Roger Ohayon 
  
Jean-Sébastien Schotté 
  
Fluid-Structure Interaction Problems

INTRODUCTION

Fluid-structure vibrations occur in various situations, in aerospace, automotive, civil engineering areas, as well as in biomechanics. For a general overview of fluid-structure problems, we refer, for instance, the reader to [START_REF] Abramson | The Dynamic Behaviour of Liquids in Moving Containers[END_REF], [START_REF] Dodge | The New "Dynamic Behaviour of Liquids in Moving Containers[END_REF], [START_REF] Moiseev | Dynamic Stability of Bodies Containing Fluid[END_REF], [START_REF] Rapoport | Dynamics of Elastic Containers Partially Filled with Liquids[END_REF], [START_REF] Morand | Fluid-Structure Interaction -Applied Numerical Methods[END_REF], [START_REF] Bazilevs | Isogeometric fluid-structure interaction: theory, algorithms and computations[END_REF][START_REF] Bazilevs | Computational Fluid-Structure Interaction -Methods and Applications[END_REF], [START_REF] Wang | Fundamentals of Fluid-Solid Interactions[END_REF], [START_REF] Ryzhakov | A monolithic lagrangian approach for fluid-structure interaction problems[END_REF], Takizawa and[START_REF] Takizawa | Multiscale space-time fluid-structure interaction techniques[END_REF][START_REF] Paidoussis | Fluid-Structure Interactions -Cross-Flow-Induced Instabilities[END_REF].

The computational aspects concerning the linear vibratory response of fluid-structure systems to prescribed loads may lead, for complex structures, to a prohibitive number of degrees of freedom. In order to quantify the weak or strong interactions of the coupled fluid-structure system, to carry out sensitivity analysis, and also to introduce interface appropriate active/passive damping treatment (intelligent adaptive fluid-structure systems), reduced-order procedures are required. That is why concepts that have been introduced for structural dynamics (see Computational Structural Dynamics), such as component mode synthesis [START_REF] Ohayon | Dynamic substructuring of damped structures using singular value decomposition[END_REF](Ohayon et al., , 2014;;Geradin and Rixen, 2015), are presently revisited and adapted to some multiphysic problems. using appropriate Ritz vectors, allow us to construct reduced models expressed in terms of physical-displacement vector field u in the structure, and generalized-displacement vector r describing the behavior of the fluid. Those reduced models lead to unsymmetric or symmetric generalized eigenvalue matrix systems [START_REF] Everstine | A symmetric potential formulation for fluid-structure interaction[END_REF][START_REF] Liu | Variational approach to fluid-structure interaction with sloshing[END_REF][START_REF] Sandberg | A symmetric finite element formulation for acoustic fluid-structure interaction analysis[END_REF][START_REF] Kock | Fluid-structure interaction analysis by the finite-element method -a variational approach[END_REF][START_REF] Felippa | Mixed variational formulation of finite element analysis of acoustoelastic/slosh fluid-structure interaction[END_REF][START_REF] Ohayon | Reduced models for fluid-structure interaction problems[END_REF] involving a reduced number of degrees of freedom for the fluid. For this purpose, we construct symmetric matrix models of the fluid considered as a subsystem, by considering the response of the fluid to a prescribed normal displacement of the fluid-structure interface.

Two distinct situations are analyzed. On one hand, we consider linear vibrations of an elastic structure completely filled with a compressible gas or liquid and, on the other hand, we consider the case of an elastic structure containing an incompressible liquid with free-surface effects due to gravity.

The first case is a structural-acoustic problem. In the case of a structure containing a gas, we consider a modal interaction between structural modes in vacuo and acoustic modes in rigid motionless cavity. For a structure containing a compressible liquid, we consider a modal interaction between hydroelastic modes including "static" inertial and potential compressibility effects and acoustic modes in rigid motionless cavity. Interface local fluid-structure dissipation We review in this chapter reduced-order models for modal analysis of elastic structures containing an inviscid fluid (gas or liquid). These methods, based on Ritz-Galerkin projection through local wall impedance can also be introduced easily in the formulations.

The second case is a hydroelastic-sloshing problem with a modal interaction between incompressible hydroelastic structural modes and incompressible liquid sloshing modes in rigid motionless cavity, involving an elastogravity operator related to the wall normal displacement of the fluid-structure interface, introduced initially, under a simplified approximate expression by [START_REF] Tong | Liquid Sloshing in an Elastic Container[END_REF], then analyzed through various derivations by [START_REF] Debongnie | On a purely lagrangian formulation of sloshing and fluid-induced vibrations of tanks eigenvalue problems[END_REF], [START_REF] Morand | Fluid-Structure Interaction -Applied Numerical Methods[END_REF], Chapter 6 and recently deeply analyzed theoretically and numerically in [START_REF] Schotté | Effect of gravity on a free-free elastic tank partially filled with incompressible liquid[END_REF][START_REF] Ibrahim | Liquid Sloshing Dynamics -Theory and Applications[END_REF], 2009, 2013), and [START_REF] Ohayon | Modal analysis of liquid-structure interaction[END_REF].

For the construction of reduced models, the static behavior at zero frequency plays an important role. Therefore, we review "regularized" variational formulations of the problem, in the sense that the static behavior must also be taken into account in the boundary value problem. Those "quasi-static" potential and inertial contributions play a fundamental role in the Ritz-Galerkin procedure (error truncation).

