
HAL Id: hal-01708989
https://hal.science/hal-01708989

Submitted on 4 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representing prefix and border tables: results on
enumeration

Julien Clément, Laura Giambruno

To cite this version:
Julien Clément, Laura Giambruno. Representing prefix and border tables: results on enu-
meration. Mathematical Structures in Computer Science, 2017, 27 (02), pp.257 - 276.
�10.1017/S0960129515000146�. �hal-01708989�

https://hal.science/hal-01708989
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

Representing prefix and border tables:

results on enumeration

Julien Clément, Laura Giambruno

Received February 2014

For some text algorithms, the real measure for the complexity analysis is not the string

itself but its structure stored in its prefix table or equivalently border table. In this

paper we define the combinatorial class of prefix lists, namely a sequence of integers

together with their size, and an injection ψ from the class of prefix tables to the class of

prefix lists. We call a valid prefix list the image by ψ of a prefix table. In particular we

describe algorithms converting a prefix/border table to a prefix list and inverse linear

algorithms from computing from a prefix list L = ψ(P) two words respectively in a

minimal size alphabet and on a maximal size alphabet with P as prefix table. We then

give a new upper bound on the number of prefix tables for strings of length n (on any

alphabet) which is of order (1 + ϕ)n (with ϕ = 1+
√

5

2
the golden mean) and also present

a corresponding lower bound.

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Prefix and border tables 3

2.2 On enumeration: previous work 5

2.3 Prefix lists 8

3 Algorithms : from tables to lists and vice versa 8

3.1 From prefix tables to prefix lists 9

3.2 From border tables to prefix lists 10

3.3 From prefix lists to words 11

3.4 Injectivity 16

4 Upper bound 16

5 Lower bound 18

6 Conclusion 20

References 20

1. Introduction

Prefix tables and border tables are equivalent structures representing the overlap in a

word. In particular the prefix table of a string w reports for each position i the length of

Julien Clément, Laura Giambruno 2

the longest substring of w that begins at i and matches a prefix of w, while the border

table of the string records for each position the maximal length of prefixes of the string

w ending at that position. Indeed two strings have the same border table if and only if

they have the same prefix table (Crochemore et al. 2007; Bland et al. 2013).

These tables are used in algorithms on words to design classical efficient string-matching

algorithms (like Morris-Pratt and Knuth-Morris-Pratt algorithms) and are essential for

this type of applications (Gusfield 1997; Crochemore et al. 2007). We remark that for

these classical algorithms the string itself is not considered but rather its structure, mean-

ing that two strings with the same prefix or border table are treated in the same manner.

The study of these tables has become topical and is still today an object of interest in-

vestigated by various researchers. For instance recent articles (Franek et al. 2002; Duval

et al. 2005; Clément et al. 2009; Duval et al.) focus on the problem of validating prefix

and border tables, that is the problem of checking if an integer array is either the prefix

or the border table of at least one string.

In this paper†. we are interested in the enumeration of these structures of a given

length — note that one can associate an infinite number of words on an infinite alphabet

to a given prefix/border table (Crochemore et al. 2007). We think that this kind of study

is fundamental in order to better understand these tables and string-matching algorithms.

We moreover think that that it is an important step to perform average-case studies on

algorithms manipulating these structures.

In a previous paper (Moore et al.) Moore et al. represented distinct border tables by

canonical strings and gave results on generation and enumeration on these string for

bounded and unbounded alphabets. Some of these results were reformulated in (Duval et

al.) using automata-theoretic methods. Note that different words on a binary alphabet

have distinct prefix/border tables. This gives us a trivial lower bound of 2n−1 (since

exchanging the two letters of the alphabet does not change tables).

Here we are interested in giving better estimates on the number pn of prefix/border

tables of words of a given length n, that those known in literature.

We define the combinatorial class of prefix lists, where a prefix list L = [ℓ1, . . . , ℓk]

is a finite sequence of non-negative integers. Then we constructively define an injection

ψ from the set of prefix tables to the set of prefix lists. Since the application is only

injective we define valid prefix lists as prefix lists that are images of prefix tables under

ψ. We moreover describe two “inverse” linear algorithms that associate a valid prefix

list L = ψ(P) with two words whose prefix table is P , one on a minimal size alphabet

and the other on a maximal size alphabet. This result confirms the idea that prefix lists

represent a more concise representation for prefix tables.

We then deduce a new upper bound and a new lower bound on the number pn of prefix

tables (see Table 1 for the first numerical values) for strings of length n or, equivalently,

on the number of border tables of length n.

Let ϕ = 1
2 (1 +

√
5) ≈ 1.618 be the golden mean and let, for any finite set S, Card(S)

denote the cardinality of S, then we have:

† A preliminary version of this paper appeared in (Clément et al. 2013).

Representing prefix and border tables: results on enumeration 3

Proposition 1.1 (Upper bound). The number of prefix tables pn is asymptotically

bounded from above by the quantity 1
2

(

1 +
√
5
5

)

(1 + ϕ)n + o(1).

Proposition 1.2 (Lower bound). For any ε > 0 there exists a family of prefix tables

(Ln)n≥0 such that Card(Ln) = Ω((1 + ϕ− ε)n).

The paper is organized in the following way. In Section 2 we introduce definitions

regarding prefix and border tables and we state the equivalence between prefix and border

tables. In Subsection 2.2 we show and analyze results on the enumeration of border tables

as written in (Moore et al.). We then define the combinatorial class of prefix lists. In

Section 3 we establish an injection between prefix tables and prefix lists. In particular,

we present algorithms for constructing from either a prefix or a border table a prefix list.

Conversely we show two algorithms associating to a prefix list two words having the same

prefix table, respectively on a minimal size alphabet and on a maximal size alphabet. In

Section 4 we count, by using combinatorial analytical methods, the number of prefix lists

of a given size and we deduce the upper bound, as stated in Proposition 1.1. In Section

5, we exhibit a family of languages in bijection with prefix tables. By proving a result

on the enumeration of these families and by using combinatorial techniques, we get the

proof of Proposition 1.2. Finally we conclude the paper presenting some open problems.

2. Preliminaries

Let A be an ordered alphabet. For each i > 0, we denote by α(i) the i-th element of A. A

word w (also called string) of length |w| = n is a finite sequence w[0]w[1] . . . w[n − 1] =

w[0 . . n − 1] of letters of A. The language of all words over A is A∗, and A+ is the set

of nonempty words. The prefix (resp. suffix) of length ℓ, 0 ≤ ℓ ≤ n, of w is the word

u = w[0 . . ℓ − 1] (resp. u = w[n − ℓ . . n − 1])‡. A border u of w is a word that is both

a prefix and a suffix of w and distinct from w itself. We define bord(w) as the set of all

non-empty borders of w.

