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1 INTRODUCTION

Fluid-structure vibrations occur in various situations, in

aerospace, automotive, civil engineering areas, as well as

in biomechanics. For a general overview of fluid-structure

problems, we refer, for instance, the reader to Abramson

(1966), Dodge (2000), Moiseev and Rumyantsev (1968),

Rapoport (1968), Morand and Ohayon (1995), Bazilevs

et al. (2008, 2013), Wang (2008), Ryzhakov et al. (2010),

Takizawa and Tezduyar (2011), and Paidoussis et al. (2014).

The computational aspects concerning the linear vibra-

tory response of fluid-structure systems to prescribed loads

may lead, for complex structures, to a prohibitive number of

degrees of freedom. In order to quantify the weak or strong

interactions of the coupled fluid-structure system, to carry

out sensitivity analysis, and also to introduce interface appro-

priate active/passive damping treatment (intelligent adap-

tive fluid-structure systems), reduced-order procedures are
required. That is why concepts that have been introduced

for structural dynamics (see Computational Structural

Dynamics), such as component mode synthesis (Ohayon

et al., 1997, 2014; Geradin and Rixen, 2015), are presently

revisited and adapted to some multiphysic problems.

using appropriate Ritz vectors, allow us to construct reduced
models expressed in terms of physical-displacement vector
field u in the structure, and generalized-displacement vector
r describing the behavior of the fluid. Those reduced models

lead to unsymmetric or symmetric generalized eigenvalue
matrix systems (Everstine, 1981; Liu and Uras, 1988; Sand-
berg and Goransson, 1988; Kock and Olson, 1991; Felippa
and Ohayon, 1990; Ohayon, 2004) involving a reduced
number of degrees of freedom for the fluid. For this purpose,
we construct symmetric matrix models of the fluid consid-
ered as a subsystem, by considering the response of the fluid
to a prescribed normal displacement of the fluid–structure
interface.

Two distinct situations are analyzed. On one hand, we

consider linear vibrations of an elastic structure completely

filled with a compressible gas or liquid and, on the other

hand, we consider the case of an elastic structure containing

an incompressible liquid with free-surface effects due to

gravity.

The first case is a structural-acoustic problem. In the

case of a structure containing a gas, we consider a modal

interaction between structural modes in vacuo and acoustic

modes in rigid motionless cavity. For a structure containing

a compressible liquid, we consider a modal interaction

between hydroelastic modes including “static” inertial and

potential compressibility effects and acoustic modes in rigid

motionless cavity. Interface local fluid-structure dissipation

We review in this chapter reduced-order models for modal

analysis of elastic structures containing an inviscid fluid (gas
or liquid). These methods, based on Ritz–Galerkin projection
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through local wall impedance can also be introduced easily

in the formulations.

The second case is a hydroelastic-sloshing problem with

a modal interaction between incompressible hydroelastic

structural modes and incompressible liquid sloshing modes

in rigid motionless cavity, involving an elastogravity

operator related to the wall normal displacement of the

fluid–structure interface, introduced initially, under a simpli-

fied approximate expression by Tong (1966), then analyzed

through various derivations by Debongnie (1986), Morand

and Ohayon (1995), Chapter 6 and recently deeply analyzed

theoretically and numerically in Schotté and Ohayon (2003,

2005, 2009, 2013), and Ohayon and Schotté (2016).

For the construction of reduced models, the static behavior

at zero frequency plays an important role. Therefore,

we review “regularized” variational formulations of the

problem, in the sense that the static behavior must also be

taken into account in the boundary value problem. Those

“quasi-static” potential and inertial contributions play a

fundamental role in the Ritz–Galerkin procedure (error

truncation).

The general methodology corresponds to dynamic

substructuring procedures adapted to fluid-structure modal

analysis. For general presentations of computational

methods using appropriate finite element and dynamic

substructuring procedures applied to modal analysis of

elastic structures containing inviscid fluids (sloshing,

hydroelasticity, and structural-acoustics), we refer the

reader, for instance, to Morand and Ohayon (1995). Alterna-

tive methods, which are not presented here, such as boundary

element methods may be found in Firouz-Abadi et al. (2008)

and Brunner et al. (2009); see also Coupling of Boundary

Element Methods and Finite Element Methods. Further-

more, we do not consider nonmatching fluid–structure

interface meshes (for those aspects, see Farhat et al., 1998;

Gonzalez et al., 2012; see alsoFluid–Structure Interaction

and Flows with Moving Boundaries and Interfaces).

2 STRUCTURAL-ACOUSTIC PROBLEM

Let us consider the linear vibrations of an elastic struc-

ture completely filled with a homogeneous, inviscid, and

compressible fluid. We also consider the particular case of

a compressible liquid with a free surface, neglecting gravity

effects. For general considerations on structural-acoustic

problems (also called vibroacoustics) from physical and

computational aspects, the reader is referred, for instance,

to Fahy and Gardonio (2007) and Ohayon and Soize (1998,

2014); see also Acoustics.

