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Short Summary 

Numerous processes drive the global spatial distribution of phosphorus (P) in agricultural 

soils, but their relative roles remain unclear. Thanks to a modelling approach, we found that 
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almost all of the variability of the cropland soil total P could be explained by the distribution 

of the soil biogeochemical background (BIOG), while both BIOG and farming practices ex-

plained the spatial variability of the fraction of total P involved in plant nutrition. Our work 

showed how the different drivers were combined to explain the global distribution of agricul-

tural soil P, which is useful for further investigations on the limiting effect of P on global crop 

production. 

 

Abstract Figure 

Phosphorus in agricultural soils: drivers of its distribution at the global scale; B. Ringeval*, L. 

Augusto, H. Monod, D. van Apeldoorn, L. Bouwman, X. Yang, D.L. Achat, L.P. Chini, K. 

Van Oost, B. Guenet, R. Wang, B. Decharme, T. Nesme, S. Pellerin. 

Numerous processes drive the global spatial distribution of phosphorus (P) in agricultural 

soils, but their relative roles remain unclear. Thanks to a modelling approach, we found that 

almost all of the global spatial variability of total soil P in cropland soils (PTOT) could be ex-

plained by the distribution of the soil biogeochemical background (that determines the P con-

tent of soils at the conversion to agriculture, BIOG), while both BIOG and farming practices 

(FARM) explained the spatial variability of inorganic labile P (PILAB) (~40% and ~60%, re-

spectively). 

 

Abstract 

Phosphorus (P) availability in soils limits crop yields in many regions of the world, while ex-

cess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the 

global spatial distribution of P in agricultural soils, but their relative roles remain unclear. 

Here, we combined several global datasets describing these drivers with a soil P dynamics 

model to simulate the distribution of P in agricultural soils and to assess the contributions of 
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the different drivers at the global scale. We analyzed both the labile inorganic P (PILAB), a 

proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil 

biogeochemical background corresponding to P inherited from natural soils at the conversion 

to agriculture (BIOG) and farming practices (FARM) were the main drivers of the spatial var-

iability in cropland soil P content but that their contribution varied between PTOT vs PILAB. 

When the spatial variability was computed between grid-cells at half degree resolution, we 

found that almost all of the PTOT spatial variability could be explained by BIOG, while BIOG 

and FARM explained 38% and 63% of PILAB spatial variability, respectively. Our work also 

showed that the driver contribution was sensitive to the spatial scale characterizing the varia-

bility (grid-cell vs. continent) and to the region of interest (global vs. tropics for instance). In 

particular, the heterogeneity of farming practices between continents was large enough to 

make FARM contribute to the variability of PTOT at that scale. We thus demonstrated how the 

different drivers were combined to explain the global distribution of agricultural soil P. Our 

study is also a promising approach to investigate the potential effect of P as a limiting factor 

for agroecosystems at the global scale. 

 

Introduction 

Global nutrient management is a key question for agronomists working on global food securi-

ty (Mueller et al., 2012; Makowski et al., 2013). This is crucial for phosphorus (P), which 

limits net primary production, and for which access to its sources is becoming increasingly 

uncertain due to limited rock phosphate supplies and potential geopolitical issues (Peñuelas et 

al., 2013). In undisturbed terrestrial ecosystems, soil P is often limiting (Elser et al., 2007), 

either because the amount of total P is low or because P is in forms that are not available for 

plants (Walker & Syers, 1976). In agroecosystems, the export of P due to harvesting tends to 

increase the soil P limitation and to maintain high crop yields, P is often supplied in the form 
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of chemical fertilizers or animal manure. In the 2000s, chemical P fertilizer application aver-

aged 10kgP/ha/yr at the global scale, but showed a large heterogeneity, with a supply of 25 

kgP/ha/yr in Europe vs 3 kgP/ha/yr in Africa (Liu et al., 2008). A deficit in available soil P 

leads to a loss of attainable yield (Mueller et al., 2012) while an excess of total P in soils 

could trigger aquatic eutrophication in surrounding water bodies through runoff and water 

erosion (Schindler et al., 2008). The P content of agricultural soils is thus an index for agri-

cultural soil fertility, as well as an important variable affecting water quality. High-resolution 

assessment of the current distribution of P in agricultural soils at the global scale is critical for 

the identification of areas where P is in a state of imbalance and mitigation is needed. How-

ever, such an assessment has not been possible up to now due to limited data availability and 

poor understanding of soil P dynamics at large scales. 

 

The P-content of soils in currently unmanaged ecosystems can be considered to be the result 

of transformations that occur on a geological time-scale. While P in unmanaged soils can be 

predicted from local soil properties (Yang et al., 2013), this approach cannot be used for agri-

cultural systems because humans have altered the P cycle in these ecosystems (Elser & Ben-

nett, 2011) and changed the spatial distribution of P in soils. In fact, numerous long-term, in-

teracting and highly spatially variable processes drive the P content in agricultural soils 

across the world. For instance, farming practices (e.g. the amount of fertilizer applied) have 

the potential to re-shape both total and available soil P (Sattari et al., 2012). Agricultural soils 

are subjected to erosion rates, which are typically one order of magnitude higher than those 

occurring in unmanaged soils, potentially leading to high P losses (Quinton et al., 2010). At-

mospheric P deposition has increased with anthropogenic emissions and is likely to play an 

increasing role in soil P budgets (Wang et al., 2014). Internal soil dynamics processes, which 

are known to have small effects on total soil P, have the potential to modify the redistribution 
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of P within the different soil pools and thus, to modulate plant available P. Such soil dynamics 

depend on the soil buffering capacity (Vitousek et al., 2010) and soil meteorological condi-

tions (Buendía et al., 2010), both varying spatially. Finally, land use and land cover change 

tend to modify the P content of agroecosystems due to the conversion of natural lands with 

their original soil P contents, into cultivated areas (Mackenzie et al., 2002; MacDonald et al., 

2012). While in a given context some drivers could a priori be neglected as compared to oth-

ers (e.g. local ratio of deposition to chemical fertilizer equal to 0.03 in countries with inten-

sive agriculture), this could vary from one location to the other. In addition, many of these 

drivers have varied over time (Ringeval et al., 2014), thereby making their relative contribu-

tion to the current global distribution of P in agricultural soils extremely difficult to decipher. 

