
HAL Id: hal-01708723
https://hal.science/hal-01708723

Submitted on 14 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consumer Electronics Processors for Critical Real-Time
Systems: a (Failed) Practical Experience

Gabriel Fernandez, Francisco Cazorla, Jaume Abella

To cite this version:
Gabriel Fernandez, Francisco Cazorla, Jaume Abella. Consumer Electronics Processors for Critical
Real-Time Systems: a (Failed) Practical Experience. 9th European Congress on Embedded Real Time
Software and Systems (ERTS 2018), Jan 2018, Toulouse, France. �hal-01708723�

https://hal.science/hal-01708723
https://hal.archives-ouvertes.fr

Consumer Electronics Processors for Critical Real-Time
Systems: a (Failed) Practical Experience

Gabriel Fernandez1,2, Francisco J. Cazorla1,3, Jaume Abella1

1 Barcelona Supercomputing Center (BSC). Barcelona, Spain
2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

3 Spanish National Research Council (IIIA-CSIC). Barcelona, Spain.

Abstract—The convergence between consumer electronics and
critical real-time markets has increased the need for hardware
platforms able to deliver high performance as well as high (sus-
tainable) performance guarantees. Using the ARM big.LITTLE
architecture as example of those platforms, in this paper we
report our experience with one of its implementations (the
Qualcomm SnapDragon 810 processor) to derive performance
bounds with measurement-based techniques. Our theoretical and
practical analysis reveals that some hardware features may
not suit critical real-time needs, and restricted specifications
and buggy documentation creates serious difficulties to derive
WCET estimates for software running on this platform. From the
lessons learned, we identify several main elements to consider to
effectively consolidate the sustained performance needs between
mainstream and critical real-time markets.

I. INTRODUCTION

Increasing time-predictability needs of the consumer elec-
tronics market and increasing (guaranteed) performance needs
of the critical real-time market push toward their conver-
gence [7], [8]. In particular, consumer electronics market,
which includes mobile phones and tablets, is expected to
embed a growing number of critical functionalities related
to monitoring and communication with other devices in the
health, car, smart cities, Internet-of-Things domains. The crit-
ical real-time market, which includes avionics, automotive,
robotic and healthcare applications, has also been shown to
demand higher guaranteed performance to meet the needs of
an increasing number of complex functions.

High-performance processors in the consumer electronics
market are well known to pose difficulties to derive execu-
tion time bounds needed for critical real-time applications,
while processors in critical real-time embedded systems of-
fer (typically low) guaranteed performance. Therefore, while
time-predictable high-performance processors have the poten-
tial to satisfy the needs of both markets, reconciling high-
performance and predictability is a major challenge. Some
issues have already been identified [4], [7], however, such
convergence has not been explicitly studied for many popular
processor architectures in the consumer electronics market.
As an example, the ARM big.LITTLE architecture used in
many tablets and mobile phones, as well as in safety support
systems in commercial automotive solutions (e.g. Renesas
R-Car H3 [12]), has not been fully analysed against the
requirements of critical real-time applications.

This paper makes an step in that direction by assessing
whether multicore contention and execution time interference
can be tightly predicted on the SnapDragon 810 processor,
implementing the ARM big.LITTLE architecture. In particular,
(1) We review the processor specifications and identify some
key features for multicore contention analysis. Our analysis

identifies how some features need to be configured, reveals
missing detail information in the specification and provides
hints on what specific elements need to be assessed quanti-
tatively. (2) We make an attempt to tailor the methodology
based on signatures and templates [5] to the SnapDragon
810 processor: this methodology, shown suitable for mul-
ticore contention estimation in the LEON4 architecture for
the space domain, builds on tracing key processor events
(e.g. cache misses). (3) Finally, we perform a quantitative
assessment with appropriate microbenchmarks with known
expected behaviour [6]. Our results show that the behaviour
of several Performance Monitoring Counters (PMCs) is non-
obvious and hard to correlate with experiments, thus defeating
their use to model multicore contention tightly. Moreover, our
empirical analysis reveals that documentation is erroneous in
some critical elements.

Overall, while the SnapDragon 810 processor has many key
ingredients for its use in critical real-time systems, our analysis
reveals that some hardware features and documentation prac-
tices challenge its direct use for critical real-time applications.
Moreover, some of these conclusions can be extrapolated to
other processors based on the ARM big.LITTLE architecture,
which suffer from the same limitations.

