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Abstract

In the recent years, several high level requirements languages have been proposed. Although these
languages are close to natural language, thanks to the use of dedicated patterns [15, 17], a formal
semantics is attached to them. In general, modal logics have been used to express the semantics of such
languages as for instance, temporal logics: branching time, linear time, temporized or not. In this paper,
we are interested by the preliminary steps of the development of safety critical systems. We investigate
how patterns could be used in order to generate refinements automatically. One of our main concerns is
to produce Event-B machines such that the user can refine them further.
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1 Introduction

In this paper, we are interested by the preliminary steps of the development of safety critical systems. For
this purpose, several high level requirements languages have been proposed. Although these languages are
close to natural language, thanks to the use of dedicated patterns [15, 17], a formal semantics is attached
to them. In general, modal logics have been used to express the semantics of such languages as for
instance, temporal logics: branching time, linear time, temporized or not. These high level requirements
have been used for several purposes. In the context of model checking, they have been used to check
a posteriori that a model has the required properties [1]. In the context of controller synthesis, illegal
behaviours are statically pruned [23]. Last, in the context of runtime verification, a monitor [25, 20]
is derived from specific high level requirements. Through the dynamic observation of the system, this
monitor prevents illegal behaviours.

We investigate how patterns could be used in order to generate refinements automatically. One of
our major concern is to produce Event-B machines such that the user can refine them further. Indeed,
we propose temporal/timed and resource allocation patterns. These patterns are intended to take into
account requirements incrementally. Successive refinements support this process in a safe way. Our
objective here is to automatically generate Event-B models by formally expressing the requirements of
the system. Furthermore, we analyse how the proposed approach can for instance make easier the use of
methodology based development [22]. The rest of the paper is organized as follows: Section 2 presents
our working example together with its requirements. After a brief overview of Event-B in Section 3,
Section 4 presents our refinement based approach. Through a case study, Section 5 presents additional
refinements. After reviewing some related works in Section 6, Section 7 concludes with some future
directions of research.

2 Working example and system requirements

Throughout this document, we illustrate our approach with the Automatic Rover Protection system
(ARP) of the IRT-Saint Exupéry1 case study TwIRTee. TwIRTee is the Three Wheeled Integrated Rover
Testbench for Engineering Evaluation used as the demonstrator of several projects conducted within IRT

1Institut de Recherche Technologique Saint Éxupéry
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REQ-MIS-1 The mission of a robot is defined by an oriented path of the environment
map.

REQ-MIS-2 To execute a mission means to move the robot in compliance to the path of
the mission.

Table 1: Mission requirements

REQ-FUN-1 The robot shall ensure collision avoidance with as few deceleration actions
as possible.

REQ-FUN-2 The robot shall always move as fast as possible in compliance with the safety
constraints.

REQ-FUN-3 The robot shall always move according to its mission.
REQ-FUN-4 The robot shall move according to a speed bounded by the values

’Min Speed’ and ’Max Speed’.
REQ-FUN-5 The robot shall adapt its speed in order to be able to stop at any time within

its booked edges.

Table 2: Robots functional requirements

in Toulouse. It is used to evaluate new methods and tools in the domain of hardware/software co-design,
virtual integration, and application of formal methods for the development of equipment. TwIRTee’s
architecture, software, and hardware components are representative of a significant family of aeronautical,
spatial and automotive systems [11]. A robot moves on a topology and performs a mission. A mission
is defined by a start time and an ordered set of waypoints to be passed-by. Missions are planned off-line
and transmitted to the robot by a supervision station. To go from the first waypoint to the last, the
robot moves on a track that is materialized by a grey line on the ground.

In a more abstract way, a mission (REQ-MIS-1 in table 1) can be modelled by a path in a graph where
edges represent zones of the track joining two waypoints. A robot shares the edges with several identical
robots and moves only according to its mission (REQ-FUN-3 in table 2). In order to prevent collisions,
each of them embeds a protection function (or ARP) whose aim is to maintain some specified spatial
and temporal distance between them (REQ-SAF-1 in table 3). In the version of the system we are using
here, the ARP essentially acts by booking edges prior to move on them (REQ-SAF-1-BOO in table 3) and
by releasing previously booked edges (REQ-SAF-1-REL in table 3) after they have been visited.

