis and the first step to write:

dim Č = ν -le i , (1 -C/2)(ν -le i ) + le i , (1 -C/2)le i
and thus obtain:

dim C = ν, (1 -C/2)ν .
1.4. Constructible functions. Following [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF], we denote by M(ν) the Qvector space of constructible functions Λ(ν) → Q, which are constant on any G ν -orbit. Put M = ⊕ ν≥0 M(ν), which is a graded algebra once equipped with the product * defined in [Lus00, 2.1].

For Z ∈ Irr Λ(ν) and f ∈ M(ν), we put ρ

Z (f ) = c if Z ∩ f -1 (c) is an open dense subset of Z.
If i ∈ I im and (l) denotes the trivial composition or partition of l, we denote by 1 i,l the characteristic function of the associated irreducible component Z i,(l) ∈ Irr Λ(le i ) (the component of elements x such that x h = 0 for any loop h ∈ Ω(i)).

If i /

∈ I im , we just denote by 1 i the function mapping to 1 the only point in Λ(e i ).

We have 1 i,l ∈ M(le i ) for i ∈ I im and 1 i ∈ M(e i ) for i / ∈ I im . We denote by M • ⊆ M the subalgebra generated by these functions.

Lemma 1.16. Suppose Q has one vertex • and g ≥ 1 loop(s). For every Z ∈ Irr Λ(ν) there exists f ∈ M • (ν) such that ρ Z (f ) = 1 and ρ Z (f ) = 0 for Z = Z.
Proof. We denote by Z c the irreducible component associated to the partition (resp. composition) c of ν if g = 1 (resp. g ≥ 2). By convention, if g = 1, Z c will denote the component associated to the orbit O c defined by:

x ∈ O c ⇔ dim ker x i = 1≤k≤i c k .
If g ≥ 2, we remark that by trace duality, we can assume that Z c is the closure of Λˇc defined by:

(x i , y i ) 1≤i≤g ∈ Λˇc ⇔ dim K i = 1≤k≤i c k
where we define by induction K 0 = {0}, then K j+1 as the biggest subspace of ∩ i x -1 i (K j ) stable by (x i , y i ). From now on, c = (c 1 , . . . , c r ) will denote indistinctly a partition or a composition depending on the value of g. We define an order by: c c if and only if for any i ≥ 1 we have

1≤k≤i c k ≤ 1≤k≤i c k . Therefore, setting 1c = 1 cr * • • • * 1 c 1 , where 1 l = 1 •,l , we get: x ∈ Z c , 1c (x) = 0 ⇒ c c.
For c = (ν) we have 1c = 1 ν which is the characteristic function of Z c , and we put 1 c = 1c in this case. Then, by induction:

1 c = 1c - c ≺c ρ Z c ( 1c )1 c
has the expected property.

Notations 1.17.

From now on, if c corresponds to an irreducible component of Λ(|c|e i ), we will note 1 i,c the function corresponding to 1 c in the previous proof.

For Z ∈ Irr Λ(ν) i,l , we denote by i (Z) ∈ Irr Λ(le i ) the composition of the second projection with the bijection obtained in 1.14. Note that

| i (Z)| = l.
Proposition 1.18. For every Z ∈ Irr Λ(ν), there exists

f ∈ M • (ν) such that ρ Z (f ) = 1 and ρ Z (f ) = 0 if Z = Z.
Proof. We proceed as in [Lus00, lemma 2.4], by induction on ν. The first step consists in 1.16. Then, consider Z ∈ Irr Λ(ν). There exists i ∈ I and l > 0 such that Z ∩ Λ(ν) i,l is dense in Z.

We now proceed by descending induction on l. There's nothing to say if l > ν i . Otherwise, let (Z , Z c ) ∈ Irr Λ(ν -le i ) i,0 ×Irr Λ(le i ) be the pair of components corresponding to Z. By the induction hyopthesis on ν, there exists

g ∈ M • (ν -le i ) such that ρ Z (g) = 1 and ρ Y (g) = 0 if Z = Y ∈ Irr Λ(ν -le i ).
Then we set f = 1 i,c * g ∈ M • (ν), and get:

• ρ Z ( f ) = 1, • ρ Z ( f ) = 0 if Z ∈ Irr Λ(ν) \ Z satisfies | i (Z )| = l, • f (x) = 0 if x ∈ Λ(ν) i,<l so that ρ Z ( f ) = 0 if | i (Z )| < l. If | i (Z )| > l,
we use the induction hypothesis on l: there exists

f Z ∈ M • (ν) such that ρ Z (f Z ) = 1 and ρ Z (f Z ) = 0 if Z ∈ Irr Λ(ν)\Z .
We end the proof by setting:

f = f - Z :| i (Z )|>l ρ Z ( f )f Z .

NAKAJIMA QUIVER VARIETIES

Fix an I-graded vector space W of dimension λ = (λ i ) i∈I . For any dimension vector ν = (ν i ) i∈I , we still fix an I-graded C-vector space V ν = ((V ν ) i = V ν i e i ) i∈I of dimension ν. We will denote by (x, f, g) = ((x h ) h∈H , (f i ) i∈I , (g i ) i∈I ) the elements of the following space:

E(V, λ) = Ē(V, V ) ⊕ i∈I Hom(V i , W i ) i∈I Hom(W i , V i )
defined for any I-graded space V , and put E ν,λ = E(V ν , λ) for any dimension vector ν. This space is endowed with a symplectic form:

ω ν,λ (x, f, g), (x , f , g ) = h∈H Tr( (h)x h x h) + i∈I Tr(g i f i -g i f i ) which is preserved by the natural action of G ν = i∈I GL ν i (C) on E ν,λ . The associated moment map µ ν,λ : E ν,λ → g ν = ⊕ i∈I End(V ν ) i is given by: µ ν,λ (x, f, g) = g i f i + h∈H:s(h)=i (h)xhx h i∈I .
Here we have identified g * ν with g ν via the trace pairing. Put:

M • (ν, λ) = µ -1 ν,λ (0). Definition 2.1. Set χ : G ν → C * , (g i ) i∈I → i∈I det -1 g i . We denote by: M • (ν, λ) = M • (ν, λ)/ /G ν M(ν, λ) = M • (ν, λ)/ χ G ν
the geometric and symplectic quotients (with respect to χ).

Proposition 2.2. An element (x, f, g) ∈ M • (ν, λ) is stable with respect to χ if and only if the only x-stable subspace of ker f is {0}. Set:

M(ν, λ) = {(x, f, g) ∈ M • (ν, λ) | (x, f, g) stable}, then M(ν, λ) = M(ν, λ)/ /G ν . 2.1. A crystal-type structure. Definition 2.3. An element (x, f, g) ∈ E ν,λ is said to be seminilpotent if x ∈ Ēν is, according to 1.1. We put: L • (ν, λ) = {(x, f, 0) ∈ M • (ν, λ) | x seminilpotent} ⊆ M • (ν, λ)
and define L(ν, λ) ⊆ M(ν, λ) in the same way. Finally set:

L • (ν, λ) = L • (ν, λ)/ /G ν L(ν, λ) = L • (ν, λ)/ χ G ν = L(ν, λ)/ /G ν .
We will simply denote by (x, f ) the elements of L • (ν, λ).

There is an alternative definition of L(ν, λ). Define a C * -action on M(ν, λ) by:

t [x, f, g] = [t (1+ )/2 x, f, tg].
We have:

L(ν, λ) = {[x, f, g] | ∃ lim t→∞ t [x, f, g]}.
By the same arguments than in [Nak94, 5.8], we have the following: Proposition 2.4. The subvariety L(ν, λ) ⊂ M(ν, λ) is Lagrangian.

Note that since we consider seminilpotents instead of nilpotents, we still have:

ω ν,λ (t -, -) = tω ν,λ .
Definition 2.5. For every subset i ∈ I, and every (x, f, g) ∈ M • (ν, λ), we denote by I i (x, f, g) the subspace of V ν spanned by the action of x ⊕ g on (⊕ j =i V j ) ⊕ W i . Then, for l ≥ 0, we set:

M • (ν, λ) i,l = {x ∈ M • (ν, λ) | codim I i (x, f, g) = le i }.
We define M(ν, λ) i,l , L • (ν, λ) i,l and L(ν, λ) i,l in the same way. The quantity codim I i (x, f, g) being stable on G ν -orbits, the notations M • (ν, λ) i,l , M(ν, λ) i,l , L • (ν, λ) i,l and L(ν, λ) i,l also make sense.

Remark 2.6.

