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Proving Properties of Reactive Programs
From C to Lustre
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Abstract. In critical embedded software, proving functional properties
of programs is a major area where formal methods are applied with an
increasing success. Anyway, the more a property is complex, the more a
high-level formal model of the software and its environment is required.
However, in an industrial setting, such a model is not always available,
or cannot be used for independent verification. We propose here a new
route, where a high-level Lustre model is extracted from a C source pro-
gram. Thus, high-level functional properties can be specified in Lustre
and proved on this extracted model, hence on the real code, without
requiring any additional formal documentation.

Keywords: Formal Methods, Functional and Temporal Properties, Lustre, Scade,
Embedded C, Reactive Programs.

1 Introduction

CEA List and IRSN have been working together for a long time to introduce formal
methods in the assessment of properties for safety critical software in nuclear
power plants ; such methods also apply to many other industrial domains.

However, our experience in using different methods and technologies at var-
ious abstraction levels reveals that each one requires its own methods. At low-
level, for instance, we have deployed the Frama-C platform [6] for proving prop-
erties of embedded C programs. In particular, we can address many properties
of critical software at the level of C language: absence of runtime errors during
the execution by using abstract interpretation, conformance of elementary func-
tions to their formal specifications using deductive verification, non-interference
of system and applications memories, etc.

At a higher level of abstraction, we have used the GATeL platform [7, 8] to
generate tests covering formally specified objectives from a Lustre or Scade de-
scription of the system. This platform can also be used to prove that a required
behavior is always achieved. At such an abstraction level, one can address prop-
erties like “if those sensors are activated 80 percents of the time during more
than 2 seconds, then this specific alarm shall be raised ”.

Such a high-level property can not be formalized and proven on low-level
programs, for instance by using ACSL [1] language on the source C-code. More



precisely, it is not possible to encode the property in such a way that known and
implemented static analysis techniques have any chance to handle the proof.
This is due, for instance, to the over-complexity of low-level details of real-life C
programs, or to the lack of expressiveness of the specification language.

As a matter of fact, industrial users usually face the following alternative:
either prove low-level properties on source programs, or prove high-level ones on
abstract models. But, typically at IRSN, there is a specific need for proving high-
level properties on low-level C programs: actually, we want to increase confidence
in the program, independently of its development process and artefacts. This
verification activity complements standard development processes where high-
level desired properties are step-by-step refined into the actual code.

Hence, we decided to design a way to automatically extract, from the low-
level C code, an equivalent high-level Lustre model in order to formally prove
its high-level properties. This is a completely new route that still re-uses all the
mature technologies we have already industrially deployed. Section 2 is dedicated
to briefly introducing our method and Section 3 presents our case study and the
necessary features we need to implement; Section 4 describes the extraction
mechanism and, finally, Section 5 reports on our experimental results.

2 Method Overview

We consider a synchronous reactive program, available as C routines that are
cyclically invoked by the underlying operating system. Communication with the
external environment is achieved through specific memory locations for input-
s/outputs, that are written/read by the operating system before/after the cyclic
routines. The initial state of the program is prepared by running some initializing
routine that can be arbitrarily complex.

Extracting a Model from the Code. The verification method starts with the
identification of the memory locations related to the inputs and outputs. They
are designated by the user in terms of dedicated ACSL annotations added into
the C code.

From such an annotated code, the Frama-C/Synchrone tool, which we have
specially developed for this verification method, automatically analyses the cy-
cling C-code and synthesizes a functionally equivalent Lustre node with as many
inputs as observed inputs, and as many outputs as observed outputs. Such a
synthesis, we call it Lustre Extraction, relies on a combination of static analysis
techniques available from the Frama-C platform, as explained with more details
in Section 4.

Expressing the Property. The desired properties are specified using the standard
and well-known technique of observers [5], which has been successfully applied
in industrial domains, at AIRBUS for instance [2]. In our context, an observer is a
Lustre program that reads both the inputs and outputs of the observed program,
and yields a single boolean value that becomes false whenever one of the desired
properties is violated.