The general methodology corresponds to dynamic substructuring procedures adapted to fluid-structure modal analysis. For general presentations of computational methods using appropriate finite element and dynamic substructuring procedures applied to modal analysis of elastic structures containing inviscid fluids (sloshing, hydroelasticity, and structural-acoustics), we refer the reader, for instance, to [START_REF] Morand | Fluid-Structure Interaction -Applied Numerical Methods[END_REF]. Alternative methods, which are not presented here, such as boundary element methods may be found in [START_REF] Firouz-Abadi | A 3D BEM model for liquid sloshing in baffled tanks[END_REF] and [START_REF] Brunner | A comparison of FE-BE coupling schemes for large-scale problems with fluid-structure interaction[END_REF]; see also Coupling of Boundary Element Methods and Finite Element Methods.F u r t h e rmore, we do not consider nonmatching fluid-structure interface meshes (for those aspects, see [START_REF] Farhat | Load and motion transfer algorithms for Fluid/Structure interaction problems with nonmatching discrete interfaces[END_REF]Gonzalez et al., 2012; see also Fluid-Structure Interaction and Flows with Moving Boundaries and Interfaces).

STRUCTURAL-ACOUSTIC PROBLEM

Let us consider the linear vibrations of an elastic structure completely filled with a homogeneous, inviscid, and compressible fluid. We also consider the particular case of a compressible liquid with a free surface, neglecting gravity effects. For general considerations on structural-acoustic problems (also called vibroacoustics) from physical and computational aspects, the reader is referred, for instance, to [START_REF] Fahy | Sound and Structural Vibration[END_REF] and [START_REF] Ohayon | Reduced models for fluid-structure interaction problems[END_REF]Soize (1998, 2014); see also Acoustics.

After the derivation of the linearized equations of the fluid-structure coupled system, we introduce a linear constraint in order to obtain a regularized problem at zero frequency, and we then construct a reduced model of the fluid subsystem. Acoustic modes in rigid motionless cavity are introduced as Ritz projection vector basis, including the static solution of the coupled system. As this fluid-structure system has a resonant behavior, a finite element computation of the unreduced model may lead to prohibitive time costs. That is why, starting from one of the possible variational formulations of the problem, convenient reduced symmetric matrix models are reviewed.

Structure subjected to a fluid pressure loading

We consider an elastic structure occupying the domain Ω S at equilibrium. The interior fluid domain is denoted Ω F and the fluid-structure interface is denoted Σ (Figure 1).

The angular frequency of vibration is denoted as 𝜔.T h e chosen unknown field in the structure domain Ω S is the displacement field u. The linearized strain tensor is denoted as 𝜖 ij (u) and the corresponding stress tensor is denoted as 𝜎 ij (u). We denote by 𝜌 S the constant mass density at equilibrium and by n the unit normal, external to the structure domain Ω S .L e t𝛿u be the test function, associated to u, belonging to the admissible space  u .

The weak variational formulation describing the undamped response u of the structure Ω S to given harmonic forces of amplitude F d on the external structure boundary 𝜕Ω S ∖Σ and to fluid pressure field p acting on the internal fluid-structure interface Σ is written as follows.

For all 𝜔 and ∀𝛿u ∈  u ,findu ∈  u such that

k(u,𝛿u)-𝜔 2 ∫ Ω S 𝜌 S u ⋅ 𝛿u dx -∫ Σ pn ⋅ 𝛿u d𝜎 = ∫ 𝜕Ω S ∖Σ F d ⋅ 𝛿u d𝜎 (1)
where k(u,𝛿u)=k(u,𝛿u)+k G (u,𝛿u)+k P 0 (u,𝛿u)

and where k(u,𝛿u) is the mechanical elastic stiffness such that k(u,𝛿u

)= ∫ Ω S 𝜎 ij (u)𝜖 ij (𝛿u)dx (3) 
and where k G (u,𝛿u) and k P 0 (u,𝛿u) are such that

k G (u,𝛿u)= ∫ Ω S 𝜎 0 ij u l,i 𝛿u l,j dx, k P 0 = ∫ Σ P 0 n 1 (u) ⋅ 𝛿u d𝜎
(4) In equations ( 4) and ( 5), k G (u,𝛿u) represents the initial stress or geometric stiffness in symmetric bilinear form in which 𝜎 0 ij denotes the stress tensor in an equilibrium state, and k P 0 (u,𝛿u) represents an additional load stiffness in symmetric bilinear form due to rotation of normal n,i nw h i c hP 0 denotes the initial pressure existing in the reference equilibrium configuration. Finally, n 1 (u) represents the variation of normal n between the reference configuration and the actual configuration.

Fluid subjected to a wall normal displacement

Since the fluid is inviscid, instead of describing the small motion of the fluid by a fluid displacement vector field u F , which requires an appropriate discretization of the fluid irrotationality constraint curl u F = 0 (see, for instance, Bermudez et al., 2003), we will use the pressure scalar field p. The small movements corresponding to 𝜔 ≠ 0 are obviously irrotational, but, in the static limit case, that is at zero frequency, we consider only fluids that exhibit a physical irrotational behavior.

