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Abstract.
In  the  early twentieth  century  a  handful  of  French geographers  and historians  famously  suggested  that
mainland France comprised two agrarian systems: enclosed field systems with scattered settlements in the
central and western France, and openfield systems with grouped settlements in eastern France. This division
between grouped and scattered settlements can still be found on the outskirts of urban areas. The objective of
this paper is to determine whether the shape of urban areas varies with the type of built patterns in their
periphery. To this end, we identify and characterise the local and global deviations from scale-invariance of
built patterns in metropolitan France. We propose a new method –Geographically Weighted Fractal Analysis
– that can characterize built  patterns at  a fine spatial  resolution without making any a priori  distinction
between urban patterns and suburban or rural patterns. By applying GWFA to the spatial distribution of
buildings throughout mainland France we identify six geographically consistent types of built patterns that
are  distinctive in  the  way buildings are  either  concentrated or  dispersed across  scales.  The relationship
between  the  local  built  textures  and  the  global  shape  of  twenty  metropolitan  areas  is  then  analysed
statistically. It is found that the proportion of dispersed (or concentrated) outer suburban built patterns in
metropolitan areas is closely related to the distance threshold that marks the morphological limit of their
urban areas.

Keywords: built textures, fractal analysis, suburban fringes, scale invariance, mainland France.

1. Introduction

If we are to identify the advantages and disadvantages of different city shapes for various planning
goals  (e.g.  preserving  ecological  connectivity,  improving  access  to  urban  and  rural  amenities,
ensuring good ventilation of the city centre, etc.) then – among other things – the associated urban
built patterns need to be more accurately described and characterized. This need has engendered a
wealth of publications describing and characterizing city shapes, including numerous methods of
identifying different types of urban patterns along with many spatial indexes for measuring urban
sprawl. In this paper, we seek to contribute to this field of research by exploring the multiscale
morphological properties of urban built patterns in more depth.
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In the  early  twentieth  century,  a  number  of  renowned geographers  and historians  analysed  the
geography of rural France (Demangeon, 1927; Bloch, 1931; Dion, 1934). Their research led to a
classical division of mainland France into two agrarian systems: enclosed field systems associated
with scattered settlements in the centre and the West of France, and openfield systems associated
with grouped settlements in the East of France.  This distinction between grouped and scattered
settlements can still be found on the periphery of urban areas. Obviously, the spatial expansion of
cities does not take place within a blank, isotropic space, especially when cities belong to centuries-
old settlement systems. As a consequence, built patterns in suburban fringes are somewhat hybrid:
they blend inherited features (traditional rural buildings, land parcels, natural constraints) with new
urban developments (most often, detached housing estates). This makes them difficult to describe
and  characterize.  A number  of  publications  have  shown  the  value  of  fractal  dimensions  for
characterizing  irregular  shapes  of  this  kind.  Fractal  dimensions  describe  the  way buildings  are
spatially distributed at several nested spatial resolutions. The closer the fractal dimension is to 2, the
more uniform is the spatial  distribution of buildings. In contrast,  a fractal  dimension close to 0
describes a highly concentrated spatial distribution of buildings at just a few locations across all
scales. More often than not, buildings exhibit concentrated spatial configurations at some spatial
resolutions and more dispersed patterns at other resolutions (fractal dimension in-between 1 and 2).
Fractal analysis can be used to compare the built patterns of entire urban regions (Shen, 2002; Feng
&  Chen,  2010;  Frankhauser,  2015)  or  smaller  spatial  units  (neighbourhoods,  communities)
(Thomas, Frankhauser & Biernacki, 2008; Thomas et al., 2010).