II. GOAL AND SCENARIO

The goal of this work is assessing whether the SnapDragon
810 processor can be used in the context of critical real-time
applications. We use the term critical real-time to refer to
any hardware or software component with any time criticality
need: either mission, business of safety related.

A. The Platform
The SnapDragon 810 processor is a Qualcomm implemen-

tation of the ARM big.LITTLE architecture used in several
recent Sony Xperia mobile phones. It comprises abundant
hardware events that can be tracked with PMCs, so conclusions
obtained on this specific processor apply to several others
in the consumer electronics market, especially those building
upon ARM big.LITTLE architecture and those implemented
by Qualcomm.

The architecture of the processor, shown in Figure 1,
comprises 2 clusters (also referred to as processors according
to ARM’s nomenclature): an ARM Cortex-A57 cluster with
4 cores and an ARM Cortex-A53 cluster with 4 cores. A57
cores are high-performance cores with out-of-order execution,
whereas A53 cores are low-power lower-performance in-order
cores. Yet, the A53 cluster is already a relatively high-
performance platform w.r.t. current microcontrollers in many
critical real-time systems. Therefore, as a first step we analyse
this cluster, whose cores are more amenable to current timing

Fig. 1. Schematic view of the elements of the SnapDragon 810 processor
analysed in this paper

analysis technology. Each A53 core is equipped with local
first level instruction (IL1) and data (DL1) caches. Caches are
connected to a shared L2 cache, local to the cluster. An AMBA
bus interface connects both clusters to two shared memory
controllers to access DRAM. Peripherals and accelerators,
also present in this platform but not shown in the figure, are
connected to the AMBA bus too. In this work we discount
their effect by keeping them either disabled or idle.

Both clusters (A57 and A53) and the AMBA bus have
been developed by ARM, the IP provider. Qualcomm, the
chip manufacturer, integrates those components along with
some others, which may or may not be provided by ARM.
Moreover, in the integration process Qualcomm may introduce
modifications in some IP components and/or their interfaces.

B. Tracing and Events

We focus on measurement-based timing analysis (MBTA),
widely used in most real-time domains. For instance MBTA is
used in avionics systems [10], [2], including those with DAL-
A safety requirements [9] (though on top of much simpler
single-core processors).

In the context of MBTA, tracing events impacting shared
resource contention, e.g. cache misses, has been shown fun-
damental to derive bounds for a task not factoring in the
worst potential contention but a specific contention level [5].
It follows that MBTA techniques demand more and more
advanced hardware tracing mechanisms.

For that purpose we build upon the existence of PMCs
to derive the type and number of accesses each task does,
since this is needed to account for the contention a task can
experience from (or produce on) others [5]. We also build
upon microbenchmarks, i.e. small user level applications, that
are able to create very high contention with each access type
to the target shared resource [6].

III. QUALITATIVE ANALYSIS: SPECIFICATIONS

The main source of information for the analysis of the
SnapDragon 810 processor is the ARM Cortex-A53 processor
technical reference manual [1]. As detailed in the manual,
a number of A53 features are regarded as ‘implementation
dependent’, thus meaning that the processor manufacturer has
the flexibility to choose among different options available. For
instance, this is the case of the DL1, IL1 and L2 cache sizes.
From the information available in the A53 manual, we regard
as particularly relevant for contention analysis the following:

• The arrangement of the main components in the A53
cluster, including DL1, IL1 and L2 caches, as well as
data prefetching features in DL1 and coherence support
in L2.

• PMCs for events occurring in the cores (e.g. DL1 and
IL1 caches) and in the L2 cache.

However, some parameters are not available in the A53
manual, including the following: (1) Timing characteristics of
the interconnect between DL1/IL1 and L2 caches; (2) Specific
characteristics of the different cache memories such as, for
instance, their sizes; and (3) PMCs for events spanning beyond
the A53 cluster such as accesses to the bus connecting A53
and A57 clusters with memory, and PMCs for the memory
controllers. From a detailed analysis of each of those missing
parameters for real-time purposes in the A53 manual, we
reached the following conclusions:

• The interconnect between DL1/IL1 and L2 caches, as the
remaining in-cluster components, should be documented
in ARM manuals. The lack of that information in the
manuals makes us resort to software testing (e.g. mi-
crobenchmarks) to bring some light on the characteristics
of this interconnect.