2.1. Prefix and border tables

Definition 2.1 (Prefix table). The prefix table Prefw of a word w ∈ A+ of length n,

is the table of size n defined, for 0 ≤ i < n, by

Prefw[i] = lcp(w,w[i . . n− 1]),

where lcp denotes the maximal length of common prefixes of the two words.

Another well-known structure used to represent the correlation structure of a string is

the border table of a word.

‡ With the convention that whenever ℓ = 0, u = ε.

Julien Clément, Laura Giambruno 4

Definition 2.2 (Border table). The border table Borderw of a word w ∈ A+ of length

n, is the table of size n defined, for 0 ≤ i < n, by

Borderw[i] = max{|u| | u is a border of w[0 . . i]},

Example. Let w be the word abaababa. We have the following representations for the

prefix and border tables of w (see also Table 2).
i 0 1 2 3 4 5 6 7

w[i] a b a a b a b a

Prefw[i] 8 0 1 3 0 3 0 1
Borderw[i] 0 0 1 1 2 3 2 3

These structures (border and prefix tables) are in fact equivalent; actually the following

proposition states a fact discussed in (Crochemore et al. 2007) and recently deepened in

(Bland et al. 2013), where linear time conversion algorithms are given. In the following

we provide a proof of this equivalence as elements of this proof will be used in the next

section.

Proposition 2.3. (Crochemore et al. 2007) Two strings have the same border table if

and only if they have the same prefix table.

Sketch of proof.

Let w be a word in A+ of length |w| = n > 0. We can relate the border table Borderw
to the prefix table Prefw.

For a position i in w, 0 < i < |w|, let

I(i) = {j | 0 < j ≤ i and j + Prefw[j]− 1 ≥ i}, (1)

and by convention, we pose I(0) = ∅. The elements in I(i) represent the positions 0 < j ≤
i for which the longest common prefixes between w and w[j . . n− 1] overlap position i in

w. We remark that we must take j strictly positive in (1), otherwise, since Prefw[0] = |w|,
we would have 0 ∈ I(i) for all positions i > 0. On the previous example we get

i 0 1 2 3 4 5 6 7

w[i] a b a a b a b a

I(i) ∅ ∅ {2} {3} {3} {3, 5} {5} {5, 7}

Then we have

Borderw[i] =

{

0 if I(i) = ∅,
i−min I(i) + 1 otherwise.

(2)

Indeed we remark I(i) = ∅ if and only if Borderw[i] = 0 and, when non empty, min I(i)

stores the starting position of the longest suffix of w[0 . . i] which is also a prefix of w,

hence i−min I(i) + 1 is the length of the longest border of w[0 . . i].

Conversely, given the border table Borderw of w, we define the prefix table Prefw in

the following way. First we set Prefw[0] = |w|. Then let i > 0 be a position in w and let

I ′(i) = {j | i ≤ j < |w| and w[i . . j] ∈ bord(w[0 . . j])}.

Representing prefix and border tables: results on enumeration 5

We have

Prefw[i] =

{

0 if I ′(i) = ∅,
max(I ′(i))− i+ 1 otherwise.

(3)

From (2) and (3) it follows that two words have the same border table if and only if

they have the same prefix table. Indeed by definition of the set I two words having the

same prefix table have also the same border tables. The converse is also true since if

two words w and w′ of length n admit the same border table, then for 0 ≤ i ≤ j < n,

w[i . . j] ∈ bord(w[0 . . j)) if and only if w′[i . . j] ∈ bord(w′[0 . . j)).

Recent literature has focused on the problem of validating prefix and border tables

and, in the case of a valid table, providing the canonical word associated with it that is

the smallest in lexicographic order (Franek et al. 2002; Clément et al. 2009).

2.2. On enumeration: previous work

In this paper we are interested in the computation of the number pn of distinct prefix

tables of length n. As seen in Proposition 2.3 such a number is also the number of distinct

border tables of length n. One can pose the problem of enumerating prefix and border

tables on a finite or unbounded/infinite alphabet. In order to study pn it is of interest to

enumerate pn,k, the number of prefix tables for words of size n with an alphabet of size

k which cannot be obtained using a smaller alphabet.

In Table 1 we give some experimental results and in Table 2 we give the nine distinct

prefix/border tables for words of length 4 together with the minimal corresponding word

for lexicographical order (named canonical words in the literature (Moore et al.)).

Previous work in (Moore et al.) focused on counting distinct strings of length n with

respect to their prefix/border tables: an upper bound is given in the form

bn =
∑k∗

k=1

{

n−2k−1+k
k

}

, (4)

where {mj } denotes the Stirling numbers of second kind (the number of partitions of m

into j nonempty parts), and k∗ = ⌈log2(n+1)⌉. The quantity k∗ is the minimal number

of distinct letters in order to obtain all possible prefix tables of size n.

Numerically it is clear that bn is far from being a tight approximation of the number

pn of prefix tables of size n. One can indeed prove that bn ≫ pn. We formalise this fact

in the following combinatorial lemma.

Lemma 2.4. Let αn →∞ with αn = O(nc) for some 0 < c < 1, then one has

{ n
αn
} ∼ (αn)

n

αn!
∼
√
2π(αn)

n−αn+1/2eαn .

Proof. The proof of this lemma relies on the fact that mappings from {1, . . . , n} to

{1, . . . , αn} (related to Stirling number of second kind) are, if αn is small enough, almost

always surjective. (The original idea of the proof is due to Cyril Nicaud (Nicaud 2010)).