After the derivation of the linearized equations of the

fluid-structure coupled system, we introduce a linear

ΩS

ΩF

Σ

nS

nS
n

Figure 1. Elastic structure containing a gas.

constraint in order to obtain a regularized problem at zero

frequency, and we then construct a reduced model of the

fluid subsystem. Acoustic modes in rigid motionless cavity

are introduced as Ritz projection vector basis, including the

static solution of the coupled system. As this fluid-structure

system has a resonant behavior, a finite element computation

of the unreduced model may lead to prohibitive time costs.

That is why, starting from one of the possible variational

formulations of the problem, convenient reduced symmetric

matrix models are reviewed.

2.1 Structure subjected to a fluid pressure loading

We consider an elastic structure occupying the domain ΩS at

equilibrium. The interior fluid domain is denoted ΩF and the

fluid–structure interface is denoted Σ (Figure 1).

The angular frequency of vibration is denoted as 𝜔. The

chosen unknown field in the structure domain ΩS is the

displacement field u. The linearized strain tensor is denoted

as 𝜖ij(u) and the corresponding stress tensor is denoted as

𝜎ij(u). We denote by 𝜌S the constant mass density at equi-

librium and by n the unit normal, external to the structure

domain ΩS. Let 𝛿u be the test function, associated to u,

belonging to the admissible space u.
Theweak variational formulation describing the undamped

response u of the structure ΩS to given harmonic forces of

amplitude Fd on the external structure boundary 𝜕ΩS∖Σ and

to fluid pressure field p acting on the internal fluid–structure

interface Σ is written as follows.

For all 𝜔 and ∀𝛿u ∈ u, find u ∈ u such that

k̃(u, 𝛿u) − 𝜔2∫ΩS

𝜌Su ⋅ 𝛿u dx − ∫Σ

pn ⋅ 𝛿u d𝜎

= ∫
𝜕ΩS∖Σ

Fd ⋅ 𝛿u d𝜎 (1)
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where

k̃(u, 𝛿u) = k(u, 𝛿u) + kG(u, 𝛿u) + kP0
(u, 𝛿u) (2)

and where k(u, 𝛿u) is the mechanical elastic stiffness such

that

k(u, 𝛿u) = ∫ΩS

𝜎ij(u)𝜖ij(𝛿u)dx (3)

and where kG(u, 𝛿u) and kP0
(u, 𝛿u) are such that

kG(u, 𝛿u) = ∫ΩS

𝜎0
ij
ul,i𝛿ul,j dx, kP0

= ∫Σ

P0n1(u) ⋅ 𝛿u d𝜎

(4)

In equations (4) and (5), kG(u, 𝛿u) represents the initial

stress or geometric stiffness in symmetric bilinear form in

which 𝜎0
ij
denotes the stress tensor in an equilibrium state, and

kP0
(u, 𝛿u) represents an additional load stiffness in symmetric

bilinear form due to rotation of normal n, in which P0

denotes the initial pressure existing in the reference equilib-

rium configuration. Finally, n1(u) represents the variation of

normal n between the reference configuration and the actual

configuration.

2.2 Fluid subjected to a wall normal displacement

Since the fluid is inviscid, instead of describing the small

motion of the fluid by a fluid displacement vector field uF,

which requires an appropriate discretization of the fluid

irrotationality constraint curl uF = 0 (see, for instance,

Bermudez et al., 2003), we will use the pressure scalar

field p. The small movements corresponding to 𝜔 ≠ 0 are

obviously irrotational, but, in the static limit case, that is

at zero frequency, we consider only fluids that exhibit a

physical irrotational behavior.

Let us denote by c the (constant) sound speed in the fluid,

and by 𝜌F, the (constant) mass density of the fluid at rest

(c2 = 𝛽∕𝜌F, where 𝛽 denotes the bulk modulus). We denote

asΩF the domain occupied by the fluid at rest (which is taken

as the equilibrium state). The local equations describing

the harmonic response of the fluid to a prescribed arbitrary

normal displacement u ⋅ n of the fluid–structure interface Σ

are such that

∇p − 𝜌F 𝜔2uF = 0 |ΩF
(5)

p = −𝜌F c
2 ∇ ⋅ uF |ΩF

(6)

uF ⋅ n = u ⋅ n |Σ (7)

curl uF = 0 |ΩF
(8)

Equation (5) corresponds to the linearized Euler equation

in the fluid. Equation (6) corresponds to the constitutive

equation of the fluid (we consider here a barotropic fluid,

which means that p is only a function of 𝜌F). Equation

(7) corresponds to the wall-slipping condition. Equation (8)

corresponds to the irrotationality condition, only necessary

in order to ensure that when 𝜔 → 0, uF tends to static irro-

tational motion, which corresponds to the hypothesis that

for 𝜔 = 0, we only consider irrotational motions (for simply

connected fluid domain).