Several studies have attempted to model part of the P cycle at the global scale. Some of them 

focused on a given driver, taken separately (e.g. (MacDonald et al., 2011) focused on farming 

practices) and showed that the different drivers are characterized by a large spatial heteroge-

neity across the world. However, no study has provided an integrated assessment of the com-

bination of these drivers. Here, we built a simple, process-based soil P dynamics model that 

enabled the combination of various recent spatially explicit global datasets to reconstruct the 

temporal evolution of P in agricultural soils during the 20th century. These global datasets en-

abled us to represent the drivers that are known to play a role in the current global distribu-

tion of P in agricultural soils. Our analyses focused on the distribution of total soil P and more 

labile P involved in plant nutrition. We first calibrated the soil P dynamics model against ob-

servations on sites. Simulated global maps of agricultural soil P were then analysed, particu-

lar attention being paid to uncertainty in the simulated soil P resulting from uncertainty in the 

drivers. Finally, as the core of our study, a sensitivity analysis based on a full factorial design 

where each driver was either variable or constant in space, was performed to estimate the 

contribution of each driver to the current distribution of agricultural soil P. 
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Materials and Methods 

Modelling framework 

The system that was modelled comprised P in the top 0-0.3m horizon of agricultural soils. In 

agricultural soils, P availability and root uptake decline substantially below the plough layer 

(Lynch & Brown, 2001) and long term fertilization trials show that contrasted fertilization 

regimes mainly affect the P availability in the plough layer with very little effect in deeper 

layers (Messiga et al., 2012; Li et al., 2017). Thus, the system modelled should ideally be the 

plough layer. However, the thickness of the plough layer shows strong variations in time and 

space as a function of the farming practices (Brandsæter et al., 2011; Gronle et al., 2015; 

Alcántara et al., 2016) and no spatially explicit dataset providing plough depth was available 

at the global scale. We thus chose to represent the soil horizon corresponding to a fixed thick-

ness of 0.3m which, at the global scale, is considered as encompassing a major proportion of 

crop roots (Jackson et al., 1996). The sensitivity of our results to the thickness of the soil 

horizon modelled is assessed and discussed in the following sections. No vertical discretisa-

tion was considered. Our modelling framework worked at half-degree fractional resolution 

(0.5° latitude x 0.5° longitude). Cropland and pasture soils were distinguished in each grid-

cell. Soil P pools were expressed in kgP/ha while fluxes were given in kgP/ha/yr. The model-

ling framework, resulting from the combination of a soil P dynamics model and global da-

tasets, was run at 1-year time intervals. 

 

The spatially explicit global datasets used in this study enabled us to represent the drivers that 

are known to play a role in shaping the P in agricultural soils over the last centuries and ex-

plain the current global distribution: the soil biogeochemical background corresponding to P 

inherited from natural soils at the conversion to agriculture (BIOG), soil P input/output corre-

sponding to farming practices (FARM), land use and land cover change (LUCC), soil water 
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content and temperature affecting weathering and mineralization of organic matter (CLIM), 

losses of P through soil erosion (LOSS), atmospheric P deposition (DEPO) and soil buffering 

capacity (BUFF). The different drivers and their representations are described in Table 1. The 

datasets resulted from the combination of different measurements (satellites, on site meas-

urements, etc.), and/or model simulations. All datasets were re-gridded to a half-degree reso-

lution. More details about each dataset are provided in the Supporting Information. 

 

While we focused on soil P of cropland and pasture, four land fractions were considered in 

each grid-cell to represent the land use and land cover change. These land fractions were: 

cropland (C), pasture (P), non-agricultural vegetated areas (NA) and urban areas (U). NA ac-

tually included both undisturbed and secondary vegetation re-growing in its natural state. For 

a given grid-cell, at the beginning of each time-step y (y represents a specific year in the 

model), the effect of land use and land cover change on the evolution of each soil P pool was 

represented by equation (1): ܲ஼(ݕ) = [ܲ஼(ݕ − 1). (݂஼(ݕ − 1) − ∑௜∈௉,ே஺,௎ Δ஼௜ ) + ∑ ܲ௜(ݕ − 1). Δ௜஼௜∈௉,ே஺,௎ ] ݂஼⁄ (ݕ)
 (1a) ܲ௉(ݕ) = [ܲ௉(ݕ − 1). (݂௉(ݕ − 1) − ∑௜∈஼,ே஺,௎ Δ௉௜ ) + ∑ ܲ௜(ݕ − 1). Δ௜௉௜∈஼,ே஺,௎ ] ݂௉⁄ (ݕ)
 (1b) 

where Px represented a given soil P pool (apatite, occluded, etc.; see equation (3)) of the land 

fraction x (in kgP/ha); fx was the grid-cell fraction covered by x (no unit) andΔ௫ଵ௫ଶwas the land 

fraction covered by x1 converted into x2 from y-1 to y. fC, fP and the different land-

conversions (Δ) were provided by the Land Use Harmonization dataset (LUHa.v1) (Hurtt et 

al., 2011) and correspond to the LUCC driver. Note that transition from urban areas to 

cropland/pasture (Δ௎஼  and Δ௎௉ ) were considered as null. PNA is the P inherited from natural 

soils at the conversion to agriculture and correspond to the driver BIOG. PNA was also used as 
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initial conditions for agricultural soils (i.e. in 1700, see below). For each grid-cell and at any 

moment, PNA was set to the 

current P in unmanaged soil estimated by (Yang et al., 2013), i.e.: 

for any y, PNA(y) = PYang                          

(2) 

Through this equation, we assumed that the P inherited from natural soils at the conversion to 

agriculture could be represented by prescribing the current P in unmanaged soils to all soils 

converted to agricultural soils over the last 300 years. This was a key-assumption of our ap-

proach. This could be limiting, in particular in regions where shifting cultivation occurs, lead-

ing to modify the P content of soils covered by natural vegetation. We also neglected soil P 

input corresponding to forest biomass left on soil at the time of conversion (Beck & Sanchez, 

1996). 

 

In each time-step, once equation (1) had been applied, PC and PG evolved for all soil pools 

according to other following drivers: soil input/output resulting from farming practices 

(FARM), P losses due to soil erosion (LOSS), and atmospheric P deposition (DEPO). In addi-

tion, the soil P dynamics model allowed us to redistribute P within the different soil P pools 

according to soil buffering capacity (BUFF) and soil conditions such as soil temperature and 

humidity (CLIM) (Figure 1). 