Indeed, let S(n,m) be the set of surjections from {1, . . . , n} to {1, . . . ,m}. It is well

Julien Clément, Laura Giambruno 6

n pn,1 pn,2 pn,3 pn,4 pn,5 pn,6 pn

1 1 1
2 1 1 2
3 1 3 4
4 1 7 1 9
5 1 15 4 20
6 1 31 15 47
7 1 63 46 110
8 1 127 134 1 263

9 1 255 370 4 630
10 1 511 997 16 1525
11 1 1023 2625 52 3701
12 1 2047 6824 162 9034
13 1 4095 17,544 500 22,140
14 1 8191 44,801 1467 54,460
15 1 16,383 113,775 4180 134,339
16 1 32,767 287,928 11,742 1 332,439
17 1 65,535 726,729 32,466 4 824,735
18 1 131,071 1,831,335 88,884 16 2,051,307
19 1 262,144 4,610,078 241,023 52 5,113,298
20 1 524,287 11,599,589 649,022 168 12,773,067
21 1 1,048,575 29,182,347 1,736,614 504 31,968,041
22 1 2,097,151 73,430,919 4,623,344 1486 80,152,901
23 1 4,194,303 184,845,142 12,253,644 4248 201,297,338
24 1 8,388,607 465,567,693 32,356,073 11,983 506,324,357
25 1 16,777,215 1,173,418,456 85,156,997 33,242 1,275,385,911
26 1 33,554,431 2,959,762,252 223,493,213 91,297 3,216,901,194
27 1 67,108,863 7,471,688,677 585,104,586 248,196 8,124,150,323
28 1 134,217,727 18,877,965,663 1,528,508,811 669,799 20,541,362,001
29 1 268,435,455 47,739,117,581 3,985,452,962 1,795,120 51,994,801,119
30 1 536,870,911 120,831,350,575 10,374,418,698 4,784,707 131,747,424,892
31 1 1,073,741,823 306,104,380,017 26,965,612,590 12,689,612 334,156,424,043
32 1 2,147,483,647 776,139,381,391 69,999,199,986 33,513,035 1 848,319,578,061
33 1 4,294,967,295 1,969,623,334,609 181,500,343,408 88,172,789 4 2,155,506,818,106

Table 1. First values: pn is the total number of prefix tables for strings of size n,

pn,k is the number of prefix tables for strings of size n with an alphabet of size k

which cannot be obtained using a smaller alphabet.

Prefix tables Border tables Canonical words

[4, 3, 2, 1] [0, 1, 2, 3] aaaa

[4, 2, 1, 0] [0, 1, 2, 0] aaab

[4, 1, 0, 1] [0, 1, 0, 1] aaba

[4, 1, 0, 0] [0, 1, 0, 0] aabb

[4, 0, 1, 1] [0, 0, 1, 1] abaa

[4, 0, 2, 0] [0, 0, 1, 2] abab

[4, 0, 1, 0] [0, 0, 1, 0] abac

[4, 0, 0, 1] [0, 0, 0, 1] abba

[4, 0, 0, 0] [0, 0, 0, 0] abbb

Table 2. The nine distinct prefix/border tables for words of length 4 (as counted in

Table 1) are listed together with their minimal corresponding words (named

canonical words in the literature) for lexicographical order.

Representing prefix and border tables: results on enumeration 7

known that

Card(S(n,m)) = m! {nm} , (5)

where {nm} denotes the number of partitions of {1, . . . , n} into m blocks: each block of

the partition is the preimage of an integer i ∈ {1, . . . ,m}, but doing this we have ordered

the blocks hence the term m! arises.

The number of surjections from {1, . . . , n} to {1, . . . ,m} is trivially bounded from

above by the cardinality of the set M(n,m) of mappings from {1, . . . , n} to {1, . . . ,m},
so we also have

Card(S(n,m)) ≤ Card(M(n,m)) = mn. (6)

Let Si(n,m) be the set of mappings which are not surjective because i has no preimage.

We can write

M(n,m) = S(n,m) ∪
(

∪i∈{1,...,m} Si(n,m)
)

.

The union of the Si’s sets in this last equation is not disjoint, however it is sufficient to

give a lower bound

mn ≤ Card(S(n,m)) +

m
∑

i=1

Card(Si(n,m)) = Card(S(n,m)) +m(m− 1)n,

since Card(Si(n,m)) = (m− 1)n for any i. Finally we have

Card(S(n,m) ≥ mn −m(m− 1)n = mn

(

1−m(1− 1

m
)

)

. (7)

Putting m = αn for some sequence αn → ∞ such that αn = O(nc) for some constant

c ∈]0, 1[, a simple computation proves using (6) and (7) that as n tends to ∞

Card(S(n, αn)) ∼ (αn)
n.

Hence by (5), we have proved that for αn such that αn → ∞ and αn = O(nc) for a

constant c ∈]0, 1[

{ n
αn
} ∼ (αn)

n

αn!
.

An application of the usual Stirling formula yields the final result of the lemma.

The quantity bn in Equation (4) is at least of order { cn
d logn} for some positive constants c

and d (considering just one term of the sum, for instance with k = k∗ − 2, in (4)). Thus

Lemma 2.4 applied to { cn
d logn} suffices to prove that log bn is at least of order n log logn

(posing N = cn and αN = d log(N/c) and only considering the term (αN)N−αN of the

approximation). Hence we have:

Corollary 2.5. We have 1
n log bn = Ω(log logn).

In Section 4 we improve the bound in (4), yielding the result of Proposition 1.1.

Julien Clément, Laura Giambruno 8

2.3. Prefix lists

The information in a prefix table is somewhat redundant since we do not need to use all

values in the table to build a corresponding word. For instance, from the prefix table P

having the first four entries 8, 0, 1, 3 we can build the prefix abaaba = a · b · aba of length

6 of a word associated to P . We see that the next entry of the prefix table (which would

be 0) can be deduced by the previous ones. Therefore we introduce prefix lists which are

more concise than prefix tables and sufficient to reconstruct such a word. We first define

the combinatorial class of prefix lists as it follows:

Definition 2.6. We define a prefix list L = [ℓ1, . . . , ℓk] as a finite sequence of positive

integers together with a size defined for a list as ‖L‖ =∑k
i=1 ‖ℓi‖, where the size ‖i‖ is

i if i > 0 and 1 if i = 0.

As will become clear later, this particular size corresponds to the size of a word built

from the prefix list.

Let P denote the set of prefix tables and L the set of prefix lists. In the following

section we define an injection ψ : P −→ L in a constructive manner. We define valid

prefix lists as:

Definition 2.7. Let L be a prefix list. We say that L is valid if L = ψ(P) for a prefix

table P ∈ P .

3. Algorithms : from tables to lists and vice versa

In this section we define an injection from the set P of prefix tables to the set L of prefix

lists in a constructive manner by defining a quadratic algorithm PrefixToList that

associates to a prefix table a prefix list. We could of course provide a linear algorithm to

perform the same task. However the aim here is to present a simple algorithm and not

an efficient one. We also note that such an injection can be reformulated in the context

of border tables: in Subsection 3.2 we give a linear algorithm BorderToList, equivalent

to PrefixToList, computing from a border table a prefix list.