A displacement potential 𝜑 defined up to an additive

constant chosen, for instance, as ∫
ΩF
𝜑 dx = 0 can be there-

fore introduced in order to recast the system defined by

equations (5–8) into a scalar one. These aspects are discussed

below.

2.2.1 Relation between static pressure ps and u ⋅ n

For𝜔 = 0, equations (6) and (7) lead to a constant static pres-

sure field ps, which is related to the normal wall displacement

by the relation

ps = −
𝜌F c

2

|ΩF| ∫Σ

u ⋅ n d𝜎 (9)

where |ΩF| denotes the measure of the volume occupied by

domain ΩF.

This constant pressure field has been used as an addi-

tional unknown field in direct variational symmetric formu-

lation using either a velocity potential formulation (Evers-

tine, 1981) with j𝜔 or 𝜔4 additional terms (Kock and Olson,

1991), or in direct symmetric formulations of classical gener-

alized eigenvalue leading to finite element discretized system

of the type (AX = 𝜔2 BX) with symmetric real matrices

(Morand and Ohayon, 1995).

2.3 Equations in terms of p or 𝝋 and u ⋅ n

The elimination of uF between equations (5–7), and (8)

leads to

∇2p +
𝜔2

c2
p = 0 |ΩF

(10)

𝜕p

𝜕n
= 𝜌F𝜔

2u ⋅ n |Σ (11)

with the constraint

1

𝜌Fc
2∫ΩF

p dx + ∫Σ

u ⋅ n d𝜎 = 0 (12)

Equation (10) is the classical Helmholtz equation

expressed in terms of p. Equation (11) corresponds to

the kinematic condition defined by equation (7) (𝜕p∕𝜕n =

−𝜌FüF ⋅ n = 𝜌F𝜔
2u ⋅ n |Σ). The linear constraint defined
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by equation (12) corresponds to the global mass conserva-

tion, which ensures that the boundary problem defined by

equations (10) and (11) is equivalent to the problem defined

by equations (5–8). In the absence of the condition defined

by equation (12), we would obtain a boundary value problem

in terms of p, which is not valid for 𝜔 = 0 and which does

not allow us to retrieve the value of ps given by equation (9).

Using equations (8) and (9), the boundary value problem

defined by equations (10–12) can be recasted into the

following equivalent one using the displacement potential

field 𝜑 introduced above such that p = 𝜌F𝜔
2𝜑 + ps(u ⋅ n)

with ∫
ΩF
𝜑 dx = 0

∇2𝜑 +
𝜔2

c2
𝜑 −

1

|ΩF|∫Σ

u ⋅ n d𝜎 = 0 |ΩF
(10a)

𝜕𝜑

𝜕n
= u ⋅ n |Σ (11a)

with the constraint

∫ΩF

𝜑 dx = 0 (12a)

The two boundary value problems expressed in terms of

p or in terms of 𝜑 are well posed in the static case (𝜔 = 0).

They have been used, with further transformation, leading

to appropriate so-called (u, p, 𝜑) symmetric formulations

with mass coupling (leading to a final (u, 𝜑) formulation, as

described by Ohayon and Morand (1995), Chapter 8 or with

stiffness coupling, by Sandberg and Goransson (1988).

2.4 Variational formulation in terms of (u, p)

Let 𝛿p be the test function, associated to p, belonging to

the admissible space p. The weak variational formulation

corresponding to equations (10–12) is obtained by the usual

test-function method using Green’s formula. The weak vari-

ational formulation corresponding to the structural-acoustic

problem is then stated as follows. Given 𝜔 and Fd, find

u ∈ u and p ∈ p, such that for all 𝛿u ∈ u and 𝛿p ∈ p,
we have

k̃(u, 𝛿u) − 𝜔2∫ΩS

𝜌S u ⋅ 𝛿u dx − ∫Σ

p n ⋅ 𝛿u d𝜎

= ∫
𝜕ΩS∖Σ

Fd ⋅ 𝛿u d𝜎 (13)

1

𝜌F ∫ΩF

∇p ⋅ ∇𝛿p dx −
𝜔2

𝜌F c
2∫ΩF

p𝛿p dx

− 𝜔2∫Σ

u ⋅ n𝛿p d𝜎 = 0 (14)

with the constraint

1

𝜌Fc
2∫ΩF

p dx + ∫Σ

u ⋅ n d𝜎 = 0 (15)

The variational formulation defined by equations (13–15),

due to the presence of the constraint defined by equation (15),

which regularizes the (u, p) formulation, is therefore valid in

the static case. In effect, usually, only equations (13) and (14)

are written, and as pointed out above, are not valid for𝜔 = 0.