• As in 1.13, we have:

L • (ν, λ) = i∈I,l≥1 L • (ν, λ) i,l . • Note that L • (le i , 0) = Λ(le i ).
Proposition 2.7. There exists a variety M• (ν, λ) i,l and a diagram:

M• (ν, λ) i,l q i,l w w p i,l * * M • (ν, λ) i,l M • (ν -le i , λ) i,0 × M • (le i , 0) (2.8)
such that p i,l and q i,l are smooth with connected fibers, inducing a bijection:

Irr M • (ν, λ) i,l ∼ → Irr M • (ν -le i , λ) i,0 × Irr M • (le i , 0).
Proof. In this proof we will denote by I(V, V ) the set of I-graded isomorphisms between two I-graded spaces V and V of same I-graded dimension. We set:

M• (ν, λ) i,l =          (x, f, g, X, β, γ) (x, f, g) ∈ M • (ν, λ) i,l X I-graded and I i (x, f, g) ⊕ X = V ν β ∈ I(I i (x, f, g), V ν-le i ) γ ∈ I(X, V le i )         
and:

p i,l M• (ν, λ) i,l → M • (ν -le i , λ) i,0 × M • (le i , 0) (x, f, g, X, β, γ) → (β * (xf, g) I i (x,f,g) , γ * (x, f, g) X ).
We study the fibers of p i,l : take (x, f, g) ∈ M • (ν -le i , λ) i,0 and (z, 0, 0) ∈ M • (le i , 0) and consider I and X two supplementary I-graded subspaces of V ν such that dim X = le i , together with two isomorphisms:

β ∈ I(I, V ν-le i ) and γ ∈ I(X, V le i ).
We identify (x, f, g) and z with β * (x, f, g) and γ * z, and we define a preimage (X, F, G) by setting (X, F, G)

|I⊕W |I⊕W = (x, f, g), X
|X |X = z and:

(X, F ) |I⊕W |X = (η, θ) ∈ Ē(X, I) ⊕ Hom(X i , W i ).
In order to get µ ν,λ (X, F, G) = 0, (η, θ) must satisfy the following relation:

ψ(η, θ) = h∈H:s(h)=i (h)(xhη h + ηhz h ) + g i θ i = 0.
We need to show that ψ is surjective to conclude. Consider ξ ∈ Hom(I i , X i ) such that Tr(ψ(η, θ)ξ) = 0 for every (η, θ). Then we have for every edge h ∈ H such that s(h) = i = j = t(h) and for every η h :

0 = Tr(xhη h ξ) = Tr(η h ξxh).
Hence ξxh = 0 and Im xh ⊆ ker ξ. We also have Tr(g i θ i ξ) = 0 for every θ i , so we similarly get Im g i ⊆ ker ξ. Now consider a loop h ∈ H at i. We have for every η h :

0 = Tr (xhη h -η h zh)ξ = Tr η h (ξxh -zhξ) ,
hence ξxh = zhξ and therefore ker ξ is stable by xh. Since (x, f, g) ∈ M • (νle i , λ) i,0 , we get ξ = 0, which finishes the proof.

Corollary 2.9. We also have a bijection:

l • (ν, λ) i,l : Irr L • (ν, λ) i,l ∼ → Irr L • (ν -le i , λ) i,0 × Irr L • (le i , 0).
Proof. The image of a seminilpotent element by p i,l is a pair of seminilpotent elements, and the fiber of p i,l over a pair of seminilpotent elements consists in seminilpotent elements.

2.2. Extension to the stable locus. We will often use the following well-known fact:

Lemma 2.10. Consider y ∈ End I and z ∈ End X such that Spec y∩Spec z = ∅.

If C[y].v = I and C[z].v = X for some v ∈ I and v ∈ X, then C[y ⊕ z].v ⊕ v = I ⊕ X.
Notations 2.11. Let i be imaginary and put

Ω(i) = {b 1 , . . . , b ω i }. For every (x, f ) ∈ L • (ν, λ), we set σ i (x) = x * b1
, where * stands for the duality:

End V → End V * = End Hom(V, C) u → u * = [φ → φ • u]
for every C-vector space V .

Lemma 2.12. For every C ∈ Irr Λ(le i ), there exists x ∈ C such that:

∃ψ ∈ V * le i , C[σ i (x)].ψ = V * le i .
Proof. It's a consequence of sections 1.1 and 1.2. If ω i = 1 and λ is a partition of l, denote by µ the conjugate partition of λ. Let x ∈ O λ be defined in a base: e = (e 1,1 , . . . , e 1,µ 1 , . . . , e r,1 , . . . , e r,µr ) by:

x * b 1 =         J µ 1 0 0 0 0 0 0 J µr         and x * b1 =         t 1 I µ 1 + J µ 1 0 0 0 0 0 0 t r I µr + J µr        
where the t i are all distinct and nonzero, and:

J p =        0 1 0 0 0 0 1 0 0 0        .
It is enough to consider ψ with nonzero coordinates relatively to (e 1,µ 1 , . . . , e r,µr )

to get C[σ i (x)].ψ = V * le i . If ω i ≥ 2,
we use the proof of 1.7: in any irreducible component we can define x such that there exists v such tat

C[xb 1 ].v = V le i (xb i corresponds to y i in the aforementioned proof, x b i to x i ).
We get the result by duality.

Remark 2.13. Note that the case ω i = 1 is very well known since it corresponds to the case of the Hilbert scheme of points in the plane.

Definition 2.14. Set:

L(λ) := ν L(ν, λ) ⊆ ν L • (ν, λ) =: L • (λ),
and define B(λ) as the smallest subset of Irr L • (λ) containing the only element of Irr L • (0, λ), and stable by the l • (ν, λ) -1 i,l (-, Irr Λ(le i )) for ν, i, l such that:

• e i , λ -Cν ≥ -l if i ∈ I re , • λ i + h∈H i ν t(h) > 0 if i ∈ I im where H i = {h ∈ H | i = s(h) = t(h)}.
Lemma 2.15. For every i ∈ I im , we write Ω(i) = {b i,1 , . . . , b i,ω i }. For every C ∈ B(λ), there exists (x, f ) ∈ C such that:

(x, f ) stable ∀i ∈ I im , ∃φ i ∈ W * i ⊕ (⊕ h∈H i V * ν t(h) ), C[σ i (x)].Σ i (x, f )(φ i ) = V * ν i (2.16)
where

Σ i (x, f ) = f * i + h∈H i x * h . Proof.
We proceed by induction on ν, with first step consisting in the case of C ∈ B(λ) ∩ Irr L • (le i , λ) for some l > 0. If i / ∈ I im , we have l ≤ λ i by definition of B(λ), hence we can find (x, f ) ∈ C such that 2.16 since it's equivalent here to f injective. If i ∈ I im , we have λ i > 0 by definition of B(λ), and we can use 2.12. Now consider C ∈ B(λ)∩Irr L • (ν, λ) i,l for some ν and l > 0, and set (C 1 , C 2 ) = l • (ν, λ) i,l (C). First assume that i / ∈ I im . Thanks to the induction hypothesis, we can pick ((x, f ), z) ∈ C 1 × C 2 such that (x, f ) satisfies 2.16. Following the notations used in the proof of 2.7, we build an element of C satisfying 2.16 by chosing (η, θ) such that θ + h∈H i η h is injective with values in a supplementary of Im(f i + h∈H i x h ) in W i ⊕ker( h∈H i xh): it's possible since l+ e i , λ-Cν ≥ 0 by definition of B(λ).

If i ∈ I im , take (x, f ) ∈ C 1 satisfying 2.16 and z ∈ C 2 such that:

Spec xb i,1 ∩ Spec zb i,1 = ∅ ∃ψ ∈ V * le i , C[σ i (z)].ψ = V * le i
, which is possible, thanks to 2.12. Still following the notations of the proof of 2.7, we build an element of C mapped to ((x, f ), z) by considering (η, θ) such that:

θ * + h∈H i η * h (φ i ) = ψ where φ i ∈ W * i ⊕ (⊕ h∈H i V * ν t(h) ) satisfies C[σ i (x)].Σ i (x, f )(φ i ) = I * (we use the induction hypothesis), which is possible even if I = {0} since we have W * i ⊕ (⊕ h∈H i V * ν t(h) ) =
{0} by definition of B(λ). Put η b i,j = ηb i,j = 0 for every j ≥ 2, so that:

ψ i (η, θ) = 0 ⇔ xb i,1 η b i,1 -η b i,1 zb i,1 = h∈H i (h)(xhη h + ηhz h ).
Hence we can choose η b i,1 in order to satisfy the right hand side equation since:

Spec xb i,1 ∩ Spec zb i,1 = ∅ ⇒ (η b i,1 → xb i,1 η b i,1 -η b i,1 zb i,1 ) invertible. Thanks to 2.10, (X, F ) ∈ C satisfies: C[σ i (X)].Σ i (X, F )(φ i ) = V * ν i .
We finally have to check the stability of (X, F ) to conclude. Consider S ⊆ ker F stable by X. We have S ∩ I = {0} by stability of (x, f ), thus S S i and we see S as a subspace of ker F ∩ (∩ h∈H i ker X h ). But then S * is stable by σ i (X) and contains Im F * + h∈H i Im X * h , and thus φ i . Hence S * = V ν i , and S = {0}. Proposition 2.17. We have B(λ) = Irr L(λ).

Proof. Thanks to 2.15, we have B(λ) ⊆ Irr L(λ). Consider Z ∈ Irr L(ν, λ) i,l \ B(λ) for some l > 0. We know (c.f. [Nak98, 4.6]) that if i ∈ I re , we necessarily have l + e i , ν -Cλ ≥ 0, and thus, by definition of B(λ):

l • (ν, λ) i,l (Z) ∈ Irr L(ν -le i , λ) \ B(λ) × Irr Λ(le i ). If i ∈ I im , Z ∈ Irr L(ν, λ) i,l necessarily implies λ i + h∈H i ν t(h) > 0,
and we get to the same conclusion. By descending induction on ν, we obtain that the only irreducible component of L(0, λ) doesn't belong to B(λ), which is absurd.