In order to take the appropriate action, the ARP of a robot only has the following pieces of information

REQ-SAF-1 Any couple of robot in the environment shall be separated by a cer-
tain amount of edges. This property shall be ensured autonomously
by each robot.

REQ-SAF-1-BOO The robot shall book edges before moving to them.
REQ-SAF-1-BOO-v1 The robot shall book the next edge.
REQ-SAF-1-BOO-v2 The robot shall book N edges in advance.
REQ-SAF-1-BOO-v3 The robot shall book its whole mission before starting it.

REQ-SAF-1-REL The robot shall release already visited edges.
REQ-SAF-1-REL-v1 The robot shall release previously booked edges after each move-

ment.
REQ-SAF-1-REL-v2 The robot shall release previously booked edges after N movements.
REQ-SAF-1-REL-v3 The robot shall release previously booked edges after acomplishing

a mission.

Table 3: Robots safety requirements
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Figure 1: Event-B development step

available: the topology, the position of all other robots transmitted by a centralized supervision station,
and its own attitude, position, and speed. The requirements presented here will be used throughout the
paper. It is additionally worth noting that it is on purpose that we provide in table 3 multiple alternative
detailed requirements (v1, v2, and v3) related to booking and release of edges. These represent variants
of possible implementations solutions for the main safety requirement.

3 A brief overview of Event-B

The Event-B method allows the development of correct by construction systems and software [3]. It
supports a formal development process based on a refinement mechanism with mathematical proofs.
Figure 1 illustrates a refinement step where a machine M0 using a context C0 (the sees edge) is refined
(the refines edge) by a machine M1 using an extension C1 of C0 (the extends edge). Contexts define
abstract data types through sets, constants and axioms while machines define symbolic labelled transition
systems. The state of a transition system is defined as the value of machine variables. Labelled transitions
are defined by events specifying the new value of variables while preserving invariants. Moreover, the
theorem clause expresses facts that should be satisfied. Proof obligations for wellformedness, invariant
preservation and theorems are automatically generated by the Rodin tool [24]. They can be discharged
thanks to automatic proof engines (CVC4, Z3 . . . ) or through human-assisted proofs.

3.1 Notations

For the most part, Event B uses standard set theory and its usual set notation. As a matter a fact,
in Event-B, arrays and functions are both considered as sets of couples. Some notations are specific to
Event B :

• pair construction: pairs are constructed using the maplet operator 7→. A pair is thus denoted
a 7→ b instead of (a, b). The set of pairs a 7→ b where a ∈ A and b ∈ B is denoted A×B.

• A subset of A × B is a relation. A relation r has a domain : dom(r) and a codomain : ran(r).
When a relation r relates an element of dom(r) with at most one element, it is called a function.
The set of partial functions from A to B is denoted A 7→B, the set of total functions is denoted
A→ B. The image of a set A by a relation r is denoted r[A].

• domain restriction: D C r = {x 7→ y | (x 7→ y) ∈ r ∧ x ∈ D}
• overwrite: fC−g = ((dom(f)\dom(g)) C f) ∪ g. For instance, such a notation is used to denote

a new array obtained by changing the element of an array A at index i: AC−{i 7→ e′}.

As already said, Event-B machines specify symbolic transitions through events. An event has three
optional parts: parameters (any p1 . . . pn), guards (where . . . ) specifying constraints to be satisfied by
parameters and state variables, and actions (then . . . ) specifying state variables updates. Guards are
defined in set-based predicate logic.

3.2 Specification and refinement of the working example

As a preliminary example for section 4, we consider the problem of robots which have to achieve a mission
over a set of zones connected through a given topology specified as the neighbourhood relation over these
zones. A mission is specified by an initial zone and a linear and continuous trajectory respecting the
topology. A zone is exclusive and cannot be preempted. We elaborate such a specification progressively
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through two steps: first, we take into account that the robots have to move according to a topology.
Then, we refine this specification by taking into account that robots have an exclusive access to zones.

The static description of zones and missions is given by the context Topology. Topology introduces
ZONE and ROBOT as abstract sets. Then, the initial location of each robot is given by the constant init:
a total injection from ROBOT to ZONE. The constant relation edge specifies the topology of the zones: two
zones are in relation if one goes from one to another in one edge. The axiom @edge zones ty introduces
the topology as a relation. The axiom @edge irrefl2 expresses that a move occurs between two different
nodes. The mission of each robot is specified by mission. The axiom mission ty specifies, through the
use of a partial function, that from each reached location, that a robot moves possibly to another location
deterministically. The axioms mission WD, mission connexity specify respectively the corresponding
properties.