 

Soil P dynamics model 

The design of the soil P dynamics model (i.e. which pools are represented, Figure 1) was cho-

sen to be consistent with the Hedley fractionation method (Hedley & Stewart, 1982; Tiessen 

et al., 1984). The Hedley method fractionates soil P into different forms of P that are removed 

sequentially with successively stronger extraction agents. While relating the fractions re-
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moved by chemical products to soil mechanisms is prone to difficulties (Tiessen et al., 1984), 

these fractions are usually merged into various inorganic and organic pools and classified ac-

cording to their plant availability, which gives a comprehensive picture of the different forms 

of P in soils (Cross & Schlesinger, 1995) (Table S1). In addition, to our knowledge, Yang et 

al. (2013) is the only published database providing information about the global distribution 

of P in unmanaged soils and it was based on the concepts developed in the Hedley method. 

Total P (PTOT) was defined as the sum of all represented soil P pools: 

்ܲை் = ைܲ஼஼ + ஺ܲ௉஺ + ௌܲா஼ + ூܲ௅஺஻ + ைܲௌ்஺ + ைܲ௅஺஻     

            (3) 

where POCC, PAPA, PSEC, PILAB, POSTA, POLAB represented occluded P, P in apatite, P bound on 

secondary minerals, labile inorganic P, stable organic P and labile organic P, respectively. Our 

analysis focused on two variables: total soil P (PTOT) and inorganic labile P (PILAB). We chose 

PTOT because it represents the total amount of P and is therefore an integrative variable for 

several processes, whereas PILAB is used as a proxy for soil P available to plants on a short 

time-scale (Cross & Schlesinger, 1995). 

As a first approach, we chose to represent as few soil P dynamics processes as possible. Pro-

cesses like root-induced processes to overcome P limitation or P immobilization/release by 

microbial biomass were not taken into account in our model in particular because their repre-

sentation at the global scale remains uncertain (see Discussion). The flux parameterizations 

used in our study were based on studies performed with Dynamic Global Vegetation Models 

(DGVMs) (Wang et al., 2010; Goll et al., 2012) because DGVMs have been used at the glob-

al scale and are process-based, which were two aims of our approach. Parameterizations are 

described in details below where ݂ ௑ܲ௒defines the P flux from pool X to pool Y. 
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Weathering, occlusion and mineralization are described thanks to a first order kinetic. Apatite  

weathering is represented by: ݂ ஺ܲ௉஺ௌை௅௎ = ݇௪. ݃ଵ(ܶ). ݃ଶ(ܹ). ஺ܲ௉஺          (4) 

where g1 and g2 (unitless) described the sensitivity to soil temperature (T, in °C) and relative 

soil water content (W, unitless), respectively. Before calibration, kW = 0.0001 yr-1 following 

Buendía et al. (2010). kw is the base rate at a temperature of ~15°C (Table 3 of Buendía et al. 

(2010)) thus this value is used as reference temperature in g1(T). g1(T) could be approached 

by an Arrhenius equation following Hartmann et al. (2014) (activation energy = 61 kJ/mol; 

averaged for granitic rocks (Hartmann et al., 2014)). We used a Q10 formulation to be con-

sistent with equation (6). A Q10 of 2.4 gave the same analytical result as the Arrhenius equa-

tion described in Hartmann et al. (2014) for common temperature ranges and was thus cho-

sen. Following Buendía et al. (2010), g2(W) = W. 

The occlusion is parameterized as follows: ݂ ௌܲா஼ை஼஼ = ݇௢௖௖. ௌܲா஼             (5) 

The pre-calibrated kocc is 1.2e-5 yr-1 (Yang et al., 2014). In this first attempt, we did not con-

sider de-occlusion processes. Thus, once a molecule of P belongs to the POCC pool, it cannot 

be involved in the plant nutrition any more. 

The mineralization of organic matter is described thanks to: ݂ ைܲௌ்஺ூ௅஺஻ = ݇௠ଵ. ℎଵ(ܶ). ℎଶ(ܹ). ைܲௌ்஺         (6a) ݂ ைܲ௅஺஻ூ௅஺஻ = ݇௠ଶ. ℎଵ(ܶ). ℎଶ(ܹ). ைܲ௅஺஻           (6b) 

where h1 and h2 represents the sensitivity to soil temperature and soil water content and km1, 

km2 are turnover rates for stable and labile pools (in yr-1).  These pools are considered to be 

biologically available over different time scales (“short”, “intermediate”) (Cross & Schle-

singer, 1995) but the literature about the Hedley method did not provide any accurate esti-

mates of these time scales. Models of soil carbon usually consider that only few percent of 
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the recalcitrant pool could be mineralized each year. On the other hand, the comparison be-

tween labile organic P measured using a Hedley fractionation method (fraction NaHCO3 in 

(Oberson et al., 1993)) and a kinetic of mineralization (Oehl et al., 2004) on the same site 

suggests that the labile organic pool is mineralized very quickly. Following this information, 

we prescribed km1=0.02yr-1 and km2=0.60yr-1 as default values before the calibration step. 

Following our strategy, the same functions as used in the ORCHIDEE (Krinner et al., 2005) 

DGVM to characterize the carbon mineralization were prescribed to h1(T) and h2(W) (Q10=2 

and reference temperature = 30°C for h1; h2(W)=-1.1*W2+ 2.4*W-0.29). 

Following (Wang et al., 2010; Goll et al., 2012), we used a Langmuir equation to describe the 

equilibrium between labile inorganic P and P bound on secondary minerals equilibrium: 

ௌܲா஼ = ܵ௠௔௫. [ ௄ೄ.௉಺ಽಲಳଵା௄ೄ.௉಺ಽಲಳ]           (7) 

where Smax is the maximum capacity of secondary minerals to bind P (in kgP/ha) and Ks is a 

coefficient (in ha/kgP). The suitability of this equation to describe the equilibrium between 

PILAB and PSEC is discussed in the last section. (Ks,Smax) vary as function of soil order follow-

ing (Wang et al., 2010) (Table 1 and Table S2). 

 

Temporal variations of the drivers and initial conditions 

Our analyses mainly focused on the soil P simulated for the year of 2005. Because the current 

soil P is a result of the changes in the different drivers during the past, we performed simula-

tions for the 1700-2005 period. Variations in time of the different drivers are described in 

Figure S1. Overall, only the temporal variations of FARM, LUCC, DEPO and in a lesser ex-

tent LOSS were considered. The choice of 1700 as the starting year corresponds to a com-

promise between time-periods for which information about landuse (Hurtt et al., 2011) and 

farming practices (Bouwman et al., 2011) are available (from 1500 and 1900 respectively).  