As outer suburban areas are the space into which cities expand, it is to be expected that pre-existing
suburban settlements will influence the shape of the urban development they come to accommodate.
The objective of this paper is to determine whether the shape of French urban areas is determined
by the shape of extant built-up areas on their outskirts. Analysis of the relationship between built-up
shapes  surrounding  urban  areas  and  the  shape  of  the  urban  areas  themselves  first  involves
characterizing the built patterns at a fine spatial resolution, without making any a priori distinction
between  urban  patterns  and  suburban  or  rural  patterns.  For  this,  we  propose  a  new  method,
Geographically Weighted Fractal Analysis (GWFA). As with Geographically Weighted Regression
(Brunsdon, Fotheringham & Charlton, 1996; Fotheringham, Brunsdon & Charlton, 2003), GWFA
uses  a  mathematical  kernel  that  describes  the  way the  neighbourhood  of  a  point  is  taken into
account to estimate the fractal dimension of that point. By applying GWFA to French built patterns
and classifying  the  results  we have  been able  to  map the  built  textures  of  France  at  a  spatial
resolution of 2000 m. Next, we compare the built textures thus mapped with the global shape of
twenty metropolitan areas. For this,  we choose to apply the method proposed by Tannier  et  al.
(2011)  to  detect  discontinuities  in  space  across  scales.  This  method  can  determine  a  distance
threshold specific to each area under study. The statistical comparison of this distance threshold
with the local built  textures resulting from GWFA indicates whether or not the global shape of
French metropolitan areas varies with the built shapes in their periphery.
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2. Data and method

Source data  are from the vector  data  to the nearest  1 m provided by the French cartographical
service, BD Topo ® IGN 2011. This represents about 24 million buildings. For the analysis, each
building is represented by its centroid in order to reduce both the size of the data base and the
computation time.

In order to analyze these very detailed data, a four-steps methodology has been defined. It takes into
account three guiding principles: 1) introducing no a priori distinction between urban patterns and
suburban  or  rural  patterns;  2) focusing  the  analyses  on  the  deviations  from  scale  invariance;
3) examining and confronting both global and local deviations from scale invariance.

Step 1. Using  GWFA (Geographically  Weighted  Fractal  Analysis)  to  determining  if  the  spatial
distribution of buildings in metropolitan France is locally scale-invariant or not.

Analysis is based on a 2000 m-spaced grid of 145,178 estimation points i that covers the
whole  country.  On  this  basis,  GWFA (see  section  3) is  used  to  estimate  the  fractal
dimension at each point i of the study area. Fractal dimensions describe the way buildings
are spatially distributed at several nested spatial resolutions. The underlying assumption is
that the spatial distribution of buildings is scale invariant, which means that the variation in
the built density from one given spatial resolution to another is constant across scales. The
scale  invariance  is  proven  when  the  goodness-of-fit  of  the  estimation  of  the  fractal
dimension is satisfactory. This goodness-of-fit is usually very high when estimating fractal
dimensions. Therefore, R2 values between 0.95 and 0.995 do not guarantee scale invariance
for the whole scale range, and R2 values less than 0.95 are sure signs of a disruption in
scale invariance. 

Step 2. Identifying different types of built patterns according to the way the spatial distribution of
buildings deviates locally from a scale-invariant distribution.

Here  the  spatial  distribution  of  buildings  at  each  point  i is  not  supposed  to  be  scale
invariant and each point i is characterized by a series of scaling indexes Sc calculated for

successive  scale  intervals.  These  Sc indexes  correspond  to  the   indexes  used  by

Thomas et al. (2010) to characterize the scaling behaviour of built patterns of European
urban wards.
In order  to  analyse  the  profile  of  Sc indexes  for  each  point  i,  we applied  a  Principal
Component  Analysis.  Then  we  classified  the  145,178  points  i according  to  their  two
coordinates on the PCA axes using the k-means method.

Step 3. For a selection of twenty French metropolitan areas, characterizing the global deviation of
the spatial distribution of buildings from a scale-invariant distribution. For this, calculation of a
distance threshold that indicates a crucial discontinuity in space across scales.

For  this,  we  use  the  free  software  application  named  MorphoLim
(https://sourcesup.renater.fr/morpholim/) to perform the method proposed by Tannier et al.

3

https://sourcesup.renater.fr/morpholim/


(2011).  By  this  method  a  dilation  of  each  individual  building  is  first  applied,  then  a
distance threshold is detected on the dilation curve. This distance threshold corresponds to
the dilation step at which the curve deviates the most from a straight-line. At this point on
the  dilation  curve,  distances  separating  buildings  no  longer  exhibit  the  same  fractal
behaviour. Thus this point indicates the maximum morphological difference between the
inlying built patterns (i.e. the morphological agglomeration) and the outlying built patterns
(i.e. the surrounding suburban areas). The distance threshold is specific to each area under
study: the less an urban area differs morphologically from its surrounding built landscape
(in terms of variations in distances separating buildings), the greater the distance threshold;
the fewer the buildings in a study area that are connected across scales, the greater the
distance threshold.