Handling the Proof. The extracted Lustre node, which is equivalent to the low-
level C program for the considered inputs and outputs, is finally connected to
the observer. Although observers can be used for testing or in simulations, we
never use those techniques in this experiment. Here, we want to formally prove
that, for any possible inputs, the observer will never reach a state where its
output is false. In our experiments, we used GATeL to perform this final step,
but other provers can be used, such as the Kind-2 [3] model checker for instance,
or any other Lustre formal verification technique.

The Crux. From the synchronous model point of view, the method is quite
standard and well-known. Proving properties by using program models combined
with property observers is classical. The difficulty here comes from the fact that
we do not want to start from an existing Lustre model of the software, but
only from its actual C source code. The central part of our contribution is an
algorithm for automatically synthesizing, or extracting such a model from the
source code.

Intuitively, extracting a Lustre model from a cyclic program is quite natural.
For instance, consider the overly simple program given Figure 1(a). Consider
now the values successively returned by function read, and passed to function
write at each loop iteration, we can model both sequences by the Lustre node
given Figure 1(b). Establishing the synchronous equations from the source code
is straightforward.

int read ( ) ;
void wri te ( int ) ;
int main (void )
{

for ( int s =0 ; ; ) {
s+=read ( ) ;
wr i te ( s +1);

}
}

node Loop ( read : int )
returns ( wr i te : int )
var s , s ’ : int ;
l e t

s ’ = s + read ;
wr i te = s ’ + 1 ;
s = 0 → pre s ’ ;

te l

Fig. 1. A simple C program (a) and its Lustre model (b).

In real-life, synthesizing a high-level Lustre model from a low-level C-code is
much more complex. Although the intuitive idea sketched above is still valid,
in practice we are facing many challenging issues related to actual C programs,
that we explore in Section 3 and 4.

3 Case Study

As introduced above, our main experiment is based on a real embedded C-
code involved in the safety of nuclear plants, on which IRSN needs to verify
high-level (temporal) properties. This huge piece of software (several thousand
lines of code) consists of several parts with very different characteristics. Parts
related to the operating system, hardware interruptions, real-time management



and process scheduling have been studied by other means, use different language
features, and therefore are not in the scope of this experiment.

The functional part we focus on is made of synchronous C routines that are
cyclically invoked by the operating system. Those routines are implemented by
sequential C code and consists of two kinds of functions: a library of elementary
blocks and the cabling code that flows data from one block to the other ones, each
individual block being responsible for a usually simple operation. We illustrate
now the main characteristics of these two parts of the cycling routines.

Pointers. Memory values are often obtained via pointers. The only way to
handle them soundly is to use address-indexed arrays. This is achieved by re-
using the efficient memory models implemented in the Frama-C/WP plug-in.
Unfortunately, those arrays can not be translated in Lustre directly. Hence,
we need a way to distinguish individual pointed-cells as single variables. This
is performed by using the invariants collected by abstract-interpretation via
the Frama-C/EVA plug-in.

Bitwise Encoding. Many real-life embedded programs use a single machine
word to encode several boolean signals in parallel, using one bit of infor-
mation for each and bitwise logic operators for computations. In high-level
models, however, one would expect to find back boolean signals, because
provers are generally much more efficient on booleans than on bit-vectors.
This is achieved by re-using the simplifications on bitwise operators already
provided by Qed and the Frama-C/WP plug-in.

Dead Code Elimination. It is often the case that some parts of the cycling
routine are in fact only used during initialisation or during specific mainte-
nance or field-testing modes. Hence, those parts of the code are dead dur-
ing the cyclic behavior of the application, but not dead during its initial
phase. These two specific contexts must be taken into account during the
analysis. This is handled by the trace-partitioning facilities offered by the
Frama-C/EVA plug-in.

Parameterized Code. A typical synchronous code is built from basic generic
blocks that are combined together. However, each block instance is generally
parameterized by specific values (delay, threshold, etc.), while still sharing
the same generic code. Once again, we use trace-partitioning to distinguish
those different instances and generate specialized models in turn.

Dynamically Optimized Code. Some cycling sub-routines compute, during
their first execution cycle, operational parameters from their specified set of
parameters. Then, during further cycles, those operational parameters can
be used to simplify their computations. By including a first cycle into the
initialisation phase, this optimizing code can be eliminated from the cycling
phase. The resulting model is then much simpler and have fewer internal
memory states.