Corollary 2.18. Take i ∈ I im and assume Irr L(ν, λ) i,l ⊆ B(λ). We have the following commutative diagram:

Irr L(ν, λ) i,l ∼ l(ν,λ) i,l / / ∼ Irr L(ν -le i , λ) i,0 × Irr Λ(le i ) ∼ Irr L(ν, λ) i,l ∼ l(ν,λ) i,l / / Irr L(ν -le i , λ) i,0 × Irr Λ(le i ).
(2.19) Proof. By definition of stability, the action of G ν on L(ν, λ) is free.

2.3.

Tensor product on Irr L.

2.4. Another Lagrangian subvariety. Embed W in a λ + λ -dimensional Igraded vector space, and fix a supplementary subspace W of W . We still denote by I(X, Y ) the set of I-graded isomorphisms between two I-graded spaces X and Y .

For every v ∈ N I , denote by Z • (v) ⊆ M • (v, λ + λ ) of elements (x, f, g) such that there exists an I-graded subspace V of V v satisfying:

(1)

x(V ) ⊆ V ; (2) f (V ) ⊆ W ; (3) g(W ⊕ W ) ⊆ V ;
(4) g(W ) = {0}, and denote by V (x, f, g) the larger x-stable subspace of f -1 (W ) containing Im g. We will then denote by Z • (v) ⊂ Z • (v) the subvariety of elements (x, f, g) such that:

(x, f ) |V ×W |V ×V and (x, f ) |(Vv/V )×(W ⊕W /W ) |(Vv/V )×(Vv/V )
are seminilpotents where we have written V instead of V (x, f, g). We get a stratification of Z • (v) by setting, for any ν, ν such that ν + ν = v:

Z • (ν, ν ) = (x, f, g) ∈ Z • (ν + ν ) | dim V (x, f, g) = ν .
Define the following incidence variety:

Ž• (ν, ν ) =      (x, f, g, V , β) (x, f, g) ∈ Z • (ν, ν ) V (x, f, g) ⊕ V = V ν+ν β ∈ I(V (x, f, g), V ν ) × I(V , V ν )     
. By definition of V (x, f, g) (again denoted by V hereunder), we have:

(x, f, g) ∈ Z • (v) ⇒ (x, f ) |(Vv/V )×(W ⊕W /W ) |(Vv/V )×(Vv/V ) stable,
hence the following application is well defined:

T • Ž• (ν, ν ) → L • (ν, λ) × L(ν , λ ) (x, f, g, V , β) → β * (x, f ) |V ×W |V ×V , (x, f ) |V ×(W ⊕W /W ) |V ×V
Proposition 2.20. The map T • is smooth with connected fibers.

Proof. Let (x, f ) and (x , f ) be elements of L • (ν, λ) and L(ν , λ ) and take Igraded spaces V and V of dimensions ν and ν . Define (X, F, G, V , β) in the fiber T -1

• ((x, f ), (x , f )) by: (1)

β ∈ I(V, V ν ) × I(V , V ν );
(2) G = 0 ⊕ τ where:

ν ∈ ⊕ i∈I Hom(W i , V i ); (3) X = β * x ⊕ (β * x + η) : V ⊕ V → V ⊕ V where: η ∈ ⊕ h∈H Hom(V s(h) , V t(h) ); (4) F = β * f ⊕ (β * f + θ) : V ⊕ V → W ⊕ W where: θ ∈ ⊕ i∈I Hom(V i , W i ); such that µ ν+ν ,λ+λ (X, F, G) = 0.
Lemma 2.21. This equation is linear in the variables (τ, η, θ), and the associated linear map is surjective.

Proof. We first identify x, x , and f with β * x, β * x , and β * f . Then the linear map ζ = (ζ i ) we are interested in is given by:

ζ i (τ, η, θ) = τ i f i + h∈H:s(h)=i ( h)(xhη h + ηhx h ).
Take L ∈ ⊕ i∈I Hom(V i , V i ) such that for every (τ, η, θ):

i∈I Tr(ζ(τ, η, θ)L i ) = 0.
Then for every edge h such that s(h) = i, t(h) = j, we have for every η h :

Tr(xhη h L i ) -Tr(η h x hL j ) = 0. But Tr(η h L i xh) -Tr(η h x hL j ) = Tr(η h L i xh -η h x hL j ) = Tr(η h (L i xh -x hL j ))
Hence L i xh = x hL j , and thus Im L is stable by x . Moreover:

∀i, ∀τ i , Tr(τ i f i L i ) = 0 ⇒ ∀i, f i L i = 0 ⇒ Im L ⊂ ker f ,
hence the lemma comes from the stability of (x , f ).

We have to check that V = V (X, F, G). It is easy to see that V ⊂ V (X, F, G). Moreover:

F -1 (W ) = {v + v ∈ V ⊕ V | f (v) + θ(v ) + f (v ) ∈ W } = V ⊕ ker f ,
hence, if Y is an X-stable subspace of F -1 (W ), Y /V is an x -stable subspace of ker f . Since (x , f ) is stable, we have Y ⊂ V , and thus V = V (X, F, G).

We have proved that the fiber

T -1 • ((x, f ), (x , f )) is isomorphic to: G ν+ν × C λ ,ν +(ν ,ν)+ ν ,λ -ν ,ν
and thus is connected.

Lemma 2.22. Consider (x, f, g) ∈ Z • (ν, ν ) and V = V (x, f, g). Then:

(x, f, g) stable ⇔ (x, f ) |V ×W
|V ×V stable and we denote by Z(ν, ν ) the subvariety of stable points of Z • (ν, ν ), and:

Z(ν, ν ) = Z(ν, ν )/ /G ν+ν .
Proof. The equivalence is a consequence of the following facts:

• the restriction of a stable point is stable;

• the extension of a stable point by a stable point is stable;

• the point (x, f ) |(V ν+ν /V )×(W ⊕W /W ) |(V ν+ν /V )×(V ν+ν /V ) is stable.
Theorem 2.23. We have the following bijection:

Irr L(ν, λ) × Irr L(ν, λ ) ⊗ ∼ / / Irr Z(ν, ν ).
Proof. Define Ž(ν, ν ) as the variety of stable points of Ž• (ν, ν ). We have the following diagram:

Ž(ν, ν ) T / / L(ν, λ) × L(ν , λ ) Z(ν, ν ) T / / L(ν, λ) × L(ν , λ )
where the rightmost vertical map is juste the free quotient by G ν × G ν . The leftmost map being a principal bundle with fibers isomorphic to:

G ν × G ν × Grass I ν,ν (ν + ν ) × G ν+ν ,
we get our bijection thanks to 2.20 and 2.22.

Again, there is an alternative definition for Z(ν, ν ), given in [START_REF] Nakajima | Quiver varieties and tensor products[END_REF]. Denote by * the C * -action on M(v, λ + λ ) induced by the one parameter subgroup C * → GL(W ⊕ W ), t → t id W ⊕ id W . We have:

M(v, λ + λ ) C * ν+ν =v M(ν, λ) × M(ν , λ )
and:

Z(ν, ν ) = {[x, f, g] ∈ M(v, λ + λ ) | lim t→0 t * [x, f, g] ∈ L(ν, λ) × L(ν , λ )}.
Hence we also have, as in [Nak01, 3.15], the following: Proposition 2.24. The subvariety Z(ν, ν ) ⊂ M(ν + ν , λ + λ ) is Lagrangian.

The results of the section 2.2 lead to the following, completing [Nak01, 4.3] which deals with the case ω i = 0: Proposition 2.25. Consider i such that ω i > 0 and l > 0. If:

λ i + λ i + h∈H i v t(h) > 0,
we have a bijection:

Irr Z(v) i,l ∼ → Irr Z(v -le i ) i,0 × Irr Λ(le i ).

Comparison of two crystal-type structures.

Notations 2.26. For every X ∈ Irr Z(v) i,l , we will denote by i (X) ∈ Irr Λ(le i ) the composition of the second projection with the bijection obtained in 2.25, and | i (X)| = l. Note that if (X, X ) ∈ Irr L(ν, λ) × Irr L(ν , λ ), the quantity i (X ⊗ X ) makes sense thanks to 2.23 and 2.25. We will write Ω(i) = {b i,j } 1≤j≤ω i for i imaginary, or Ω(i) = {b j } 1≤j≤ω i if it is not ambiguous.

Lemma 2.27. Let i be an imaginary vertex and assume h∈H i n t(h) > 0. For every C ∈ Irr L(ν, λ), there exists (x, f ) ∈ C, v ∈ Im h∈H i xh such that:

C[xb 1 ].v = I i (x, f ).
Proof. We proceed by induction on ν i , the first step being trivial. For the inductive step, we can immediatly conclude if C ∈ Irr L(ν, λ) i,l for l > 0. Otherwise, C ∈ Irr L(ν, λ) i,0 , but C ∈ Irr L(ν, λ) j,l for some j ∈ I and l > 0. There exists a minimal chain (j k , l k , C k ) 1≤k≤s of elements of I × N >0 × Irr L(-, λ) such that:

• (j 1 , l 1 , C 1 ) = (j, l, C);

• C k+1 = pr 1 l(ν -l 1 j 1 -• • • -l k j k , λ) j k ,l k (C k )
where pr 1 is the first projection; • j s = i. We necessarely have j s-1 adjacent to i, and by the induction hypothesis, the proposition is satisfied by C s , and thus by C s-1 . But then, thanks to 2.10 and 2.12, the proposition is also satisfied by C s-2 for a generic choice of ηh (using the notations of the proof of 2.15 where i is replaced by j s-1 ). Hence it is also satisfied by C = C 1 .