In Subsection 3.3 we then describe two “inverse” linear algorithms associating a prefix

list L = ψ(P) with two words w whose prefix table is P . We give more precisely two

algorithms ListToMaxWord and ListToMinWord computing respectively the word w on

a minimal and on a maximal size alphabet.

Remark 3.1. (On complexity). We remark that most algorithms manipulating prefix

and border tables work in linear time. In particular given a word there are linear time

algorithms for the computation of the associated border and prefix tables. Moreover

in (Crochemore et al. 2007) and recently in (Bland et al. 2013) linear-time conversion

algorithms are given and the validation algorithms for both tables (Clément et al. 2009;

Duval et al.) work in linear-time. Thus, quite generally, there would be a trivial way to

implement the algorithms in this section by using already known algorithms and auxiliary

structures for this purpose.

However we think that it is important to search algorithms directly manipulating

Representing prefix and border tables: results on enumeration 9

prefix lists. We want to study more deeply these structures and finely understand their

properties. Full combinatorial characterizations would also be useful for enumeration.

3.1. From prefix tables to prefix lists

We define constructively an injection ψ from P to L with the help of the algorithm

PrefixToList processing the input in a “right-to-left manner”. Intuitively, the following

algorithm scans the prefix table from right to left, starts with the last position i = n− 1

and gets from the prefix table the length ℓ of the leftmost longest common proper prefix

which overlaps the current position i, or sets ℓ = 0 if there is no such prefix. This length

is inserted at the beginning of the list and the position i is updated to the position

immediately before the prefix (if it exists) or just one position before (if it is not the

case). The algorithm stops when the first position i = 0 is attained.

Algorithm 1: PrefixToList(P = P [0 . . n− 1])

1 L← []

2 i← n− 1

3 while i > 0 do

4 I ← {j | 0 < j ≤ i and j + P [j]− 1 ≥ i}
5 if I = ∅ then
6 (ℓ, i)← (0, i− 1)

7 else

8 (ℓ, i)← (i −min(I) + 1,min(I)− 1)

9 L← [ℓ] · L /* the integer ℓ is prefixed to the list L */

10

11 return L

For each position i in P , the elements in I represent, as in the proof of Proposition 2.3,

positions less than or equal to i, such that the longest common proper prefix with w

starting at these positions overlap position i.

Definition 3.2. For a given prefix table P in P , we define ψ(P) as the prefix list obtained

by executing the algorithm PrefixToList on P .

Example 3.3. Let w be the word abaababa. We have the following representation for

the prefix table of w.

i 0 1 2 3 4 5 6 7

w[i] a b a a b a b a

Prefw[i] 8 0 1 3 0 3 0 1

For this table we get the associated prefix list L = [0, 1, 2, 3]. In fact, executing the

algorithm PrefixToList to Prefw, we start with i = 7 and we get that the set of starting

indexes of prefixes overlapping i is I = {5, 7}. Thus ℓ = i−min(I) + 1 = 3, the length of

the overlapping prefix until i, is appended to L = []. Now i is initialised to 4 the position

before min(I) = 5. Next we have I = {3} and so ℓ = 2 is prefixed to L = [3] and i := 2.

Again I = {2}, ℓ = 1 and i := 1. Now I = ∅, thus ℓ = 0, i := 0 and the algorithm stops.

Julien Clément, Laura Giambruno 10

Consider now the time and space complexity of the PrefixToList algorithm:

Proposition 3.4. The algorithm PrefixToList can be implemented in O(n2) time on

an input prefix table of length n without using auxiliary memory.

Proof. For each i the computation of I in line 4 has O(i) = O(n) time complexity. For

the main loop we have n instructions in the worst case, that is the case of the prefix table

P = [8, 0, 0, 0, 0, 0, 0, 0]. Thus the time complexity is in O(n2). For what concerns space

complexity, if I 6= ∅ then we just need constant space in order to preserve the minimum

in I. Thus we do not have to use auxiliary memory.

Remark 3.5. At first view, it would be more intuitive to define prefix lists with an

algorithm visiting the prefix table from left to right. However, the construction of “prefix

list” from left to right fails to define an injection from prefix tables to prefix lists (which

is our goal for finding an upper bound). For instance, let P = [8, 0, 1, 3, 0, 3, 0, 1] be a

valid prefix table, as in Example 3.3, and P ′ = [8, 0, 1, 3, 0, 1, 0, 1] be a valid prefix table

associated with w′, then one has
i 0 1 2 3 4 5 6 7

w′[i] a b a a b a c a

Prefw′ [i] 8 0 1 3 0 1 0 1

Since the same list L = [0, 1, 3, 0, 1] is associated with both P and P ′ then the corre-

spondence between prefix tables and these lists cannot be injective.

3.2. From border tables to prefix lists

In order to prove the injection we define the function ψ in terms of border tables: we

define another function ψ′ from the set of border tables to the set of prefix lists. First

consider the following algorithm BorderToListwhich associates a border table to a prefix

list:

Algorithm 2: BorderToList(B = B[0 . . n− 1])

1 L← []

2 i← n− 1

3 while i > 0 do

4 ℓ← B[i]

5 if B[i] = 0 then

6 i← i− 1

7 else

8 i← i−B[i]

9 L← [ℓ] · L
10 Return L

Definition 3.6. For a given border table B we define ψ′(B) as the prefix list obtained

Representing prefix and border tables: results on enumeration 11

by executing the algorithm BorderToList on B. By letting ℓ = B[n− 1] we have

ψ′(B) =

{

ψ′(B[0 . . n− 1− ℓ]) · [ℓ], if ℓ > 0;

ψ′(B[0 . . n− 2]) · [ℓ], if ℓ = 0.

The functions ψ and ψ′ applied on equivalent border and prefix tables give rise to the

same prefix lists:

Proposition 3.7. Let B be a border table of a word w and P be the prefix table of w.

Then we have that ψ(P) = ψ′(B) .

Proof. For a given position i in w, let I = {j | 0 ≤ j ≤ i and j + P [j] − 1 ≥ i} as
defined in the proof of Proposition 2.3, equation 1, and in the algorithm PrefixToList

for the computation of ψ(P). By the conversion rules from prefix table to border table

(see equation 2 in the proof of Proposition 2.3), we have that

B[i] =

{

0, if I = ∅;
i−min(I) + 1, if I 6= ∅.

.

