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Abstract

In this communication, we consider a numerical scheme for the shallow-water system. The scheme under
consideration has been proven to preserve the positivity of the water height and to be fully well-balanced,
i.e. to exactly preserve the smooth moving steady state solutions of the shallow-water equations with the
topography source term. The goal of this work is to prove a discrete entropy inequality satis�ed by this
scheme.
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1. Introduction

In this work, we consider the shallow-water approximation of free-surface �ows in a longitudinal channel.
In one space dimension, this model is governed by the following system:

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ,

(1)

where h(x, t) is the water height, q(x, t) is its discharge (equal to hu, where u is the water velocity), g is
the gravity constant and Z is the smooth given bottom topography. In order to shorten the notations, we
rewrite (1) under the classical form of a conservation law with a source term ∂tW +∂xF (W ) = S(W ), where
we have set:

W =

(
h
q

)
, F (W ) =

 q
q2

h
+

1

2
gh2

 , S(W ) =

(
0

−gh∂xZ

)
.

In the present work, we assume that the �ow is always far from dry areas. The conserved variables W thus
lie in the set of admissible states Ω, which prescribes a physically admissible positive water height:

Ω = {W = t(h, q) ∈ R2 |h > 0}.

In addition, note that the following natural entropy inequality, satis�ed by the admissible entropy weak
solutions, arises from this system:

∂tη(W ) + ∂xG(W ) ≤ −gq∂xZ, (2)
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where the entropy η and the entropy �ux G are de�ned by:

η(W ) =
1

2

q2

h
+

1

2
gh2 and G(W ) =

q

h

(
1

2

q2

h
+ gh2

)
.

Note that, according to [5], the non-conservative entropy inequality (2) can be recast under the following
equivalent conservative form:

∂t (η(W ) + ghZ) + ∂x (G(W ) + gqZ) ≤ 0. (3)

Preserving the steady state solutions of the shallow-water equations, i.e. solutions of (1) such that
∂tW = 0, has been a major challenge of the last two decades. The steady states at rest, describing motionless
water over a possibly complex bottom topography, are obtained by assuming q = 0 as well as ∂tW = 0, to
get ∂x(h+ Z) = 0. These steady states have been the focus of much work, and several relevant numerical
schemes have been developed (see for instance [1, 2, 4], but this list is far from being exhaustive). Such
steady solutions are widely encountered in real-world applications, and being able to preserve them is crucial
for a numerical method. Conversely, less work has been undertaken on so-called fully well-balanced schemes,
which exactly preserve the smooth moving steady state solutions, de�ned by:

q = cst,

q2

2h2
+ g (h+ Z) = cst.

(4)

In particular, few �rst-order schemes have been developed (see for instance [8, 3, 10]). Nice properties for a
scheme to possess are, in addition to being well-balanced, the preservation of the admissible set Ω (i.e. the
preservation of the water height positivity, also called the robustness property) and a discrete analogue to
the entropy inequality (2).

In [3], the authors derive a scheme with the three previous properties. However, in practice, this scheme
is computationally too costly, since it involves �nding the roots of a �fth-order polynomial. The scheme
proposed in [10] corrects this cost shortcoming by introducing an approach taking into account a generic
source term, leading to a suitable linearization. However, an entropy inequality was not exhibited. The goal
of the present work is to establish an entropy inequality satis�ed, in some sense to be prescribed, by the
numerical scheme proposed in [10].

2. Presentation of the numerical scheme

In this Section, for the sake of completeness, we give the numerical scheme developed in [10]. It falls
within the framework of �nite volume schemes, and more speci�cally of Godunov-type schemes (see [9] for
instance). As usual, we introduce a discretization of the one-dimensional space domain R by de�ning cells
of constant volume ∆x. The cell ci = (xi−1/2, xi+1/2) has center located at xi, with xi±1/2 = xi ± ∆x/2.
The time step is denoted by ∆t and it is restricted according to the following CFL-like condition:

∆t ≤ ∆x

2Λ
, with Λ = max

i∈Z

(
−λLi+1/2, λ

R
i+1/2

)
, (5)

where λLi+1/2 and λ
R
i+1/2 are approximations of the characteristic velocities u±

√
gh of the hyperbolic system,

to be de�ned. As prescribed by the �nite volume framework, the solution of the shallow-water system (1)
is approximated, at time tn, by the following function, piecewise constant in each cell ci:

W∆(x, tn) = Wn
i if x ∈ (xi−1/2, xi+1/2).