Our case study includes all those features, that are present in many reactive
programs used in the nuclear field. However, such characteristics are shared with
many other domains, and the size and functional complexity of our case study
is fully representative of a large panel of embedded programs.



4 Lustre Extraction

We now focus on the synthesis algorithm: provided a C source code and an in-
strumentation provided by the user, our extraction problem can be reformulated
into the following terms: an initialization routine Init is executed first, then a
routine Cycle is repeatedly executed; before each iteration, inputs (l-values) are
injected by the operating system into memory; then, after each iteration, outputs
(l-values) are available for the operating system.

i n t main ( void )
{

I n i t ( ) ;
whi le ( ! e r r o r )
{

Input ( ) ;
Compute ( ) ;
Probe ( ) ;

}
return e r r o r ;

}

node Model ( A )
returns ( B ) ;
var M , M′ ;
l e t
M′ = ϕ(M,A) ;
B = ψ(M′) ;
M = I →pre M′ ;

te l

Fig. 2. C-Model (a) and Lustre-Model (b)

More generally, from the property validation point of view, the user is in-
terested into injecting arbitrary values as inputs and observe any expression or
predicate as outputs, that we call probes. The instrumentation of the code only
consists in specifying inputs and probes, and designating the C functions called
during initialization and cyclic phase.

Initialization and cyclic routines, inputs and probes constitute the instru-
mentation of the code to be verified. Hence, given such an instrumentation,
the actual software to be analyzed has a behavior which is equivalent to the C
program described in Figure 2(a).

In actual programs, the main loop is more complex; it may, e.g. perform some
hardware tests, use interruptions to timely trigger each iteration, etc. However,
the resulting sequence of global memory states is equivalent regarding the pro-
vided instrumentation.

In more formal terms, let us denote by Mt the memory state of the program
just before the tth iteration. Thus, Mt+1 is the memory state after this iteration
and is also the memory state just before the (t + 1)th iteration. In particular,
M0 is the memory state just after the initializing routine. At each iteration, we
denote by At the values read from I/O. We can model the effect of the each loop
iteration by the following equations:

Mt+1 = ϕ (Mt, At) (1)

where ϕ is the effect of one single loop iteration on the memory state. The output
values Bt can be formalized as a projection of the memory state after each loop
iteration, as follows:

Bt = ψ (Mt+1) (2)



Both Equations 1 and 2 constitute a synchronous system. Our objective is to
synthesize a Lustre representation of this system, ie a node having stream A as
input, stream B as output, and stream M as internal state. Hence, the general
structure of such a Lustre model is depicted in Figure 2(b), where I denotes the
initial state M0, and M ′

t denotes the memory state Mt+1.
More generally, A, B, M and M ′ are vectors of Lustre variables, to handle

multiple inputs, multiple outputs and multiple internal states. The problem at
this point is finding a representation of the C memory state which can be encoded
with Lustre expressions. For scalar values, one can use Lustre scalar variables and
operators, but pointer-addressed values (arrays, structures, and so on) have no
counterparts in Lustre. Moreover, there are several ways to formalize C memory
states with pointers.

To compute such an abstract model while handling all the low-level C features
required by our case study and listed in Section 3, we need to proceed in several
steps and re-use complex and mature functionalities from the Frama-C platform.
The overall architecture of the extractor is illustrated in Figure 3. It consists in
several modules we briefly introduce below.

Fig. 3. Architecture of the Extractor

C-Model. From the supplied C code and instrumentation, a C-model of the
software is generated. This is a standard C code very similar to the one depicted
in Figure 2(a), with additional ACSL annotations to model the injected input
values. We can now invoke any Frama-C analyzers on this C code to compute
properties and invariants.

EVA. The abstract interpretation plug-in of Frama-C is invoked on the generated
C-model. It is an automatic step that verifies the absence of runtime errors,
which is a critical feature for the soundness of the extracted model. As a side
effect, such a verification is also of great added value for the user. Moreover, the
analyzer provides us with invariants on memory locations at each program point,
depending on call-contexts. This makes us capable of distinguishing invariants
that hold during initialization or during the cycling phase, and to distinguish
different instances of identical elementary blocks.