The machine Move describes the dynamics of the robot. The state of the system is represented by
the variable location containing the position of each robot. It is a function over the domain ROBOT.
The dynamics is specified through two events: the INITIALISATION where location is initialized by the
constant init, the Next event makes any robot r moves to its next location according to its mission. Its
guard, labelled by @r ensures that the current location location(r) has a successor in the mission of r.

Remark. At this level, exclusion is not ensured since a zone can be occupied by more than one robot.
The no preemption property is ensured since once a robot r occupies location(r), this location can only
be changed by the Next move of r.

context Topology
sets ZONE // cross point and its neighborhood

ROBOT
constants init edge mission
axioms

@finite Z finite (ZONE)
@init init ∈ ROBOT � ZONE
@edge zones ty edge ∈ ZONE ↔ ZONE
@edge irrefl edge ∩ id = ∅

@mission ty mission ∈ ROBOT → (ZONE 7→ ZONE)
@mission init ∀r · init (r) ∈ dom(mission(r))
@mission WD ∀ r · mission(r) ⊆ edge
@connexity ∀r · ∀cl · init (r) ∈ cl ∧ mission(r )[ cl ] ⊆ cl

⇒ dom(mission(r)) ⊆ cl
end

machine Move sees Topology
variables location
invariants

@position ty location ∈ ROBOT → ZONE
events

event INITIALISATION
then

@position location := init
end
event Next

any r where
@r location (r) ∈ dom(mission(r))

then
@m location(r) := mission(r)( location (r))

end
end

Figure 2: Event-B context and machine

Listing 1: Event-B refinement

machine Security refines Move sees cSecurity

variables location

invariants
@excl location ∈ ROBOT � ZONE

events
event INITIALISATION extends INITIALISATION end

event Next extends Next
when

@excl mission(r)( location (r)) 6∈ location [ROBOT \{r}]
end

end

Listing 1 illustrates an Event-B refinement
named Security of the preceding machine
Move. Through this refinement, we take into
account that locations are exclusive. The in-
variant @excl expresses exclusion through the
injectivity of location. Moreover, this re-
finement introduces, through the keyword ex-
tends, the Next event as a superposition [6] to
the event Next of the Move machine. Thanks
to the guard excl, we ensure that locations re-
main exclusive and that no preemption occurs.
Actually, the guard ensures that the robot will
move to a free location.
In Event-B, the proof obligations enforce a
weak refinement semantics [21].

2In Event-B, id is the identity relation.
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4 Pattern-based refinement of Event-B machines

The Event-B methodology consists in capturing requirements incrementally through a sequence of hori-
zontal refinements [3]. Our goal consists in giving an assistance to this process by making the generation
of the refined machine automatic given a well formatted requirement expressed using structured natural
language. Such language is often used to write more consistent, unambiguous and verifiable require-
ments [19]. This is the case for example in Boeing requirements management process [8] as well as in
the Stimulus approach for requirements engineering [16]. It is interesting to remark that both latter
approaches insist on the importance of formalizing requirements. Moreover, the Stimulus approach offers
means to debug and validate requirements. Last, it has also been recognised that formal methods are
well suited to capture requirements [2] in an incremental way. In this paper we investigate pattern-based
textual requirements from which eventually one could build a formal model of his requirements and assess
their soundness.

We have considered two kinds of patterns: temporal/timed patterns and resource management pat-
terns. The first ones allow to declare several kinds of possibly timed precedence constraints. The second
ones introduce events to allocate and free resources together with an invariant stating that required
resources are always booked. Since a machine can be the source of further refinements, the generated
machine should be human readable. For this purpose, requirements are expressed through annotated
patterns so that names (of new state variables or events) are provided by the user. Moreover, labels of
introduced guards and invariants provide traceability data between the generated model and the source
pattern.