Proposition 2.28. Let i be an imaginary vertex and consider (X,

X ) ∈ Irr L(ν, λ)× Irr L(ν , λ ). Assume | i (X )| < ν i or 0 < λ i . Then we have: i (X ⊗ X ) = i (X ). Proof. Put (Y, C) = l(n, m) i,l (X) where l = | i (X)|. Take ((x, f ), (x , f )) ∈ X × X .
Consider the equation ζ i = 0 used in the proof of 2.21:

τ i f i + h∈H:s(h)=i ( h)(xhη h + ηhx h ) = 0.
Note η b j = η j , x b j = x j and xb j = xj (and the same with x ), take ηb j = 0 so that our equation becomes:

τ i f i + h∈H i ηhx h = 1≤j≤ω i (x j η j -η j x j ) = x1 η 1 -η 1 x 1
if we also set η j = 0 for j ≥ 2 (if any). Then, we set:

x = f i + h∈H i x h : V ν i → W i ⊕ h∈H i V ν t(h) η = τ i + h∈H i ( h)ηh : W i ⊕ h∈H i V ν t(h) → V ν i x = h∈H i ( h)xh : h∈H i V ν t(h) → V ν i η = h∈H i η h : V ν i → h∈H i V ν t(h)
and our equation finally becomes:

ηx + ηx = x1 η 1 -η 1 x 1 .
Consider the open subvariety of X × X where:

(1) there exists v ∈ V ν i such that its image v ∈ V ν i /I i (x, f ) satisfies:

C[x 1|Vν i /I i (x,f ) ].v = V ν i /I i (x, f );
(2) x 1 , x1|I i (x,f ) and x1|C n i /I i (x,f ) have disjoint spectra;

(3) there exist v and v such that w = h∈H i xh(v) and w = h∈H i x h(v ) satisfy:

C[x 1 ⊕ x 1 ].w ⊕ w = I i (x, f ) ⊕ I i (x , f );
which is nonempty, thanks to 2.12, 2.27 and 2.10. Take:

• η = τ i and v ∈ Im τ i if λ i > 0; • η such that η(v ) = v if ν i > | i (X )| (possible since v = 0).
From 2.10, we get (with the notations used in the proof of 2.20):

C[Xb 1 ]. Im h∈H i Xh = V ν i ⊕ I i (x , f ).
We have to check that we can choose η such that the equations ζ t(h) = 0 are satisfied for every h ∈ H i (if λ i > 0 and η = τ i , just take η = 0). It suffices to set

η h x h(v t(h) ) = -x h ηh(v t(h) ) (possible since ν i > | i (X )
| and since we may assume that v t(h) = 0 if x h(v t(h) ) = 0) and to set η and η equal to zero on supplementaries of Cw and Cv respectively. We can finally choose η 1 such that ηx + ηx = x1 η 1 -η 1 x 1 (possible since Spec x 1 ∩ Spec x1 = ∅). Since:

codim I i (x, f ) ≥ | i (X )|,
for every (x, f ) ∈ X ⊗ X , the subvariety of X ⊗ X defined by:

codim I i (x, f ) = | i (X )|,
is open, and we have shown it is non empty, hence the theorem is proved.

Proposition 2.29. Assume λ i = 0, | i (X )| = ν i and h∈H i ν t(h) > 0. Then we still have i (X ⊗ X ) = i (X ).

Proof. Thanks to the previous proof, the result is clear if there exists an imaginary vertex j adjacent to i: the choice of xb j,1 and x bj,1

with disjoint spectra enables to use η b j,1 for ζ j = 0 to be satisfied (with the usual notation Ω(j) = {b j,1 , . . . , b j,ω j }).

Assume that every neighbour of i is real. Following the previous proof, assume η = ηh is of rank 1 for some h : i → j. We have to check that ζ j = 0 can be satisfied. It is clear if f j = 0: just choose τ j such that τ j f j = -(h)x h ηh and η p = 0 = η p if p ∈ H j \ { h}, so that ζ j = 0 is satisfied. Otherwise, there necessarily exists an edge q : j → k = i such that x q = 0 (if not, V ν i ⊕V ν j ⊆ ker f would be x -stable, which is not possible for every vertex j adjacent to i since

h∈H i ν t(h) > 0)
. Hence it is possible to choose η q so that (q)η qx q = -(h)x h ηh and η p = 0 = η p if p ∈ H j \ { h, q}, and thus get ζ j = 0 satisfied.

We have proved the following: Theorem 2.30. Let i be an imaginary vertex and consider (X, X ) ∈ Irr L(ν, λ)× Irr L(ν , λ ). We have:

i (X ⊗ X ) =      i (X ) if λ i + h∈H i ν t(h) > 0 i (X) otherwise.

GENERALIZED CRYSTALS

Let (-, -) denote the symmetric Euler form on ZI: (i, j) is equal to the opposite of the number of edges of Ω between i and j for i = j ∈ I, and (i, i) = 2-2ω i . We will still denote by I re (resp. I im ) the set of real (resp. imaginary) vertices, and by I iso ⊆ I im the set of isotropic vertices: vertices i such that (i, i) = 0, i.e. such that ω i = 1. We also set I ∞ = (I re × {1}) ∪ (I im × N ≥1 ), and (ι, j) = l(i, j) if ι = (i, l) ∈ I ∞ and j ∈ I.

3.1.

A generalized quantum group. We recall some of the definitions and results exposed in [START_REF] Bozec | Quivers with loops and perverse sheaves[END_REF]§2].

Definition 3.1. Let F denote the Q(v)-algebra generated by (E ι ) ι∈I∞ , naturally NI-graded by deg(E i,l ) = li for (i, l) ∈ I ∞ . We put F[A] = {x ∈ F | |x| ∈ A} for any A ⊆ NI,
where we denote by |x| the degree of an element x.

For ν = ν i i ∈ ZI, we set: ht(ν) = ν i its height; v ν = v ν i i if v i = v (i,i)/2
. We endow F ⊗ F with the following multiplication:

(a ⊗ b)(c ⊗ d) = v (|b|,|c|) (ac) ⊗ (bd).
and equip F with a comultiplication δ defined by:

δ(E i,l ) = t+t =l v tt i E i,t ⊗ E i,t
where (i, l) ∈ I ∞ and E i,0 = 1.

Proposition 3.2. For any family (ν ι ) ι∈I∞ , we can endow F with a bilinear form {-, -} such that:

{x, y} = 0 if |x| = |y|; {E ι , E ι } = ν ι for all ι ∈ I ∞ ; {ab, c} = {a ⊗ b, δ(c)} for all a, b, c ∈ F.
Notations 3.3. Take i ∈ I im and c a composition or a partition. We put E i,c = j E i,c j and ν i,c = j ν i,c j . If i is real, we will often use the index i instead of i, 1.

Proposition 3.4. Consider (ι, j) ∈ I ∞ × I re . The element: t+t =-(ι,j)+1 (-1) t E (t) j E ι E (t ) j (3.5)
belongs to the radical of {-, -}. Definition 3.6. We denote by Ũ + the quotient of F by the ideal spanned by the elements 3.5 and the commutators [E i,l , E i,k ] for every isotropic vertex i, so that {-, -} is still defined on Ũ + . We denote by U + the quotient of Ũ + by the radical of {-, -}. Definition 3.7. Let Û be the quotient of the algebra generated by K ± i , E ι , F ι (i ∈ I and ι ∈ I ∞ ) subject to the following relations:

K i K j = K j K i K i K - i = 1 K j E ι = v (j,ι) E ι K j K j F ι = v -(j,ι) F ι K j t+t =-(ι,j)+1 (-1) t E (t) j E ι E (t ) j = 0 (j ∈ I re ) t+t =-(ι,j)+1 (-1) t F (t) j F ι F (t ) j = 0 (j ∈ I re ) [E i,l , E j,k ] = 0 if (i, j) = 0 [F i,l , F j,k ] = 0 if (i, j) = 0 [E i,l , E i,k ] = 0 (i ∈ I iso ) [F i,l , F i,k ] = 0 (i ∈ I iso ).
We extend the graduation by

|K i | = 0 and |F ι | = -|E ι |, and we set K ν = i K ν i i for every ν ∈ ZI.
We endow Û with a comultiplication ∆ defined by:

∆(K i ) = K i ⊗ K i ∆(E i,l ) = t+t =l v tt i E i,t K t i ⊗ E i,t ∆(F i,l ) = t+t =l v -tt i F i,t ⊗ K -ti F i,t .
We extend {-, -} to the subalgebra Û ≥0 ⊆ Û spanned by (K ± i ) i∈I and (E ι ) ι∈I∞ by setting {xK i , yK j } = {x, y}v (i,j) for x, y ∈ Ũ + .