Step 4. For the twenty selected French metropolitan areas, making a statistical comparison of the
distance threshold that characterizes  globally the spatial distribution of buildings across scales
with the dominant types of local built textures identified at step 2.

3. Geographically Weighted Fractal Analysis: detailed description

The fractal  dimension  D of an object is defined through a scaling function  F that describes an

aspect of the spatial distribution of the points e of the object.

F  ∼ -D where is the size of the counting window (1)

For theoretical mathematical objects, D corresponds to the asymptotic behaviour of F when tends

to 0. For real world objects, D is estimated for the range of scales  for which the points of the curve

of log(F) with respect to −log() form a straight line. D is the slope of this straight line. 

Each scaling function  F enables the calculation of a given fractal dimension. The chosen scaling

function for Geographically Weighted Fractal Analysis (GWFA) is  Mr
q, where  r corresponds to  

and M corresponds to F.

Mr
q  r∼ Dq (2)

For a given point e, Mr(e) is the number of points within a distance r around e. Mr
q is obtained by

aggregating the Mr(e) of all points e. When a simple average is used for the aggregation, the fractal

dimension obtained is the correlation dimension (Grassberger & Procaccia, 1983). In contrast, when
a  mathematical  norm  is  used  for  the  aggregation  (eq. 3),  the  fractal  dimension  obtained  is  a
multifractal generalized dimension Dq. The corresponding estimation method is the sandbox method
(Vicsek, 1990).
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(3)

The parameter  q controls the nature of the aggregation: more importance is given either to high

values of Mr(e), when q is high, or to low values of Mr(e), when q is low. In GWFA, q is set to 0

meaning  that  high  or  low  values  of  Mr(e) all  have  the  same  importance.  The  corresponding

generalized  dimension  Mr
0 is  closely  related  to,  but  more  reliable  than,  the  well-known  box-

counting dimension (Tél, Fulop & Vicsek, 1989; Vicsek, 1990). On this basis, GWFA is defined as:

(4)

In eq. 4, we see that weights Wi,e are attributed to the Mr(e) values. Each weight corresponds to the

distance  of  the point  e under  consideration  to  a  focus  point  i, also  called  the  estimation  point
(Figure 1). Thus GWFA introduces distance-based weights assigned to each pair of points (i,e) in

the calculation of the scaling function  Mr(i). By doing this, the measures provided by GWFA are

local and not global.

Figure 1. Counting variables

Weights Wi,e are calculated by applying a mathematical positive kernel K:

Wi,e = K(die / L)

where die is the distance between the estimation point i and the observation e; L is the

bandwidth of the analysis.
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For GWFA, the quartic (bi-weight) kernel is used (Figure 2).

K(x) =  (1 − x2 )2 , if x < 1,

and 0, otherwise

The quartic  kernel resembles the Gaussian kernel but has a compact support and enables faster
computation. In any event, a positive, continuous and decreasing kernel that tends asymptotically to
0  ensures  regular  and  continuous  estimations  in  space,  which  enables  results  to  be  mapped
satisfactorily (Brunsdon, Fotheringham & Charlton, 1996).

Figure 2. Quartic kernel

Mr(e) values for points e close to i have a higher weight in the estimation of Mr(i) than Mr(e) values

for points  e that lie far from i. Moreover, when  L is small, the analysis is very local. Contrarily,
when  L corresponds almost  to  the length  the  object  under  study,  the analysis  is  global.  Points

counted for each  Mr(e) may be located outside the bandwidth  L but have to belong to the object

under study. In this way, boundary effects related to points e located close to the boundary of the
bandwidth L are avoided.

The fractal dimension D0 is obtained by estimating the slope of the curve of log(Mr(i)) with respect

to log(r) for a given set of radii r by OLS (ordinary least squares) regression. This fractal dimension
is calculated in step 1 of the methodology exposed in section 2. Sc indexes calculated in step 2 are
defined as the differences in the logarithms of two scaling functions calculated for two successive
scale ranges, e.g.:

Sc100−50 = log(M100(i)) − log(M50(i)) (5)

The  underlying  hypothesis  is  that  intermediate  points  between  the  two  target  points,  e.g.
log(M100(i)) and log(M50(i)), lie on a straight line. In other words, the scale invariance is assumed to
exist within the scale range 50–100 m.