In the case of a finite element discretization of equations

(13–15), we obtain a matrix system of the type AY −

𝜔2BY = Fd, whereA and B are not symmetric. Some direct

matrix manipulations may lead to symmetrized systems

(Felippa and Ohayon, 1990). As explained above, that is

why various symmetric formulations using the fluid pres-

sure field p and displacement potential 𝜑, defined up to an

additive constant and such that uF = ∇ 𝜑, have been derived.

The resulting symmetric formulations are then obtained by

elimination of p or 𝜑. In this case, we are not considering a

direct finite element approach of the variational formulation

defined by equations (13–15).

2.5 Symmetric reduced-order model

We will consider hereafter a dynamic substructuring

approach through an appropriate decomposition of the

admissible class into the direct sum of admissible vector

spaces (Figure 2).

Let us consider the following two basic problems. The first

one corresponds to the acoustic modes in rigid motionless

cavity and is obtained by setting u = 0 into equations (14)

and (15). The calculation of these acousticmodes is generally

done by using a finite element procedure. If we introduce the

admissible subspace ∗
p of p,

∗
p =

{
p ∈ p;∫ΩF

p dx = 0

}
(16)

the variational formulation of acoustic modes is stated as

follows: find 𝜔2 > 0 and p ∈ ∗
p such that, for all 𝛿p ∈ ∗

p ,

+

Ω1

=

Ω1 Ω1

Ω2 Ω2

Figure 2. Dynamic substructuring scheme.
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we have

1

𝜌F ∫ΩF

∇p ⋅ ∇𝛿p dx = 𝜔2 1

𝜌F c
2∫ΩF

p𝛿p dx (17)

with the constraint

∫ΩF

p dx = 0 (18)

It should be noted that, in practice, we proceed as follows:

the constraint condition (18) is “omitted”, which means that

we only modify the initial acoustic problem by adding a

first nonphysical zero-frequency constant pressure mode,

the other modes corresponding to 𝜔 ≠ 0 remaining the same

as those defined by equations (17) and (18). In this acoustic

problem without equation (18), it can be easily seen that the

condition defined by equation (18) can be considered as an

orthogonality condition between all the modes and the first

constant nonphysical mode corresponding to𝜔 = 0 (Ohayon

and Felippa, 1990); see also the orthogonality conditions

defined by equation (19) below). This zero-frequency

mode must not be retained in any Ritz–Galerkin projection

analysis. In addition, we have the following orthogonality

conditions:
1

𝜌F c
2∫ΩF

p𝛼p𝛽 dx = 𝜇𝛼𝛿𝛼𝛽

1

𝜌F ∫ΩF

∇p𝛼 ⋅ ∇p𝛽 dx = 𝜇𝛼𝜔
2
𝛼𝛿𝛼𝛽 (19)

The second basic problem corresponds to the static

response of the fluid to a prescribed wall normal displace-

ment u ⋅ n. The solution, denoted as ps(u ⋅ n), is given by

equation (9). For any deformation u ⋅ n of the fluid–structure

interface, ps(u ⋅ n) belongs to a subset of p, denoted as u⋅n

u⋅n =
{
ps ∈ p; ps = −

𝜌Fc
2

|ΩF|∫Σ

u ⋅ n d𝜎

}
(20)

In the variational formulation defined by equations

(13–15), p is searched under the form

p = ps(u ⋅ n) +

Np∑

𝛼=1

r𝛼p𝛼 (21)

where Np denotes the number of retained acoustic modes.

The decomposition (21) is unique. In addition, it should be

noted that since each eigenvector p𝛼 corresponding to𝜔𝛼 ≠ 0

verifies the constraint defined by equation (18), then, using

equation (9), we deduce that p and u ⋅ n satisfy the constraint

defined by equation (15). The decomposition defined by

equation (21) corresponds to a decomposition of the admis-

sible class p into the direct sum of the admissible classes

defined, respectively, by equations (20) and (16)

p = u⋅n ⊕ ∗
p (22)

Following equation (21), the test function 𝛿p is then searched

under the form

𝛿p = ps(𝛿u ⋅ n) +

Np∑

𝛼=1

𝛿r𝛼p𝛼 (23)

Variational formulation in 𝛿u defined by equation (13)

and corresponding to the eigenvalue problem defined by

equations (13–15) becomes

k̃(u, 𝛿u) + ks(u, 𝛿u) −

Np∑

𝛼=1

r𝛼∫Σ

p𝛼 n ⋅ 𝛿u d𝜎

= 𝜔2∫ΩS

𝜌S u ⋅ 𝛿u dx (24)

where k̃(u, 𝛿u) is defined by equation (2) and ks(u, 𝛿u) is such

that

ks(u, 𝛿u) =
𝜌Fc

2

|ΩF|

(

∫Σ

u ⋅ n d𝜎

) (

∫Σ

𝛿u ⋅ n d𝜎

)
(25)