Thus if I = ∅ then the value ℓ = 0 = B[i] is inserted at the beginning of L in the same way

for both algorithms PrefixToList and BorderToList. If I 6= ∅ then ℓ = i−min(I)+1 =

B[i] is inserted at the beginning of the list L for both algorithms. Then i is decremented

in the same way for both the algorithms.

Thus, for a given border table B, there exist 0 ≤ i1 ≤ · · · ≤ ir = n − 1, such that

ψ′(B) = L = [B[i1], . . . , B[ir]] and ij = ij+1 −B[ij+1].

Example 3.8. Let w be the word abaababa. The following table shows its border table

Borderw for all values of i.
i 0 1 2 3 4 5 6 7

w[i] a b a a b a b a

Borderw[i] 0 0 1 1 2 3 2 3

The associated prefix list is L = [0, 1, 2, 3] = [B[1], B[2], B[4], B[7]].

It is easy to see that the time complexity of the BorderToList algorithm is linear:

Proposition 3.9. (Time Complexity) The algorithm BorderToList can be implemented

in O(n) time on an input border table of length n without using auxiliary memory.

3.3. From prefix lists to words

We now describe two “inverse” and linear algorithms associating a prefix list L = ψ(P)

with two words whose prefix table is P , one on a maximal size alphabet and one on

a minimal size alphabet. The two algorithms are strictly linked as we will see. In the

following we give the common schema ListToWord of the algorithms. We give before

some definitions, as in (Duval et al. 2005).

Julien Clément, Laura Giambruno 12

Let A = {α(0), α(1), . . . , α(i), . . . } be an infinite alphabet. Let u be a word on A of

length n and Borderu the associated border table. For each i ∈ {0 . . n− 1}, let A′(u, i) =
{u[j] | u[0 . . j − 1] ∈ bord(u[0 . . i− 1])} be the set of symbols extending the borders of

u[0 . . i− 1] in u and let A(u, i) = {u[i]} ∪ A′(u, i).
We define the nobord function applied on a word u as any letter in A not following a

border of u in u:

Definition 3.10. The nobord function applied on a word u returns any letter in A not

contained in A′(u, |u| − 1).

We then have the following proposition:

Proposition 3.11. Let u be a word. For each 0 ≤ i ≤ n − 1, if u[i] /∈ A′(u, i) then

Borderu[i] = 0.

Proof. It is well known (Crochemore et al. 2007) that, for any word va, if va has a non-

empty border then it is of the form wa where w is a border of v. Thus if Borderu[i] 6= 0

then u[i] has a border that is a prolongation of a border u[0 . . j − 1] of u[0 . . i − 1] and

in particular u[i] = u[j] ∈ A′(u, i).

That implies the following corollary:

Corollary 3.12. For a word u and for a = nobord(u), the word u · a is such that

Borderua[|u|] = 0.

Let the prefix list L = [ℓ1, . . . , ℓm] and n = ‖L‖, for the length ‖·‖ defined for prefix

lists, then the string w[0 . . n] on A is computed in the following way.

Algorithm 3: ListToWord(L= [ℓ1, . . . , ℓm])

1 w[0]← α(0)

2 pos← 1

3 for i← 1 to m do

4 if ℓi > 0 then

5 for j ← 0 to ℓi − 1 do

6 w[pos+ j]← w[j]

7 pos← pos+ ℓi

8 else

9 w[pos]← nobord(w[0 . . pos− 1])

10 pos← pos+ 1

11 n← pos

12 return w[0 . . n]

Informally the algorithm proceeds from left to right on the prefix list input [ℓ1, . . . , ℓm].

It starts with a word reduced to one letter. Then iteratively for i ∈ [1 . .m], if ℓi > 0 the

algorithm copies ℓi symbols, from the previously constructed word u, at the end of u,

otherwise the algorithm introduces a letter in w which induces the empty border. Note

that overlapping is allowed since we are building the word from left to right.

One key property is that the word w obtained by this algorithm performed on a valid

Representing prefix and border tables: results on enumeration 13

prefix list ψ(P) for a prefix table P is such that Prefw = P . This means that valid prefix

lists and prefix tables are equivalent and represent the same information.

Proposition 3.13. Given the valid prefix list L = ψ(P) associated with a prefix table

P the word w built by the algorithm ListToWord is such that Prefw = P .

Proof. We prove the proposition on border tables: let L = ψ(P) = ψ′(B). We prove

the result by induction on ‖L‖. If ‖L‖ = 0, that is L = [], then w is a letter and

Borderw = [0] = B.

Suppose now ‖L‖ > 0 and L = L′ · [ℓ]. We denote by w and w′ the words built by

the algorithm ListToWord on input L and L′ respectively. If ℓ = 0 then by construction

w = w′ · x, where x is a letter obtained by applying nobord on w′. By the inductive

definition of valid prefix lists there exists a decomposition B = B′ · B[n − 1] such that

L = ψ(B) = ψ(B′) · [0]. By Corollary 3.12 we have that B[n− 1] = 0. Thus L′ = ψ(B′)
and, by the inductive hypothesis, Borderw′ = B′ and Borderw = B. By the inductive

definition ofvalid prefix lists there exists a decomposition B = B′ · B′′ such that L =

ψ(B) = ψ(B′) · [ℓ], B′′[ℓ − 1] = ℓ and the length of B′′ is equal to ℓ. Thus L′ = ψ(B′)
and, by the inductive hypothesis, Borderw′ = B′.
By construction w = w′·v, where v consists necessarily of the first ℓ symbols (considered

eventual overlapping) of w′. In general (see (Duval et al.), (Moore et al.)), given a border

table B = H · T , every word with border table H is prolonging to a word with border

table B. In our case B = B′ · B′′ and since B[n − 1] = ℓ, the word u prolonging w′

consists necessarily of the first ℓ symbols (considering possible self overlap) of w′ and is

equal necessarily to v. Thus Borderw = B.

From prefix lists to words on a maximal size alphabet.

Let us define the newletter function as a function returning a new letter not used so

far.

Definition 3.14. The newletter function applied on a word u returns a letter in A not

contained in u.

For instance, if we let the newletter be the nobord function given in Algorithm

ListToWord then we call the algorithm that we obtain ListToMaxWord. This algorithm

computes for a prefix list L = ψ(P) the word w on an alphabet of maximal cardinality

between the words having the same prefix table P .