• Some instructions exist to read the particular charac-
teristics of the cache hierarchy so they can be directly
retrieved from the platform itself.

• PMCs and events beyond the A53 cluster should be
documented in the SnapDragon 810 manual, since the
processor manufacturer integrates those components, and
so has access to the appropriate information for each
component.

By the time we performed this work, ARM manuals were
available, so we could retrieve them1. However, SnapDragon
810 manuals are neither publicly available in Qualcomm’s
website, nor included in the documentation coming along
with the Intrynsic DragonBoard (whose processor is the Snap-
Dragon 810), nor obtained upon request. In particular, while
we requested appropriate manuals through Qualcomm public
services as well as through internal contacts, and NDAs are
in place, we were unable to get access to them. We are also
aware of other companies in the critical real-time domain have
experienced similar issues. Therefore, to the best of our knowl-
edge, no information has been obtained on what PMCs/events
exist beyond the A53 cluster and how they could be used. We
also tried to use information from the ARM Juno development
board, which is an ARM big.LITTLE implementation by ARM
instead of by Qualcomm that offers further documentation but,
as we suspected, ARM and Qualcomm implementations of this
architecture differ and so Juno documentation did not help.
From our analysis of the available information available, we
have reached the following conclusions:

• The interconnect between DL1/IL1 and L2 can only be
analysed empirically without specific guidance on its
timing behaviour. The confidence on those measurements
is limited due to the unknown specification of the inter-
connect.

• DL1, IL1 and L2 features can be directly obtained from
the board via control instructions.

• Specific instructions exist to disable the data prefetcher.
This is particularly relevant to discount uncontrolled
(prefetcher) effects during operation.

• The L2 is inclusive with DL1 for coherence purposes.
Thus, one core can create interferences on the DL1 of
other cores by evicting their data from the L2 cache.

• The L2 cache cannot be partitioned across cores. This
feature, together with L2 cache inclusivity, leads to poten-
tially abundant inter-core interferences if not controlled
by software means.

1They have later become unavailable online and can only be retrieved upon
request to ARM.

Listing 1. Structure of a microbenchmark
R1 = 0 ;
f o r (i =0 ; i<N; i ++) {

r e s e t PMCs ;
f o r (j =0 ; j<M; j ++) {

R2 = Load [@A+R1] ; R1 = R1+STRIDE ;
R2 = Load [@A+R1] ; R1 = R1+STRIDE ;
. . .

R2 = Load [@A+R1] ; R1 = R1+STRIDE ;
}
r e a d PMCs ;

}

• PMCs up to the L2 cache exist and are abundant, but no
information is had about PMCs beyond the L2 cache.

Overall, several cache features challenge the calculation
of inter-core interference execution time bounds, and the
lack of documentation for the DL1/IL1-L2 interconnect and
PMCs for events beyond L2 challenge the confidence that can
be obtained on measurement-based bounds. However, some
information about contention can still be retrieved empirically
based on information available. In the next section we present
the results obtained.

IV. QUANTITATIVE ANALYSIS: EXPERIMENTATION

The number of hardware events that can be monitored
in the SnapDragon 810 processor is limited according to
ARM’s documentation. For instance, while cache and memory
accesses can be counted, it cannot derived whether DL1/IL1
and L2 cache accesses turn out to be hits or misses. This
complicates the development of our methodology to measure
the impact of contention in the access to shared resources.

A. Microbenchmarks
In order to access PMCs we have developed a library with

the an interface to read/write PMCs. The main functions of
the library include resetting/setting PMCs, activating/stopping
PMCs, read/write PMCs and start/stop the Performance Moni-
toring Unit. To quantify the impact of contention in the access
to the different shared resources, we have developed several
microbenchmarks that stress each specific resource separately,
in line with the method in [6]. This allows estimating the
maximum delay that a request to a particular shared resource
can suffer. Then this data is used to upper-bound contention
impact. As starting point, we have developed microbench-
marks to account for contention in the access to the shared L2
cache and to the shared memory controller, see their structure
in Listing 1.

