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Fabry–Perot (FP)-like resonances have been widely
described in nanoantennas. In the original FP resonator,
a third mirror can be added, resulting in a multimirror
interferometer. However, in the case of a combination of
nanoantennas, it has been reported that each cavity behaves
independently. Here, we evidence the interferences between
two FP absorbing nanoantennas through a common mirror,
which has a strong impact on the optical behavior. While
the resonance wavelength is only slightly shifted, the level of
absorption reaches nearly 100%. Moreover, the quality fac-
tor increases up to factor 7 and can be chosen by geometric
design over a range from 11 to 75. We demonstrate, thanks
to a simple analytical model, that this coupling can be
ascribed to a double FP cavity resonance, with the unique
feature that each cavity is separately coupled to the outer
medium. © 2017 Optical Society of America

OCIS codes: (050.6624) Subwavelength structures; (130.3060)

Infrared; (310.6628) Subwavelength structures, nanostructures;

(160.3918) Metamaterials.
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The Fabry–Perot (FP) interferometer was invented in 1899 and
consisted of two parallel highly reflecting mirrors, the resonance
behavior being characterized by peaks or dips in the transmis-
sion and reflection spectra [1]. It has been used in a variety of
devices, among which are optical cavities for lasers or filters [2].
Since this seminal work, various evolutions of the FP interfer-
ometer have been introduced, among which are multimirror
FPs that give birth to a coherent superposition of all the beams
[3]. Noteworthy, in most configurations, the mirrors are placed
in series. In the past two decades, the development of nanopho-
tonics has given birth to FP-like resonators [4–7], in which a
guided mode in a metallic cavity has a behavior that is well
described by the FP formalism. The advantages of these nano-
resonators are their compactness and the possibility to combine
them to design broadband or multiband resonances. It is well
accepted that, since these metallic cavities are the siege of local-
ized resonances, they have negligible influences on each other

when they are combined [8–12]. The two most common
plasmonic nanostructures with a FP behavior are the metal–
insulator–metal patch nanoantennas (horizontal resonance)
and the high-aspect-ratio nanogrooves (vertical resonance).
Both of these resonators are promising for applications ranging
from thermal emission [12,13] or infrared detection [14] to
biosensing [15,16]. Yet, they suffer from their low quality
factor.

In this Letter, we introduce a double-cavity FP-like nano-
resonator. It departs from the previous work on multimirror
FP resonators, as the mirrors are in a hybrid configuration be-
tween series and parallel. It gives birth to a spectacular effect
where critical coupling (a zero of reflectivity) is obtained while,
independently, each of the two cavities is loosely coupled to free
space. Moreover, the quality factor of the double-cavity reso-
nators is increased from 11 to 50, well beyond the limit for
FP plasmonic nanoresonators [10]. We developed an analytical
model that confirms the multimirror FP behavior. Last, but not
least, while previous works reported critical coupling only in
high-aspect-ratio nanogrooves (i.e., h∕w is typically higher than
10), here, the critically coupled nanoresonator aspect ratio is on
the order of 2.

The classical nanocavity antenna with vertical FP resonance
consists of a high-aspect-ratio groove (width w, height h) etched
in gold, with a subwavelength period d , as depicted in Fig. 1(a).
The gold is modeled using a Drude formula [17]: ε�λ� �
1 − ��λp∕λ� iγ�λp∕λ�−1 with λp � 158.9 nm and γ � 0.0077.
The resonance wavelength of the nanogroove antenna is given by
λr ≃ 2hneff , where neff is the effective index of the propagative
mode in the groove. Thus, it is mainly dictated by the height of
the groove, even if the width impacts the effective index for small
values [18]. The coupling of these cavities to free space depends
on the aperture ratio (w∕d ): the critical coupling (a zero of
reflectivity) is achieved for a small aperture ratio while a larger
one results in a loose coupling.

The electromagnetic analysis of these nanostructures is per-
formed in the following of the Letter with the B-spline modal
method, which allows fast and exact computations on a non-
uniform mesh [19]. The reflectivity spectra of two arrays, with
the same period d � 1 μm but different geometries for the
grooves, are plotted in Fig. 1(b). For the wider groove case
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(w � 200 nm, h � 700 nm), the absorption (i.e., 1 − R) is
smaller than 20% at the resonance wavelength λr � 3.6 μm.
In order to reach 100% of absorption (i.e., the critical coupling
case), the width of the groove has to be reduced to w � 21 nm.
This increases the effective index neff , so for the sake of com-
parison, the height of the groove is decreased to h � 440 nm in
order to exhibit the same resonance wavelength.