We prescribed the values provided by (Yang et al., 2013) for unmanaged soils (PYang) to agri-
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cultural soil P pools in 1700 (hereafter referred to as the initial conditions), i.e.: 

PC(1700) = PP(1700) = PNA(1700) = PYang            

           (8) 

where P represented a given soil P pool (apatite, occluded, etc.; see equation (3)). We as-

sumed that farming practices before 1700 led to negligible modifications of the soil P pools 

of  agricultural soil in 2005 since most P was supposed to be recycled locally; the effect of 

this assumption on the results was tested by varying the starting year (Supporting Infor-

mation). 

 

Calibration of the soil P dynamics model 

The calibration focused on base rates used in equations 4-6: kw, kocc, km1,km2. The parameters 

used in equation 7 correspond to the driver BUFF and are considered in next sections. To cal-

ibrate our soil P dynamics model, we compiled Hedley measurements recorded in long-term 

experiments on cropland/pasture sites from the literature. We found 11 references providing 

local and observed variables to force our model instead of the ones provided by global da-

tasets. This allowed us to calibrate the intrinsic abilities of our model to reproduce the ob-

served temporal soil P dynamics. Simulations performed in that case are called “simulations 

on sites” hereafter. The 11 references found correspond to 12 locations and 49 “treatments” 

including variation in fertilizers applied (frequency, amount and form), crop rotation and soil 

type (Table S3). The 12 locations encompass a relative diversity in latitude (Figure S2). The 

different treatments in each location were considered independently. Few treatments on the 

same site (e.g. different crop rotations in Ref 9 in Table S3 while crop rotation is not repre-

sented in the model) could be considered as pseudo-replicates, but removing them did not 

change the calibration or final match between observations and the model (not shown). 

Simulations were performed on the period of available measurements. Measurements of ei-
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ther soil P in uncultivated sites at the end of the experiments or soil P under fertilization 

treatments at the beginning of the experiments have been used as initial conditions (BIOG). 

Observed farming practices (fertilizer rate application, etc.) were used as input into our model 

to prescribe FARM. In simulations on sites, soil erosion, CLIM, DEPO were provided by 

global datasets while no change in land use and land cover change (LUCC) was prescribed. 

The observed USDA soil order was used to define the parameters in the Langmuir equation 

(BUFF). For simulations on sites, the model was run on the soil horizon characterized by a 

bottom depth closest to -0.3m (i.e. 0.3m below the soil surface) for which measurements were 

available and which encompasses the plough layer. For a few sites, we have no information 

about the plough depth and measurements were available only for a very thin soil layer (e.g. 

0-0.1m; Table S3). The bulk density required to translate observations from mgP/kg to kgP/ha 

and to compute losses were derived from observations, either directly or indirectly (i.e. as a 

function of the available information, by using carbon content (Augusto et al., 2010), soil or-

ganic matter or the bulk density measured at different depths or in different treatments for the 

same location). 

For each treatment, we computed the Root Mean Square Error (RMSE) between observed 

and modelled soil P pools for the last year of available observations. Then, we summed the 

RMSE of all treatments, expressed it in percent of averaged observations and used this value 

as criteria for calibration. The calibration was made in two stages: first, we focused on each 

parameter independently, taken alone and searched for a value that minimized the criteria for 

one given soil P pool. For each parameter, the pool chosen is the pool whose size is sensitive 

(almost) only to that parameter: PAPA for kw, POCC for kocc, POSTA for km1, POLAB for km2. In a 

second stage, we made all parameters vary together and searched for parameter values mini-

mizing the criteria for PILAB. If necessary, a compromise between the calibrated values of the-

se two stages was made. 
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Estimation of the contribution of each driver 

The current spatial variability of both PTOT and PILAB was quantified thanks to the variance 

(named VAR hereafter) of both variables simulated for 2005. The variance was computed at 

two spatial scales: either at the “grid-cell scale” (i.e. using all grid-cells at half degree resolu-

tion with a non-zero cropland (or pasture) fraction in our simulation for 2005) or at “conti-

nental scale” (i.e. using 7 large World regions, namely: North America, Central and South 

America, Africa, Oceania, Western Europe, Asia, Russia; Figure S2). Note that VAR was 

weighted by the cropland/pasture area of each grid-cell in the computation at grid-cell scale. 

Cropland/pasture area of each grid-cell was also used to compute averaged PTOT and PILAB for 

each World region. 

Each driver encompassed several variables and drivers were potentially correlated spatially, 

which made the method of estimating their contributions complicated. To measure the contri-

bution of each driver to the current spatial variability of PTOT and PILAB, we assessed the ef-

fect of removing the spatial variability of a given driver on the simulated VAR of PTOT and 

PILAB. A full factorial design was generated with six factors at two levels, resulting in nruns=26 

simulation runs. The six factors (called F hereafter) corresponded to all drivers except land 

use and land cover change (i.e. BIOG, LOSS, BUFF, CLIM, FARM, DEPO). For each factor 

F, level (F=+1) meant that the spatial variability of F was taken into account in the simulation 

run, while level (F=-1) meant that its spatial variability was suppressed by prescribing a con-

stant value to the cropland (or pasture) fractions of all grid-cells. As it was not possible to re-

move the spatial variability of the land use and land cover change artificially (i.e. LUCC=-1), 

we restricted the factors of the full factorial design to all drivers except LUCC. Indeed, using 

a constant value for the cropland/pasture fractions of all grid-cells at a given time-step did not 

allow us to maintain a temporal consistency between fractions and fraction conversions. 

A table of the full factorial design is provided in Table S4. The first-order effect of factor F on 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

VAR was estimated by (Kobilinsky & Monod, 1991): ݁(ܨ) = ଵ௡ೝೠ೙ೞ ଶ⁄ . ∑ [ ௝݂. ܣܸ ௝ܴ]௡ೝೠ೙ೞ௝ୀଵ          (9) 

where ௝݂ denotes the value +1/-1 of F at run j andܸܣ ௝ܴ denotes the VAR at run j. To estimate 

interactions, the same equation was used, with ௝݂now the product of the +1/-1 values of the 

factors involved in the interaction. Note that the contribution was then expressed in percent of 

the VAR computed when all factors were set to +1. Only a fraction of the contribution of 

LUCC could be estimated thanks to the run where the 6 factors (BIOG, LOSS, BUFF, CLIM, 

FARM, DEPO) were set to -1. More details on the mathematical formalism are provided in 

the Supporting Information. The sensitivity of our results to some model assumptions (e.g. 

the thickness of the soil horizon modelled) or analysis setting (e.g. the value prescribed to all 

grid-cells to set a factor to -1) was evaluated (Supporting Information). 