Godunov's scheme is based on the exact solution of the Riemann problems arising between the piecewise
constant approximations at the interfaces of two consecutive cells. Using exact solutions, however, is inadvis-
able in practice. Indeed, source terms and nonlinearities prevent the derivation of analytical exact solutions
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to Riemann problems. Thus, we turn to a Godunov-type scheme, where a consistent approximation of the
exact solution are introduced. The updated solution, at time tn + ∆t and within the cell ci, is then given
by:

Wn+1
i :=

1

∆x

∫ xi+1/2

xi−1/2

W̃ (x, tn + ∆t) dx, (6)

where we have set

W̃ (x, tn + t) = W̃R

(
x− xi+1/2

t
;Wn

i ,W
n
i+1

)
for x ∈ (xi, xi+1),

with W̃R (x/t;WL,WR) a relevant approximation of the solution to the Riemann problem for (1) between
arbitrary states WL ∈ Ω and WR ∈ Ω. As a consequence, the updated approximate solution at time tn+1 is
also piecewise constant on each cell, and it is given by

W∆(x, tn+1) = Wn+1
i if x ∈ (xi−1/2, xi+1/2).

In [10], the authors prescribe the following two-state approximate Riemann solver in order to recover
necessary properties of consistency and well-balance:

W̃R

(x
t

;WL,WR

)
=


WL if x/t < λL(WL,WR),

W ∗L(WL,WR) if λL(WL,WR) < x/t < 0,

W ∗R(WL,WR) if 0 < x/t < λR(WL,WR),

WR if x/t > λR(WL,WR).

(7)

Note the presence of a stationary wave, of velocity 0, separating the states W ∗L and W ∗R. This wave corre-
sponds to the action of the source term. We then get the following relation by computing the integral in
(6):

Wn+1
i = Wn

i −
∆t

∆x

[
λLi+1/2

(
WL,∗
i+1/2 −W

n
i

)
− λRi−1/2

(
WR,∗
i−1/2 −W

n
i

)]
, (8)

where we have set:
λLi+1/2 = λL(Wn

i ,W
n
i+1), λRi−1/2 = λR(Wn

i−1,W
n
i ),

WL,∗
i+1/2 = W ∗L(Wn

i ,W
n
i+1), WR,∗

i−1/2 = W ∗R(Wn
i−1,W

n
i ).

In (7), the velocities λL(WL,WR) and λR(WL,WR) are approximations of the characteristic velocities
u±
√
gh of the hyperbolic system. For instance, these approximations can be de�ned as follows:

λL = min
(
−|uL| −

√
ghL,−|uR| −

√
ghR,−ελ

)
, λR = max

(
|uL|+

√
ghL, |uR|+

√
ghR, ελ

)
,

where we set ελ = 10−10 to ensure that λL < 0 < λR. Let us underline that �ner choices, where
λL 6= −λR, can be adopted (for instance see [12]). The intermediate states are W ∗L(WL,WR) = t(h∗L, q

∗)
and W ∗R(WL,WR) = t(h∗R, q

∗), where the intermediate heights and discharge are given by:

q∗ = qHLL +
S∆x

λR − λL
, h∗L = hHLL −

λR S∆x

α(λR − λL)
, h∗R = hHLL −

λL S∆x

α(λR − λL)
. (9)

In (9), we have introduced the intermediate state of the HLL solver (see [9]), de�ned as follows:

WHLL =

(
hHLL
qHLL

)
=

λR
λR − λL

WR −
λL

λR − λL
WL −

1

λR − λL
(F (WR)− F (WL)) . (10)

Moreover, the quantity α is given by α = −(q∗)2/(hLhR) + g(hL + hR)/2. Finally, the quantity S is a
consistent approximation of the source term −gh∂xZ, given by:

S∆x = −g 2hLhR
hL + hR

(ZR − ZL) +
g

2

[h]3c
hL + hR

, (11)
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where [h]c is a cuto� of [h] = hR − hL, de�ned with a positive constant C that does not depend on ∆x:

[h]c =

{
hR − hL if |hR − hL| ≤ C ∆x,

sign(hR − hL)C ∆x otherwise.

After [10], this cuto� turns out to be essential to ensure the required consistency of S with the continuous
source term.

