
HAL Id: hal-01708867
https://hal.science/hal-01708867

Submitted on 16 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ShaResNet: reducing residual network parameter
number by sharingweights

Alexandre Boulch

To cite this version:
Alexandre Boulch. ShaResNet: reducing residual network parameter number by sharingweights. Pat-
tern Recognition Letters, 2018, page 53 - 59. �10.1016/j.patrec.2018.01.006�. �hal-01708867�

https://hal.science/hal-01708867
https://hal.archives-ouvertes.fr


ShaResNet: reducing residual network parameter number by
sharing weights

Alexandre Boulch
ONERA, The French Aerospace Lab, F-91761 Palaiseau, France

Abstract

Deep Residual Networks have reached the state of
the art in many image processing tasks such im-
age classification. However, the cost for a gain
in accuracy in terms of depth and memory is pro-
hibitive as it requires a higher number of residual
blocks, up to double the initial value. To tackle this
problem, we propose in this paper a way to reduce
the redundant information of the networks. We
share the weights of convolutional layers between
residual blocks operating at the same spatial scale.
The signal flows multiple times in the same con-
volutional layer. The resulting architecture, called
ShaResNet, contains block specific layers and shared
layers. These ShaResNet are trained exactly in the
same fashion as the commonly used residual net-
works. We show, on the one hand, that they are
almost as efficient as their sequential counterparts
while involving less parameters, and on the other
hand that they are more efficient than a residual
network with the same number of parameters. For
example, a 152-layer-deep residual network can be
reduced to 106 convolutional layers, i.e. a parameter
gain of 39%, while loosing less than 0.2% accuracy
on ImageNet.

1 Introduction

Convolutional Neural Networks (CNNs) are now
widely used for image processing tasks from clas-

sification [LBBH98] and object detection [GDDM14,
RHGS15] to semantic segmentation [BKC15, ASL16].
Their utilisation even generalizes to other fields
where data can be represented as tensors like in
point cloud processing [BM16] or 3D shape style
identification [LGK16]. Today's network architec-
tures still carry a strong inheritance of the CNN early
stage designs. They are based on stacking convolu-
tional, activation and dimensionality reduction lay-
ers. Over the past years, the progress in image pro-
cessing tasks went together with a gradual increase
in the number of layers, from AlexNet [KSH12] to
Residual networks [HZRS16a] (ResNets) that may
contain up to hundreds of convolutions.

Practical use of such networks may be challeng-
ing when using low memory system, such as au-
tonomous vehicles, both for optimization and infer-
ence. Moreoever, from a biological point of view, a
higher number of stacked layers leads to networks
further from the original underlying idea of neural
networks: biological brain mimicry. According to
the current knowledge of the brain, cerebral cortex
is composed of a low number of layers where the
neurons are highly connected. Moreover the signal
is also allowed to recursively go through the same
neurons. In that sense recurrent neural networks are
much closer to the brain structure but more difficult
to optimize [BSF94, HS97].

Looking more closely at the repetition of resid-
ual blocks in ResNets, it could somehow be inter-
preted as an unwrapped recurrent neural networks.
This constatation raises questions such as "how sim-
ilar are the weights of the blocks ?", "do the same parts of
the blocks operate similar operations ?" and in the later
case "is it possible to reduce the parameter number of a
residual network ?". Driven by these observations and

1



Stage 1
Data

preparation

Stage 2
Residual

blocks with
sharing

Stage 3
Residual

blocks with
sharing

Stage 4
Residual

blocks with
sharing

Stage 5
Residual

blocks with
sharing

Stage 6
Classification

Color code: green convolutions are shared between
several residual blocks, red blocks are spatial

dimensionality reductions (covolution or pooling), blue
ones are the other convolutions and the yellow block is

the classifier, average pooling or fully connected.

Figure 1: 3D representation of a residual network
with shared convolution.

questions, we present a new network architecture
based on residual networks where part of the convo-
lutions share weights, called ShaResNets. It results in
a great decrease of the number of network param-
eters, from 25% to 45% depending on the size of
the original architecture. Our networks also present
a better ratio performances over parameter num-
ber while downgrading the absolute performance
by less than 1%.

The paper is organized as follow: section 2
presents the related work on convolutional neural
networks (CNNs) ; the ShaResNets are presented in
section 3 and finally, in section 4, we expose our ex-
perimentations on classification datasets CIFAR 10
and 100 and ILSVRC Imagenet.