Since measurement can be polluted, e.g. by the Linux OS
running below, we collect several (N) measurements and
remove outliers keeping only the mode. The iterator M and
the number of LOAD operations in the loop are set to values
sufficiently high so that the overhead of the loop (i.e. the
control instruction) and the overhead to fill the IL1 cache
become negligible (e.g. M = 1000 and 16 LOAD operations).
The particular PMCs/events read and reset depend on the
contention that is to be measured in a particular experiment.
Finally, STRIDE relates to the distance between memory
objects accessed so as to make sure that they either hit in
L1, miss in L1 and hit in L2, or miss in L1 and L2. Vector
size is properly set also with the same goal.

B. Disabling the Data Prefetcher
We disabled the data prefetcher so that read and write

operations occurring in the different cache memories are

Fig. 2. Avg. number of IL1 (L1I), DL1 (L1D), L2 (L2D) and memory
(MEM) accesses, and L2 refills per loop iteration for different data strides.

only triggered explicitly by the instructions executed in the
microbenchmarks, rather than being automatically generated
by hardware. For that purpose, we have configured the
CPUACTLR register as described in the A53 manual [1].
Unfortunately, the execution of these commands leads to a
system crash.

In order to verify the source of the problem, we repeated the
same experiment on a PINE A64 [11] board. The PINE A64
platform is built with the aim of being a low-cost open source
platform. It implements the same Quad-Core A53 Processor
as the low-power SnapDragon 810 cluster. Thus, its interface
is expected to be the same. In the PINE A64 platform, the
commands to disable the prefetcher worked properly and
subsequent experiments revealed that the data prefetcher was
effectively disabled on that board. However, such board is
a low-cost and low-power general-purpose computer, so the
board itself is not oriented to the industry in the mobile market.
Instead, it is an open platform. Thus, mobile industry will
unlikely use it since there is no a large enterprise that provides
support in the long term.

Overall, we could not disable the prefetcher in the Snap-
Dragon 810. This problem likely relates to potential modifi-
cations introduced by the processor manufacturer, from which
we did not succeed in obtaining the information required about
the SnapDragon 810.

As a confirmatory experiment, we run a microbenchmark
accessing 88KB of data, thus exceeding DL1 capacity (64KB)
but fitting L2, with a 8B stride. Hence every 8 accesses we
have 1 DL1 miss and 7 DL1 hits due to spatial locality (DL1
line size is 64B). With the prefetcher disabled, we would
expect that the number of L2 accesses was 1/8 those in
DL1. We observed that the number of DL1 accesses matches
quite well our expectations, but the number of L2 accesses is
roughly 0, revealing that the prefetcher is active and fetches
data into DL1 reducing L2 accesses (the PMC for prefetch
requests confirms this hypothesis).

C. Assessing Microbenchmark Results
In order to assess the behaviour of the PMCs in the A53

cluster, we have run our microbenchmark, which performs
11,000 load operations with a specific stride. This code is in a
loop iterating 100 times, and we report average results across
those 100 iterations to minimise the impact of cold misses in
the first iteration and noise in the measurements.

We explore strides ranging between one 64-bit element (8
bytes) and 512 elements. With the smallest stride (8 bytes),

we traverse a vector of ≈ 88KB (11,000 elements x 8 bytes),
which does not fit in DL1, but it does in L2. Thus, the number
of DL1 accesses expected is 11,000 approximately. Each load
is expected to miss in DL1 when 64B boundaries (DL1 cache
line size) are crossed, and should hit in DL1 otherwise.

Overall, for a 1-element stride we expect 1,375 (11,000/8)
L2 accesses per data vector traversal. Then, since ≈ 88KB fit
in L2, we expect roughly 0 memory accesses (13.75 in practice
on average). When doubling the stride (so with a data vector of
176KB), we expect L2 accesses to double until reaching value
11,000 (at stride 8), and then flatten. Memory accesses should
remain roughly 0 until L2 cache capacity (512KB) is exceeded,
at stride 8 (≈ 704KB), when all accesses become also L2
misses so we have 11,000 DL1, L2 and memory accesses.