In order to analyse the built patterns of the whole of metropolitan France, GWFA is applied on a
2000 m-spaced  grid  of  145,178  estimation  points  i.  A distance  of  2000 m  between  any  two
estimation points i is small enough to analyse local variations in fractal behaviour. At the same time,
a distance of 2000 m is large enough to obtain a reliable estimation of fractal dimension for scales
ranging from 0 to 800 m (see below).
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The bandwith  L around each estimation point  i  has to be larger  than the distance between two
neighbouring points i in order to enable the analysis of built textures in an almost continuous way.
Accordingly,  L is set at 8000 m. Thus it includes two neighbouring estimation points  i around a
given point i in each direction.

Five distances  r are considered: 50, 100, 200, 400, and 800 m. As the target estimated curve is a
straight line, five points are enough to perform a statistical estimation of the fractal dimension that
is reliable. Thus introducing additional distances  r between 50 and 800 m. is useless. Of course,
standard errors of the estimates  may be rather large but if  they are,  this  shows that the spatial
distribution of buildings is locally not scale-invariant. The 1:10 ratio between r = 800 and L = 8000
ensures that the statistical estimations of fractal dimensions are robust. In addition, 100 circles of
radius  r = 800 m  can  entirely  cover  each  estimation  zone  of  radius  L around  i.  Introducing
additional distances r larger than 800 m. would not be relevant because this would create boundary
effects. Introducing additional distances r lower than 50 m. would also not be relevant because each
point e corresponds to the centroid of a building but not to its real spatial footprint.

On average,  each  zone of  radius  L around  each  estimation  point  i contains  8600 centroids  of

buildings. To reduce the computation time required for calculating Mr(e) values, only 3000 points e

are selected randomly among all centroids of buildings around each estimation point  i. If a zone
contains fewer than 3000 points e, all those points are taken into account. This sample size (3000) is
large enough to detect zones that are almost entirely covered by buildings, namely dense intra-urban
zones. Moreover, with a radius r equal to 800 m. and with 3000 points e, each centroid of building
is taken into acount at least one time in the calculation.

In order to perform all calculations easily, an R package entitled GWFA has been created. Input data
are  two  files,  one  containing  the  estimation  points  i  with  their  XY coordinates  and  the  other
containing building centroids e with their XY coordinates.

4. Results

4.1 Estimated fractal  dimensions with GWFA show local  deviations from scale-invariance,
especially in the West and South-West of France

By applying GWFA to the building centroids for the whole of metropolitan France, local fractal
dimensions were computed on the basis of the five distance radii r (50, 100, 200, 400, and 800 m)
(Figure 3a). 

Figure 3b shows that most places in central and western France exhibit R2 values of less than 0.95.
Thus, the spatial distribution of buildings there is not scale invariant. The goodness-of-fit of the
estimation is higher than 0.95 only in eastern France and in the largest urban areas (Figure 4).
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Figure 3. Fractal dimensions estimated for the scale range 0 to 800 m. 145,178 estimation points i. On the
maps, each estimation point corresponds to a 2000 m-wide square spatial unit.

Figure 4. Most populated metropolitan areas of mainland France.

Considering this, we estimated two other fractal dimensions, one for distance radii  r 50, 100, and
200 m  and  another  for  distance  radii  r 200,  400,  and  800 m.  As  expected,  these  two  fractal
dimensions are clearly different for places located outside the main urban areas in the West and
South-West  of France:  in those places,  estimated  fractal  dimensions  are  low for  r 50,  100, and
200 m, but high for r 200, 400, and 800 m (Figures 5a and 5b).
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Figure 5. Fractal dimensions estimated for the distance radii (a) 50, 100, and 200 m, and (b) 200, 400, and
800 m.

These results suggest that estimating one fractal dimension for the entire scale range (Figure 3) or
two fractal dimensions for two smaller scale ranges (Figure 5) does not enable us to characterize
the spatial distribution of buildings in each zone around i precisely enough.