Let us denote by c the (constant) sound speed in the fluid, and by 𝜌 F , the (constant) mass density of the fluid at rest (c 2 = 𝛽∕𝜌 F , where 𝛽 denotes the bulk modulus). We denote as Ω F the domain occupied by the fluid at rest (which is taken as the equilibrium state). The local equations describing the harmonic response of the fluid to a prescribed arbitrary normal displacement u ⋅ n of the fluid-structure interface Σ are such that

∇p -𝜌 F 𝜔 2 u F = 0 | Ω F (5) p =-𝜌 F c 2 ∇ ⋅ u F | Ω F (6) u F ⋅ n = u ⋅ n | Σ (7) curl u F = 0 | Ω F (8)
Equation ( 5) corresponds to the linearized Euler equation in the fluid. Equation ( 6) corresponds to the constitutive equation of the fluid (we consider here a barotropic fluid, which means that p is only a function of 𝜌 F ). Equation ( 7) corresponds to the wall-slipping condition. Equation ( 8) corresponds to the irrotationality condition, only necessary in order to ensure that when 𝜔 → 0, u F tends to static irrotational motion, which corresponds to the hypothesis that for 𝜔 = 0, we only consider irrotational motions (for simply connected fluid domain).

A displacement potential 𝜑 defined up to an additive constant chosen, for instance, as ∫ Ω F 𝜑 dx = 0 can be therefore introduced in order to recast the system defined by equations (5-8) into a scalar one. These aspects are discussed below.

Relation between static pressure p s and u ⋅ n

For 𝜔 = 0, equations ( 6) and ( 7) lead to a constant static pressure field p s , which is related to the normal wall displacement by the relation

p s =- 𝜌 F c 2 |Ω F | ∫ Σ u ⋅ n d𝜎 (9)
where |Ω F | denotes the measure of the volume occupied by domain Ω F . This constant pressure field has been used as an additional unknown field in direct variational symmetric formulation using either a velocity potential formulation [START_REF] Everstine | A symmetric potential formulation for fluid-structure interaction[END_REF] with j𝜔 or 𝜔 4 additional terms [START_REF] Kock | Fluid-structure interaction analysis by the finite-element method -a variational approach[END_REF], or in direct symmetric formulations of classical generalized eigenvalue leading to finite element discretized system of the type (AX = 𝜔 2 BX) with symmetric real matrices [START_REF] Morand | Fluid-Structure Interaction -Applied Numerical Methods[END_REF].

Equationsintermsofp or 𝝋 and u ⋅ n

The elimination of u F between equations (5-7), and (8) leads to

∇ 2 p + 𝜔 2 c 2 p = 0 | Ω F (10) 𝜕p 𝜕n = 𝜌 F 𝜔 2 u ⋅ n | Σ (11) with the constraint 1 𝜌 F c 2 ∫ Ω F p dx + ∫ Σ u ⋅ n d𝜎 = 0 (12)
Equation ( 10) is the classical Helmholtz equation expressed in terms of p. Equation ( 11) corresponds to the kinematic condition defined by equation ( 7

) (𝜕p∕𝜕n = -𝜌 F üF ⋅ n = 𝜌 F 𝜔 2 u ⋅ n | Σ ).
The linear constraint defined by equation ( 12) corresponds to the global mass conservation, which ensures that the boundary problem defined by equations ( 10) and ( 11) is equivalent to the problem defined by equations (5-8). In the absence of the condition defined by equation ( 12), we would obtain a boundary value problem in terms of p, which is not valid for 𝜔 = 0 and which does not allow us to retrieve the value of p s given by equation ( 9).

Using equations ( 8) and ( 9), the boundary value problem defined by equations (10-12) can be recasted into the following equivalent one using the displacement potential field 𝜑 introduced above such that p

= 𝜌 F 𝜔 2 𝜑 + p s (u ⋅ n) with ∫ Ω F 𝜑 dx = 0 ∇ 2 𝜑 + 𝜔 2 c 2 𝜑 - 1 |Ω F | ∫ Σ u ⋅ n d𝜎 = 0 | Ω F (10a) 𝜕𝜑 𝜕n = u ⋅ n | Σ (11a)
with the constraint

∫ Ω F 𝜑 dx = 0 (12a)
The two boundary value problems expressed in terms of p or in terms of 𝜑 are well posed in the static case (𝜔 = 0). They have been used, with further transformation, leading to appropriate so-called (u, p,𝜑) symmetric formulations with mass coupling (leading to a final (u,𝜑) formulation, as described by [START_REF] Ohayon | Mechanical and numerical modelling of fluid-structure vibration instabilities of liquid propelled launch vehicle[END_REF], Chapter 8 or with stiffness coupling, by [START_REF] Sandberg | A symmetric finite element formulation for acoustic fluid-structure interaction analysis[END_REF].