It must be emphasized that the aspect ratio of the critically
coupled nanoantenna is nearly 21, and its experimental reali-
zation, even if previously achieved [7,13,20], remains challeng-
ing and hinders its use in practical applications. Besides, since
these cavities are the siege of localized resonances, it has been
previously reported that they behave independently when they
are combined [8–12]. Yet, these considerations focused only on
critically coupled cavities, leaving the combination of loosely
coupled nanogroove resonators unstudied.

A two-grooves system is investigated, where each individual
groove is loosely coupled and is designated in the following by
(1) or (2), while the combination is designated by (12). The (1)-
groove [resp. (2)-groove] array has a width w � 300 nm, a
height h�1� � 620 nm (resp. h�2� � 550 nm), and a period
d � 1 μm and exhibits a loosely coupled resonance at λ �
2.7 μm (resp. λ � 3.2 μm), with a reflectivity dip at 90%, as
shown in Fig. 2. The (12)-groove combines these two grooves
with a period d �12� � 2d � 2 μm, while the grooves are equi-
distant. The choice of this period allows keeping the same aper-
ture ratio, and thus the same entrance mirror as the one of the

individual cavities. The reflectivity spectrum of the (12)-groove
is also plotted in Fig. 2 (blue continuous line), and its behavior
strongly deviates from the individual grooves or their combina-
tion. Indeed, the (12)-groove structure is in critical coupling
at a wavelength of λ � 3.6 μm, which represents a noticeable
red shift as compared to the resonances of the (1)-groove or
(2)-groove arrays. Besides, the resonance quality factor shows
a fourfold increase. In this particular example, Q � 50 when
the value for the critically coupled single FP resonator shown
in Fig. 1 is Q � 11. This critical coupling is scalable to other
wavelength ranges.

To investigate the origin of this new resonance, an analytical
model is introduced, as represented in Fig. 3. There is only one
propagating mode in each groove [21], and its coupling to the
incoming plane wave is given by the scalar Fresnel coefficients
at the interface A–B: tAB, tBA , rBB. Inside the first (resp. second)
groove, the mode propagator element is P�1� (resp. P�2�), and
the bottom reflection on the metallic surface is ρ. Eventually,
the coupling between the two cavities is given by the scalar
value �tBB�. It is noteworthy that, due to the choice of a sim-
plified geometry (identical width w, and equidistant grooves),
all these coefficients (except the propagators) are identical for
the two grooves. Still, the analytical model can be generalized to
the combination of two different grooves.

At equilibrium, straightforward algebra leads to the device
reflectivity as a function of these scalar elements:

R � jrAA � G1tABtBA � G2tABtBAj2; (1)

�
G1 � �G1rBB � tBA � G2tBB�P2

1ρ
G2 � �G2rBB � tBA � G1tBB�P2

2ρ
: (2)

Fig. 1. (a) Scheme of the nanogrooves (width w, height h) grating
(period d ) illuminated with normally incident, TM-polarized light.
(b) Reflectivity spectra of a loosely coupled nanogroove (blue continu-
ous line) with width w � 200 nm and height 700 nm, and of a criti-
cally coupled nanogroove (orange dashed line) with width w � 21 nm
and height 440 nm. Both gratings have the same periodicity
P � 1 μm, and have the same resonance wavelength λr � 3.6 μm.
The loosely coupled nanogroove absorption is smaller than 20%, while
it reaches 100% for the critical coupling situation.

Fig. 2. Comparison between the reflectivity of two loosely coupled
nanogroove resonators and the reflectivity of a critically coupled res-
onator composed of the two aforementioned cavities. The two indi-
vidual cavities [respectively named (1) and (2)] are defined by
d � 1 μm, w � 300 nm and respective heights of h�1� � 620 nm
and h�2� � 550 nm. The reflectivities of these two nanogroove reso-
nators are represented on dashed lines and do not go below 85%.
When we change the height of one in every two slits from h�1� to h�2�

as depicted in the inset, we see an unexpected modification of the peri-
odic structure reflectivity. It drops to zero and has a 4 times higher
quality factor than a single critically coupled nanogroove resonator.
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By resolving the previous two coupled equations, G1 and
G2 can be expressed as8<

:
G1 � ρP2

1 �1�ρP2
2�tBB−rBB��

�1−ρrBBP2
1��1−ρrBBP2

2�−t2BBρ2P2
1P

2
2

G2 � ρP2
2 �1�ρP2

1�tBB−rBB��
�1−ρrBBP2

1��1−ρrBBP2
2�−t2BBρ2P2

1P
2
2

: (3)

In Eq. (1), the reflection amplitude writes as the sum of
three terms: the scalar reflection rAA on the patterned metallic
mirror and the two waves coming out from each aperture
(G1tABtBA and G2tABtBA), where G1 and G2 describe the back
and forth reflections in each groove, as well as the coupling
between the two grooves. It must be emphasized that in the
usual case where there is no coupling, tBB � 0, then Gi is
reduced to ρP2

i
1−ρrBBP2

i
, giving the usual FP expression.