4.2 Typology of local built textures built on scaling indexes Sc

With five distance radii r, it is possible to calculate four scaling indexes Sc. In order to analyse them
simultaneously, we applied a Principal Component Analysis (Figure 6). Two additional variables
(not taken into account in the PCA) have been represented on the circle of correlation: the fractal
dimension  as  calculated  for  Figure 3a and  the  logarithm  of  the  built  density.  The  two  first
components of the PCA concentrate 90% of the total inertia.

The first component contrasts areas characterized by a low fractal dimension and a low built density
(i.e. rural areas) with areas characterized by a high fractal dimension and a high built density (i.e.
urban  areas) (Figure 7a).  On  the  circle  of  correlations,  we  observe  that  this  first  principal
component is strongly correlated with the four Sc indexes, all oriented in the same direction with
respect to the first axis. Moreover, the two additional variables (fractal dimension and built density)
are strongly correlated to this axis.

The second component of the PCA reflects the fact that a built pattern may or may not exhibit a
scale-invariant distribution across all scale ranges, from 0 to 800 m. It orders the scaling indexes in
accordance with their distance radii: on the circle of correlations, Sc100−50 and Sc200−100 lie very close
to each other and far from Sc800−400;  Sc400−200 lies in an intermediate position.  In Figure 7b, we see
that the coordinate of urban areas is close to 0 for this second component. Indeed, their  spatial
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organization is scale-invariant across the whole scale range (from 0 to 800 m) and, consequently,
the four indexes Sc have almost the same values. Contrarily, the values of the scaling indexes vary
with the distance radii for peripheral areas in the West of France, which appear in red in Figure 7b:
obviously, their fractal dimension is low in Figure 5a and high in Figure 5b. This stark contrast is
explained by the dispersion of clusters of buildings, namely small villages and hamlets: for large
distance radii (0–400 and 0–800 m), all points e have numerous neighbours and the index Sc800−400 is
high; conversely, for small distance radii, many points e have almost no neighbours and the indexes
Sc100−50 and  Sc200−100 are low. Built patterns in blue in  Figure 7b exhibit a more complex scaling
behaviour because they are locally more concentrated. For distance radii 0–50 m and 0–100 m, each
point e has numerous neighbours located within the same built cluster and the index Sc100−50 is high.
Then, for distance radii 0–200 m and 0–400 m, there are relatively fewer neighbours of each point
e; they belong either to the built cluster of point e or to other built clusters (neighbouring villages)
but the probability of finding other villages in the vicinity of the village of point e is low for such
distances.  The  value  of  indexes  Sc200−100 and  Sc400−200 are  accordingly  lower.  Finally,  for  large
distance radii (0–400 and 0–800), the probability of finding neighbouring villages is much higher
and the value of index Sc800−400 is also higher.

Figure 6.  Results  of  the  Principal  Component  Analysis.  Four  variables:  Sc100−50,  Sc200−100,  Sc400−200,  and
Sc800−400; 145,178 individuals: 2000 m-wide square spatial units.
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Figure 7. Coordinates of each 2000 m-wide zone i on the two first axes of the PCA.

Figure 8. Built pattern typical of each class.
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Figure 9. Typology of built patterns according to their multiscale behaviour.

Finally, we classified the 145,178 spatial units according to their two coordinates on the PCA axes
using the k-means method. Six classes of built textures have been identified (Figure 8). Classes 1
and 4,  which  occupy  contrasting  positions  on  the  first  axis  of  the  PCA,  are  separated  in  the
classification from classes 2a, 2b, 3a, and 3b. Classes 2 (a and b) and classes 3 (a and b) are also
separated since they occupy contrasting positions on the first  axis of the PCA. Simultaneously,
classes a (2 and 3) and classes b (2 and 3) are separated since they occupy contrasting positions on
the  second  axis  of  the  PCA.  As  shown  on  Figure 9,  classes 2a  and  3a  correspond  to  locally
dispersed built patterns. They are more scattered and diffuse in class 3a than in class 2a. Classes 2b
and 3b correspond to locally concentrated built patterns; villages in class 2b are larger and more
numerous than in class 3b.