2 Related work

CNNs were introduced in [LBD+89] for hand written
digits recognition. They became over the past years
one of the most enthusiastic field of deep learn-
ing [LBH15]. The CNNs are usually built using a com-
mon framework. They contains many convolutional
layers and operate a gradual spatial dimension re-
duction using convolutional strides or pooling lay-
ers [CMS12, JKL+09]. This structure naturally inte-
grates low/mid/high level features along with a di-
mension compression before ending with a classi-
fier, commonly a perceptron [Ros57], multi-layered
or not, i.e. one or more fully connected layers.

Looking at the evolution CNNs, the depth ap-
pears to be a key feature. On challenging image
processing tasks, an increase of performance is of-
ten related to a deeper network. As an example,
AlexNet [KSH12] has 5 convolutions while VGG16
and VGG19 [SZ14] have respectively 16 and 19 con-
volutional layers and more recently, in [HSL+16], the
authors train a 1200 layer deep network.

Variations in the LeNet structure have also been
used to improve convergence. In a Network in Net-
work (NiN) [LCY14], convolutions are mapped with a
multilayer perceptron (1x1 convolutions), which pre-
vent overfitting and improved accuracy on datasets
such as CIFAR [KH09]. GoogLeNet [SLJ+15] intro-
duced a multiscale approach using the inception
module, composed of parallel convolutions with dif-

2



ferent kernel sizes.
Optimizing such deep architectures can face prac-

tical problems such as overfitting or vanishing or ex-
ploding gradients. To overcome these issues, several
solutions have been proposed such as enhance opti-
mizers [SMDH13], dropout [SHK+14] applying a ran-
dom reduction of the number of connection in fully
connected layers or on convolutional layers [ZK16],
intelligent initialization strategies [GB10] or train-
ing sub-networks with stochastic depth [HSL+16].

Residual networks [HZRS16a] achieved the state
of the art in many recognition tasks including Ima-
genet [RDS+15] and COCO [LMB+14]. They proved
to be easier to optimize. One of the particularities
of these networks is to be very deep, up to hun-
dreds of residual layers. More recently, the authors
of [ZK16] introduced wide residual networks which
reduce the depth compared to usual resnets by us-
ing wider convolutional blocks.

To balance the increasing size of CNNs, vari-
ous work consider reducing the weight number of
the network to reduce memory size and or testing
speed. We can distinguish three categories. The
first kind of approaches consists in statically mod-
ifying the architecture to get lighter networks, e.g.
the replacement of the fully connected layers by av-
erage pooling [SLJ+15, HZRS16a], the replacement
and factorization of convolutions [SVI+16] or the
weights constrained to be binary [RORF16, CB16].
This work follows this approach as we modify the in-
ternal structure of the residual networks to make it
lighter. The second category regroups works that dy-
namically modify the network at training. Among
them, [CK14] alternate between regularization and
neuron deactivation (forcing weights to zero) to pro-
gressively reduce the number of neurons. In Hash-
nets [CWT+15] uses a hash function to regroup con-
nections that will share the same weights. Finally
the third category post process the network to com-
press it. Some consider weight pruning [SB15, Pra89]
and sparsification [LWF+15]. Other try to compress
the data via weight matrix factorization [GLYB14,
WLW+16, KPY+15]. [HMD15] remove redundant
connections and allow weight sharing, As for dy-
namical network modifications, these compression
methods may also apply to our proposed architec-
tures and add a compression step to our optimized

ResNet architecture.

3 Sharing Residual Networks
ShaResNets are based on residual networks archi-
tectures in which we force the residual blocks in the
same stage, i.e. between two spatial dimension re-
duction, to share the weights of one convolution. In
this section, we first present the residual architec-
tures we based our work on, and then, detail the
sharing process.

3.1 Residual networks.
The residual networks basic without [HZRS16a] or
with pre-activation [HZRS16b] or wide [ZK16] are a
sequential stack of residual blocks, with several con-
volution layers bypassed by parallel branch. The
output of block k,xk+1 can be represented as:

xk+1 = xk + F(xk,Wk) (1)

where xk is the input (output of block k − 1), F is
the residual function andWk are the parameters of
the residual unit. Among them two types of residual
blocks are used in this paper.