Example 3.15. Let w = abaabbabb and let

i 0 1 2 3 4 5 6 7 8

w[i] a b a a b b a b b

Prefw[i] 9 0 1 2 0 0 2 0 0

The associated prefix list is L = [0, 1, 2, 0, 2, 0]. Choosing arbitrarily the first letter to

be a, one can build w = a · b · a · ab · c · ab · d. A value 0 in the prefix list implies we can

choose a new letter (here b at the second position, c at the 5-th position and d at the

8-th position).

Julien Clément, Laura Giambruno 14

It is easy to prove that:

Proposition 3.16. The word constructed by the algorithm ListToMaxWord on a valid

prefix list L = ψ(P) has maximal size alphabet among the words whose prefix table is

P .

Concerning time and space complexity of the algorithm:

Proposition 3.17. (Time Complexity) The algorithm ListToMaxWord can be imple-

mented to run in time O(n) on an input border table of length n without using auxiliary

memory.

Proof. The instruction in line 9 is executed in constant time with constant memory,

since the newletter function can be simulated by using a counter each time incremented

while introducing a new letter. Since |L| = n then the main loop 3 − 10 is executed in

O(n) and we get the thesis.

From prefix lists to words on a minimal size alphabet

Algorithm 4: ListToMinWord(L= [ℓ1, . . . , ℓm])

1 k[0]← 0

2 w[0]← α(0)

3 B[0]← 0

4 pos← 1

5 for i← 1 to m do

6 if ℓi > 0 then

7 for j ← 0 to ℓi − 1 do

8 w[pos+ j]← w[j]

9 B[pos+ j]← border(B,w[0 . . pos+ j − 1], w[pos+ j])

10 k[pos+ j]← k[B(pos+ j − 1)]

11 pos← pos+ ℓi

12 else

13 k[pos]← 1 + k[B(pos− 1)]

14 w[pos]← α(k[pos])

15 pos← pos+ 1

16 n← pos

17 return w[0 . . n]

The algorithm computing the word on a minimal size alphabet is a bit more complex.

Using the schema of the algorithm ListToWord, in order to obtain the desired word, we

want to define as function nobord on a word u the smallest letter that is not following

a border of u[|u| − 1]. To do this we will use an auxiliary array k[0 . . n − 1] storing, for

each prefix u of the word that we are computing, the greatest letter that is following a

border of u. More formally, for each word u of length n we define the array k[0 . . n− 1]

in the following way: for each i ∈ {0, · · · , n − 1}, let k[i] = Card(A′(u, i)). Recall that
for each i ∈ {0 . . n− 1}, A′(u, i) = {u[j] | u[0 . . j − 1] ∈ bord(u[0 . . i− 1])} is the set of

symbols extending the borders of u[0 . . i− 1] in u.

Representing prefix and border tables: results on enumeration 15

For computing the array k we will also need to compute on-line, while constructing

the word, its border table. Let border(B, u, a) be a the function that applied on a word

u, on the border table B of u and on a letter a returns the length of the longest border

of ua. Let L = [ℓ1, . . . , ℓm] and n = ‖L‖, for the length ‖·‖ defined for prefix lists, then

the string w[0 . . n] is computed in the following way.

Let us note that the function nobord is computed in line 14 and involves the array k.

Algorithm 5: border(B, u, a)

1 i← B[|u| − 1]

2 while i ≥ 0 and u[i] 6= a do

3 if i = 0 then

4 i← −1
5 else

6 i← B[i− 1]

7 return i+ 1

Proposition 3.18. The word constructed by the algorithm ListToMinWord on a valid

prefix list L = ψ(P) is on a minimal size alphabet among the words whose prefix table

is P .

The following statements are slight modifications of statements from (Duval et al.

2005) and will be useful to prove Proposition 3.18. The following lemma shows how to

iteratively compute the set of symbols A(u, i) for a given word u and a position i in u.

Lemma 3.19. (Duval et al. 2005) For a given word u and a position i in u, if

Borderu[i] = 0 then we have that A(u, i) = A(u,Borderu[i − 1]) otherwise A(u, i) =

{u[i]} ∪ A(u,Borderu[i− 1]).

The consequent corollaries give the link between the array k and the sets A(u, i):

Corollary 3.20. (Duval et al. 2005) Let u = u[0 . . n−1] be a word and let k[0 . . n−1]
be the array computed by the algorithm ListToMinWord. Then, for 0 ≤ i ≤ n − 1 we

have k[i] = Card(A(u, i)).

Corollary 3.21. (Duval et al. 2005) For every string u and every position i in u, the

minimal cardinality of an alphabet necessary to build the prefix u[0 . . i] is greater than or

equal to max{k[0], k[2], . . . , k[i]} with k[0 . . n− 1] the array computed by the algorithm

ListToMinWord.

By the last Corollary and the following Proposition we get the proof of Proposition 3.18:

Proposition 3.22. (Duval et al. 2005) The word w built by the ListToMinWord

algorithm on L is such that:

1 For 0 ≤ i ≤ n− 1, A(w, i) = {α[0], α[2], . . . , α[k[i]]}.
2 The cardinality of the alphabet for each prefix w[0 . . i] is max0≤j≤i k[j].

More intuitively in lines 13–15 of the algorithm ListToMinWord we have that in the

case of ℓi = 0, the value k on the current position pos is equal to k[B[pos−1]]+1, where

Julien Clément, Laura Giambruno 16

k[B[pos− 1]] represents the number of symbols extending borders of w[0 . . pos− 1]. By

the following instruction w[pos] = α(k[pos]) we append the smallest letter not following

a border of w[0 . . pos− 1] that is needed. Otherwise no new letter is introduced and k is

updated.

Concerning the time complexity of the ListToMinWord algorithm we have:

Proposition 3.23. (Time Complexity) The algorithm ListToMinWord can be imple-

mented to run in time O(n) on a prefix list of size n.

Proof. We can decompose the complexity of the loop in lines 5–15 as the sum of the

complexity C1 for the instruction 9 and the complexity C2 for the other instructions. It

is proved in [(Crochemore et al. 2007), Section 1.6] that C1 is linear in n. The complexity

C2 is also linear since the instructions involved require constant time.

3.4. Injectivity

Proposition 3.24. The function ψ is injective.

Proof. Let us consider two prefix tables P 6= P ′ and suppose that ψ(P) = ψ(P ′) = L.

By Proposition 3.13 the algorithm performed on L gives a word w such that Prefw =

P = P ′. Hence we must have ψ(P) 6= ψ(P ′).