We use the Drinfeld double process to define Ũ as the quotient of Û by the relations:

{a (1) , b (2) }ω(b (1) )a (2) = {a (2) , b (1) }a (1) ω(b (2) ) (3.8)
for any a, b ∈ Ũ ≥0 , where ω is the unique involutive automorphism of Û mapping E ι to F ι and K i to K -i , and where we use the Sweedler notation, for example ∆(a) = a (1) ⊗ a (2) .

Setting x -= ω(x) for x ∈ Ũ , we define {-, -} on the subalgebra Ũ -⊆ Ũ spanned by (F ι ) ι∈I∞ by setting {x, y} = {x -, y -} for any x, y ∈ Ũ -. We will denote by U -(resp. U ) the quotient of Ũ -(resp. Ũ ) by the radical of {-, -} restricted to Ũ -(resp. restricted to Ũ -× Ũ + ).

Proposition 3.9. Assume:

{E ι , E ι } ∈ 1 + v -1 N[[v -1 ]].
for every ι ∈ I ∞ . Then we have Ũ -U -.

Notations 3.10. We denote by C i,l the set of compositions c (resp. partitions) such that |c| = l if (i, i) < 0 (resp. (i, i) = 0), and

C i = l≥0 C i,l . If i is real, we just put C i,l = {l}.
Denote by u → ū the involutive Q-morphism of U stabilizing E ι , F ι , and mappinf K i to K -i , and v to v -1 . Proposition 3.11. For any imaginary vertex i and any l ≥ 1, there exists a unique element a i,l ∈ U + [li] such that, if we set b i,l = a - i,l , we get:

(1) Q(v) E i,l | l ≥ 1 = Q(v) a i,l | l ≥ 1 and Q(v) F i,l | l ≥ 1 = Q(v) b i,l | l ≥ 1 as algebras; (2) {a i,l , z} = {b i,l , z -} = 0 for any z ∈ Q(v) E i,k | k < l ; (3) a i,l -E i,l ∈ Q(v) E i,k | k < l and b i,l -F i,l ∈ Q(v) F i,k | k < l ; (4) āi,l = a i,l and bi,l = b i,l ; (5) δ(a i,l ) = a i,l ⊗ 1 + 1 ⊗ a i,l and δ(b i,l ) = b i,l ⊗ 1 + 1 ⊗ b i,l ;
Notations 3.12. Consider i ∈ I im and c ∈ C i,l . We set τ i,l = {a i,l , a i,l }, a i,c = j a i,c j , and

τ i,c = j τ i,c j . Notice that {a i,c | c ∈ C i,l } is a basis of U + [li].
Definition 3.13. We denote by δ i,c , δ i,c : U + → U + the linear maps defined by:

δ(x) = c∈C i,l δ i,c (x) ⊗ a i,c + obd δ(x) = c∈C i,l a i,c ⊗ δ i,c (x) + obd
where "obd" stands for terms of bidegree not in NI × Ni in the former equality, Ni × NI in the latter one. 3.2. Kashiwara operators. Proposition 3.14. Let i be an imaginary vertex, l > 0, c = (c 1 , . . . , c r ) ∈ C i and (y, z) ∈ (U + ) 2 . We have the following identities:

(1) δ i,l (yz) = δ i,l (y)z + v l(i,|y|) yδ i,l (z);

(2) [a i,l , z -] = τ i,l δ i,l (z -) -K -li -K li δ i,l (z -) -; (3) δ i,l (a i,c ) = k:c k =l v 2lc k-1 i a i,c\c k
where c 0 = 0 and c\c k = (c 1 , . . . , ĉk , . . . , c r ), the notation ĉk meaning that c k is removed from c.

Proof. The first equality comes from the definition of δ i,l , the second from the primitive character of a i,l and the formula 3.8 with a = a i,l and b = z -. The third comes from the definition of δ i,l and the primitive character of the a i,h .

Definition 3.15. Define e i,l : U -→ U -by e i,l (z -) = δ i,l (z) -for any z ∈ U + .

Proposition 3.16. Set

K i = l>0 ker e i,l
for any i ∈ I im . We have the following decomposition:

U -= c∈C i b i,c K i .
Proof. Let's first prove the existence. Consider u ∈ U -, and assume first that u is of the following form: u = mb i,c m for some c ∈ C i and some m, m ∈ K i . We proceed by induction on |c|. If |c| = 0, we have mm ∈ K i thanks to 3.14 (1). Otherwise, set [y, z] • = v -(|y|,|z|) yz -zy for any y, z ∈ U + . Thanks to 3.14 (1), and since δ i,l (a i,k ) = δ l,k , we have for any y ∈ ∩ l>0 ker δ i,l and any k > 0:

δ i,l ([y, a i,k ] • ) = v -k(i,|y|) δ i,l (ya i,k ) -δ i,l (a i,k y) = v -k(i,|y|) v l(i,|y|) yδ i,l (a i,k ) -δ i,l (a i,k )y = δ l,k v (l-k)(i,|y|) y -δ l,k y = 0.
Hence, the following equality:

u = v c 1 (|m|,i) [m, b i,c 1 ] • b i,c\c 1 m + v -c 1 (|m|,i) b i,c 1 mb i,c\c 1 m
along with the induction hypothesis allow us to conclude since |c\c 1 | < |c|, and since

⊕ c∈C i b i,c K i is stable by left-multiplication by b i,c 1 .
Then, we prove the existence of the decompostion for a general u ∈ U -, using induction on -|u|. If u = 1, we can write:

u = ι∈I∞ b ι u ι
for some finitely many nonzero u ι ∈ U -. Thanks to our induction hypothesis, we have:

u = ι∈I∞,c∈C i b ι b i,c z ι,c
for some finitely many nonzero z ι,c ∈ K i . Then:

u = l>0,c∈C i b i,(l,c) z (i,l),c + ι∈I∞\({i}×N >0 ) c∈C i b ι b i,c z ι,c
and we have the result since b ι b i,c z ι,c is of the form mb i,c m for some m, m ∈ K i . Indeed, it is straightforward from the definitions that δ i,l (a j,h ) = 0 for any l, h > 0 if j = i. Note that if i / ∈ I iso , the composition (l, c) is the composition c where (l,c) stands for the partition c ∪ l.

c 1 = l and c k = c k-1 if k ≥ 2, but if i ∈ I iso ,
To prove the unicity of the decomposition, consider a minimal nontrivial relation of dependance:

0 = c∈C i a i,c z c ,
where z c ∈ K - i . We have to considerate separately the cases i ∈ I iso and i / ∈ I iso . First, consider i / ∈ I iso . Consider r maximal such that there exists c = (c 1 , . . . , c r ) such that z c = 0. Using 3.14 (1) and applying repeatedly 3.14 (3), we see that for any c ∈ S r c (with the convention (σc) k = c σ(k) ):

0 = δ i,c c ∈C i a i,c z c = c ∈C i δ i,c (a i,c )z c = c ∈Src δ i,c (a i,c )z c = c ∈Src P c ,c (v i )z c where P c ,c (v) ∈ Z[v].
The third is equality is true by maximality of r. Since (z c ) c ∈Src = 0, we have to prove that:

∆(v) = det(P c ,c (v)) c ,c ∈Src = 0 ∈ Z[v]
to end our proof in the case (i, i) < 0 (since then we have v i = 1). But, for any c ∈ S r c, one has, using 3.14 (3): and we get z l = 0 after applying δ i,l . Otherwise, note that the degree of ∆ is |S r c|m > 0, and in particular ∆ = 0.

We finally have to prove the uniqueness in the case (i, i) = 0. Write a relation of dependance of minimal degree:

0 = λ∈C i a i,λ z λ ,
where z λ ∈ K - i . For any λ and l > 0, set m l (λ) = |{s : λ s = l}|, and denote by λ\l the partition obtained removing one of the λ s = l when m l (λ) ≥ 1. Hence m l (λ\l) = m l (λ) -1. We have, thanks to 3.14 (1,3):

δ i,l λ∈C i a i,λ z λ = λ∈C i m l (λ)a i,λ\l z λ = µ∈C i a i,µ (m l (µ) + 1)z µ∪l
which contradicts the minimality of the first relation. Note that the proof is easier in this case because we are dealing with partitions, hence the quantity µ ∪ l is "uniquely defined".

The following definition generalizes the Kashiwara operators (see e.g. [KS97, 2.3.1]): 3.4.1. Algebraic definition. Let A ⊂ Q(v -1 ) be the subring consisting of rational functions without pole at v -1 = 0, and L(∞) be the sub-A-module of U -generated by the elements fι 1 . . . fιs .1, where ι k ∈ I ∞ and the operators fι are those defined in 3.17 together with the original ones for ι = i ∈ I re . Define the following set:

B(∞) = { fι 1 . . . fιs .1 | ι k ∈ I ∞ } ⊂ L(∞) v -1 L(∞)
.