 

Uncertainty in the representation of the drivers 

At the global scale, each driver is prone to uncertainty and we assessed how this uncertainty 

propagated to the simulation of PILAB and PTOT and to the contribution of the drivers to their 

spatial variability. First, we estimated a range of uncertainty for each driver defined by bot-

tom and top boundaries (estimates 1 and 2 in Table S5) following available information. No 

information about the uncertainty was available for FARM and BUFF, and we arbitrarily as-

sumed that this uncertainty reached ±30%. Then, the full factorial design described in the 

previous section was replicated 30 times. For a given replication and a given run within a rep-

lication, the value of each driver was chosen randomly within the range between the two es-

timates by assuming a uniform distribution (i.e. assuming that all values between estimates 1 

and 2 were equally likely). This was done independently for each grid-cell. 

Each replication of the full factorial design was used to compute the contribution of the dif-

ferent drivers to the spatial variability in PTOT and PILAB (see equation 9). The 30 replications 
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of the full factorial design were used to compute an average and standard deviation of the 

contributions. This standard deviation was used as an estimate of the uncertainty in the con-

tribution. 

How the uncertainty in the representation of the drivers affected our confidence in the simu-

lated PTOT and PILAB was assessed as follows. First, from the full factorial design we selected 

the 30 simulations where all drivers=+1. Then, we computed for each grid-cell, a coefficient 

of variation of these 30 simulations. Finally, a global average of these coefficients of varia-

tion (the average was weighted by the cropland/pasture area of each grid-cell) was computed 

and used as a global indicator of uncertainty in PTOT and PILAB. The contribution of the uncer-

tainty of a given driver (e.g. BIOG) on the uncertainty in simulated PTOT and PILAB was esti-

mated by using the same estimate for that driver in the 30 simulations and by measuring the 

resulting decrease in the global indicator of uncertainty. 

 

Results 

Calibration of the soil P dynamics model 

Varying kw and kocc did not improve the agreement between model and observations for any 

soil P pools (PAPA, POCC or PILAB) (Figures S3 and S4). This could be explained by the fact 

that observations made on relatively few years lead to low constraints on pools characterized 

by long time-scales. Pre-optimized values were kept for these parameters (kW = 1.e-4 yr-1 ; 

kocc = 1.2e-5 yr-1). Organic pools and PILAB were more sensitive to km1 and to a larger extent to 

km2. Calibrated km1 and km2 were 1e-2 yr-1 and 1e-1 yr-1, respectively. These values correspond 

to turnover times of 100 and 10 yr for POSTA and POLAB, respectively. An observation vs. sim-

ulation comparison of the change in PTOT and PILAB between final and first years of observa-

tions for all treatments (n=49) after calibration is displayed on Figure 2. A comparison de-

tailed for each soil P pool and each treatment is plotted in Figure S5. We found a fairly good 
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agreement between the simulated and observed temporal evolution of PTOT and PILAB, despite 

some discrepancies at a few sites. Different reasons could be put forward to explain such 

mismatches, such as: an inconsistency between observed soil horizon thickness and the pro-

cesses represented in our model, or missing mechanisms in our model (such as fallow periods 

or plant processes to overcome limitations) (Table S3). However, we considered the agree-

ment to be reasonable enough to use the model as a tool to assess the drivers of the current 

global P distribution. 

 

Distribution of PTOT and PILAB at the global scale and associated uncertainty 

In this section, we focused primarily on cropland (see Figure S7 for pasture). Global averages 

of PTOT and PILAB for cropland amounted to 2211±13 and 246±1 kgP/ha for the top 0-0.3m 

soil, respectively (average ± std over the simulations performed for the uncertainty analysis, 

values weighted by the cropland area). Using an averaged global bulk density of 1.3g.cm-3, 

these numbers correspond to concentration of 567 and 63 mgP per kg of soil for PTOT and 

PILAB, respectively. Highest PTOT was found in northern America and western India, while 

lowest PTOT was found in Argentina (Figure 3a), where simulated soil P content cannot sus-

tain the prescribed uptake (Figure S8). The distribution of PTOT was heterogeneous over the 

surface of the world with a close proximity of areas with the highest and lowest PTOTS. Over-

all, the areas of highest (or lowest) PTOT corresponded to areas of highest (or lowest) PILAB 

(Figure 3b), but some discrepancies existed between the distribution of the two variables. 

This was visible using the percentile distribution of both variables (Figure S9), and the 

PILAB/PTOT ratio (Figure 3c). The global average of the PILAB/PTOT ratio amounted to 9±5% 

but reached values close to 0 in northern America and 30% in north India. The coefficient of 

correlation between both variables computed using all grid-cells was 0.73 for cropland, which 

confirmed that PILAB could not simply be approached by a constant fraction of PTOT. 
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As each driver was prone to strong uncertainty, we investigated how this uncertainty propa-

gated to simulated PTOT and PILAB. We found a 47 and 61% global uncertainty for cropland 

PTOT and PILAB, respectively (Figure 3; right column). The uncertainty in the simulation of 

PTOT was high in North America and western Russia (coefficient of variation of the simula-

tions performed with drivers varying within their range of uncertainty ~60%) and low in Chi-

na and Europe (~20%) (Figure 3d). A similar spatial pattern was found for PILAB despite high-

er uncertainty in North America, Africa and Argentina (Figure 3e). We found that the uncer-

tainty in BIOG played a key role in the uncertainty in simulated PTOT and PILAB, explaining 

more than half of the uncertainty in PILAB and almost all the uncertainty in PTOT (Table S6). 

We found that the uncertainty in FARM had a small effect on the uncertainty in PTOT and 

PILAB but this could be related to a potential underestimation of the uncertainty of FARM. 

Nevertheless, at the current stage, our results stress the need for more accurate estimates of P 

in natural soils at the global scale. The increasing resolution of soil datasets (e.g. 

GlobalSoilMap (Mulder et al., 2016), SoilGrid1km (Hengl et al., 2014)) could help to in-

crease our confidence in simulated soil P maps. Despite the large uncertainty in the distribu-

tion of PTOT and PILAB, we were able to robustly decipher the relative contribution of the driv-

ers of global soil P distribution (see following and small error-bars in Figure 4). 