If we consider a finite element discretization of the struc-

ture, the corresponding discretized form of equation (24) can

be written as

[K̃ +Ks] U − 𝜔2 M U −

n∑

𝛼=1

C𝛼 r𝛼 = Fd (26)

where symmetric matrices K̃ and Ks correspond to finite

element discretization of stiffness symmetric bilinear forms

defined by equations (2–4), and (25), respectively. In

equation (26), M denotes the structural symmetric mass

matrix and rectangular coupling matrix C𝛼 corresponds to

the discretization of the coupling fluid-structure contribution

∫
𝜎
p 𝛿u ⋅ n d𝜎. The discretized form of equation (14) in 𝛿p

can then be written in generalized (acoustic) coordinates as

𝜔2
𝛼𝜇𝛼r𝛼 − 𝜔2𝜇𝛼r𝛼 − 𝜔2CT

𝛼U = 0 (27)

From equations (26) and (27), we obtain the symmetric

matrix reduced model
(
Ktot 𝟎

𝟎 Diag 𝜇𝛼

) (
U

r

)
− 𝜔2

(
Mtot D

DT Diag (𝜇𝛼∕𝜔
2
𝛼)

)

×

(
U

r

)
=

(
Fd

𝟎

)
(28)

where r denotes the vector of N generalized coordinates r𝛼 ,

with 1 ≤ 𝛼 ≤ Np, and
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Ktot = K̃ +Ks (29)

Mtot = M +

Np∑

𝛼=1

1

𝜔2
𝛼 𝜇𝛼

C𝛼C
T
𝛼 (30)

D𝛼 =

Np∑

𝛼=1

1

𝜔2
𝛼

C𝛼 (31)

Further diagonalization of equation (28) implies a projec-

tion of U on the solutions of the eigenvalue problem

Ktot U𝛽 = 𝜆𝛽M
tot U𝛽 (32)

Setting

U =

Nu∑

𝛽=1

q𝛽 U𝛽 (33)

where q𝛽 are the generalized coordinates describing the

structure. Using the orthogonality conditions associated with

the solutions of equation (32), that is, UT
𝛽′
Mtot U𝛽 = 𝜇s

𝛽
𝛿𝛽𝛽′

and UT
𝛽′
Ktot U𝛽 = 𝜇s

𝛽
𝜆𝛽𝛿𝛽𝛽′ , equation (28) becomes

(
Diag 𝜆𝛽 0

0 Diag 𝜔2
𝛼

) (
q

r

)
− 𝜔2

(
INu [C𝛽𝛼]

[C𝛽𝛼]
T INp

)

×

(
q

r

)
=

(d

𝟎

)
(34)

2.5.1 Remark on substructuring procedure

In literature, several methods of reduced-order models are

investigated such as dynamic substructuring (Ohayon et al.

(1997, 2014); Geradin and Rixen, 2015) or Proper Orthog-

onal Decomposition for nonlinear problems (Amsallem

et al., 2012); see also Model Reduction Methods.

Concerning the first one, various approaches can be applied

such as, for instance, fixed interface or free interface with

residual attachment mode procedures. We present here, for

sake of brevity, only a natural one that comes from the

continuous case by considering the admissible class decom-

position defined by equation (22). This decomposition is the

key of component mode synthesis developments (Figure 2).

Of course, further considerations involving interface defor-

mations by solving from an eigenvalue problem posed only

on the interface using fluid and structure mass and stiffness

interface operators could improve the convergence of the

procedure. But this remains still an open problem.

It should be noted that two different situations are

treated here.

For a heavy liquid filling the enclosure, one must manda-

torily use the eigenmodes defined by equation (32), that is,

hydroelastic modes including “static” inertial and poten-

tial compressibility effects. The effects of static behavior

calculation on the convergence of the system relative to the

number of acoustic modes have been analyzed in the general

case of slightly damped compressible fluid-structure systems

(Ohayon and Soize, 2014) and an experimental validation

carried out in the case of parallelepipedical cavity filled with

liquid is presented in Figure 3.

For a light fluid such as a gas filling the enclosure, one

may use instead in vacuo structural modes, but the resulting

matrix system would not be diagonal with respect to U. In

effect, looking at the eigenvalue problem corresponding to

equation (28), the diagonalization is obtained by solving

the “structural” problem involving additional stiffness and

mass due to static effects of the internal fluid. The in vacuo

structural modes are orthogonal with respect toK andM but

not with respect to Ktot and Mtot.

2.5.2 Wall impedance condition

Wall impedance condition corresponds to a particular fluid–

structure interface modeling. This interface is considered as

a third medium with infinitesimal thickness, without mass,

and with the constitutive equation

p = j𝜔Z(𝜔)(u ⋅ n − uF ⋅ n) (35)

where Z(𝜔) denotes a complex impedance. Equations (7)

and (11) must be replaced by equation (35), using 𝜕p∕𝜕n =

𝜌F 𝜔2 uF ⋅ n.