The following theorem will be proved in section 3.6:

Theorem 3.26. The Kashiwara operators are still defined on B(∞), which is a crystal once equipped with the following maps:

wt(b) = i∈I ν i α i if |b| = ν ∈ -NI i (b) = max{c | ẽi,c (b) = 0}.
We have the following characterization, analogous to [KS97, 3.2.3]:

Proposition 3.27. Let B be a crystal, and b 0 ∈ B with weight 0, such that:

(1) wt(B) ⊂ -i∈I Nα i ;

(2) the only element of B with weight 0 is b 0 ;

(3) i (b 0 ) = 0 for every i ∈ I;

(4) there exists a strict embedding Otherwise by induction on the weight, we can assume that there exists ι ∈ I ∞ such that ẽι (b ) = 0. If ι = (j, 1) for some real vertex j, we get ẽι (b) = 0. If ι = (j, l) for some imaginary vertex j, we have to prove that φ j (b ) = +∞ to get to the same result. But we have b = fj,l ẽj,l b = 0, hence φ j (ẽ j,l (b )) = 0 by normality of B j . Since (j, j) ≤ 0, we have: wt j (b ) = wt j (ẽ j,l (b )) -l e j , α j ≥ wt j (ẽ j,l (b )) > 0, hence φ j (b ) = +∞, and:

Ψ i : B → B i ⊗ B for every i ∈ I; (5 
Ψ i (ẽ j,l (b)) = ẽj,l (c ⊗ b ) = c ⊗ ẽj,l (b ) = 0,
which proves that ẽj,l (b) = 0.

Hence any element can be written b = fι 1 . . . fι 1 (b 0 ) for some ι k ∈ I ∞ . The end of the proof is analogous to the one given in [START_REF] Kashiwara | Geometric construction of crystal bases[END_REF], one just has to replace I by I ∞ (which is countably infinite).

3.4.2. Geometric realization. Notations 3.29. From 1.14, we have the following bijections:

Irr Λ(ν) i,l ∼ k i,l / / Irr Λ(ν -le i ) i,0 × C i,l
where ν ∈ P + = N I , i ∈ I, l > 0. Set, for c ∈ C i,l :

Irr Λ i,l = ν∈P + Irr Λ(ν) i,l Irr Λ(ν) i,c = l -1 i,l (Irr Λ(ν -le i ) i,0 × {c}) Irr Λ i,c = ν∈P + Irr Λ(ν) i,c
Irr Λ = where fi,c\l = 0 if ω i ≥ 2 and l = c 1 , or if ω i = 1 and m l (c) = 0.

It is obvious from the definitions that we have:

Proposition 3.30. The set Irr Λ is a crystal with respect to wt : Z ∈ Irr Λ(ν) → -Cν, i the composition of l>0 k i,l and the second projection, and ẽi,l , fi,l the maps defined above.

The duality Λ → Λ, x → x * induces a bijection * : Irr Λ → Irr Λ, Z → Z * preserving the grading. Following [KS97], we note:

* i = * i * ẽ * i,l = * ẽ i,l * f * i,l = * fi,l * . Note that * i (Z)
is the dimension of the largest subspace of ∩ h∈H i ker x h stable by (x h ) h∈H i , for a generic element x ∈ Z. We will note ẽ * max i (Z) instead of ẽi,c (Z) when c = * i (Z). We have the following, corresponding to [KS97, 5.3.1] when i is real: Proposition 3.31. Consider Z ∈ Irr Λ(ν) such that * i (Z) = c = 0 for some imaginary vertex i, and set Z = ẽ * i,c (Z). Assume wt i ( Z) > 0. We have:

(1) i (Z) = i ( Z);

(2

) * i (ẽ ι (Z)) = * i (Z) ẽ * max i (ẽ ι (Z)) = ẽι ( Z)
for every ι ∈ I ∞ .

Proof. The proof is actually simpler than in the real case. Indeed, in the proof of 1.14, consider y ∈ Z * and z ∈ c * (we abusively identify Irr Λ(le) with C i,l ). We want:

0 = h∈H i yhη h + h∈Ω(i) (yhη h -η h zh) + (y h ηh -ηhz h ) .
Note that:

0 < wt i ( Z) = h∈H i ν t(h) -(i, i)(ν i -|c|) ⇔ 0 < h∈H i ν t(h)
since (i, i) ≤ 0, and since it is impossible to have h∈H i ν t(h) = 0 and ν i -|c| > 0.

Hence there exists h 0 ∈ H i such that ν h 0 > 0. We have Spec(zh 1 ) ∩ Spec(yh 1 ) = ∅ for a generic choice of y, z, where h 1 ∈ Ω(i). But then the map:

η h 1 → yh 1 η h 1 -η h 1 zh 1
is invertible, and we can generically choose η h 0 so that:

dim C z * h | h ∈ H i . Im η * h 0 = |c|. This proves * i (Z * ) = * i ( Z * ), hence (1) 
. The second statement directly follows from the proof of (1). Theorem 3.32. We have Irr Λ B(∞).

Proof. Set Ψ i (Z) = * i (Z) ⊗ ẽ * max i (Z)
, which is clearly injective. By 3.31 and the definition of our generalized crystals, Ψ i is a morphism. Note that we have Ψ(ẽ i,l (Z)) = ẽi,l ( * i (Z)) ⊗ Z if wt i ( Z) = 0. By 1.13 (or its dual analog), the condition (5) of 3.27 is satisfied. The condition (6) is satisfied because it is clear that fi,l ( Z) / ∈ B i if φ i ( Z) = 0. Hence we get the result.

3.4.3. Semicanonical basis. The following proposition is proved in [START_REF] Bozec | Quivers with loops and perverse sheaves[END_REF]:

Proposition 3.33. There exists a surjective morphism Φ :

U + v=1 → M • defined by: E i,a → 1 i,l if i ∈ I im E i → 1 i if i ∈ I re .
Thanks to 3.32, we now have:

Theorem 3.34. The morphism Φ is an isomorphism U + v=1 ∼ → M • .
Proof. The family (f Z ) Z∈Irr Λ is clearly free, so we have:

| Irr Λ(ν)| ≤ dim M • (ν) ≤ dim U + v=1 [ν]
, the latter inequality being true thanks to 3.33. From 3.32, we have

| Irr Λ(ν)| = dim U + v=1 [ν], hence (f Z ) Z∈Irr Λ is a basis of M • ,
and Φ is an isomorphism. Definition 3.35. The semicanonical basis of U + v=1 is the pullback of (f Z ) Z∈Irr Λ . 3.5. The crystals B(λ).

3.5.1. Algebraic definition. We will use the fundamental weights (Λ i ) i∈I defined by (i, Λ j ) = δ i,j for every i, j ∈ I. Note that the isomorphism P ∼ → ZΛ i , e i → Λ i maps α i to i. We use this isomorphism to identify ZΛ i with P and NΛ i with P + . We call dominant the elements λ ∈ P + , which are the ones satisfying (i, λ) ≥ 0 for every i ∈ I. Definition 3.36. We denote by O the category of U -modules satisfying:

(

1) M = ⊕ µ∈P M µ where M µ = m ∈ M | ∀i, K i m = v (µ,i) m ;
(2) For any m ∈ M , there exists p ≥ 0 such that xm = 0 as soon as x ∈ U + [ν] and ht(ν) ≥ p.

For any λ ∈ P , we define a Verma module:

M (λ) = U ι∈I∞ U E ι + i∈I U K i -v (i,λ) ∈ O
and the following simple quotient:

π λ : U V (λ) = M (λ) M (λ) -∈ O
where M (λ) -is the sum of all strict submodules of M (λ). We will denote by v λ ∈ V (λ) λ the image of 1 ∈ U .

Remark 3.37. Note that thanks to 3.14 (2), we have a triangular decomposition, and thus M (λ) = U -v λ .

We have the following proposition, generalizing the case i ∈ I re :

Proposition 3.38. Assume (i, λ) ≥ 0 for some imaginary vertex i. Then we have the following decomposition:

V (λ) = c∈C i b i,c K i where K i = l>0 ker E i,l .
Proof. Let's first prove the existence. Consider v ∈ V (λ), and assume first that v is of the following form: v = ub i,c z for some c ∈ C i , u ∈ U -satisfying [a i,l , u] = 0 for every l, and z ∈ K i . We proceed by induction on |c|. First note that if (i, |u|) = 0, since i is imaginary one necessarily has:

supp|u| ⊆ {j ∈ I | (i, j) = 0}.
Hence [u, b i,l ] = 0 for any l (whether i is isotropic or not) and we get the result by induction. Otherwise, (i, |u|) > 0, and we set:

l = c 1 [u, b i,l ] • = ub i,l -R(v)b i,l u for some R ∈ Q(v) z = b i,c\c 1 z ∈ V (λ) µ .
with the convention c <1 = ∅ = c >r . Then, if l > 0, we get the following from 3.14 (2), where by convention b i,∅ = 1:

[a i,l , b i,c ] = τ i,l k:c k =l b i,c <k (K -li -K li )b i,c >k = τ i,l k:c k =l b i,c\c k (v 2l|c >k | i K -li -v -2l|c >k | i K li ).
Then, since z c ∈ K i : which is only reached for c = c . However, this is not true if m = 0, which can only happen if our initial relation of dependance is of the form b i,l z l = 0, with (i, µ + li) = 0. But if (i, µ + li) = 0, the module generated by b i,l z l is a nontrivial strict submodule of V (λ) since for every k > 0 and j = i: a i,k b i,l z l = 0 a j,k b i,l z l = b i,l a j,k z l .

a i,l b i,c z c = τ i,l k:c k =l b i,c\c k (v 2l|c >k | i K -li -v -2l|c >k | i K li )z c = τ i
Hence the relation of dependance b i,l z l = 0 is actually trivial by definition of V (λ).