CFG. Aside from the C-model, the cyclic routine is structurally decomposed into
a Control Flow Graph of elementary operations, including single assignments,
if-then-else branching, and function calls. During this step, internal loops



(i.e. not the main one) are statically unrolled3 to produce a direct acyclic graph.
Dead-code detected during the EVA analysis is also pruned out at this stage.

WP. The generated Control Flow Graph is traversed in backward direction using
Weakest Precondition Calculus. This step intensively uses the Frama-C/WP plug-
in. In particular, a dedicated memory model is configured and supplied to the
WP in order to compile the transitions of the CFG into oriented equations of the
form m′ = ϕ(m), where m and m′ are memory states at both ends of an edge.
Also, invariants synthesized during EVA analysis are injected at this stage, with
additional equations. In particular, the initial state I is also computed from the
EVA invariants that holds after the initializing phase.

Equations. The set of elementary equations computed by weakest precondition
calculus is then flattened into a global system of equations M ′ = ϕ(M). We use
a variant of congruence closure [9] for this algorithm, extended with a dedicated
merge operation to take into account the branching nodes of the CFG. This
part also takes benefit from the internal simplifications performed by our Qed
library [4], used to dramatically simplify expressions and predicates in first-order
logic.

Projections. To get rid of theories that occurs in the equations but are difficult
to represent in Lustre, we use a general mechanism of projection, that allows us
to lift a general equation x′ = ϕ(x) into a refined equation y′ = ψ(y), where
y = π(x) with π a projection and π ◦ϕ = ψ ◦ π. We have defined projections for
bitwise operators and arrays, but the mechanism is general and can be extended
to other theories if needed. The projections are also applied to the initial values of
memory states. In our case-study, this features allows us to eliminate all aliased
pointer accesses, and to translate all the bitwise operations into purely boolean
signals.

Fixpoint. The overall system of equations M ′ = ϕ(M) is actually a multi-
variable set of equations of the form x′i = ϕi(x1, . . . , xn). Probes are computed
as equations of the form p = f(x′i, . . .). Since x′i depends on other xj variables
though ϕi, we have to compute the transitive closure of a dependency relation
to find the smallest set of variables needed to model all probes. Projections
are injected into this set of equations, introducing new variables in the system,
but reducing the dependencies after simplification and propagation. This is an
iterative process that eventually converges to a fixpoint.

Transcription (Lustre). If the computed fixpoint only contains expressions that
can be translated into Lustre, the extraction succeeds. The logical equations are
modeled with the Qed library to compute maximal sharing of sub-terms in the
3 Unrolling is generally feasible in the context of embedded software, since the cyclic
routines shall terminate in a predictable amount of time. There are actually several
ways in Frama-C to perform unrolling.



system. This allows for a linear translation of the set of equations that would
likely be exponential otherwise. Finally, the extracted Lustre node exactly follows
the general structure given in Figure 2(b).

Hence, the entire chain follows the intuitive idea sketched out in the overview,
thanks to efficient algorithms supported by the available features of the Frama-
C platform. The resulting extractor finally scales fairly well on a full-featured
case-study of representative size, as discussed in the next section.

5 Experimental Results

The software from which we derived our case-study has been introduced in Sec-
tion 3. Its code base is huge —more than ten thousands lines of code — although,
as we only focus on functional properties, the operating system parts have not
been considered.

The entire library of elementary blocks is large, and the software includes
many applicative functionalities, spread out over several cycling routines. For
our experiments, we have selected a representative subset of these functionalities.
Thus, it is not a small experiment, and our case study includes a few thousands
lines of C-code comprising all features of Section 3. Details are provided in the
table below:

Definitions & Macros 1 759
Elementary Blocks (×14) 2 389
Functional Diagram 482

Total 4 630
(lines of C)

Instrumenting the code was straightforward: this includes the writing of the
test harness for the initializing routines as depicted in Section 2, and the speci-
fication of the probes of interest.

Regarding the properties, formalized as Lustre observers, we have conducted
two complementary experiments: unitary proofs on one side, and functional
proofs on the other side. In the unitary proof experiment, we wanted to vali-
date the extractor itself; it consists in small functional diagrams implemented
in C code, composed of few blocks. These functional diagrams have been pre-
cisely modeled by hand, down to the elementary blocks level, to build a Lustre
reference node. Independently, the C code has been processed by our extractor.
Finally, we tried, and succeed, to prove that nodes extracted from the C code
and the reference ones are in exact bi-simulation for all inputs at every cycle.