4.1 Temporal and timed patterns

The patterns we propose for event ordering are close to Dwyer’s ones [15]. The usual way to integrate
these patterns in a tool is to consider their temporal logic semantics (mostly LTL-based) and to call an
LTL to Büchi tool to get an automaton. Then, the product of the system and the automaton is analysed.
This analysis can be done statically to check some system properties. It can also be done dynamically
to enforce some system properties. Here, patterns are used at design time to help taking into account
system requirements and eventually build correct by construction systems.

We envision a tooled method that would take as input an Event-B model and a set of specifications
corresponding to a fixed number of (timed) LTL formulas. In order to facilitate the design of correct
refinement patterns, we reuse LTL to Buchi-automata translators. Thus, specification patterns are first
expressed as an LTL formula enriched by propositions marking timing constraints. The SPOT tool [14]
generates a Buchi automaton which is in turn rewritten manually as an Event-B machine. The refined
machine is obtained by superposing the original and the synthesized machine [26].

4.1.1 Temporal patterns

The managed temporal patterns have a semantics expressed as an LTL formula of which associated Buchi
automaton has few states. The user should be able to introduce names for these states using dedicated
annotations of the pattern. For example, the automaton associated to a precedence constraint has two
states which can be represented by a Boolean variable. This variable can either be already present in the
system (leading to the generation of a proof obligation) or should be created. This principle is illustrated
by the following example consisting in one of the Dweyer’s precedence patterns:

new event request precedes event authorization (using new status authorization req)

which specifies that the event request should be added to the model (the new keyword) and that the
existing event authorization should be preceded by the newly introduced event. Precedence control is
managed by the newly introduced variable authorization req. It will be set by request and checked
by authorization, thus strengthening its guard.

The semantics of such a pattern is defined by an event-based LTL formula [9] having the following
structure: �((e2 ∨ init) → X (¬e2 W e1)) which leads to a two-state Buchi automaton and finally to
the following Event-B machine refinement pattern. The two states are distinguished in Event-B by the
value of status variable s. If s is false, e2 has not occurred and e1 is forbidden. If e2 is fired, e1 can
occur once. Here, e1 is a newly introduced event while e2 is supposed to already exist. Its guard is
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strengthened and its action resets the control variable s thanks to the extends declaration.

Each occurrence of e2 should be preceded by a e1.
new event e1 precedes each event e2 (using new status s)

event INITIALISATION
extends INITIALISATION
then s := FALSE end

event e1
then s := TRUE end

event e2 extends e2
when s = TRUE
then s := FALSE end

4.1.2 Timed pattern

Timed patterns are derived from Dweyer patterns by adding some timing constraints. They have a Metric
Temporal Logic (MTL[18]) semantics, which is a timed extension of LTL where temporal operators can
be given a minimal/maximal duration. Contrary to LTL, to the best of our knowledge, no tool is available
to transform MITL formulas to timed automata. Thus, this transformation is done partially manually
by the plugin developer for each of the considered patterns. Timed automata are ultimately transformed
into Event-B machines equipped with a tick event managing the advance of time. As an example,
consider the following timed pattern: no e2 after e1 during t time units which can be specified in MTL
as �(e1 → �<t¬e2), or in Timed Propositional Temporal Logic [4, 7], introducing reset quantification,
as �(e1 → c · �(c < t → ¬e2)) to make explicit the use of clocks. The following figure illustrates the
steps leading to the construction of the refined machine generator. We make explicit the management
of time by introducing two propositions: reset for the clock c being 0 and inf for the clock c being less
that t. We also make explicit the fact that events exclude each other, which lead to the LTL formula.
Then we apply an LTL2BA tool [14] to obtain a Buchi automaton, transformed into a timed automaton
by replacing reset and inf by c:=0 and c<t. The automaton is then superposed to the existing Event-B
model thanks to the extends construct.