Otherwise, the application S r c → S r c, c → c being a permutation, the degree of ∆ is |S r c|m > 0, and in particular ∆ = 0.

We finally have to prove the uniqueness in the case (i, i) = 0. Write a relation of dependance of minimal degree: with the same conventions than in 3.29.

The following is a direct consequence of 2.17:

Proposition 3.43. The set Irr L(λ) is a crystal with respect to:

wt : b ∈ Irr L(ν, λ) → λ -Cν, i the composition of l>0 l i,l and the second projection, and ẽi,l , fi,l the maps defined above.

Remark 3.44. Thanks to 2.17 and the classical case, we have, for every i ∈ I:

φ i (b) = max{|c| ∈ N | fi,c (b) = 0}.
Indeed, for b ∈ Irr L(ν, λ), it is impossible to have ν i > 0 and λ i + h∈H i ν t(h) = 0, hence:

λ i + h∈H i ν t(h) > 0 ⇔ e i , λ -Cν > 0,
and Irr L(λ) is normal.

In an analogous way, one can equip Irr Z with a structure of crystal, thanks to 2.25, and get: Theorem 3.45. The crystal structure on Irr Z coincides with that of the tensor product Irr L(λ) ⊗ Irr L(λ ).

Proof. This is essentially 2.30. that the power sum symmetric functions p l are mapped to v -l/2 (-1) l-1 la i,l . Since the Hall-Littlewood scalar product satisfy {p l , p l } = lv -l 1-v -l , we get: τ i,l = {a i,l , a i,l } = v l l 2 lv -l 1 -v -l = 1/l 1 -v -l ≡ 1/l as expected.

If i / ∈ I iso , let us prove that a i,l ≡ E i,l by induction on l. Write:

a i,l -E i,l = c∈C i,l \{(l)} α c a i,c
for some α c ∈ Q(v). By 3.11, for every c ∈ C i,l \{(l)}, we have:

c∈C i,l \{(l)} α c {a i,c , a i,c } = -{E i,l , a i,c } = -{δ(E i,l ), a i,c 1 ⊗ a i,c \c 1 } = -v c 1 |c \c 1 | i {E i,c 1 , a i,c 1 }{E i,|c \c 1 | , a i,c \c 1 } = -v c k c k+1 i {E i,c k , a i,c k } = -v c k c k+1 i τ i,c k ≡ 0
by the induction hypothesis, and since (i, i) < 0. We have also used that τ i,k = {E i,k , a i,k } since {a i,k , a i,k -E i,k } = 0. Also, note that: det({a i,c , a i,c }) c,c ∈C i,l \{(l)} ≡ 1 since:

{a i,c , a i,c } = {a i,c 1 ⊗ a i,c\c 1 , (a i,c k ⊗ 1 + 1 ⊗ a i,c k )} = k:c k =c 1 v c k-1 c k i τ i,c 1 {a i,c\c 1 , a i,c \c k } ≡ δ c 1 ,c 1 {a i,c\c 1 , a i,c \c k } ≡ • • • ≡ δ c,c .
Hence we get α c ≡ 0, which implies τ i,l = {a i,l , E i,l } ≡ {E i,l , E i,l } ≡ 1.

The following lemma deals with the behaviour of the generalized Kashiwara operators regarding our Hopf bilinear form {-, -}: Lemma 3.51. For any u, v ∈ U -and (i, l) ∈ I ∞ , { fi,l u, v} ≡ {u, ẽi,l v}.

Proof. Assume that v = b i,c z for some nontrivial c and some z ∈ K i ∩ V (λ) µ . Note that we have already seen that (i, µ) ≥ 0, and that b i,l z = 0 if (i, µ) = 0. Hence we assume (i, µ) > 0, otherwise there is nothing to prove. If ω i ≥ 2, we have: Thanks to the proof of 3.38 and 3.50, the same can be proved if ω i = 1. To that end, consider v = b i,ν z and u = b i,ν z for some partitions ν, ν and elements z, z ∈ K i ,

( fi,l u, v) = (b i,l u, v) = -(u, K -li a i,l v) = -(u, K -li a i,l b i,c z) = -u, K -li τ i,l k:c k =l v -2l|c <k | i K -li -v 2l|c <k | i K li b i,c\c k z [c.f.

  max c ∈Src {deg(P c ,c )} = deg(P c ,c ) = 1≤k≤r c k-1 c k = m which is only reached for c = c . Note that if m = 0, the initial relation of dependance can be written: 0 = l>0 a i,l z l ,

  ) for every b = b 0 there exists i ∈ I such that Ψ i (b) = c ⊗ b for some b ∈ B and c ∈ C i \ {(0) i }. (6) for every i, the crystal B i = π i Ψ i (B) is normal, where π i is the second projection B i ⊗ B → B. Then B B(∞).Remark 3.28. The crystal structure we consider on B i is(π i Ψ i ) * B. If b ∈ B i , we get ẽι (b ) = 0 (respectively fι (b ) = 0) if, with respect to the structure of B, ẽι (b ) ∈ B \ B i (respectively fι (b ) ∈ B \ B i ).Proof. First note that we necessarily have Ψ i (b 0 ) = (0) i ⊗ b 0 , thanks to (1). Let us show that that for any b ∈ B \ {b 0 } there exists ι ∈ I ∞ such that ẽι (b) = 0.Consider i ∈ I such that Ψ i (b) = c ⊗b for some b ∈ B and nontrivial c ∈ C i , and assume i is imaginary since the result is already known from [KS97, 3.2.3] when i is real. If b = b 0 , since φ i (b 0 ) = 0, we have ẽi,c 1 (b) = c\c 1 ⊗ b 0 = 0.

  ν∈P + Irr Λ(ν) and denote by ẽi,c and fi,c the inverse bijections: ẽi,c : Irr Λ i,c / / Irr Λ i,0 : fi,c o o induced by k i,l . Then, for every l > 0, we define: ẽi,l = c∈C i fi,c\l ẽi,c : Irr Λ → Irr Λ {0} fi,l = fi,(l) c∈C i fi,(l,c) ẽi,c : Irr Λ → Irr Λ {0}

  ,l k:c k =l b i,c\c k (v -l(i,µ+|c ≤k |i) -v l(i,µ+|c ≤k |i) )z cwhere c ≤k = (c <k , c k ). We see that for any c ∈ S r c (with the convention (σc) k = c σ(k) ), since r is maximal, we have:0 = a i,c c ∈C i b i,c z c = a i,c c ∈Src b i,c z c = τ i,c c ∈Src P c ,c (v)z c where P c ,c (v) ∈ Z[v, v -1 ].Since (z c ) c ∈Src = 0, we have to prove that:∆(v) = det(P c ,c (v)) c ,c ∈Src = 0 ∈ Z[v, v -1 ]to end our proof in the case (i, i) < 0. Note that λ -(µ + |c|i) ∈ NI, hence, since i is imaginary:(i, µ + |c|i) = (i, λ) + (i, µ + |c|i -λ) ≥ 0.Then, for any c ∈ S r c, one has: max c ∈Src {deg(P c ,c )} = deg(P c ,c ) = 1≤k≤r c k (i, µ + c k i) = m

  i,ν z ν , 3.5.2. Geometric realization. Notations 3.42. Consider λ dominant. We have the following bijections:Irr L(ν, λ) i,l ∼ l i,l / / Irr L(ν -le i , λ) i,0 × C i,leach time the left hand side is non-empty (c.f. 2.17). Set, for c ∈ C i,l :Irr L(λ) i,l = ν∈P + Irr L(ν, λ) i,l Irr L(ν, λ) i,c = l -1 i,l (Irr L(ν -le i , λ) i,0 × {c}) Irr L(λ) i,c = ν∈P + Irr L(ν, λ) i,c Irr L(λ) = ν∈P + Irr L(ν, λ)and denote by ẽi,c and fi,c the inverse bijections:ẽi,c : Irr L(λ) i,c / / Irr L(λ) i,0 : fi,c o oinduced by l i,l . Then, for every l > 0, we define:ẽi,l = c∈C i fi,c\c 1 ẽi,c : Irr L(λ) → Irr L(λ) {0}fi,l = fi,(l)c∈C ifi,(l,c) ẽi,c : Irr L(λ) → Irr L(λ) {0}

  proof of 3.38] ≡ -u, k:c k =l v -2l|c <k | i K -2li -v 2l|c <k | i b i,c\c k z [c.f. 3.50] = -u, k:c k =l v -2l|c <k | i v -2l(i,µ-|c\c k |i) -v 2l|c <k | i b i,c\c k z = -u, k:c k =l v 2l|c <k |+4l|c >k | i v -2l(i,µ) -v 2l|c <k | i b i,c\c k z ≡ (u, b i,c\c 1 z) = (u, ẽi,l v).