 

Contributions of 'natural' and 'anthropogenic' drivers 

In this section, we focused on cropland and only the last paragraph is related to pasture. We 

found that the simulated spatial variability of PILAB was larger than that of PTOT: for instance, 

the coefficient of variation of all cropland grid-cells computed when all drivers varied spatial-

ly was 1.67 for PILAB vs 0.81 for PTOT. Thanks to the full factorial design performed, we were 

able to estimate the relative contributions of the different drivers to the spatial variability 

computed at either grid-cell or continental scale. Positive contributions were interpreted as 
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leading to an increase in the spatial variability of soil P (Supporting Information). Each driver 

made a first-order contribution to the spatial variability of soil P (left bar of each panel in 

Figure 4). At the grid-cell scale (first line of Figure 4), we found that BIOG alone explained 

almost all of the variability of PTOT (with a first order contribution of 103%) while FARM 

made a preponderant contribution as compared to BIOG for PILAB (first-order contribution of 

63 and 38% for FARM and BIOG, respectively). Thus, BIOG explained the differences be-

tween PILAB and PTOT maps (Figure 3). Other drivers made only minor first-order contribu-

tions: LOSS for PTOT (-8%) and LOSS (-7%), BUFF (4%) and CLIM (3%) for PILAB. All oth-

er drivers (including LUCC) made no significant first order contribution at the grid-cell scale. 

The behaviour of PTOT was explained by PAPA, POCC and POSTA : the sum of these pools corre-

sponded to 74% of PTOT and their spatial variability was totally driven by BIOG (not shown). 

At continental scales (second line of Figure 4), we found that BIOG and FARM were the 

main drivers for both PTOT and PILAB. We found that FARM made a larger contribution to the 

spatial variability of PTOT than at the grid-cell scale (first-order contribution of 33%). Many 

drivers were involved at the continental scale for PILAB. In particular, BUFF, CLIM and 

LUCC had a significant role. When shifting from grid-cells to continents, the larger contribu-

tion of FARM could be explained by a lower decrease in the variability of FARM than that of 

BIOG (Table S7). We also found that the larger contribution of FARM to PTOT variability 

when shift to continental scale was mainly explained by soil organic P pools (POLAB+POSTA) 

(not shown), underlying the role of farming practices affecting these pools (application of 

manure, residues). 

Drivers could contribute to the spatial variability of soil P, not only through first-order effects 

but, also as a result of interaction effects (middle bar of each panel in Figure 4). Overall, the 

interactions between two drivers made only small contributions to the spatial variability of 

soil P at grid-cell scale. The largest interaction was found between BIOG and LOSS, contrib-
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uting for -9% and -5% to the variability of PTOT and PILAB, respectively. Such negative contri-

butions could be interpreted as LOSS tending to decrease the soil P where BIOG tends to in-

crease it, and vice-versa. At the continental scale, a positive BIOGxFARM interaction con-

tributing for 11% and 6% to the variability of PTOT and PILAB, respectively, was found. 

In addition to the variability computed by using all cropland grid-cells around the World, we 

computed the driver contributions (at the grid-cell scale) in different latitude bands (Figure 

5). We found that the spatial variability of PTOT did not change as function of the latitude 

band contrary to PILAB whose the variability within the tropical band was lower than the one 

within the >30°N band (not shown). We also found higher CLIM, BUFF and DEPO contribu-

tions and a lower FARM contribution in the tropics than in >30°N or at the global scale. Later 

access to chemical fertilizer in South America than in Europe or North America (Figure 6) 

and specificities of tropical soils (e.g. richness in iron oxides) could explain the lower FARM 

and larger BUFF contributions found, respectively. 

Finally, we found that PTOT and PILAB had increased in cropland during the 20th century (+14 

and +61 %, respectively) due to past variations of some drivers and to soil P dynamics. The 

increase in PTOT was mainly explained by LUCC in 1900-1950, but interestingly, was then 

driven by FARM, while FARM explained the increase in PILAB almost totally, confirming the 

key role of fertilization practices in driving soil P availability at the global scale (Supporting 

Information). 

 

For pasture (Figure 4e-h), we found that BIOG was the primary driver of soil P content. At 

the grid-cell scale, the first-order contribution of BIOG reached 104% for PTOT and 101% for 

PILAB; the latter variable being also moderately driven by LOSS and BUFF. Interestingly, we 

found that the contribution of the FARM driver to the spatial variability of soil P was much 

lower in pasture than in cropland which suggests a much lower anthropogenic perturbation of 
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these ecosystems from a biogeochemical point of view. However, FARM made a large con-

tribution to PTOT if focused on the continental scale. 

 

Our results showed little sensitivity to the model assumptions and the analysis settings that 

were tested, except for the thickness of the soil horizon considered (Figure S11). Reducing 

the thickness of the soil horizon that was modelled (from 0-0.3m to 0-0.2m) led to signifi-

cantly increases in the contribution of FARM (e.g. from ~70 to 90% for the contribution to 

the variability of PILAB at the grid-cell scale) to the detriment of BIOG. 

 

Discussion 

Main drivers and interactions 

Previous studies showed that the possible different drivers of soil P content have strong spa-

tial heterogeneity at the global scale. However, all these studies focused only on a single 

driver, thus providing a partial picture of the soil P content and preventing any analysis of the 

relative contribution of the different potential drivers. Our study is the first to show how the 

different drivers contribute interactively to the soil P content at the global scale. The fact that 

BIOG and FARM appeared as the main drivers of soil P content in croplands is a critical re-

sult for further modelling efforts, and increases our understanding of the distribution of P in 

agricultural soils at the global scale. Even if the importance of BIOG and FARM was intui-

tive in a given local context, our study has demonstrated that this also applies at the global 

scale. 

BIOG plays a key role for both PTOT and PILAB whatever the agroecosystems (cropland or 

pasture) and the spatial scale of the variability (grid-cell or continent) considered. The role of 

FARM is different, making a major contribution to the variability of PILAB but having a minor 

role in the variability of PTOT. The contribution of FARM also varies between cropland vs 
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pasture, as a function of the latitude and as a function of the spatial scale of the variability. 