The comparison between the reflectivity spectra obtained
with the model and with full numeric resolution of the
Maxwell equations for the previous structure is plotted in
Fig. 4(a). It shows an excellent agreement, which confirms both
the validity of the one-mode model and that the optical behav-
ior is due to the coupling tBB between the two resonators.
This simplified model also proves useful to optimize the respec-
tive height of each groove. Indeed, the scalar Fresnel coeffi-
cients and the effective index of the propagative mode have
to be numerically computed, but they do not depend on
the heights of the grooves. Only the propagators depend on
the height, but with the following exact analytical expression:
P�i� � exp�in�i�eff h�i��.

This critically coupled resonance can be explained by a
three-plane-wave interference between the wave directly re-
flected on the metallic interface and the two plane waves that
are exiting the two metallic cavities, after having encountered
multiple backward and forward reflections in the two cavities.
The phase difference and the amplitude of each of them are
plotted in Figs. 4(b) and 4(c) as a function of the wavelength.
As can be seen, rAA is nearly spectrally independent, and so the
interference can be reduced to the contributions G1tABtBA and
G2tABtBA � rAA . Critical coupling can be achieved under two

conditions: (i) jG1tABtBAj and jG2tABtBA � rAAj must be
equal, and (ii) they must be in opposite phase. As shown in
Fig. 4(b), the two terms have the same amplitude at 3.6 μm
and 2.5 μm, yet [see Fig. 4(c)] they are in opposite phase at
3.6 μm only. The two terms G1 and G2 are maximal near
the resonance due to a minimum of their common denomina-
tor and the proximity of its complex pole.

As can be deduced from Eq. (1), the two grooves must
have different heights for the resonance to be possible.
Indeed, if the two grooves are identical, Eq. (1) reduces to
R � jrAA � 2G1tABtBAj2, and the only solution to achieve
the critical coupling is for the single groove to be critically
coupled by itself.

Eventually, the influence of the groove width is investigated.
Reflectivity diagrams in the 2–5 μm range are plotted as a func-
tion of the grooves’ width w for both the one-groove (height
h�1�) in Fig. 5(a) and the two-groove structure in Fig. 5(b).
Dashed lines are highlighting the near-critical coupling zone
for the single-groove system (w < 100 nm), and the specific
case investigated in the Letter (w � 300 nm).

For thin grooves (w < 100 nm), the single groove is near
the critical coupling condition, and exhibits a resonance wave-
length that is blue shifted when w is increased. This depend-
ence is due only to the expression of the effective index
neff ≃ 1� δ

w, where δ is the skin depth of the metal [18,22].
The two-groove structure exhibits two resonances in this zone;
both are also near critical coupling and can be described as

Fig. 3. Scheme of the two-groove structure and of the different co-
efficients used in the analytical model. All of the reflectivity (rAA, rBB,
and ρ) and transmission coefficients (tAB, tBA , and tBB) are scalar
elements from S-matrices, and P1 (resp. P2) is the mode propagator
element inside the first (resp. second) groove.

Fig. 4. (a) Comparison between the reflectivity spectrum computed
by the B-spline modal method (continuous line) and the reflectivity
spectrum computed from the analytical expression in Eq. (1) (dashed
line with crosses). (b) Amplitude and (c) phase difference of the three
terms involved in the reflectivity expression [see Eq. (1)] as a function
of the wavelength. The reflectivity of the patterned metallic mirror rAA
remains constant in modulus and phase from 2 μm to 5 μm. At the
resonance, the two conditions for a destructive interference are met:
the phase difference is equal to π, and the amplitudes are equal.G1 and
G2 are maximal near the resonance due to a minimum of their
common denominator.
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behaving independently. This can also be explained using the
model: since each groove is independently near critical cou-
pling, it means that the two mirrors of the cavities are good
reflectors (rBB ≃ 1). So there is nearly no transmission to the
other groove (tBB ≃ 0) and subsequently no coupling. For
wider slits (w > 100 nm), the single groove is loosely coupled,
and its reflectivity at resonance increases above 60%, and for
w > 300 nm, the resonance is no longer distinguishable on the
diagram. In the two-groove structure, one of the resonances
fades away as the width is increased in the same manner as
the single-groove resonator, while the other resonance remains
in critical coupling. In this case, the reflectivity rBB is decreas-
ing, while tBB is continuously increasing, and in Eq. (3),
tBB − rBB cannot be simplified anymore. Thus, as the width
increases, both grooves are more and more coupled to each
other. Noteworthy, the resonance wavelength is nearly indepen-
dent of w (λr � 3.5 μm for w � 100 nm and λr � 3.7 μm for
w � 600 nm). This is particularly appealing from the techno-
logical point of view, since the aspect ratio of the grooves can be
decreased to one, making their fabrication much less of a chal-
lenge. Moreover, as shown in Fig. 5(c), the quality factor con-
tinuously rises with the gap width, so that it can be chosen,
independently from the wavelength, by geometric design over
a range from 11 to 75. In this particular case, it is the resonance
associated with the smaller groove that seems to fade away, but
this is in fact completely determined by the coupling between
the two grooves tBB. This last term can be engineered, for