The resulting typology map is well structured although no contiguity criterion has been introduced
into  the  classification  (Figure 9).  Clusters  of  spatial  units  belonging  to  a  same  class  are  very
consistent: class 1 spatial units are urban areas; class 4 spatial units are sparsely populated areas;
class 2a, 2b, 3a, and 3b spatial units are located in the periphery of urban areas. 
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4.3 For twenty  middle-size  metropolitan areas,  identification of the distance threshold that
characterizes globally how the spatial distribution of buildings deviates from scale invariance

For the purpose of the analysis, we used the delineation of French  aires urbaines (metropolitan
areas) (Figure 10), which encompass a densely built urban area and its commuter belt. We chose to
consider neither large metropolitan areas because they encompass several  aires urbaines that are
sometimes spatially separated, nor small metropolitan areas as they do not contain enough 2000 m-
wide spatial units.

Figure 10.  Two metropolitan areas and their built textures. Black line: limit of the metropolitan area (aire
urbaine).

Within  the  perimeter  of  each  metropolitan  area,  a  distance  threshold that  indicates  a  crucial
discontinuity in space across scales was identified using the MorphoLim software application. This
distance threshold indicates the maximum morphological difference between the built patterns that
belong to the urban area (i.e. the morphological agglomeration) and the outlying built patterns (i.e.
the surrounding suburban areas). Table 1 shows that this distance threshold varies markedly among
cities, from 78 m. for Avignon (South of France) to 529 m. for Troyes (East of France).

Table 1. Morphological characteristics of 20 French metropolitan areas.

Name of the
metropolitan area

Distance
threshold

(m)

% of spatial units exhibiting
locally dispersed built patterns

(classes 2a and 3a)

% of spatial units exhibiting
locally concentrated built patterns

(classes 2b and 3b)

Avignon 78 52 4

Angers 127 88 2

Bayonne 143 68 0

Le Mans 143 91 0

Rennes 143 90 3

Vannes 165 71 13

Nantes 171 73 12

Caen 181 49 27
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Name of the

metropolitan area

Distance

threshold
(m)

% of spatial units exhibiting

locally dispersed built patterns
(classes 2a and 3a)

% of spatial units exhibiting

locally concentrated built patterns
(classes 2b and 3b)

Poitiers 207 24 58

Clermont-Ferrand 242 24 56

Niort 245 22 66

Bourges 256 10 78

Nancy 290 8 77

Orléans 318 35 45

Metz 389 3 75

Amiens 395 4 89

Dijon 415 4 83

Saint-Quentin 420 0 86

Reims 434 1 90

Troyes 529 2 90

4.4 Comparison of local built patterns with the global shape of metropolitan areas

Tables 1 and 2 show that the proportion of dispersed (or alternatively concentrated) suburban built
patterns in metropolitan areas is closely related to their global shape, i.e. their distance threshold.
The more the suburban built patterns are dispersed into numerous, regularly spaced, small villages
and hamlets, the smaller the distance threshold; the more the suburban built patterns are locally
concentrated  within large  villages,  the  greater  the distance  threshold.  This  clearly  confirms the
hypothesis that the shape of French urban areas strongly depends on the built-up shapes in their
periphery.  Conversely,  neither  the  proportion  of  spatial  units  in  classes 1  (urban  areas)  and  4
(sparsely populated areas) nor the area of the metropolitan areas are correlated with the distance
threshold.

Table 2.  Statistical  correlation  between the  distance  threshold  characterizing  each  urban area  and other
morphological characteristics. 20 metropolitan areas. p-values *** p<0.001 ** p<0.01 * p<0.05.

Variable Pearson correlation coefficient

% of spatial units in classes 2a and 3a (dispersed built pattern) -0.84***

% of spatial units in class 2a -0.84***

% of spatial units in class 3a -0.69***

% of spatial units in classes 2b and 3b (concentrated built pattern)  0.89***

% of spatial units in class 2b  0.81***

% of spatial units in class 3b  0.62**

% of spatial units in class 1 -0.46*

% of spatial units in class 4  0.10

Area of the metropolitan area -0.03
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5. Discussion