Total soil P is partly driven by pools with long residence times (stable organic, apatite and 

occluded) which show small sensitivity  to human perturbation. This explains the smaller 

sensitivity of PTOT to FARM when considering all grid-cells. However, the heterogeneity be-

tween farming practices affecting soil organic pools (i.e. manure application, residues) found 

between continents is large enough to make FARM a major driver of the PTOT variability at 

this scale. The greater contribution of FARM to labile P in croplands than in pastures con-

firmed that differences in fertilization strategies on croplands vs. pastures had strong conse-

quences on soil P spatial distribution (Sattari et al., 2016). 

Overall, our results underline the complex spatial patterns of the drivers and ultimately of the 

soil P.  The lack of negative interaction between BIOG and FARM suggested that fertilization 

practices did not tend to reduce the spatial variability in soil P content due to the biogeochem-

ical background. At the continental scale, we even found a positive interaction. The easier 

access to the P resources in rich countries, independently from the natural soil P content, 

could be invoked to explain this decoupling between BIOG and FARM at the global scale. 

Finally, the fact that FARM and LUCC were identified as key drivers of the temporal evolu-

tion of P in croplands demonstrated the long-term legacy effect of human activities on the 

current soil P, as previously found at the country scale (Ringeval et al., 2014). 

 

Limitations of the model framework 

Our modelling framework has some limitations, which have the potential to modify our re-

sults slightly. The main limitations concerns are i) the lack of representation of some soil P 

pools or dynamics processes, ii) a relatively arbitrary definition of the drivers represented in 

our study and iii) the sensitivity of our results to the thickness of the modelled soil horizon. 
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First, some pools are not explicitly represented (the pool of orthophosphate ions) or not rep-

resented at all (the P in microbial biomass) in our soil P dynamic model. Following the ap-

proach commonly used at the global scale (Wang et al., 2010; Goll et al., 2012), we did not 

represent explicitly a pool of orthophosphate ions (H2PO4
- and HPO4

2-) in the soil solution, 

while it is the main form of P taken up by the plant roots. Instead, our PILAB pool included 

both orthophosphate ions and more labile P (Table S1). Parameters involved in equations de-

scribing P in soil solution should be optimized against measurements complementary to those 

made by the Hedley method (e.g. 32P labelling and isotopic dilution approaches; e.g. (Morel 

et al., 2014)) because soluble P is not commonly measured by the Hedley method. While this 

not straightforward, we think that such representation would be more process-based. It could 

lead to a higher contribution of BUFF to the global distribution of available P than the one 

found here. The P in microbial biomass that may function as a buffer by immobilizing ortho-

phosphate ions from soil solution and potentially preventing them from bonding to oxides of 

iron, aluminum and manganese (Achat et al., 2010) is missing in our approach. Representing 

microbes in global models started only recently and many uncertainties remain (Wieder et al., 

2015). Processes used by plants to overcome limitation (such as root exudates and their po-

tential effects on mycorrhizae, de-occlusion or weathering; (Buendía et al., 2014)) were not 

represented in our model. A representation of root exudates would require a coupling with the 

carbon cycle (Buendía et al., 2014) which is challenging (Reed et al., 2015) and beyond the 

scope of our paper. In our approach, grid-cells where our simulations predicted an important 

P limitation (i.e. where simulated PILAB+PSEC was smaller than the plant uptake prescribed by 

FARM dataset) were few (Figure S8) and thus, implementing processes to overcome limita-

tion would probably not lead to a serious modification of the contribution of drivers found in 

our study. 
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Second, how the drivers were distinguished in our study is somewhat arbitrary and was con-

strained by the availability of global datasets. The availability and quality of databases are 

often limiting for studies performed at the global scale (Makowski et al., 2013). Despite this 

constraint, we considered that the drivers represented enabled us to take into account all pro-

cesses known to play a role in shaping the P in agricultural soils over the last centuries and 

explaining the current global distribution. For instance, we recognize that the soil biogeo-

chemical background corresponding to P inherited from natural soils at the conversion to ag-

riculture (BIOG) results from a huge diversity of processes that are considered in other driv-

ers, such as P losses (LOSS), soil buffering capacity (BUFF) or sensitivity of some soil pro-

cesses to soil water and temperature (CLIM). However, because temporal scales characteriz-

ing BIOG and other drivers are different, it makes sense to distinguish them. 

Finally, the contributions of drivers found in our study were sensitive to the thickness of the 

soil horizon that was modelled. The 0-0.3m soil horizon was chosen because it encompasses 

a major proportion of roots. A better representation would consist of representing the plough 

layer in a spatially explicit way. However, no information was currently available at the glob-

al scale and our work highlighted the need for such a dataset in the modelling of nutrients in 

agricultural soils. 

 

A perspective  for assessing P limitation on global yields 

Whereas previous studies (Elser & Bennett, 2011) have only described major changes in 

global biogeochemical cycles arising from agricultural practices, we are able to provide actu-

al estimates of these perturbations by quantifying and mapping soil nutrient status at the 

global scale. Our modelling framework is a critical step towards the assessment of the P limi-

tation in agricultural ecosystems and for global food production. A combination of our global 

estimates of soil P status with global crop models (Elliott et al., 2015; Reed et al., 2015) 
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would permit a more accurate exploration of the consequences of farming practices on the 

carbon cycle in agroecosystems. Such combinations would require different modelling devel-

opments. First, the P uptake by plants should be represented in a mechanistic way (while pre-

scribed from global dataset in our current study). Then, the effects of P limitation on crop de-

velopment and yield have to be incorporated. Finally, the confidence in simulated maps of 

PILAB has to be increased by reducing  the uncertainty of some drivers (in particular in 

BIOG). While such uncertainty has no effect on the contributions found in our study, this lim-

its the future use of simulated maps of PTOT and PILAB. Once these developments achieved, 

our approach could be combined with global crop models. Such coupled model could be used 

under different farming scenarios to investigate, besides consideration of local nuances of 

farm operations (Sharpley et al., 2016), how policies could be oriented towards more sustain-

able P resource management  and  yield gap closure. 
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Supporting Information 

The Supporting information file contains 13 additional figures, 7 additional tables and fol-

lowing text sections: “Comparison between simulations and observations on sites”, “Mathe-

matical formalism of the contributions of the drivers”, “Temporal variation”, “Note about the 

representation of the uncertainty in the different drivers”, “Global datasets”, “Computation of 
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uptake and residue for each grid-cell based on variables provided in Bouwman et al., 2011”, 

“Computation of some parameters involved in the computation of uptake and residue: rU/H 

and rR for cropland, rU/W for pasture”. 