The reduced modal matrix models have been extended

to the dissipative case using a wall local homogeneous

impedance condition by introducing a dissipative internal

fluid with nonhomogeneous local impedance wall condition

(Ohayon and Soize, 1998, 2014).

2.5.3 Case of a liquid with a free surface

Let us consider a liquid with a free surface at rest denoted

as Γ. If we neglect gravity effects, the boundary condition on

Γ is such that

p = 0 |Γ (36)

In this case, constraint condition (12) (or (15)) is replaced by

equation (36). Equation (9) is replaced by ps = 0. Admissible

space defined by equation (16) becomes ∗
p = {p ∈ p; p =

0 |Γ}.
In this case, the static problem defined in Section 2.2

leads to a zero-pressure field. Let us remark that in this

case, the “structural” modal basis may be constituted by

the hydroelastic incompressible modes using the concept of

added mass operator (Fraeijs de Veubeke, 1963; Morand and

Ohayon, 1995, Chapter 5; Paidoussis et al., 2014).
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Figure 3. Experimental validation.

3 INCOMPRESSIBLE
HYDROELASTIC-SLOSHING
PROBLEM

We consider the linear vibrations of an elastic structure

partially filled with a homogeneous, inviscid, and incom-

pressible liquid, taking into account gravity effects on the

free surface Γ. After a derivation of the linearized equations

of the fluid-structure coupled problem, introducing an

appropriate linear constraint in order to obtain a “regular-

ized” problem at zero frequency, we construct a reduced

model of the “liquid subsystem”. For this analysis, sloshing

modes in a rigid motionless cavity are introduced as Ritz

projection vector basis, including the static solution of the

coupled system. The effect of the motions of internal liquids

on aeroelasticity problems has been investigated in Farhat

et al. (2013). For a general overview of sloshing prob-

lems, including experimental aspects, we refer to Wiesche

(2003), Ibrahim (2005), Veldman et al. (2007), Faltinsen

and Timokha (2009), and Cruchaga et al. (2013).

3.1 Structure subjected to a fluid pressure loading

The notations are the same as those defined in Section

2 adapted to liquid with a free surface at rest denoted Γ

(Figure 4).

The weak variational formulation describing the response

of the structure ΩS to the given variation Fd of the applied

forces with respect to the equilibrium state on the external

Γ η

Σ
ΩF

ΩS

Fd

nS

n

u

Figure 4. Structure containing a liquid with a free surface.

structure boundary 𝜕ΩS∖Σ, and to fluid pressure field p

acting on the internal fluid–structure interface Σ is written

as follows.

For all real 𝜔 and ∀𝛿u ∈ u, find u ∈ u such that

k̂(u, 𝛿u) − 𝜔2∫ΩS

𝜌S u ⋅ 𝛿u dx − ∫Σ

p n ⋅ 𝛿u d𝜎

= ∫
𝜕ΩS∖Σ

Fd ⋅ 𝛿u d𝜎 (37)

where

k̂ = k̃ + kΣ (38)

In equation (38), k̃(u, 𝛿u) is defined by equation (2) and kΣ is

the elastogravity stiffness in symmetric bilinear form such

that (Morand and Ohayon, 1995, Chapter 6; Schotté and

7



Ohayon, 2003, 2005).

kΣ(u, 𝛿u) = −
1

2
𝜌Fg

{

∫Σ

[zn1(u) ⋅ 𝛿u + uz𝛿u ⋅ n]d𝜎

+ ∫Σ

[zn1(𝛿u) ⋅ u + 𝛿uzu ⋅ n]d𝜎

}

(39)

in which z denotes the vertical position with respect to the

free surface.

3.2 Fluid subjected to a wall normal displacement

We assume that the liquid is homogeneous, inviscid, and

incompressible. Free surface Γ is horizontal at equilibrium.

We denote by n the external unit normal to Γ and by g

the gravity. The notations are similar to those of Section

2. The local equations describing the response of the fluid

to a prescribed arbitrary normal displacement u ⋅ n of the

fluid–structure interface Σ are such that

∇p − 𝜌F 𝜔2uF = 0 |ΩF
(40)

∇ ⋅ uF = 0 |ΩF
(41)

uF ⋅ n = u ⋅ n |Σ (42)

p = 𝜌FguF ⋅ n |Γ (43)

curl uF = 0 |ΩF
(44)

Equation (41) corresponds to the incompressibility condi-

tion. Equation (43) is the constitutive equation on the free

surface Γ due to gravity effects.

A displacement potential 𝜑 defined up to an additive

constant chosen, for instance, as ∫
Γ
𝜑 dx = 0 can be therefore

introduced in order to recast the system defined by equations

(40–44) into a scalar one. These aspects are discussed below.