� ¬(e1 ∧ e2) ∧
� (e1 →

(reset ∧ � (inf → ¬e2)))

!e1

e1 / c:=0

e1 / c:=0

c>=t

e2

!s

s

event e1 extends e1
then c, s := 0, TRUE
end
event e2 extends e2
when s = TRUE ⇒ c ≥ t
end
event tick
then c :=c+1
end

4.2 Resource management patterns

We propose a family of resource management patterns that vary depending on the number of events used
to manage the resources. The pattern applies to a machine M0 which declares some state variables st

and events ev. Events are supposed to take an Agent a as a parameter. A resource management pattern
is then written. The set of agents Agent is declared to have exclusive access to individual resources given
by the s rsc expression supposed to be partial function from agents to resources of some set R or to pool
of resources given by the p rsc relation. Several resources or pool of resources of several types could be
allocated to an agent. To make the presentation of the pattern simpler, we suppose that resources belong
to a unique type R. The pattern introduces a partial function booked from resources to agents used
to ensure exclusive access. Events are declared for granting resources needed by the post-state of each
of the events ev. Events that are not mentioned by the pattern should not update variables on which
depend the resources declarations. Resource freeing is performed by a unique event named release.
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machine M0
variables st · · ·
axioms

theorem @r1 s rsc ∈ Ag 7→ R // single
theorem @r2 p rsc ∈ Ag ↔ R // pool

events
event INITIALISATION · · · end
event ev

any a where G ev(a,st) then A ev(a,st) end
· · ·

end

for a : Agent
@E1 exclusion on single R given by s rsc
@E2 exclusion on pool R given by p rsc

(using new mapper booked init init)
granted by new event grant ev for event ev

(using new status ready ev)
released by new event release

The resulting machine (Figure 3) introduces two new variables: booked maps resources to agents to
which they are exclusively linked and ready ev contains the set of agents allowed to perform the event
ev. The machine contains two new events: grant ev manages resource allocation for post-states of events
ev, and release which disposes resource allocations that are not necessary in the current state. The
event grant ev is fired when the ev guard is satisfied and resources can be allocated exclusively. This
is expressed by introducing a resource mapping parameter rsc containing requirements for all possible
post-states of ev while keeping the resource mapping booked ∪ rsc functional. Agents ready to perform
ev are added to the ready ev set. The event release frees unnecessary resources, i.e. resources that
are not required by the current state. The pattern thus uses the [ ] notation to specify that the weakest
precondition [13] of the action part of the corresponding event should be computed. It has to be noted
that events may be non-deterministic, in which case resources for all of the possible post-states are
allocated.

machine M1 refines M0
variables st booked ready ev
invariants

@b booked ∈ R 7→ Agent
@r ready ev ⊆ Agent
@E1 s rsc−1 ⊆ booked
@E2 p rsc−1 ⊆ booked
@ready ev ∀a· a∈ ready ev ⇒ G ev(a,st)
@E1 ev ∀a· a ∈ ready ev ⇒

[A ev(a, st )]( s rsc−1 ⊆ booked)
@E2 ev ∀a· a ∈ ready ev ⇒

[A ev(a, st )]( p rsc−1 ⊆ booked)
events

event INITIALISATION extends INITIALISATION
then

@bnr i booked,next ready := init ,∅
end

event grant ev
any a rsc where// grant for any post−state of ev

@a a ∈ Agent
@G G ev(a,st)
@E1 [A ev(a,st )]( s rsc−1 ⊆ rsc)
@E2 [A ev(a,st )]( p rsc−1 ⊆ rsc)

@rsc booked ∪ rsc ∈ R 7→ Agent
then

@booked booked := booked ∪ rsc
@ready ready ev := ready ev ∪ {a}

end

event release
any rsc where

@a1 ran(s rsc ) ∩ rsc = ∅
@a2 ran(p rsc) ∩ rsc = ∅

then
@b booked := rsc C− booked
@r ready ev := ∅

end

event ev refines ev
any a where

@r a ∈ ready ev
then

@a A ev(a,st)
@nr ready ev := ∅ // reallocate before next ev

end
end

Figure 3: Refinement pattern for resource management

The generic pattern above can be instantiated for our example to take into account the no collision
requirement REQ-SAF-1 and the booking procedure requirement REQ-SAF-1-BOO specified in section 2.
The resource release event is left non-deterministic but could be constrained to follow some protocol to
conform with the given requirement, for example REQ-SAF-1-REL v2.
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for r : ROBOT
@excl: exclusion on single ZONE given by location (using new mapper booked)
granted by new event book for event move (using new status ready)
released by new event release

5 Case study

In this section we briefly describe additional refinements to be implemented on our model of the ARP
system. Each refinement is related to requirements and provide additional information on the properties
of the expected related patterns.