The numerical scheme from [10] is thus recalled. Let us �nish by remarking that the time update (8)
can be rewritten under the usual �ux-source formulation:

Wn+1
i = Wn

i −
∆t

∆x

(
Fni+1/2 −F

n
i−1/2

)
+

∆t

2

(
Sni+1/2 + Sni−1/2

)
, (12)

where the expressions of the numerical �ux function F and the numerical source term S are explicitly given
in [10]. Note that the numerical scheme is in conservative form if the topography is �at, i.e. if ∂xZ = 0.

We �nally state the following result, proven in [10].

Theorem 2.1 ([10]). Assume that Wn
i ∈ Ω for all i ∈ Z. Then, under the CFL-like condition (5), and for

a small enough ∆x, the scheme (12) is:

• consistent with the shallow-water system (1);

• robust: for all i ∈ Z, if Wn
i ∈ Ω, then Wn+1

i ∈ Ω;

• fully well-balanced: if the �ow is a steady state according to (4), i.e. if there exists two constants q0

and Φ0 such that, for all i ∈ Z, qni = q0 and
(qni )2

2(hn
i )2 +g (hni + Zi) = Φ0, then, for all i ∈ Z, Wn+1

i = Wn
i .

3. An entropy inequality

According to [9], a Godunov-type scheme applied to the homogeneous system (i.e. with ∂xZ = 0) is
entropy-satisfying if the following inequality is satis�ed under the CFL condition (5):

1

∆x

∫ ∆x/2

−∆x/2

η
(
W̃R

( x

∆t
;WL,WR

))
dx ≤ 1

2
(η(WL) + η(WR))− ∆t

∆x
(G(WR)−G(WL)), (13)

where W̃R is the approximate Riemann solution (7). As soon as the topography is non-�at, the above
formula contains a new term, denoted by T (WL,WR) and consistent with the source term −gq∂xZ in (2).
In addition, let us underline that, in order to correctly prove the well-known Lax-Wendro� Theorem (see our
main result, Theorem 3.3), the estimation (13) must be divided by ∆x. As a consequence, we immediately
note that (13) can relax up to O(∆x1+δ), with δ > 0 (see for instance [6, 3]). In the present work, we will

obtain a relaxed estimation with δ = 1. Also, according to the two-state de�nition of W̃R, the integral of the
left-hand side of (13) can be computed explicitly and recast with respect to η∗L := η(W ∗L) and η∗R := η(W ∗R),
as follows:

λRη
∗
R − λLη∗L ≤ λRηR − λLηL − (GR −GL) + T (WL,WR) ∆x+O(∆x2), (14)

where, with clear notations, we have set ηL := η(WL), GL := G(WL), and so on. After [9], let us underline
the following inequality:

(λR − λL)ηHLL ≤ λRηR − λLηL − (GR −GL),

where we have set ηHLL = η(WHLL), with WHLL de�ned by (10). Therefore, (14) holds as soon as the
following estimation is established:

λRη
∗
R − λLη∗L = (λR − λL)ηHLL + T (WL,WR) ∆x+O(∆x2).
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Lemma 3.1. For a smooth topography function, the following estimation holds:

λRη
∗
R − λLη∗L = (λR − λL)ηHLL + T (WL,WR) ∆x+O(∆x2), (15)

where the term T (WL,WR) is consistent with the topography source term −gq∂xZ, and it is given by:

T (WL,WR) = −g 2hLhR
hL + hR

qHLL
hHLL

ZR − ZL
∆x

.

Proof : By de�nition (2) of the entropy function η, we immediately have

λRη
∗
R − λLη∗L =

1

2

(
λR

(q∗)2

h∗R
− λL

(q∗)2

h∗L

)
+
g

2

(
λR(h∗R)2 − λL(h∗L)2

)
. (16)

The core of this proof lies in a relevant expansion with respect to ∆x of the intermediate states h∗L, h
∗
R and

q∗ given by (9). Indeed, since the topography function is assumed to be smooth, we get ZR − ZL = O(∆x).
As a consequence, the de�nition (11) of the approximate source term yields the following relation:

S∆x = −g 2hLhR
hL + hR

(ZR − ZL) +O(∆x3). (17)