3.2.1 Relation between static pressure ps and u ⋅ n

For 𝜔 = 0, equations (41–43) lead to the constant static

pressure field that is related to the normal wall displacement

by the relation

ps = −
𝜌F g

|Γ| ∫Σ

u ⋅ n d𝜎 (45)

where |Γ| denotes the measure of the area of free surface Γ.

3.3 Equations in terms of p or 𝝋 and u ⋅ n

The elimination of uF between equations (40) and (44) leads

to

∇2p = 0 |ΩF
(46)

𝜕p

𝜕n
= 𝜌F𝜔

2u ⋅ n |Σ (47)

𝜕p

𝜕z
=

𝜔2

g
p |Γ (48)

with the constraint

1

𝜌Fg∫Γ

p d𝜎 + ∫Σ

u ⋅ n d𝜎 = 0 (49)

The linear constraint defined by equation (49) ensures

that the boundary problem defined by equations (46–49) is

equivalent to the problem defined by equations (40–44). This

condition is usually omitted in literature.

Using equations (44) and (45), the boundary value

problem defined by equations (46–49) can be recasted

into the following equivalent one using the displacement

potential field 𝜑, introduced in Section 2.2, such that

p = 𝜌F𝜔
2𝜑 + ps(u ⋅ n) with ∫

Γ
𝜑 dx = 0

∇2𝜑 = 0 |ΩF
(46a)

𝜕𝜑

𝜕n
= u ⋅ n |Σ (47a)

𝜕𝜑

𝜕z
=

𝜔2

g
𝜑 −

1

|Γ|∫Σ

u ⋅ n d𝜎 |Γ (48a)

with the constraint

∫Γ

𝜑 d𝜎 = 0 (49a)

The two boundary value problems expressed in terms of

p or in terms of 𝜑 are well posed in the static case (𝜔 = 0).

The equations (46a, 47a), and (48a) have been used, with a

different constraint relationship for 𝜑, after the introduction

of the elevation 𝜂 of the free surface, to appropriate so-called

(u, 𝜑, 𝜂) symmetric formulations with mass coupling leading

to a final (u, 𝜂) formulation (Morand and Ohayon, 1995,

Chapter 6; Schotté and Ohayon, 2013).

3.4 Variational formulation in terms of (u, p)

Let 𝛿p be the test function, associated to p, belonging to the

admissible space p. The weak variational formulation

8



corresponding to equations (46–49) is obtained by

the usual test-function method using Green’s formula.

Recalling equation (37), the variational formulation of the

hydroelastic-sloshing problem is then stated as follows. Find

u ∈ u and p ∈ p, such that for all 𝛿u ∈ u and 𝛿p ∈ p,
we have

k̂(u, 𝛿u) − 𝜔2∫ΩS

𝜌S u ⋅ 𝛿u dx − ∫Σ

p n ⋅ 𝛿u d𝜎

= ∫
𝜕ΩS∖Σ

Fd ⋅ 𝛿u d𝜎 (50)

1

𝜌F ∫ΩF

∇p ⋅ ∇𝛿p dx =
𝜔2

𝜌F g∫Γ

p𝛿p dx + 𝜔2∫Σ

u ⋅ n𝛿p d𝜎

(51)

with the constraint

1

𝜌Fg∫Γ

p d𝜎 + ∫Σ

u ⋅ n d𝜎 = 0 (52)

3.5 Symmetric reduced matrix model

Let us consider the following two basic problems. The first

one corresponds to the sloshing modes in rigid motionless

cavity and is obtained by setting u = 0 into equations (47)

and (49). The calculation of these modes is generally done

by using a finite element procedure. If we introduce the

admissible subspace ∗
p of p

∗
p =

{
p ∈ p;∫Γ

p d𝜎 = 0

}
(53)

the variational formulation of sloshing modes is stated as

follows: find 𝜔2 > 0 and p ∈ ∗
p such that, for all 𝛿p ∈ ∗

p ,

we have

1

𝜌F ∫ΩF

∇p ⋅ ∇𝛿p dx = 𝜔2 1

𝜌F g∫Γ

p𝛿p d𝜎 (54)

with the constraint

∫Γ

p d𝜎 = 0 (55)

It should be noted that, in practice, if the constraint

condition (55) is “omitted”, we only add a first nonphysical

zero-frequency constant pressure mode, the other modes

corresponding to 𝜔 ≠ 0 remaining the same as those defined

by equations (54) and (55). This zero-frequency mode must

not be retained in any Ritz–Galerkin projection analysis.