Alternative resource management refinements. The previous pattern instantiation gener-
ates a grant ev event booking resources given by the location variable. By modifying only this last
variable of the pattern it is possible to evaluate design variations for booking resources: Static Booking

where the whole mission is booked, the robot performs it and then frees the mission zones (require-
ments REQ-SAF-1-BOO-v3 and REQ-SAF-1-REL-v3 in table 3); Dynamic Booking where the next zone in
the mission is booked, the robot moves on it and then frees the zone that was just left (requirements
REQ-SAF-1-BOO-v1 and REQ-SAF-1-REL-v1 in table 3); Temporal Booking where zones in the mission are
booked for some time range, the robot moves to the next zone and then frees the zone that was just left
(requirements REQ-SAF-1-BOO-v2 and REQ-SAF-1-REL-v1 in table 3); Temporal booking with regular

release where zones in the mission are booked for some time range, the robot moves to the next zone
and releases zones at regular time interval (requirements REQ-SAF-1-BOO-v2 and REQ-SAF-1-REL-v2 in
table 3). Additional elements needs to be provided on the pattern in order to automatically implement
the variations of the release event. It is indeed necessary to strengthen the guards of the event and
specify additional constraints for the rsc variable. This can be done either by extending the resource
management pattern with the release strategy or through another pattern.

Move refinements. The Next event can also be refined to take into account parameters of the robots
movement as for example the speed of the robot. We propose to introduce the speed of the robot through
two distinct refinements of the Next event taking into account requirements REQ-FUN-4 and REQ-FUN-5

in table 2 constraining the value of a new variable: Next Nominal: in this event, booking has been done
and it is possible to move to the zone afterward; Next Warning: in this event, booking has been done
but it is not possible to move to the zone afterward. The possible values of the speed variable are
introduced as a constant enumeration: {Min, Inc, Dec, Max} for respective Minimal value, Increasing
value, Decreasing value, and Maximal value. These values represent an abstraction of the possible robot
instantaneous speed and acceleration.

Refinements composition. As the Speed refinement does not have common variables with the
Booking and Release events, it is easy to build a final Event-B model comprising both refinements by
following the composition/decomposition approach [27]. Thus, the actual system can be synthesized by
selecting specific refinements within the two branches. This is allowing for a software product line based
approach to formal refinements where variation points are expressed at the pattern level allowing for a
better management of their complexity. However, we should mention, that in real cases, resource booking
may depend on the speed. Indeed, we have a dependent composition which deserves further study.

6 Related works

It is of common knowledge in formal refinement that rework of the requirement document is necessary
[28] (additional citations can be provided if necessary). It leads to the expression of the requirements as
a bigger number of smaller and simpler requirements. The authors advocate for the ordering of these
new requirement (leading to the creation of a refinement strategy) and their application in refinements.
Our approach is to automate the refinement creation by expressing new requirements using patterns.
It may help in the scalability of the approach proposed in [28] by focusing the effort on the creation
of the refinement strategy and the expression of the requirements instead of the writing of the formal
refinement per say.
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Figure 4: First refinements steps for the ARP Event-B model

Operationalisation of formalized requirements have been studied for example in the work from Aziz et
Al [5]. They propose to rely on a goal-oriented requirement engineering approach where requirement are
expressed using formal patterns for a limited amount of constructs. Finally, they automatically derive
Event-B models from the requirements and complete the generated machine for verification of the correct
modelling of the requirements by the generated machine. Our approach is to integrate the use of patterns
directly in the development process by relying on pre-existing Event-B models and formal requirements
to automatically generate correct refinements and complete the generation.

7 Conclusion and future works

Our test bed TwIRTee has convinced us that automatic rover protection systems deserve dedicated
frameworks. With respect to requirements, the pattern approach seems promising especially when it
is applied together with formal methods. This paper has investigated such an approach through the
refinement-based method Event-B. More precisely, we have been concerned by temporal/timed and re-
source management patterns.

In order to enhance this practice, it seems to us interesting to investigate also approaches based on
ontologies and “natural language” [12]. Concerning the technical part, handling modalities combining
spatial and temporal (timed) concerns and quantified variants of modal logics should give better se-
mantic foundations. With respect to our work, combining temporal/timed and resource management
patterns looks promising. Last, from the side of the implementation, the link with elaborated allocation
techniques [10] should pave the way towards effective code generation.
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