Equipped with such an expansion, the intermediate states turn out to be a perturbation of the HLL
intermediate state (10). Indeed, plugging (17) into (9), we have the following estimations:

q∗ = qHLL−
gh̃∆Z

λR − λL
+O(∆x3), h∗L = hHLL+

gh̃∆Z

α

λR
λR − λL

+O(∆x3), h∗R = hHLL+
gh̃∆Z

α

λL
λR − λL

+O(∆x3),

where we have set ∆Z = ZR − ZL and h̃ = 2hLhR

hL+hR
. As a consequence, we obtain the following relations:

(q∗)2 = q2
HLL − 2qHLL

gh̃∆Z

λR − λL
+O(∆x2),

1

h∗L
=

1

hHLL
− 1

h2
HLL

gh̃∆Z

α

λR
λR − λL

+O(∆x2), (h∗L)2 = h2
HLL + 2hHLL

gh̃∆Z

α

λR
λR − λL

+O(∆x2),

1

h∗R
=

1

hHLL
− 1

h2
HLL

gh̃∆Z

α

λL
λR − λL

+O(∆x2), (h∗R)2 = h2
HLL + 2hHLL

gh̃∆Z

α

λL
λR − λL

+O(∆x2).

Arguing the above relations and performing straightforward computations yields the following estima-
tions:

λR
(q∗)2

h∗R
− λL

(q∗)2

h∗L
= (λR − λL)

q2
HLL

hHLL
− 2

qHLL
hHLL

gh̃∆Z +O(∆x2),

λR(h∗R)2 − λL(h∗L)2 = (λR − λL)h2
HLL +O(∆x2).

Combining these estimations into (16), we immediately get:

λRη
∗
R − λLη∗L = (λR − λL)

(
1

2

q2
HLL

hHLL
+
g

2
h2
HLL

)
− gh̃ qHLL

hHLL
∆Z +O(∆x2),

which is nothing but the expected estimation (15). The proof is thus achieved. �
We now state the discrete entropy inequality satis�ed by the numerical scheme.

Theorem 3.2. The numerical scheme (12) satis�es the following discrete entropy inequality:

ηn+1
i ≤ ηni −

∆t

∆x

(
G(Wn

i ,W
n
i+1)− G(Wn

i−1,W
n
i )
)

+ ∆t T ni−1/2 +O(∆x2),
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where the numerical entropy �ux G is given by:

G(WL,WR) = GL +
∆x

2∆t
ηL −

1

∆t

∫ ∆x/2

0

η
(
W̃
( x

∆t
;WL,WR

))
dx,

and where the numerical entropy source term T ni−1/2 is de�ned by T ni−1/2 = T (Wn
i−1,W

n
i ), with the func-

tion T (WL,WR) introduced in Lemma 3.1.

Proof : The proof of this result follows immediately from the application of Jensen's inequality and from
Lemma 3.1. For more details, the reader is referred to [11]. �

We conclude this work by an extension of classical Lax-Wendro� theorem, whose proof can be found
in [7] for instance.

Theorem 3.3 (Lax-Wendro�). Let us introduce the notation W∆(x, t) = Wn
i for x ∈ (xi−1/2, xi+1/2)

and t ∈ (tn, tn+1). According to (12), there exists a consistent numerical �ux F and a consistent approxi-

mation S of the topography source term −gh∂xZ such that

Wn+1
i = Wn

i −
∆t

∆x

(
Fni+1/2 −F

n
i−1/2

)
+

∆t

2

(
Sni+1/2 + Sni−1/2

)
.

In addition, according to Theorem 3.2, there exists a consistent numerical entropy �ux G and a consistent

approximation T of the entropy topography source term −gq∂xZ such that

ηn+1
i ≤ ηni −

∆t

∆x

(
Gni+1/2 − G

n
i−1/2

)
+ ∆t T ni−1/2 +O(∆x2).

Assume that ∆x tends to 0 while preserving a constant ratio ∆t/∆x. If, in addition, W∆ is valued in some

compact set K ∈ Ω, and the sequence W∆ converges in L1
loc(R × R+; Ω) towards some W , then W is an

entropy weak solution of (1).

Note that the converged solution W will immediately satisfy the non-conservative version (2) of the en-
tropy inequality. However, according to [5], the conservative version (3) is equivalent to the non-conservative
one, and thus the converged solution will also satisfy this conservative entropy inequality. The numerical
scheme under consideration therefore converges towards an entropy weak solution of (1).
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