Variational formulation in terms of (u, p)

Let 𝛿p be the test function, associated to p, belonging to the admissible space  p . The weak variational formulation corresponding to equations (10-12) is obtained by the usual test-function method using Green's formula. The weak variational formulation corresponding to the structural-acoustic problem is then stated as follows. Given 𝜔 and F d ,fi n d u ∈  u and p ∈  p , such that for all 𝛿u ∈  u and 𝛿p ∈  p , we have

k(u,𝛿u)-𝜔 2 ∫ Ω S 𝜌 S u ⋅ 𝛿u dx -∫ Σ pn⋅ 𝛿u d𝜎 = ∫ 𝜕Ω S ∖Σ F d ⋅ 𝛿u d𝜎 (13) 1 𝜌 F ∫ Ω F ∇p ⋅ ∇𝛿p dx - 𝜔 2 𝜌 F c 2 ∫ Ω F p𝛿p dx -𝜔 2 ∫ Σ u ⋅ n𝛿p d𝜎 = 0 (14) with the constraint 1 𝜌 F c 2 ∫ Ω F p dx + ∫ Σ u ⋅ n d𝜎 = 0 (15)
The variational formulation defined by equations (13-15), due to the presence of the constraint defined by equation ( 15), which regularizes the (u, p) formulation, is therefore valid in the static case. In effect, usually, only equations ( 13) and ( 14) are written, and as pointed out above, are not valid for 𝜔 = 0. In the case of a finite element discretization of equations (13-15), we obtain a matrix system of the type AY-𝜔 2 BY = F d , where A and B are not symmetric. Some direct matrix manipulations may lead to symmetrized systems [START_REF] Felippa | Mixed variational formulation of finite element analysis of acoustoelastic/slosh fluid-structure interaction[END_REF]). As explained above, that is why various symmetric formulations using the fluid pressure field p and displacement potential 𝜑,d e fi n e du pt oa n additive constant and such that u F =∇𝜑, have been derived. The resulting symmetric formulations are then obtained by elimination of p or 𝜑. In this case, we are not considering a direct finite element approach of the variational formulation defined by equations (13-15).

Symmetric reduced-order model

We will consider hereafter a dynamic substructuring approach through an appropriate decomposition of the admissible class into the direct sum of admissible vector spaces (Figure 2).

Let us consider the following two basic problems. The first one corresponds to the acoustic modes in rigid motionless cavity and is obtained by setting u = 0 into equations ( 14) and ( 15). The calculation of these acoustic modes is generally done by using a finite element procedure. If we introduce the admissible subspace  * p of  p ,

 * p = { p ∈  p ; ∫ Ω F p dx = 0 } ( 16 
)
the variational formulation of acoustic modes is stated as follows: find 𝜔 2 > 0a n dp ∈  * p such that, for all 𝛿p ∈  * p ,

+ Ω 1 = Ω 1 Ω 1 Ω 2 Ω 2 Figure 2. Dynamic substructuring scheme.
we have

1 𝜌 F ∫ Ω F ∇p ⋅ ∇𝛿p dx = 𝜔 2 1 𝜌 F c 2 ∫ Ω F p𝛿p dx (17)
with the constraint

∫ Ω F p dx = 0 (18)
It should be noted that, in practice, we proceed as follows: the constraint condition ( 18) is "omitted", which means that we only modify the initial acoustic problem by adding a first nonphysical zero-frequency constant pressure mode, the other modes corresponding to 𝜔 ≠ 0 remaining the same as those defined by equations ( 17) and ( 18). In this acoustic problem without equation ( 18), it can be easily seen that the condition defined by equation ( 18) can be considered as an orthogonality condition between all the modes and the first constant nonphysical mode corresponding to 𝜔 = 0 [START_REF] Ohayon | The effect of wall motion on the governing equations of structures containing fluids[END_REF]; see also the orthogonality conditions defined by equation ( 19) below). This zero-frequency mode must not be retained in any Ritz-Galerkin projection analysis. In addition, we have the following orthogonality conditions:

1

𝜌 F c 2 ∫ Ω F p 𝛼 p 𝛽 dx = 𝜇 𝛼 𝛿 𝛼𝛽 1 𝜌 F ∫ Ω F ∇p 𝛼 ⋅ ∇p 𝛽 dx = 𝜇 𝛼 𝜔 2 𝛼 𝛿 𝛼𝛽 ( 19 
)
The second basic problem corresponds to the static response of the fluid to a prescribed wall normal displacement u ⋅ n. The solution, denoted as p s (u ⋅ n),i sg i v e nb y equation ( 9). For any deformation u ⋅ n of the fluid-structure interface, p s (u ⋅ n) belongs to a subset of  p , denoted as  u⋅n

 u⋅n = { p s ∈  p ; p s =- 𝜌 F c 2 |Ω F | ∫ Σ u ⋅ n d𝜎 } (20) 
In the variational formulation defined by equations (13-15), p is searched under the form

p = p s (u ⋅ n)+ N p ∑ 𝛼=1 r 𝛼 p 𝛼 ( 21 
)
where N p denotes the number of retained acoustic modes. The decomposition (21) is unique. In addition, it should be noted that since each eigenvector p 𝛼 corresponding to 𝜔 𝛼 ≠ 0 verifies the constraint defined by equation ( 18), then, using equation ( 9), we deduce that p and u ⋅ n satisfy the constraint defined by equation ( 15). The decomposition defined by equation ( 21) corresponds to a decomposition of the admissible class  p into the direct sum of the admissible classes defined, respectively, by equations ( 20) and ( 16)

 p =  u⋅n ⊕  * p (22)
Following equation ( 21), the test function 𝛿p is then searched under the form