• basic composed of two consecutive 3x3 convo-
lutions.

• bottleneck composed of one 3x3 convolution
surrounded by two 1x1 convolutions for reduc-
ing and then expanding the dimensionality.

A common element of the convolutional structure in
the residual blocks is at least a 3x3 convolution. This
convolution allows a neighborhood connection so
that the final decision is taken using neighborhood
relations between pixels and not only independent
pixel values.

Figure 2 describes the blocks composing the net-
works presented in this paper. We used two imple-
mentations, depending on the datasets (CIFAR 10-
100 and ImageNet) to fit the original network struc-
ture we will compare to (section 4). They differ in
the position of batch normalization and ReLU, be-
fore convolutions for CIFAR datasets and after for
ImageNet.

3



+

Conv 3x3 + BN

Conv 3x3 + BN + ReLU

ReLU

+
Conv 1x1 + BN

Conv 1x1 + BN + ReLU

Conv 3x3 + BN + ReLU

ReLU

+
BN + ReLU + Conv 3x3

Dropout

BN + ReLU + Conv 3x3

+
BN + ReLU + Conv 1x1

BN + ReLU + Conv 1x1

BN + ReLU + Conv 3x3

From left to right: Basic Residual Block (ImageNet), Basic Wide Residual Block with optional dropout (CIFAR),
Bottleneck Residual Block (ImageNet and CIFAR) and Pre-activation Residual Block (CIFAR).

Figure 2: Residual blocks used for evaluation.

3.2 Sharing weights

+
1x1

1x1

3x3

+
1x1

1x1

3x3
Block specific
convolutions

+

3x3

3x3

+

3x3

3x3
Spatial relations

(a) On the left, the original residual block (top: bot-
tleneck, bottom: basic) and on the right, the block
discrimination operated before sharing: block spe-
cific and spatial relations.

+

+

+

3x3 shared

(b) The spatial relations are shared between all the
residual blocks of the same stage (between two spa-
tial dimension reduction).

Figure 3: Block specific operations and spatial oper-
ations to shared residual block.

The underlying idea of our approach is that it is
possible to somehow distinguish two types of mech-
anisms in a residual block. The first, specific to the
block, is the abstraction of the residual block. From

block to block, it created higher level features. The
second, redundant in the blocks of the same stage, is
the spatial connection relations between neighbor-
ing tensor cells, between pixels. The equation 1 be-
comes:

xs,k+1 = xs,k + F(xs,k,Ws,k,Ws) (2)

where xs,k (resp. xs,k+1) is the input (resp. the out-
put) of block (k, s),k-th residual unit of stage s.Wk

of equation 1 is split intoWk,s, the parameters spe-
cific to the residual block and Ws the parameters
shared at the stage level.

In ResNets, the spatial information is taken into
account in the 3x3 convolutions and in the layers
with dimension reduction (convolution with stride
or pooling layers). We first look at the bottleneck
block, composed of 3 convolutions (1x1, 3x3 and 1x1).
The fictive separation between spatial connection
and specific operations is easy as the 1x1 convolution
do not connect neighboring cells. This is the top line
of figure 3(a). Then, for all spatial connections in the
same stage, i.e. for all the blocks between two pool-
ing layers (or convolution with stride), we share the
weights. By using a unique 3x3 convolution, we con-
sider that all the spatial connections of a given stage
can be explained by a common set of kernels (fig-
ure 3(b)).

We adapt the approach to the basic residual
block. As it is composed of two 3x3 convolutions, ex-
tracting the spatial component is not possible. Still,
we adopt a similar approach, the first convolution is
considered as specific and the second is shared with
the blocks of the same stage (figure 3, bottom line).

In the two cases, we obtain a similar global archi-
tecture represented in figure 1. For each stage, the
green convolution is common to all block while the

4



specific items are blue (the number of specific items
depends on the architecture choice). The red blocks
are the dimensionality reduction layers and the yel-
low one would be either a multi-layer perceptron or
an average pooling.