Definition 3.17. If i is imaginary and z = c∈C i b i,c z c ∈ U -, set:

3.3. Definition of generalized crystals. Denote by P the lattice Z I , still endowed with the pairing -,defined by e i , e j = δ i,j , where e i = (δ i,j ) j∈I for every i ∈ I. We will also note α i instead of Ce i where C = ((i, j)) i,j∈I still denotes the Cartan matrix associated to Q.

Definition 3.18. We call Q-crystal a set B together with maps: 

where, for i ∈ I re , we write ẽi,1 , fi,1 instead of ẽi , fi and ẽi,l , fi,l instead of ẽl i,1 , f l i,1 . Also, as earlier, (l, i (b)) stands for the partition i (b) ∪ l if i ∈ I iso . Remark 3.19.

• We will use the following notation: wt i = e i , wt .

• Note that this definition of φ i already appears in [START_REF] Jeong | Crystal bases for quantum generalized Kac-Moody algebras[END_REF]. Also note that since we will only be interested in normal crystals (see 3.22), we require | i | and φ to be non-negative, except if i = -∞ in which case we set

Example 3.20. For every vertex i, we define a crystal B i by endowing C i with the following maps:

Note that the definition of ẽi,l , fi,l is dictated by the one of i , together with 3.18 (A5, A6). We will denote by (0) i the trivial element of C i .

{0} mapping 0 to 0, preserving the weight, i , and commuting with the respective actions of the ẽι , fι on B 1 and B 2 .

Definition 3.22. A crystal B is said to be normal if for every b ∈ B and i ∈ I, we have: (2

Remark 3.24. Note that when i is imaginary, the condition

Proof. Note that the result is already known if I im = ∅, hence we just have to check the axioms of 3.18 that concern imaginary vertices. Axioms (A1), (A2), (A3) and (A7) are clearly satisfied.

To prove that (A4) is satisfied, we first consider b and b such that ẽi,l (b⊗b ) = 0.

is necessarily nonnegative by definition of i . Also, φ i (b ) can not be equal to +∞, hence is 0, and:

since e i , α i ≤ 0 for every i ∈ I im . Hence φ i ( fi,l (b )) = +∞, and:

From the definitions and the proof of (A4) above, it is easy to check that:

which can only happen if both are equal to 0 (we still consider i ∈ I im ). But then ẽi,l (b ) = 0, so there is nothing to prove. Otherwise we would have fi,l ẽi,l b = b = 0, hence φ i (ẽ i,l b ) = +∞ by normality. But then:

would imply φ i (b ) = +∞ which contradicts the assumption.

The crystal B(∞).

For any k > 0, we have: |u|+µ) , which is possible since:

We have used that since i is imaginary, we have:

Hence, the following equality:

along with the induction hypothesis allow us to conclude since |c\c 1 | < |c|, and since

Then, we prove the existence of the decompostion for a general v ∈ V (λ) µ , using induction on (λ i -µ i ). If v = v λ , thanks to 3.37, we can write:

for some finitely many nonzero v ι ∈ V (λ). Thanks to our induction hypothesis, we have:

for some finitely many nonzero z ι,c ∈ K i . Then:

and we have the result since b ι b i,c z ι,c is of the form ub i,c z already treated. Indeed, thanks to 3.14 (2), [a i,l , b j,k ] = 0 for any l, k > 0 if j = i.

To prove the unicity of the decomposition, consider a minimal nontrivial relation of dependance:

where z c ∈ V (λ) µ+|c|i ∩ K i . We have to considerate separately the cases i ∈ I iso and i / ∈ I iso . First, consider i / ∈ I iso . Consider r maximal such that there exists c = (c 1 , . . . , c r ) such that z c = 0. Set for any k ∈ [[1, r]]:

where z ν ∈ V (λ) µ+|ν|i ∩ K i . For any l > 0, we have, thanks to 3.14 (2):

which contradicts the minimality of the first relation. Note that we can assume that l(i, µ) = 0: otherwise we would again have an initial trivial relation of dependance (more precisely for every ν we would have b i,ν z ν = 0 ∈ V (λ)).

This proposition allows us to define Kashiwara operators ẽι , fι on each V (λ), exactly as in 3.17:

The following will be proved in section 3.6:

Theorem 3.40. Assume λ is dominant. The Kashiwara operators, along with the maps:

, induce a structure of crystal on:

where:

Remark 3.41. These crystals are normal: consider m ∈ V (λ) µ and i imaginary (again, the case of real vertices is already known). We have already seen that we necessarily have (i, µ) ≥ 0 since λ is dominant. If (i, µ) = 0 for some imaginary vertex i, then a ι b i,l m = b i,l a ι m for any ι ∈ I ∞ (use 3.14 (2) if ι = (i, l)). Hence, for any l > 0, the submodule of V (λ) spanned by b i,l m is a strict submodule, and we get fi,l m = 0.

Otherwise, (i, µ) > 0, and for every µ ∈ -NI, since (i, i) ≤ 0, we get:

We will see in section 3.6 how the previous theorem leads to the following:

Theorem 3.46. If λ is dominant, we have the following isomorphism of crystals B(λ) Irr L(λ).

3.6. Grand loop argument. To prove theorems 3.26, 3.40 and 3.46, one has to generalize Kashiwara's grand-loop argument to our framework (see [START_REF] Kashiwara | On crystal bases of the Q-analogue of universal enveloping algebras[END_REF]). Instead of giving the whole grand-loop argument, we give a few lemmas that yield its generalization.

Notations 3.47. When working with a A-lattice L, we will write m ≡ m instead of m = m + v -1 L for any m, m ∈ L.

The following result is about the tensor product: Lemma 3.48. Consider two dominant weights λ and λ , and (m, m ) ∈ L(λ) × L(λ ) µ . Then, for every imaginary vertex i and l > 0, we have:

Remark 3.49. Note that since i (m) = -∞ in this situation, this is exactly 3.23 (7).

Proof. We have already seen that when i ∈ I im , since µ -λ ∈ -NI, we have:

We have also already seen that thanks to 3.14 (2), if (i, µ ) = 0, then a ι b i,l m = b i,l a ι m for every ι ∈ I ∞ . Hence b i,l m = 0 since the module spanned by b i,l m is a strict submodule of V (λ ). Hence:

Lemma 3.50. Consider i ∈ I im and l > 0. We have τ i,l ≡ 1/l if i ∈ I iso , τ i,l ≡ 1 otherwise.

Proof. First note that for any i ∈ I im and l > 0, {E i,l , E i,l } ≡ 1 is required by 3.9. Assume moreover that:

which is consistent with [Boz13, 2.29]. Then, when i ∈ I iso , we have an isomorphism from the ring of symmetric functions

mapping the elementary symmetric functions e l to v -l/2 E i,l and such that the pushforward of {-, -} is the Hall-Littlewood scalar product (still denoted by {-, -}). Asking for a i,l to be primitive and to satisfy

This computation also proves the case i ∈ I re , l = 1, which is already known

We see by induction that { fi,l u, v} = {u, ẽi,l v} = 0 if ν = ν ∪ l. Otherwise, we get, thanks to 3.50:

In order to get an analogous result regarding the lattices L(λ), first note that there exists for each λ ∈ P + a unique symmetric bilinear form (-, -) on V (λ) satisfying:

for every u, u ∈ V (λ) and (i, l) ∈ I ∞ . Then:

Lemma 3.52. For every u, v ∈ L(λ) and (i, l) ∈ I ∞ , ( fi,l u, v) ≡ (u, ẽi,l v).

assuming again that z ∈ V (λ) µ . We have:

Iterating this computation, we see that ( fi,l u, v) = (u, ẽi,l v) = 0 if ν ∪ l = ν. Otherwise, we get:

The case i ∈ I re is already known, but we reproduce the proof adapted to our conventions. The following can be proved by induction:

Then, note that if u = f m i u 0 and u = f n i u 0 , where u 0 , u 0 ∈ K i , it is easy to prove that:

We have assumed (i, µ + i) > 0, since otherwise we would have u = 0.

The previous lemmas make it possible to reproduce step by step the original Kashiwara's grand loop argument (see [START_REF] Kashiwara | On crystal bases of the Q-analogue of universal enveloping algebras[END_REF]§4]).

We also want to prove 3.46, using the same kind of argument as in [START_REF] Nakajima | Quiver varieties and tensor products[END_REF]4.7]. To that end, the characterization of the crystals B(λ) given by Joseph in [START_REF] Joseph | Quantum groups and their primitive ideals[END_REF]6.4.21] has to be generalized. We first need two definitions: Definition 3.53. A crystal B is said to be of highest weight λ if:

(1) there exists b λ ∈ B with weight λ such that ẽι b λ = 0 for every ι ∈ I ∞ ;

(2) any element of B can be written fι 1 . . . fιr b λ for some ι k ∈ I ∞ . Then it is easy to see that {Irr L(λ) | λ ∈ P + } is a closed family of highest weight normal crystals: thanks to 2.25, 2.6 adapted to Z and 2.30, the arguments given in [START_REF] Nakajima | Quiver varieties and tensor products[END_REF] can be reproduced and we get 3.46. Alternatively (but similarly), the original proof given by Saito in [START_REF] Saito | Crystal bases and quiver varieties[END_REF] can also be generalized to our framework.