Let us remark that the application ψ is not surjective. To a list [0, 2, 2], we can associate

a word w = a · b · ab · ab = ababab with the prefix table Prefw = [6, 0, 4, 0, 2, 0], but we

have ψ(Prefw) = [0, 4].

4. Upper bound

In this section we prove the upper bound stated in Proposition 1.1.

Prefix lists.

We define the set of prefix lists as a combinatorial class L of lists of positive integers

L = Seq({0, 1, 2, 3, . . .}), (8)

together with a size defined for a prefix list L = [ℓ1, . . . , ℓk] as ‖L‖ =
∑k

i=1 ‖ℓi‖, where the
size ‖i‖ is i if i > 0 and 1 if i = 0. It just means that ‖L‖ =∑k

i=1 ℓi +Card{i | ℓi = 0}.
The Seq operator applied to a combinatorial class A corresponds to all finite sequences

of elements from A, i.e., Seq(A) = ∪∞i=0Ai (reminiscent of the Kleene star operation for

regular languages). By convention A0 = {ε}.

Combinatorial specifications and generating functions.

In order to study a sequence (an)n∈N , it is now usual (Flajolet et al. 2009) to con-

sider its generating function A(z), that is the formal power series defined by A(z) =
∑

n≥0 anz
n =

∑

α∈A z
‖α‖.

In our case, given the combinatorial specification of L, it is easy (Flajolet et al. 2009)

to compute the generating function L(z) =
∑

n≥0 ℓnz
n where ℓn denotes the numbers of

Representing prefix and border tables: results on enumeration 17

prefix lists (either valid or invalid) of size n. This is true when specification are unam-

biguous (in the same way as unambiguity is considered in regular expressions or formal

grammars).

Indeed, the general idea is the following: here we first consider a set of atoms N. We

need a size ‖·‖ compatible with the cartesian product and disjoint union, i.e., here for

i ∈ N the size of atom i is ‖i‖ = i if i > 0 and ‖0‖ = 1. Let us define an empty element ε

(the only one with size 0). Then we have the following dictionary for translating directly

from combinatorial constructions to generating functions.

Empty element: ε 7→ 1

Symbols: α ∈ N 7→ z‖α‖

Disjoint Union: A ∪ B 7→ A(z) +B(z)

Sequence product: Seq(A) 7→ 1
1−A(z)

Cartesian product: A× B 7→ A(z)× B(z)

Let ϕ = 1
2 (1 +

√
5) ≈ 1.618. With this dictionary and the combinatorial description

(8), we get the following result for ℓn = [zn]L(z) the number of prefix lists of size n.

Proposition 4.1. The number of both valid and invalid prefix lists of size n is given by

ℓn = 1
2

(

1 +
√
5
5

)

ϕn + 1
2

(

1−
√
5
5

)

ϕ−n = 1
2

(

1 +
√
5
5

)

ϕn + o(1).

Proof. Let I = {0} ∪ {1, 2, 3, . . .} then by definition L = Seq(I). The generating

function associated with I is I(z) = 2z+ z2 + z3 + . . . = z+ z
∑

n≥0 z
n = z+ z

1−z . With

this dictionary and the combinatorial description we get

L(z) =
1

1−
(

z + z
1−z

) =
1− z

1− 3z + z2
.

Since this is a rational function, using decomposition in simple elements we get

L(z) = 1
2

(

1−
√
5
5

)

1
1−z/φ + 1

2

(

1 +
√
5
5

)

1
1−z/φ′

,

where φ = 3+
√
5

2 and φ′ = 3−
√
5

2 are the two solutions of 1 − 3z + z2. By the geometric

series formula, we have that

ℓn = [zn]L(z) =
1

2

(

1−
√
5

5

)

φ−n +
1

2

(

1 +

√
5

5

)

φ′−n.

Let ϕ = 1
2 (1+

√
5) then we have that φ = (1+ϕ) and φ = 2−ϕ = 1

(1+ϕ) . We thus obtain

ℓn = [zn]L(z) = 1
2

(

1−
√
5
5

)

(1 + ϕ)−n + 1
2

(

1 +
√
5
5

)

(1 + ϕ)n,

and the desired result follows.

The main result on the upper bound (see Proposition 1.1) is a reformulation of the

following corollary, which is a consequence of Proposition 3.24.

Julien Clément, Laura Giambruno 18

Corollary 4.2. The number pn of prefix tables of size n is upper bounded by the number

ℓn−1 of prefix lists of size n− 1.

5. Lower bound

For the lower bound, we exhibit some sets of valid prefix lists such that we are able to

count them. We wish these sets to be as large as possible. In this paper, as a first step,

our goal is to evaluate the exponential order growth given in Proposition 1.2 rather than

to give a precise bound.

The idea for proving Proposition 1.2 is to exhibit a language which maps bijectively

to a set of prefix lists, hence maps bijectively to a set of prefix tables. Let us consider,

for a fixed k, Lk = abk
(

ab<k(ε+ cb∗)
)∗
.

Proposition 5.1. For each k > 0, two distinct words in Lk have distinct prefix tables.

Proof. We prove that the set Lk is in bijection with a subset of the set of all prefix

lists. Then, since a prefix table is associated with a unique prefix list, the desired result

immediately follows.

First we prove that prefix lists associated with words in Lk are concatenations of non

negative integers ℓ < k. Indeed by construction, for any word u ∈ Lk we have that the

longest border of a prefix of u is of length strictly less than k+1. Let us note by L(u) the

prefix list associated with u: L(u) = ψ(Prefu). Since the elements in L(u) are borders of

prefixes of u we get the result.

Let us prove the main statement by contradiction. Let us consider u, v in Lk such that

u 6= v and L(u) = L(v) = L = [ℓ1, . . . , ℓr] (for some r > 0). The prefix list L induces

the same factorization in u and v: the factorization associated to the sequence of lengths

(ℓ1, . . . , ℓr). Let i be the smallest position in the words such that u[i] 6= v[i] and let ℓj
such that

∑j−1
k=1 ‖ℓk‖ < i <

∑j
k=1 ‖ℓk‖, where ‖·‖ is defined as in Definition 2.6. Let

i1 =
∑j−1

k=1 ‖ℓk‖ and i2 =
∑j

k=1 ‖ℓk‖. If ℓj 6= 0 then u[i1+1 . . i2] = abℓj−1 = v[i1+1 . . i2]

since 1 ≤ ℓj < k, that is a contradiction since u[i] 6= v[i]. If ℓj = 0 then the longest

border of u[0 . . i] is the empty word. Then u[i] can be equal either to b or to c. If u[i] = b

then, by definition of Lk, u[i] must be preceded by cbt for some t ≥ 0. The element

v[i], by definition, must be preceded by abs for some s ≥ 0, that is a contradiction since

u[0 . . i− 1] = v[0 . . i− 1].