3.3 Gradient propagation

In modern neural network frameworks, the back-
ward stage is a two step process: gradient compu-
tation and actual weight update.In our implemen-
tation, the spatial connection layers share weights
as well as gradients. At gradient computation, a
storage tensor (initialized to zero) is first created for
each weight matrix, in our case one tensor for all
the convolutional layers sharing the same weights.
Then the gradients for each layer are progressively
computed from the network output to the input and
added to the storage tensor, such that, for the shared
convolution at stage s:

∇Ws =
∑
i∈S

∇WsJ(Ws,i) (3)

where i stands for the index of the block of stage s
and J(Ws,k) is the objective function.

Finally at weight update step, the weight are
modified in the same fashion as with usual non
shared convolution according to the optimizer up-
date rule. In our implementation with stochastic
gradient descent with momentum the update rule
at time t is the same for all layers l:

vl,t = γvl,t−1 + α∇Wl,t
(4)

Wl = Wl − vl (5)

whereγ is the momentum,α is the learning rate and
v is the velocity vector.

4 Experimental results

4.1 Datasets and architectures

We experiment on three dataset, CIFAR 10, CIFAR
100 and ImageNet. We propose evaluations consist-
ing into a comparison between the ShaResNets and
their ResNet counterpart.

CIFAR 10 and 100 are two datasets containing
50000 images for training and 10000 for test. In
order to show that our sharing process can be gen-
eralized to different residual architectures, we use
ResNets and Wide ResNets:

• The ResNets implementation (ResNet-164)
with 164 convolutions is a good example
of very deep network for CIFAR 10 dataset,
based on basic residual blocks. (figure 2 first
column).

• Wide residual networks are not as deep as the
previous but are composed of wider convolu-
tions (more convolutional planes). We present
results with two depth: 40 (WRN-40-4) for
CIFAR 10 and 28 (WRN-28-10) for CIFAR 100.
These are based on the wide residual block (fig-
ure 2 second column). The dropout is only acti-
vated for CIFAR 100.

Imagenet is a much bigger dataset, with more
than one million training images and 1000 classes.
We experiment with residual networks of differ-
ent depth: 34 (ResNet-34) with basic block (fig-
ure 2 third column), 50, 101 and 152 (ResNet-50 and
ResNet-152) with bottleneck block (figure 2 last col-
umn).

4.2 Parameter number reduction

This section deals with the consequences of shar-
ing convolutional weights on the network parame-
ter number. Using one convolution for the spatial
relations per stage instead of one per block reduce
significantly the size of the network. Comparatively,
the deeper the ResNet is the the bigger the gain is for
its ShaResNet version.

Table 1 shows the figures for the different ar-
chitectures and datasets. As expected, the gain is
substantial, from 20% for ResNet-50 (ImageNet)
to 45% for ResNet-164 (CIFAR). The convolution
number in the table expresses the number of inde-
pendant convolutionnal layers, the shared convolu-
tional layers are counted once.

5



Dataset Model Parameter number Parameter Convolution nbr.
Orignal ShaResNet decrease Orignal ShaResNet

CIFAR 10 ResNet-164 1.70M 0.93M 45% 164 113
WRN-40-4 8.95M 5.85M 35% 40 25

CIFAR 100 WRN-28-10 36.54M 26.86M 26% 28 19

IMAGENET

ResNet-34 21.8M 13.6M 37% 34 20
ResNet-50 25.6M 20.5M 20% 50 38
ResNet-101 44.5M 29.4M 33% 101 72
ResNet-152 60.2M 36.8M 39% 152 106

Table 1: Number of parameters of the networks.

4.3 Training

ShaResNet are trained using the same training
process as their non-shared counterpart. We used
a stochastic gradient descent with momentum
and step dropping learning rate policy. CIFAR
models were trained with whitened data from
PyLearn2 [GWFL+13] and we applied a random
horizontal flip on the input image to simulate a
larger training dataset and avoid over-fitting. For
ImageNet, we adopted a similar approach, we
apply on the input image a random crop, random
contrast, lighting and color normalization as well
as horizontal flip. According to our experiments,
the behaviors of our networks are very similar to
the original ones. Figure 4 presents the testing
accuracy plots obtained on the CIFAR datasets. The
gradient accumulation at shared convolutions does
not induces instabilities at both training and testing
time. The top sub-figure shows the test accuracy
of the ResNet-164 architecture on CIFAR-10. Blue
curves are the original version [HZRS16a] (third
architecture on figure 2) and red the shared version.
The plane line is the mean over 5 runs, the colored
area represents the standar deviation around the
mean. The dot curve curve is the pre-activation
version from [HZRS16b] (fourth architecture on
figure 2). The two shared architectures perform
similarly to their original counter part. The bot-
tom sub-figure presents another experiment on
CIFAR-100. We use the Wide ResNet with a widen
factor 10 and depth 28, curves are mean over 6 runs.
As to the non-shared version, adding a dropout
(plain line) increases the performance. However the
effect is less significant and while models performs

almost the same without dropout, dropout make
the original version overcomes the shared one.