instance, by modifying the distance between the two grooves
(while maintaining the same period), so that the second reso-
nance fades away while the first is critically coupled.

To conclude, the coupling between two loosely coupled FP-
like resonators leads to a promising behavior, where the quality
factor is strongly increased, and critical coupling is obtained for
low-aspect-ratio grooves. An analytical description of the two-
grooves system has ascribed the resonance behavior to interfer-
ences due to an equivalent three-mirrors FP system, and a sim-
ilar approach can be used for a higher number of mirrors or for
other kinds of FP nanoantennas. This approach can be gener-
alized to multicavities, which can be used to expand this effect
on multi-band resonances, and it can also be applied to trans-
mission devices. This description also paves the way to the
manipulation and the engineering of the equivalent mirror cou-
pling of the two nanocavities, in order to reach multimirror
interferences theory predictions. This structure is also very
promising for practical applications of the nanogroove system,
as it relaxes the technological constraints on the groove (wider
aperture, lower aspect ratio).

Funding. DGA-MRIS scholarship.

REFERENCES

1. C. Fabry and A. Perot, Ann. Chim. Phys 16, 115 (1899).
2. E. Schubert, N. Hunt, M. Micovic, R. Malik, D. Sivco, A. Cho, and

G. Zydzik, Science 265, 943 (1994).
3. H. Van de Stadt and J. M. Muller, J. Opt. Soc. Am. A 2, 1363 (1985).
4. J. Porto, F. Garcia-Vidal, and J. Pendry, Phys. Rev. Lett. 83, 2845

(1999).
5. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich,

T. Pertsch, F. Lederer, and K. Kern, Nano Lett. 9, 2372 (2009).
6. E. Cubukcu and F. Capasso, Appl. Phys. Lett. 95, 201101 (2009).
7. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G.

Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, Appl.
Phys. Lett. 98, 191109 (2011).

8. X. Liu, T. Starr, A. Starr, and W. Padilla, Phys. Rev. Lett. 104, 207403
(2010).

9. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard,
Opt. Lett. 37, 1038 (2012).

10. C. Koechlin, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar,
Opt. Express 21, 7025 (2013).

11. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and
S. He, Laser Photon. Rev. 8, 495 (2014).

12. M. Makhsiyan, P. Bouchon, J. Jaeck, J.-L. Pelouard, and R. Hadar,
Appl. Phys. Lett. 107, 251103 (2015).

13. H. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K.
Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa,
Appl. Phys. Lett. 92, 141114 (2008).

14. M. Knight, H. Sobhani, P. Nordlander, and N. Halas, Science 332, 702
(2011).

15. A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen,
J. Pelouard, and S. Collin, Nano Lett. 11, 3557 (2011).

16. A. Dhawan, M. Canva, and T. Vo-Dinh, Opt. Express 19, 787 (2011).
17. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids

(Academic Press, 1985).
18. S. Collin, F. Pardo, and J.-L. Pelouard, Opt. Express 15, 4310 (2007).
19. P. Bouchon, F. Pardo, R. Haïdar, and J. Pelouard, J. Opt. Soc. Am. A

27, 696 (2010).
20. Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, Sci. Rep. 3,

1194 (2013).
21. P. Lalanne, J. Hugonin, S. Astilean, M. Palamaru, and K. Möller,

J. Opt. A 2, 48 (2000).
22. S. Héron, P. Bouchon, and R. Hadar, Phys. Rev. A 94, 033831 (2016).

Fig. 5. Reflectivity diagram of the (a) one-groove structure (height
h�1�) and (b) two-groove structure as a function of the groove width w
in the 2–5 μm spectral range. Dashed lines are highlighting the near-
critical coupling zone for the one-groove system (w < 100 nm), and
the specific case investigated previously in the Letter (w � 300 nm).
(c) Evolution of the quality factor of the one-groove (dashed curve)
and two-groove (plain curve) resonance as a function of the grooves’
widths. The quality factor of the two-groove resonance keeps rising.

Letter Vol. 42, No. 24 / December 15 2017 / Optics Letters 5065


	XML ID funding