Table and Figures captions 

 

 

 

 

 

Figure 4: Contributions of the different drivers to the current spatial variability of agricultural soil P.
The contributions are given for both PTOT (left panels) and PILAB (right panels) for cropland (top) and
pasture (bottom). Variability was computed either at grid-cell (1st and 3rd lines) or continental scale
(2nd and 4th lines). For each panel, the first-order effect (left bar) and the effect of interaction between
two factors (middle bar) were computed thanks to equation (4) for BIOG, LOSS, BUFF, CLIM,
FARM and DEPO. The contribution of LUCC (right bar) was estimated from the remaining spatial
variability of PTOT and PILAB when the 6 drivers above were set to -1 (Supporting Information). Error-
bars represent 1 std of the 30 repetitions of the full factorial design used to take the uncertainty in the
representation of the drivers into account. 

Figure 3: Simulated agricultural soil P for cropland. Simulated PTOT (a-d), PILAB (b-e) and PILAB/PTOT

(c-f) for cropland: mean (left panels) and coefficient of variations (CV, right panels) computed using
the 30 simulations performed to take into account the uncertainty in the global datasets used. An
irregular colour pallet corresponding to 0 and the 20,40,60,80,99th percentiles was chosen for panels a
and b. 

Figure 2: Change in soil P between the first and the last dates of observations on sites: comparison
between observations (y-axis) and simulations (x-axis). Both changes in PTOT (triangle) and PILAB

(circles) are given and each symbol corresponds to one treatment. The right panel displays  a zoom of
the area of the left panel defined with [-600,2000] boundaries. The colour pallet corresponds to the
number of the reference reporting the observations (Table S3). Linear regressions provided in the right
panel were computed excluding one treatment of Reference 9. Influence plot of the regression for
PILAB is given in Figure S6. Simulations were performed with calibrated km1 and km2. 

Figure 1: Modelling framework: the soil P dynamics model and drivers of the spatial distribution of P
in agricultural soils. The model allowed us to represent the evolution in time of different soil P pools
(inorganic – blue – and organic – orange – pools) as function of simulated soil P dynamics fluxes
(green arrows) and soil P input/output (black arrows). The name of the drivers and place where they
are involved in the modelling framework are given in magenta (boxes and arrows, respectively). The
effects of BIOG and LUCC do not appear on the figure and are described thanks to equations 1, 2 and
8. 

Table 1: Drivers: name, description of its effect on soil P and representation in our approach. Variables
given in the 3rd column correspond to variables whose spatial variability was removed in the full
factorial design to compute the driver contribution to the spatial variability of PTOT and PILAB. More
information about the different datasets (last column) is provided in Supporting Information. 
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Driver name Description of the effect on 
soil P 

Corresponding 
variables 

Datasets used to estimate the corresponding 
variables and their variation in space and time

BIOG 
(natural soil 
biogeochemical 
background) 

P inherited from natural 
soils at the time of 
conversion to agriculture. P 
in natural soils was also 
used to approach P in 
agricultural soils at the 
beginning of the simulation 
(in 1700, initial conditions). 

POCC
NA, PAPA

NA, 
PSEC

NA, PILAB
NA, 

POSTA
NA, POLAB

NA 
(equations 1 and 8) 

(Yang et al., 2013) estimate of current P in 
unmanaged soils 

FARM 
(farming 
practices) 

Soil P input/output 
corresponding to farming 
practices 

P in: chemical 
fertilizer, manure 
applied on agricultural 
soils, residues, and 
plant uptake. Here, 
'residues' refer to plant 
biomass that remains 
on/within the soil after 
the harvest and include 
root biomass. 

Derived from P withdrawal and P fertilizer 
estimated in (Bouwman et al., 2011). Basic 
assumptions were made to compute residues 
and uptake from withdrawal. 

LUCC 
(land use and 
land cover 
change) 

Decrease/increase of 
agricultural soil P resulting 
from land conversion within 
the same grid-cell 

Cropland and pasture 
fractions (fC, fP) and 
the different land-
conversions (Δ) 
(equation 1) 

Land Use Harmonization dataset 
(Hurtt et al., 2011) 

CLIM 
(soil 
temperature and 
soil water 
content) 

Effect of soil temperature 
and soil water content on P 
weathering and P 
mineralization 

Relative soil water 
content and soil 
temperature of top 0-
0.3m soil horizon 
(equations 4 and 6) 

Simulated by two Dynamic Global Vegetation 
Models (ISBA  (Decharme et al., 2013) and 
ORCHIDEE (Krinner et al., 2005)). The 
annual average of the climatology computed 
for the 1979-2010 period (i.e. no year-to-year 
variability) was used. 

LOSS 
(P losses 
through soil 
erosion) 

Losses of P due to water 
erosion and runoff processes 

Losses of P for each 
soil P pool (fPX

out in 
Supp. equation 1). 

Losses were computed using the soil P 
content simulated in our approach, the 
sediment fluxes resulting from erosion 
provided by (Van Oost et al., 2007) and the 
weight of top 0-0.3m soil computed from 
bulk density of the same horizon provided by 
Soilgrids 
(ISRIC – World Soil Information, 2016). 

Figure 6: Variation in time of cropland soil P budget and budget components resulting from farming
practices (FARM) for 7 large World regions and at the global scale. 

Figure 5: Driver contributions to the current spatial variability of soil P at the grid-cell scale for
different latitude bands. Only first-order contributions are displayed and they were made for cropland
PTOT (panel a) and PILAB (panel b). In each panel, the bars correspond (from left to right) to the
contributions found for the global scale, the tropical band (30°S-30°N) and the northern band
(>30°N), respectively. Note that no uncertainty in the drivers was taken into account here. 
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DEPO 
(atmospheric 
deposition) 

Soil P input resulting from 
deposition of atmospheric P 

P deposition falling 
within labile P (PILAB) 
and apatite (PAPA) 

Derived from the (Wang et al., 2014) dataset 
that provides atmospheric P deposition 
resulting from mineral dust, primary biogenic 
aerosol particles, sea salt and combustion, 
averaged over different time-periods. 

BUFF 
(soil buffering 
capacity) 

Properties of soil describing 
its ability to replenish the 
PILAB pool and to adsorb 
labile P on its particles 
(PSEC) 

Parameters involved in 
the Langmuir equation 
used to describe the 
equilibrium between 
PILAB and PSEC (KS and 
Smax) (equation 7) 

(KS,Smax) estimated for each soil order by 
(Wang et al., 2010). The global distribution of 
soil orders is similar to the one used in (Yang 
et al., 2013). 
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