4.4 Accuracy

Quantitative evaluation of the networks are pre-
sented on table 2. On all these experiments, the top-
1 decrease by less than 1% when using the ShaRes-
Net version of the algorithm. The gap between orig-
inal and shared version is lower on ImageNet and CI-
FAR 100. This is to be related to the sizes of the net-
works.

The CIFAR 10 networks are smaller than the oth-
ers (less than 10M parameters). To our understand-
ing, smaller residual networks induces less redun-
dancy, so that reducing the number of parameters
only reduce the learning capacity. On the contrary,
large networks such as wide residual network with
large widening factor or residual networks for Im-
ageNet are more subject to redundant parameters.
In that case, sharing weights makes more sense, like
for CIFAR 100 where the accuracy gap is only of0.2%
with parameters reduced by 26%.

Compared to sequential networks, sharing spa-
tial connections at stage level induces a loss of accu-
racy at test time. We now compare our ShaResNets
to less deep networks with a similar number of pa-
rameters. Table 3 shows these results for CIFAR. For
each shared architecture, we compare its sequen-
tial counterpart with reduced depth. We can draw
similar conclusion as in the first paragraph. Sharing
weights on relatively small architectures (CIFAR 10)
is not more efficient than using a less deep network.
On the contrary, Wide ResNet with a widen factor of
10 (CIFAR 100) gets a boost in accuracy using shared

6



Dataset Model Error top 1 (%) Error top 5 (%)
Orig. Share. Diff. Orig. Share. Diff.

CIFAR 10 ResNet-164 94.54 93.8 0.74
WRN-40-4 95.83 94.9 0.93

CIFAR 100 WRN-28-10 Drop. 80 79.8 0.2

IMAGENET

ResNet-34 26.73 28.25 0.52 8.74 9.42 0.66
ResNet-50 24.01 24.61 0.6 7.02 7.41 0.39
ResNet-101 22.44 22.91 0.47 6.21 6.55 0.34
ResNet-152 22.16 22.23 0.07 6.16 6.14 −0.02

Table 2: Accuracy on CIFAR and ImageNet. Error percentage (top 1 and top 5) and gap between original and
shared version.

convolutions. Deeper networks benefit from mutu-
alisation of spatial relations, the weights are better
used, i.e. the ratio accuracy over network size gets
better.

Dataset Model Param. Acc.

CIFAR 10

ResNet-164 Share 0.93 M 93.8
ResNet-92 0.96 M 93.9

WRN-40-4 Share 5.85 M 94.9
WRN-28-4 5.85 M 95.0

CIFAR 100 WRN-28-10 Share 26.86 M 79.8
WRN-22-10 26.85 M 79.55

Table 3: Comparison of accuracies between ShaRes-
Net and ResNets with equivalent size.

On Imagenet, table 2 underlines that the shar-
ing is more efficient as the network goes larger. We
even reach similar accuracy (less than 0.2% drop) for
the 152 layer architecture. The figure 5 presents the
top-1 error function of the weight on ImageNet. The
shared architectures plot (green curve) is situated
under the blue curve (residual networks). It illus-
trates that for large networks, shared networks are
more efficient than their sequential peers with sim-
ilar number of parameters. For comparison, we also
add the Inception v2 [SVI+16] model performance,
in which the authors perform convolution factoriza-
tion at inception module level to reduce model size.

Timings By reducing the number of parameters in
the network and smoothing the gradients (by aver-
aging) at the shared convolution, a gain in training
times would be expected. From figure 4, it is ob-

viously not the case, and the same behavior is ob-
served on ImageNet too. Our interpretation is that,
at block level, due to the sharing, the weight update
may not correspond to the local expected direction
of the gradient. In this case, local convolutions (not
shared) need to constantly adapt to the new behav-
ior of the shared ones. This latency may explain the
similar timings.