𝛿p = p s (𝛿u ⋅ n)+ N p ∑ 𝛼=1 𝛿r 𝛼 p 𝛼 (23)
Variational formulation in 𝛿u defined by equation ( 13) and corresponding to the eigenvalue problem defined by equations (13-15) becomes k(u,𝛿u)+k s (u,𝛿u)-

N p ∑ 𝛼=1 r 𝛼 ∫ Σ p 𝛼 n ⋅ 𝛿u d𝜎 = 𝜔 2 ∫ Ω S 𝜌 S u ⋅ 𝛿u dx ( 24 
)
where k(u,𝛿u) is defined by equation (2) and k s (u,𝛿u) is such that

k s (u,𝛿u)= 𝜌 F c 2 |Ω F | ( ∫ Σ u ⋅ n d𝜎 )( ∫ Σ 𝛿u ⋅ n d𝜎 ) (25) 
If we consider a finite element discretization of the structure, the corresponding discretized form of equation ( 24) can be written as

[ K + K s ] U -𝜔 2 MU- n ∑ 𝛼=1 C 𝛼 r 𝛼 = F d (26)
where symmetric matrices K and K s correspond to finite element discretization of stiffness symmetric bilinear forms defined by equations (2-4), and (25), respectively. In equation ( 26), M denotes the structural symmetric mass matrix and rectangular coupling matrix C 𝛼 corresponds to the discretization of the coupling fluid-structure contribution ∫ 𝜎 p 𝛿u ⋅ n d𝜎. The discretized form of equation ( 14) in 𝛿p can then be written in generalized (acoustic) coordinates as

𝜔 2 𝛼 𝜇 𝛼 r 𝛼 -𝜔 2 𝜇 𝛼 r 𝛼 -𝜔 2 C T 𝛼 U = 0 (27)
From equations ( 26) and ( 27), we obtain the symmetric matrix reduced model

( K tot 𝟎 𝟎 Diag 𝜇 𝛼 )( U r ) -𝜔 2 ( M tot D D T Diag (𝜇 𝛼 ∕𝜔 2 𝛼 ) ) × ( U r ) = ( F d 𝟎 ) ( 28 
)
where r denotes the vector of N generalized coordinates r 𝛼 , with 1 ≤ 𝛼 ≤ N p ,and

K tot = K + K s (29) M tot = M + N p ∑ 𝛼=1 1 𝜔 2 𝛼 𝜇 𝛼 C 𝛼 C T 𝛼 (30) D 𝛼 = N p ∑ 𝛼=1 1 𝜔 2 𝛼 C 𝛼 (31)
Further diagonalization of equation ( 28) implies a projection of U on the solutions of the eigenvalue problem

K tot U 𝛽 = 𝜆 𝛽 M tot U 𝛽 (32) Setting U = N u ∑ 𝛽=1 q 𝛽 U 𝛽 ( 33 
)
where q 𝛽 are the generalized coordinates describing the structure. Using the orthogonality conditions associated with the solutions of equation ( 32), that is,

U T 𝛽 ′ M tot U 𝛽 = 𝜇 s 𝛽 𝛿 𝛽𝛽 ′ and U T 𝛽 ′ K tot U 𝛽 = 𝜇 s 𝛽 𝜆 𝛽 𝛿 𝛽𝛽 ′ , equation (28) becomes ( Diag 𝜆 𝛽 0 0D i a g 𝜔 2 𝛼 )( q r ) -𝜔 2 ( I N u [C 𝛽𝛼 ] [C 𝛽𝛼 ] T I N p ) × ( q r ) = (  d 𝟎 ) (34)

Remark on substructuring procedure

In literature, several methods of reduced-order models are investigated such as dynamic substructuring [START_REF] Ohayon | Dynamic substructuring of damped structures using singular value decomposition[END_REF](Ohayon et al. ( , 2014)); Geradin and Rixen, 2015) or Proper Orthogonal Decomposition for nonlinear problems [START_REF] Amsallem | Nonlinear model order reduction based on local reduced-order bases[END_REF]; see also Model Reduction Methods.

Concerning the first one, various approaches can be applied such as, for instance, fixed interface or free interface with residual attachment mode procedures. We present here, for sake of brevity, only a natural one that comes from the continuous case by considering the admissible class decomposition defined by equation ( 22). This decomposition is the key of component mode synthesis developments (Figure 2). Of course, further considerations involving interface deformations by solving from an eigenvalue problem posed only on the interface using fluid and structure mass and stiffness interface operators could improve the convergence of the procedure. But this remains still an open problem.

It should be noted that two different situations are treated here.

For a heavy liquid filling the enclosure, one must mandatorily use the eigenmodes defined by equation ( 32), that is, hydroelastic modes including "static" inertial and potential compressibility effects. The effects of static behavior calculation on the convergence of the system relative to the number of acoustic modes have been analyzed in the general case of slightly damped compressible fluid-structure systems (Ohayon and Soize, 2014) and an experimental validation carried out in the case of parallelepipedical cavity filled with liquid is presented in Figure 3.

For a light fluid such as a gas filling the enclosure, one may use instead in vacuo structural modes, but the resulting matrix system would not be diagonal with respect to U.I n effect, looking at the eigenvalue problem corresponding to equation ( 28), the diagonalization is obtained by solving the "structural" problem involving additional stiffness and mass due to static effects of the internal fluid. The in vacuo structural modes are orthogonal with respect to K and M but not with respect to K tot and M tot .