In addition, we have the orthogonality conditions

1

𝜌F g∫Γ

p𝛼p𝛽 d𝜎 = 𝜇𝛼𝛿𝛼𝛽

1

𝜌F ∫ΩF

∇p𝛼 ⋅ ∇p𝛽 dx = 𝜇𝛼𝜔
2
𝛼𝛿𝛼𝛽 (56)

The second basic problem corresponds to the static

response of the fluid to a prescribed wall normal displace-

ment u ⋅ n. The solution, denoted as ps(u ⋅ n), is given

by equation (45). For any deformation u ⋅ n of the fluid–

structure interface, ps(u ⋅ n) belongs to a subset of p,
denoted as u⋅n

u⋅n =
{
ps ∈ p; ps = −

𝜌Fg

|Γ| ∫Σ

u ⋅ n d𝜎

}
(57)

In the variational formulation defined by equations (50–52),

p is searched under the form

p = ps(u ⋅ n) +

Np∑

𝛼=1

r𝛼p𝛼 (58)

where Np denotes the number of retained sloshing modes.

The decomposition (58) is unique. In addition, it should

be noted that since each eigenvector p𝛼 corresponding to

𝜔𝛼 ≠ 0 verifies the constraint defined by equation (55), then,

using equation (45), we deduce that p and u ⋅ n satisfy

the constraint defined by equation (52). The decomposition

defined by equation (58) corresponds to a decomposition of

the admissible class p into the direct sum of the admissible

classes defined, respectively, by equations (56) and (57),

p = u⋅n ⊕ ∗
p .

The variational formulation in u defined by equation (50)

becomes

k̂(u, 𝛿u) + ks(u, 𝛿u) − 𝜔2∫ΩS

𝜌S u ⋅ 𝛿u dx

−

Np∑

𝛼=1

r𝛼∫Σ

p𝛼 n ⋅ 𝛿u d𝜎 = ∫
𝜕ΩS∖Σ

Fd ⋅ 𝛿u d𝜎 (59)

where k̂(u, 𝛿u) is defined by equation (38) and ks(u, 𝛿u) is

such that

ks(u, 𝛿u) =
𝜌Fg

|Γ|

(

∫Σ

u ⋅ n d𝜎

) (

∫Σ

𝛿u ⋅ n d𝜎

)
(60)

If we consider a finite element discretization of the struc-

ture, the corresponding discretized form of equation (60) can
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be written as

[K̂ +Ks] U −

n∑

𝛼=1

C𝛼r𝛼 − 𝜔2 MU = Fd (61)

where symmetric matrices K̂ and Ks correspond to finite

element discretization of stiffness symmetric bilinear

forms defined by equations (38) and (60), respectively. The

discretized form of equation (51) in 𝛿p can then be written as

𝜔2
𝛼𝜇𝛼r𝛼 = 𝜔2𝜇𝛼r𝛼 + 𝜔2CT

𝛼U (62)

From equations (61) and (62), we obtain a symmetric

matrix reduced model whose expression is similar to the one

given by expression (28).

Similar to Section 3.5, further diagonalization can be

obtained by setting

U =

Nu∑

𝛽=1

q𝛽U𝛽 (63)

where q𝛽 are the generalized coordinates describing the

structure and U𝛽 are the eigenmodes of an eigenvalue

problem similar to the one described by equation (32). We

then obtain a matrix system similar to the one described by

equation (34)

(
Diag 𝜆𝛽 0

0 Diag 𝜔2
𝛼

) (
q

r

)

− 𝜔2

(
INu [C𝛽𝛼]

[C𝛽𝛼]
T INp

)
×

(
q

r

)
=

(d

𝟎

)
(64)

It should be noted that we can also use the incompressible

hydroelastic modes, that is, the modes of the coupled system

constituted by the elastic structure containing an incom-

pressible liquid, with p = 0 on Γ (through an added mass

operator). In this case, the resulting matrix system is not

completely diagonal with respect to U variables.

Figures 5 and 6 illustrate liquid motions in reservoirs.

3.6 Further investigations

In this analysis, we neglected viscosity, compressibility, and

capillarity effects. For damping effects, see Henderson and

Miles (1994), Bauer and Chiba (2001), and Miras et al.

(2012b). Concerning gravity–compressibility interactions,

various formulations using the Lighthill model (Lighthill,

2001) can be found in Andrianarison and Ohayon (2006a,b).

For surface tension phenomenon, we refer to Schulkes and

Cuvelier (1991), Saksono and Perić (2006a,b), El-Kamali

et al. (2010, 2011), Miras et al. (2012a), and Ohayon and

Soize (2015).

Figure 5. Wing with a store containing liquid.

Figure 6. Tank partially filled with liquid.

4 CONCLUSION

In this chapter, we have reviewed appropriate formula-

tions for low modal density frequency computations of

the eigenmodes of elastic structures containing linear

inviscid homogeneous fluids for structural–acoustics prob-

lems, using structural modes in vacuo for the structure

containing a gas or hydroelastic modes including “static”

inertial and potential compressibility effects for the structure

containing liquids, with acoustic modes in rigid motionless

cavity, and incompressible hydroelastic-sloshing problems.

Those formulations, using modal interaction schemes,

with dynamic substructuring techniques lead to symmetric

reduced matrix systems expressed in terms of generalized

coordinates for the fluid-structure system.
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