On the other experiment, we used the C-code of full-functional diagrams,
which typically read switches and sensors, combine them in binary, numerical
and temporal functions (memories, delays, thresholds with hysteresis, etc.) and
finally compute the state of safety outputs. Different computing modes are used,
e.g. when some inputs have a non-valid status. Properties range from simple ones
such as verifying that an alarm is raised when a sensor goes over a threshold, to
more complex ones involving sequences of events, memorized states, temporal
windows, counters, etc. The following figures illustrate the size of our experi-
ments, in lines of code:



Source Init Extracted Property
Experiments Code Harness Model Observers
Unitary Proofs (×11) 2 631 242 185 708
Temporal Properties 4 630 113 91 348

(lines of C-code) (lines of Lustre-code)

The time for extracting models and proving properties is not reported here,
but the entire tool chain generally terminates in few seconds, when not immedi-
ately.

Interpretations. Several observations can be made from these experiments. First,
the size of the generated Lustre models is rather small compared to the initial C
code. This is explained by the fact that large parts of the code have been tai-
lored to their sole impact on the observed probes. Two modules of the extractor
are responsible for such a slicing effect: first, the EVA analyzer propagates all
constants that parameterize each elementary block instance. Moreover, initial-
izing code and dynamic optimizations (computing of operational parameters)
are dead-code during the normal behavior of the cyclic routines and they were
pruned out during WP. Finally, the projection mechanisms and the final fixpoint
of the extractor eliminates all the non-necessary memory states, i.e. those that
are not involved by the requested probes.

The second main observation concerns the process of writing and proving
properties. It turns out that writing functional properties in Lustre is quite ef-
ficient for safety systems (indeed, Lustre has been designed for this domain).
However, it is sometimes difficult to express properties of large code that are
correct at each cycle and for all configurations. Typically, even when the main
functional requirement is simple, details about e.g. the validity status of the
inputs, may complexify it: for instance, one may require to take a default de-
cision, or to maintain the previously computed state, depending on the precise
functional requirements. All these details have to be taken into account when
formally stating properties. Another approach we have followed, is the specifi-
cation of partial properties, e.g. by partitioning the input state into different
typical behaviors, with dedicated properties that are proved separately. During
this process, the counter-examples generated by GATeL when a proof can not be
established are a key-feature to understand the origin of the mismatch between
the C code and the stated property (be it incorrect code or imprecise property).

Finally, when proving properties, we have used all the proof techniques for
Lustre programs available in GATeL. Many properties are instantaneously proven
by pure simplifications and propagations. Temporal properties usually require
reasoning on a large number of cycles. Typically, delays of few seconds correspond
to hundreds iterations of the main routine; however, this was smoothly handled
by the refutation techniques used by GATeL. Few properties were proved by
using k-induction techniques, seamlessly for the user. We found one complex
property that required to be cut with an intermediate invariant observing an
additional probe on an internal memory location of the code (a timeout counter).
We believe that such a modular proof method will be common when increasing
the complexity of the software and/or properties.



Plugin Implementation. The extraction plug-in itself is small, thanks to the large
re-use of the mature library of standard Frama-C analyzers. Compared to the
Frama-C kernel, the Frama-C/EVA and Frama-C/WP plug-ins, each representing
about 100 000 lines of OCaml code, the Frama-C/Synchrone plugin only have
3 000 lines of code.

It is interesting to note that, even if the extractor is small, by reusing many
powerful building blocks of the Frama-C platform we obtain a very efficient pro-
totype implementing many complex features, which scales on non-trivial actual
programs.

6 Conclusion

We propose a new independent formal verification method, mostly automatized,
that allows for proving high-level properties on low-level C programs, without
relying on any document or model elaborated during the development process.
This method may be used in addition to correct-by-design techniques, or when
development artifacts are not available, not formalized or when the verification
must be performed independently. It also fits reverse engineering purpose, by
providing a high-level, yet formally correct, point of view on low-level codes.
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