Wall impedance condition

Wall impedance condition corresponds to a particular fluidstructure interface modeling. This interface is considered as a third medium with infinitesimal thickness, without mass, and with the constitutive equation

p = j𝜔Z(𝜔)(u ⋅ n -u F ⋅ n) ( 35 
)
where Z(𝜔) denotes a complex impedance. Equations ( 7) and ( 11) must be replaced by equation ( 35), using 𝜕p∕𝜕n = 𝜌 F 𝜔 2 u F ⋅ n.

The reduced modal matrix models have been extended to the dissipative case using a wall local homogeneous impedance condition by introducing a dissipative internal fluid with nonhomogeneous local impedance wall condition [START_REF] Ohayon | Reduced models for fluid-structure interaction problems[END_REF]Soize, 1998, 2014).

Case of a liquid with a free surface

Let us consider a liquid with a free surface at rest denoted as Γ. If we neglect gravity effects, the boundary condition on Γ is such that

p = 0 | Γ ( 36 
)
In this case, constraint condition (12) (or ( 15)) is replaced by equation ( 36). Equation ( 9) is replaced by p s = 0. Admissible space defined by equation ( 16) becomes

 * p ={p ∈  p ; p = 0 | Γ }.
In this case, the static problem defined in Section 2.2 leads to a zero-pressure field. Let us remark that in this case, the "structural" modal basis may be constituted by the hydroelastic incompressible modes using the concept of added mass operator (Fraeijs de [START_REF] De Veubeke | The inertia tensor of an incompressible fluid bounded by walls in rigid body motion[END_REF]Morand and Ohayon, 1995, Chapter 5;[START_REF] Paidoussis | Fluid-Structure Interactions -Cross-Flow-Induced Instabilities[END_REF]. 

INCOMPRESSIBLE HYDROELASTIC-SLOSHING PROBLEM

We consider the linear vibrations of an elastic structure partially filled with a homogeneous, inviscid, and incompressible liquid, taking into account gravity effects on the free surface Γ. After a derivation of the linearized equations of the fluid-structure coupled problem, introducing an appropriate linear constraint in order to obtain a "regularized" problem at zero frequency, we construct a reduced model of the "liquid subsystem". For this analysis, sloshing modes in a rigid motionless cavity are introduced as Ritz projection vector basis, including the static solution of the coupled system. The effect of the motions of internal liquids on aeroelasticity problems has been investigated in [START_REF] Farhat | On the modelling of fuel sloshing and its physical effect on flutter[END_REF]. For a general overview of sloshing problems, including experimental aspects, we refer to [START_REF] Wiesche | Computational slosh dynamics: theory and industrial application[END_REF], [START_REF] Ibrahim | Liquid Sloshing Dynamics -Theory and Applications[END_REF], [START_REF] Veldman | The numerical simulation of liquid sloshing on board spacecraft[END_REF], [START_REF] Faltinsen | Sloshing Dynamics[END_REF][START_REF] Faltinsen | Sloshing Dynamics[END_REF][START_REF] Cruchaga | Finite element computation and experimental validation of sloshing in rectangular tanks[END_REF].

Structure subjected to a fluid pressure loading

The notations are the same as those defined in Section 2 adapted to liquid with a free surface at rest denoted Γ (Figure 4). The weak variational formulation describing the response of the structure Ω S to the given variation F d of the applied forces with respect to the equilibrium state on the external structure boundary 𝜕Ω S ∖Σ, and to fluid pressure field p acting on the internal fluid-structure interface Σ is written as follows.

For all real 𝜔 and ∀𝛿u ∈  u ,findu ∈  u such that

k(u,𝛿u)-𝜔 2 ∫ Ω S 𝜌 S u ⋅ 𝛿u dx -∫ Σ pn⋅ 𝛿u d𝜎 = ∫ 𝜕Ω S ∖Σ F d ⋅ 𝛿u d𝜎 (37) 
where

k = k + k Σ (38) 
In equation ( 38), k(u,𝛿u) is defined by equation ( 2) and k Σ is the elastogravity stiffness in symmetric bilinear form such that (Morand and Ohayon, 1995, Chapter 6;Schotté andOhayon, 2003, 2005).

k Σ (u,𝛿u)=- 1 2 𝜌 F g { ∫ Σ [zn 1 (u) ⋅ 𝛿u + u z 𝛿u ⋅ n]d𝜎 + ∫ Σ [zn 1 (𝛿u) ⋅ u + 𝛿u z u ⋅ n]d𝜎 } (39) 
in which z denotes the vertical position with respect to the free surface.

Fluid subjected to a wall normal displacement

We assume that the liquid is homogeneous, inviscid, and incompressible. Free surface Γ is horizontal at equilibrium. We denote by n the external unit normal to Γ and by g the gravity. The notations are similar to those of Section 2. The local equations describing the response of the fluid to a prescribed arbitrary normal displacement u ⋅ n of the fluid-structure interface Σ are such that

∇p -𝜌 F 𝜔 2 u F = 0 | Ω F (40) ∇ ⋅ u F = 0 | Ω F (41) u F ⋅ n = u ⋅ n | Σ (42) p = 𝜌 F gu F ⋅ n | Γ (43) curl u F = 0 | Ω F (44)
Equation ( 41) corresponds to the incompressibility condition. Equation ( 43) is the constitutive equation on the free surface Γ due to gravity effects.