The classification of scaling indexes obtained with GWFA has enabled the identification of six
types  of  built  patterns  whose  multiscale  spatial  organization  is  well  differentiated.  Sémécurbe,
Tannier & Roux (2016) have previously identified similar types of settlement patterns by applying a
multifractal analysis on fine-grained population data. That previous study was coarser-grained as
mainland France was divided into 992 square spatial units 25 km wide (the present study considered
145,178 estimation points i 2 km apart). The method was also different: the typology (a Hierarchical
Ascending Classification) was based on the multifractal spectra of each spatial unit.  Interestingly,
despite  the differences  in  methods and spatial  resolutions,  those two studies  detected  the same
phenomena. In particular, the map displaying the value of each point i on the first axis of the PCA in
the present study, which contrasts areas characterized by a low fractal dimension and a low built
density (i.e. rural areas) and areas characterized by a high fractal dimension and a high built density
(i.e. urban areas) (Figure 7a), resembles the map of generalized fractal dimension of order  q = 2
that highlights the strongest spatial singularities (Figure 3d in (Sémécurbe, Tannier & Roux 2016)).
It should be recalled here that GWFA calculates a generalized fractal dimension of order  q = 0.
Conversely, the map displaying the value of each estimation point i on the second axis of the PCA
in  the  present  study  (Figure 7b that  highlights  the  deviation  with  respect  to  scale  invariance)
resembles the map of generalized fractal dimension D of order q = 0 for which only the presence or
absence of population in each cell is taken into account (Figure 3b in (Sémécurbe, Tannier & Roux,
2016)). Thus, the two studies look at the same phenomena, namely the concentration and dispersion
of human settlements at several scales, from two different points of view, namely the departure from
scale  invariance in  the  present  paper  and  the  more  or  less  multifractal  aspect  of  the  spatial
distribution in (Sémécurbe, Tannier & Roux, 2016).

One point of interest in the present study is that the relatively small size of elementary spatial units
(2000 m-wide) has allowed us to compare and contrast the local built textures with the global shape
of cities (i.e. their distance threshold). Because of the use of both a k-means classification and the
MorphoLim method, the results obtained may be specific to mainland France: on the one hand, the
result  of the statistical  classification of built  textures depends on the diversity  of built  textures
within the study area (in mainland France, the built textures are highly contrasted); on the other
hand,  the  distance  threshold  characterizing  each  urban  area  depends  on  the definition  of
metropolitan areas, which may vary among countries. Thus it would be interesting to apply the
methodology proposed in this paper to analyse built  patterns in other  countries, with a view to
making international comparisons.

6. Conclusion

In  this  paper,  we  have  proposed  a  new  method  for  spatial  analysis,  namely  Geographically
Weighted Fractal Analysis. We have used it to explore the local deviations from scale-invariance of
spatial distributions of buildings in the whole of mainland France. Its application,  without making
any a priori distinction between urban patterns and suburban or rural patterns and without imposing
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any contiguity criterion, has enabled the identification of six geographically consistent built patterns
that  differ  in  the way buildings  are  concentrated  and dispersed across  scales.  Then,  for twenty
middle-size  metropolitan  areas,  we  have  compared  the  local built  textures  with the  distance
threshold that  characterises  globally  the  spatial  distribution  of  buildings.  This  comparison has
shown that the global shape of cities is closely related to their surrounding built patterns: the urban
sprawl process has affected places differently according to their  pre-existing rural built  patterns
(typically,  numerous  small  dispersed  hamlets  or  fewer  large  villages),  which  correspond  to
centuries-old agrarian systems (typically, enclosed field systems and openfield systems).

The fact that outer suburban patterns are inherited (in part at least) from past settlement patterns is
well recognized:  like many complex systems, settlement  systems are generally characterized by
strong path dependency (Andersson, 2008). Nevertheless, in some cases, the urban sprawl process
has not preserved features of old agrarian systems but has made a more or less clean sweep of pre-
existing rural built patterns. For instance in the Champagne-Ardennes region of France, when land
was controlled by cereal farmers and winegrowers, residential  developments occurred mainly as
extensions to the larger villages.  Conversely,  housing estates with stereotyped architecture were
constructed where successive land reparcelling made sites available or where farmers were behind
the projects so as to cash in on their landholdings or prepare for their retirement (Mancebo & Salles,
2014). Such spatial variation in the intensity of path dependency could be explored quantitatively
by applying the method and tools proposed in this paper.
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