We are now ready to give a sketch of the proof of Proposition 1.2 stating that : for any

ε > 0 there exists a family of prefix tables (Ln)n≥0 such that Card(Ln) = Ω((1+ϕ−ε)n).

Sketch of the proof of Proposition 1.2 First we remark that the regular expression

Lk = abk
(

ab<k(ε+ cb∗)
)∗

is unambiguous since in this decomposition letters a and c

act as separator to decompose uniquely any word of Lk. For a given k, by using analytic

combinatorics, one compute easily (since the regular expression is unambiguous) the

generating function Lk(z) for Lk

Lk(z) = zk+1 1

1−
(

z 1−zk

1−z
(1+ 1

1−z
)
) = zk+1(z−1)2

1−3z+z2+zk+1 .

Representing prefix and border tables: results on enumeration 19

We then have to extract coefficients ℓn,k = [zn]Lk(z) of this rational function. This is

done according to general principles (Flajolet et al. 2009). We will prove that the number

of words of length n in Lk is

ℓn,k := [zn]Lk(z) ∼ Ckρ
−n
k , (9)

where Ck is a constant and ρk is the smallest real (simple) root of 1− 3z + z2 + zk+1.

To get (9) we prove that Qk(z) = 1− 3z + z2 + zk+1 has only a simple root ρk in the

open unit disc. Then we can express the asymptotic behavior of the coefficient [zn]Lk(z).

Indeed writing Lk(z) =
Pk(z)
Qk(z)

as a rational function we have the following expression (see

(Flajolet et al. 2009))

[zn]Lk(z) = −
Pk(ρk)

Q′
k(ρk)

ρ
−(n+1)
k +O(1).

Thus, providing Pk(ρk) 6= 0 (which is easily verified here since Pk(z) = zk+1(z− 1)2), we

obtain (9).

To end the proof, we first recall the classical Rouché theorem (see (Cartan 1985) for

instance).

Theorem 5.2 (Rouché’s Theorem). Let γ be a simple closed counterclockwise curve.

Let f and g be analytic on and inside γ, and let them satisfy the condition

|f + g| < |g| on γ.

Then f and g have the same number of roots inside γ.

Considering, f(z) = 1−3z+z2+zk+1, g(z) = 3z and γ a circle around z = 0 of radius
1
2 < r < 1, we have (or can easily check) that |f(z) + g(z)| ≤ 1 + r2 + rk+1 < 3r = |3z|.
Hence f(z) has only one root of module strictly less than 1. We also know that this root

is real (since Q(0) > 0 and Q(1/2) < 0 for k > 1).

Expressing this root ρk = (1+ϕ−εk)−1 we are thus considering ρk as a perturbation of

the root ρ = (1+ϕ)−1 of 1− 3z+ z2 = 0. Solving approximately the perturbed equation

when k tends to ∞, we get

εk = 1
2 (1 + 3

√
5
5) 1

(1+ϕ)k
(1 + o(1)).

This process of reinjecting a solution in order to get better and better approximations is

the essence of the so-called bootstrapping method (as in (Knuth 1978)). Using the standard

extraction formula for rational series with a simple pole (see (Flajolet et al. 2009)), we

obtain the expression (9).

Hence we get that, for any ε > 0, one can fix k such that ℓn,k = Ω((ϕ+1−ε)n) yielding
the result of Proposition 1.2.

This result gives only rough information on the asymptotic of ℓn,k. A deep study should

be done in order to get better estimates. For instance it is not yet possible to conclude

if the number pn of prefix tables of size n is asymptotically equivalent to c(1 + ϕ)n for

some constant c, or even of order (1+ϕ)n

nα for some constant α > 0.

Julien Clément, Laura Giambruno 20

6. Conclusion

In this paper we have provided some bounds for the number of prefix (or border) tables.

The problem of finding an asymptotic equivalent for the number of prefix tables is however

still open, and would require a very fine understanding of the autocorrelation structure of

words. For this purpose it would be interesting to find characterizations on prefix lists in

order to get better bounds. It would be also interesting to study other families of words

in bijection with prefix tables to get better lower bounds. It would also be interesting

to deal with the problem of enumerating other tables used in string algorithms, like for

instance prefix tables associated to indeterminate strings.

Acknowledgements. We would like to thank Maxime Crochemore, Cyril Nicaud and

Giuseppina Rindone for helpful discussions.

References

Bland, W., Kucherov, G. and Smyth, W., F. (2013) Prefix Table Construction and Conversion.

In Lecture Notes in Computer Science (LNCS) 8288, 41–53. Springer-Verlag.

Cartan, H. (1985) Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables

complexes, Hermann.

Clément, J., Crochemore, C. and Rindone, G.(2009) Reverse Engineering Prefix Tables. In Leib-

niz International Proceedings in Informatics (LIPIcs)3, 289–300. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

Clément, J. and Giambruno, L. (2014) On the number of prefix and border tables. In Lecture

Notes in Computer Science (LNCS) 8392. Springer-Verlag.

Crochemore, M., Hancart, C. and Lecroq, T. (2007) Algorithms on strings, Cambridge University

Press, Cambridge, UK.

Duval, J.- P., Lecroq, T. (2005) Border array on bounded alphabet. Journal of Automata,

Languages and Combinatorics 10 (1), 51–60.

Duval, J.- P., Lecroq, T. and Lefebvre, A(2009) Efficient validation and construction of bor-

der arrays and validation of string matching automata. RAIRO-Theoretical Informatics and

Applications 43 (2), 281–297.

Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press,

Cambridge, UK.

Franek, F., Gao, S., Lu, W., Ryan P. J., Smith W. F., Sun Y. and Yang, L.(2002) Verifying

a border array in linear time. Journal on Combinatorial Mathematics and Combinatorial

Computing 42, 223–236.

Gusfield, D. (1997) Algorithms on strings, trees and sequences: computer science and computa-

tional biology, Cambridge University Press, Cambridge, UK.

Knuth, D.E. (1978) The average time for carry propagation. Indagationes Mathematicae 40,

238–242.

Moore, D., Smyth, W., F. and Miller, D.(1999) Counting distinct strings. Algorithmica 23 (1),

1–13.

Nicaud, C. (2010) Private communication.