A displacement potential 𝜑 defined up to an additive constant chosen, for instance, as ∫ Γ 𝜑 dx = 0 can be therefore introduced in order to recast the system defined by equations (40-44) into a scalar one. These aspects are discussed below.

Relation between static pressure p s and u ⋅ n

For 𝜔 = 0, equations (41-43) lead to the constant static pressure field that is related to the normal wall displacement by the relation

p s =- 𝜌 F g |Γ| ∫ Σ u ⋅ n d𝜎 ( 45 
)
where |Γ| denotes the measure of the area of free surface Γ.

Equations in terms of p or 𝝋 and u ⋅ n

The elimination of u F between equations ( 40) and ( 44) leads to

∇ 2 p = 0 | Ω F (46) 𝜕p 𝜕n = 𝜌 F 𝜔 2 u ⋅ n | Σ (47) 𝜕p 𝜕z = 𝜔 2 g p | Γ (48) 
with the constraint

1 𝜌 F g ∫ Γ p d𝜎 + ∫ Σ u ⋅ n d𝜎 = 0 (49)
The linear constraint defined by equation ( 49) ensures that the boundary problem defined by equations (46-49) is equivalent to the problem defined by equations (40)(41)(42)(43)(44). This condition is usually omitted in literature.

Using equations ( 44) and ( 45), the boundary value problem defined by equations (46-49) can be recasted into the following equivalent one using the displacement potential field 𝜑, introduced in Section 2.2, such that

p = 𝜌 F 𝜔 2 𝜑 + p s (u ⋅ n) with ∫ Γ 𝜑 dx = 0 ∇ 2 𝜑 = 0 | Ω F (46a) 𝜕𝜑 𝜕n = u ⋅ n | Σ (47a) 𝜕𝜑 𝜕z = 𝜔 2 g 𝜑 - 1 |Γ| ∫ Σ u ⋅ n d𝜎 | Γ (48a)
with the constraint

∫ Γ 𝜑 d𝜎 = 0 (49a)
The two boundary value problems expressed in terms of p or in terms of 𝜑 are well posed in the static case (𝜔 = 0). The equations (46a, 47a), and (48a) have been used, with a different constraint relationship for 𝜑, after the introduction of the elevation 𝜂 of the free surface, to appropriate so-called (u,𝜑,𝜂) symmetric formulations with mass coupling leading to a final (u,𝜂) formulation (Morand and Ohayon, 1995, Chapter 6;[START_REF] Schotté | Linearized formulation for fluid-structure interaction: application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface[END_REF].

Variational formulation in terms of (u, p)

Let 𝛿p be the test function, associated to p, belonging to the admissible space  p . The weak variational formulation corresponding to equations (46-49) is obtained by the usual test-function method using Green's formula. Recalling equation ( 37), the variational formulation of the hydroelastic-sloshing problem is then stated as follows. Find u ∈  u and p ∈  p , such that for all 𝛿u ∈  u and 𝛿p ∈  p , we have

k(u,𝛿u)-𝜔 2 ∫ Ω S 𝜌 S u ⋅ 𝛿u dx -∫ Σ pn⋅ 𝛿u d𝜎 = ∫ 𝜕Ω S ∖Σ F d ⋅ 𝛿u d𝜎 (50) 1 𝜌 F ∫ Ω F ∇p ⋅ ∇𝛿p dx = 𝜔 2 𝜌 F g ∫ Γ p𝛿p dx + 𝜔 2 ∫ Σ u ⋅ n𝛿p d𝜎 (51) with the constraint 1 𝜌 F g ∫ Γ p d𝜎 + ∫ Σ u ⋅ n d𝜎 = 0 (52)

Symmetric reduced matrix model

Let us consider the following two basic problems. The first one corresponds to the sloshing modes in rigid motionless cavity and is obtained by setting u = 0 into equations ( 47) and ( 49). The calculation of these modes is generally done by using a finite element procedure. If we introduce the admissible subspace 

* p of  p  * p { p ∈  p ; ∫ Γ p d𝜎 = 0 } (53)
the variational formulation of sloshing modes is stated as follows: find 𝜔 2 > 0a n dp ∈  * p such that, for all 𝛿p ∈  * p , we have

1 𝜌 F ∫ Ω F ∇p ⋅ ∇𝛿p dx = 𝜔 2 1 𝜌 F g ∫ Γ p𝛿p d𝜎 (54)
with the constraint

∫ Γ p d𝜎 = 0 (55) 
It should be noted that, in practice, if the constraint condition (55) is "omitted", we only add a first nonphysical zero-frequency constant pressure mode, the other modes corresponding to 𝜔 ≠ 0 remaining the same as those defined by equations ( 54) and ( 55). This zero-frequency mode must not be retained in any Ritz-Galerkin projection analysis. In addition, we have the orthogonality conditions