4.5 Limitations and perspectives

We have shown in the previous section that residual
networks with shared spatial connections are partic-
ularly efficient on large networks: given a number
of parameters, ShaResNets are more efficient (fig-
ure 5). However, they induce a loss in terms of accu-
racy sometimes even leading to performances sim-
ilar to networks with reduced depth (CIFAR 10 net-
works). The conclusions we can draw is that, first,
in relatively small networks parameters are used to
their potential or at least that redundant spatial
connectivities are fewer in number than for large
networks.

Second, we chose an arbitrary shared structure.
We considered the 3x3 convolutions to operate sim-
ilar operations for all blocks in the same stage. This
assumption may be too restrictive. In our future
work we will investigate flexible shared networks,
where the sharing rate would be adaptive, function
of the noise, the position in the stage and classifica-
tion dataset (image size, class number). Moreover,
we would also investigate other possible splits be-
tween spatial relations and block specific operations
that would require to modify the basic or bottleneck

7



Figure 4: Test accuracies on CIFAR 10 (top) and cifar
100 (bottom).

Inception v2

Red: SRN 50 performs better than RN 34 with less
param.

Magenta: SRN 152 and RN 152 have similar
performances.

Figure 5: Top 1 error (%) of ShaResNet and ResNets
function of the model size (millions of parameters).

residual block structure, for example using channel
wise convolution as spatial relations and 1x1 convo-
lution for information abstraction.

Finally, considering only network compression, it
will be interesting to test our ShaResNets with com-
pression method mentioned in the related work.

5 Conclusion

In this paper, we introduced the ShaResNet, a new
convolutional neural network architecture based on
residual networks. By sharing convolutions be-
tween residual blocks, we create neural architec-
tures lighter than their sequential residual counter-
part by 25% to 45% in terms of number of param-
eters. The training of such network is as easy as
with common residual networks. We experimented
on three classification datasets. Shared residual ar-
chitecture proved to be efficient for large networks.
We observed an accuracy gap to the corresponding
residual architecture of less than 1% for a substan-
tial size reduction. By exploiting the redundant re-
lations of 3x3 convolutions between residual blocks,
the ShaResNets make better use of the optimizable
weights. With an equivalent parameter number, we
obtain better results. We hope that these findings
will help further investigation in image processing
and more generally in deep learning research.

Implementation details

The experiments uses Torch7. Our code for CI-
FAR 10 and 100 experiments is based on the
original implementations at github.com/
szagoruyko/wide-residual-networks) and
github.com/facebook/fb.resnet.torch.
The code is available online at github.com/
aboulch/sharesnet.

Acknowledgements

This work is part of the DeLTA research project at
ONERA delta-onera.github.io aiming at ex-
ploring machine learning approaches for aerospace
applications.

8

github.com/szagoruyko/wide-residual- networks
github.com/szagoruyko/wide-residual- networks
github.com/aboulch/sharesnet
github.com/aboulch/sharesnet
delta-onera.github.io


References
[ASL16] Nicolas Audebert, Bertrand Le Saux, and

Sébastien Lefevre. Semantic Segmentation of
Earth Observation Data Using Multimodal and
Multi-scale Deep Networks. Asian Conference in
Computer Vision, 2016.

[BKC15] Vijay Badrinarayanan, Alex Kendall, and Roberto
Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation.
arXiv preprint arXiv:1511.00561, 2015.

[BM16] Alexandre Boulch and Renaud Marlet. Deep
learning for robust normal estimation in unstruc-
tured point clouds. In Computer Graphics Forum,
volume 35, pages 281–290, 2016.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Fras-
coni. Learning long-term dependencies with gra-
dient descent is difficult, 1994.

[CB16] Matthieu Courbariaux and Yoshua Bengio. Bi-
narynet: Training deep neural networks with
weights and activations constrained to +1 or -1.
CoRR, abs/1602.02830, 2016.

[CK14] Maxwell D Collins and Pushmeet Kohli. Mem-
ory bounded deep convolutional networks. arXiv
preprint arXiv:1412.1442, 2014.

[CMS12] Dan Ciregan, Ueli Meier, and Jürgen Schmidhu-
ber. Multi-column deep neural networks for im-
age classification. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages
3642–3649. IEEE, 2012.

[CWT+15] Wenlin Chen, James Wilson, Stephen Tyree, Kil-
ian Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In Interna-
tional Conference on Machine Learning, pages 2285–
2294, 2015.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding
the difficulty of training deep feedforward neural
networks. In Aistats, volume 9, pages 249–256,
2010.

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and
Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmenta-
tion. In Computer Vision and Pattern Recognition,
2014.

[GLYB14] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir
Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint
arXiv:1412.6115, 2014.

[GWFL+13] Ian J. Goodfellow, David Warde-Farley, Pascal
Lamblin, Vincent Dumoulin, Mehdi Mirza, Raz-
van Pascanu, James Bergstra, Frédéric Bastien,
and Yoshua Bengio. Pylearn2: a machine learning

research library. arXiv preprint arXiv:1308.4214,
2013.

[HMD15] Song Han, Huizi Mao, and William J Dally. Deep
compression: Compressing deep neural network
with pruning, trained quantization and huffman
coding. CoRR, abs/1510.00149, 2, 2015.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber.
Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[HSL+16] Gao Huang, Yu Sun, Zhuang Liu, Daniel Se-
dra, and Kilian Weinberger. Deep networks
with stochastic depth. NIPS 2016, arXiv preprint
arXiv:1603.09382, 2016.

[HZRS16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition
(CVPR), 2016 IEEE Conference on, 2016.

[HZRS16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Identity Mappings in Deep Residual Net-
works, pages 630–645. Springer International
Publishing, 2016.

[JKL+09] Kevin Jarrett, Koray Kavukcuoglu, Yann Lecun,
et al. What is the best multi-stage architecture
for object recognition? In 2009 IEEE 12th Interna-
tional Conference on Computer Vision, pages 2146–
2153. IEEE, 2009.

[KH09] Alex Krizhevsky and Geoffrey Hinton. Learn-
ing multiple layers of features from tiny images.
2009.

[KPY+15] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo,
Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks
for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105,
2012.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropaga-
tion applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hin-
ton. Deep learning. Nature, 521(7553):436–444,
2015.

9



[LCY14] Min Lin, Qiang Chen, and Shuicheng Yan.
Network in network. ICLR, arXiv preprint
arXiv:1312.4400, 2014.

[LGK16] Isaak Lim, Anne Gehre, and Leif Kobbelt. Identi-
fying Style of 3D Shapes using Deep Metric Learn-
ing. Computer Graphics Forum, 2016.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie,
James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European Confer-
ence on Computer Vision, pages 740–755. Springer,
2014.

[LWF+15] Baoyuan Liu, Min Wang, Hassan Foroosh, Mar-
shall Tappen, and Marianna Pensky. Sparse con-
volutional neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 806–814, 2015.

[Pra89] Lorien Y Pratt. Comparing biases for minimal net-
work construction with back-propagation, volume 1.
Morgan Kaufmann Pub, 1989.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and
Jian Sun. Faster R-CNN: Towards real-time ob-
ject detection with region proposal networks. In
Advances in Neural Information Processing Systems
(NIPS), 2015.

[RORF16] Mohammad Rastegari, Vicente Ordonez, Joseph
Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural
networks. CoRR, abs/1603.05279, 2016.

[Ros57] Frank Rosenblatt. The perceptron, a perceiving and
recognizing automaton Project Para. Cornell Aero-
nautical Laboratory, 1957.

[SB15] Suraj Srinivas and R Venkatesh Babu. Data-
free parameter pruning for deep neural networks.
arXiv preprint arXiv:1507.06149, 2015.

[SHK+14] Nitish Srivastava, Geoffrey E Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1–9, 2015.

[SMDH13] Ilya Sutskever, James Martens, George E Dahl, and
Geoffrey E Hinton. On the importance of initial-
ization and momentum in deep learning. ICML
(3), 28:1139–1147, 2013.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer
vision. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition,, 2016.

[SZ14] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale im-
age recognition. arXiv preprint arXiv:1409.1556,
2014.

[WLW+16] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao
Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4820–4828, 2016.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide
residual networks. BMVC, 2016.

10


	Introduction
	Related work
	Sharing Residual Networks
	Residual networks. 
	Sharing weights
	Gradient propagation

	Experimental results
	Datasets and architectures
	Parameter number reduction
	Training
	Accuracy
	Limitations and perspectives

	Conclusion