1 𝜌 F g ∫ Γ p 𝛼 p 𝛽 d𝜎 = 𝜇 𝛼 𝛿 𝛼𝛽 1 𝜌 F ∫ Ω F ∇p 𝛼 ⋅ ∇p 𝛽 dx = 𝜇 𝛼 𝜔 2 𝛼 𝛿 𝛼𝛽 (56)
The second basic problem corresponds to the static response of the fluid to a prescribed wall normal displacement u ⋅ n. The solution, denoted as p s (u ⋅ n),i sg i v e n by equation ( 45). For any deformation u ⋅ n of the fluidstructure interface, p s (u ⋅ n) belongs to a subset of  p , denoted as  u⋅n

 u⋅n = { p s ∈  p ; p s =- 𝜌 F g |Γ| ∫ Σ u ⋅ n d𝜎 } (57) 
In the variational formulation defined by equations (50-52), p is searched under the form

p = p s (u ⋅ n)+ N p ∑ 𝛼=1 r 𝛼 p 𝛼 ( 58 
)
where N p denotes the number of retained sloshing modes. The decomposition (58) is unique. In addition, it should be noted that since each eigenvector p 𝛼 corresponding to 𝜔 𝛼 ≠ 0 verifies the constraint defined by equation ( 55), then, using equation ( 45), we deduce that p and u ⋅ n satisfy the constraint defined by equation ( 52). The decomposition defined by equation ( 58) corresponds to a decomposition of the admissible class  p into the direct sum of the admissible classes defined, respectively, by equations ( 56) and (57),  p =  u⋅n ⊕  * p . The variational formulation in u defined by equation ( 50) becomes

k(u,𝛿u)+k s (u,𝛿u)-𝜔 2 ∫ Ω S 𝜌 S u ⋅ 𝛿u dx - N p ∑ 𝛼=1 r 𝛼 ∫ Σ p 𝛼 n ⋅ 𝛿u d𝜎 = ∫ 𝜕Ω S ∖Σ F d ⋅ 𝛿u d𝜎 (59)
where k(u,𝛿u) is defined by equation (38) and k s (u,𝛿u) is such that

k s (u,𝛿u)= 𝜌 F g |Γ| ( ∫ Σ u ⋅ n d𝜎 )( ∫ Σ 𝛿u ⋅ n d𝜎 ) (60) 
If we consider a finite element discretization of the structure, the corresponding discretized form of equation ( 60) can be written as

[ K + K s ] U - n ∑ 𝛼=1 C 𝛼 r 𝛼 -𝜔 2 MU = F d (61)
where symmetric matrices K and K s correspond to finite element discretization of stiffness symmetric bilinear forms defined by equations ( 38) and ( 60), respectively. The discretized form of equation ( 51) in 𝛿p can then be written as

𝜔 2 𝛼 𝜇 𝛼 r 𝛼 = 𝜔 2 𝜇 𝛼 r 𝛼 + 𝜔 2 C T 𝛼 U (62)
From equations ( 61) and ( 62), we obtain a symmetric matrix reduced model whose expression is similar to the one given by expression (28).

Similar to Section 3.5, further diagonalization can be obtained by setting

U = N u ∑ 𝛽=1 q 𝛽 U 𝛽 ( 63 
)
where q 𝛽 are the generalized coordinates describing the structure and U 𝛽 are the eigenmodes of an eigenvalue problem similar to the one described by equation ( 32). We then obtain a matrix system similar to the one described by equation ( 34 It should be noted that we can also use the incompressible hydroelastic modes, that is, the modes of the coupled system constituted by the elastic structure containing an incompressible liquid, with p = 0o nΓ (through an added mass operator). In this case, the resulting matrix system is not completely diagonal with respect to U variables.

Figures 5 and6 illustrate liquid motions in reservoirs.

Further investigations

In this analysis, we neglected viscosity, compressibility, and capillarity effects. For damping effects, see [START_REF] Henderson | Surface-wave damping in a circular cylinder with a fixed contact line[END_REF], [START_REF] Bauer | Viscous hydroelastic vibrations in a cylindrical container with an elastic bottom[END_REF][START_REF] Bauer | Viscous hydroelastic vibrations in a cylindrical container with an elastic bottom[END_REF]Miras et al. (2012b). Concerning gravity-compressibility interactions, various formulations using the Lighthill model [START_REF] Lighthill | Waves in Fluids[END_REF] can be found in Andrianarison and Ohayon (2006a,b).

For surface tension phenomenon, we refer to [START_REF] Schulkes | On the computation of normal modes of a rotating, viscous incompressible fluid with a capillary free boundary[END_REF], Saksono and Perić (2006a,b), [START_REF] El-Kamali | Computation of the equilibrium position of a liquid with surface tension inside a tank of complex geometry and extension to sloshing dynamic cases[END_REF], 2011), Miras et al. (2012a), and [START_REF] Ohayon | Vibration of Structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model[END_REF]. 

CONCLUSION

In this chapter, we have reviewed appropriate formulations for low modal density frequency computations of the eigenmodes of elastic structures containing linear inviscid homogeneous fluids for structural-acoustics problems, using structural modes in vacuo for the structure containing a gas or hydroelastic modes including "static" inertial and potential compressibility effects for the structure containing liquids, with acoustic modes in rigid motionless cavity, and incompressible hydroelastic-sloshing problems. Those formulations, using modal interaction schemes, with dynamic substructuring techniques lead to symmetric reduced matrix systems expressed in terms of generalized coordinates for the fluid-structure system.
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 6 Figure 6. Tank partially filled with liquid.