Figure 2 shows how DL1 accesses effectively match ex-
pectations while L2 accesses (L2D in the plot) show much
higher values. Interestingly, L2 refills (L2 REFIL), i.e. lines
brought explicitly on a DL1 miss, match our expectation for
L2 accesses. This reveals that, apart from the DL1 misses, we
have another source of L2 accesses, which seems to be the
prefetcher. When looking at the number of memory accesses
(MEM), we observe that it matches quite accurately L2
accesses plus L2 refills, thus reflecting a number of accesses
largely above expectations. This reveals interferences from
the prefetcher since, even when data should fit in L2 (up
to stride 8) and so memory accesses should be negligible,
we have plenty of them. Overall, this experiment reveals that
the prefetcher is active and produces severe interferences that
defeat any intent to control contention in shared resources in
the A53 cluster.

V. SUMMARY OF LESSONS LEARNED

In this paper we analysed the difficulties that entails using
a popular microprocessor in consumer electronics, the Snap-
Dragon 810, in the context of critical real-time applications.
This microprocessor provides the level of performance needed
by many critical real-time applications, but at the same time
poses a number of challenges in its utilisation, which we
summarise next.

Uncontrolled resource sharing. The use of a fully-shared
L2 cache across several cores poses some difficulties to control
or tightly upper-bound inter-core interferences. In particular,
one task running in one core is allowed to evict any line in
the L2 cache, thus affecting the performance of other cores
in non-obvious ways. This issue may be exacerbated by the
fact that the L2 cache of this processor is inclusive with DL1
caches. Thus, a task may also get its data evicted from DL1
due to the inclusion property with L2.

The most promising approach to overcome this challenge
builds upon cache partitioning. For instance, the Freescale
P4080 processor, also representative of a high-performance
processor of interest for real-time applications, allows config-
uring its shared L3 cache so that private regions are allocated
to specific cores [3]. However, space partitioning may not
be enough if buffers and queues are shared, which may
still allow high contention across cores, thus leading to low
performance guarantees [13]. However, as shown in this paper,
some popular processors do not provide such support yet.

Need for documentation. For enabling MBTA based on
PMCs, at least some documentation about components inter-
faces is mandatory. The information on hardware-to-hardware
interfaces includes the way in which requests are managed
(e.g. whether shared queues are used, what policies are used

to serve requests). This allows reasoning about the theoret-
ical worst-case scenarios so that microbenchmarks can be
developed to stress them and obtain timing information via
measurements.

Regarding software-to-hardware interfaces, which include
precise information on how to enable/disable some features
(e.g. prefetchers) or how to monitor hardware events through
PMCs available, information released is often limited. Again,
this prevents appropriate configuration and monitoring of the
processor, thus defeating the intent of obtaining tight WCET
estimates on top of the SnapDragon 810. The unavailability of
this information often relates to IP protection and competition.

Both issues are exacerbated by the fact that many micro-
processors incorporate IP from different suppliers, as in the
case of the SnapDragon 810 processor, which includes at
least IP from ARM and Qualcomm. In our view, detailed
information will be made progressively available as market
pressure increases and releasing details becomes the only way
to make sales grow. Still, this shift towards openness will occur
slowly.

Beyond SnapDragon 810. Although the experience with
this implementation of the ARM big.LITTLE architecture has
been unsuccessful and some design choices are not friendly
with critical real-time applications (e.g. shared and inclusive
L2 cache), our experiences with development boards imple-
menting this architecture allow us being optimistic on the
potential of ARM big.LITTLE architectures for critical appli-
cations if used appropriately. Such analysis on development
boards is part of our ongoing work.

ACKNOWLEDGEMENTS

The research leading to this work has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644080 (SAFURE).
This work has also been partially supported by the Span-
ish Ministry of Economy and Competitiveness under grant
TIN2015-65316-P and the HiPEAC Network of Excellence.
Jaume Abella has been partially supported by the Ministry of
Economy and Competitiveness under Ramon y Cajal postdoc-
toral fellowship number RYC-2013-14717.

REFERENCES

[1] ARM. ARM Cortex-A53 MPCore Processor. Revision: r0p4. Technical
Ref. Manual, 2013.

[2] J. Bin et al. Studying co-running avionic real-time applications on multi-
core COTS architectures. In ERTS2, 2014.

[3] E. Bost. Hardware Support for Robust Partitioning in Freescale QorIQ
Multicore SoCs (P4080 and derivatives), White Paper , 2013.

[4] D. Dasari et al. Identifying the sources of unpredictability in COTS-
based multicore systems. In SIES, 2013.

[5] G. Fernandez et al. Resource usage templates and signatures for COTS
multicore processors. In DAC, 2015.

[6] G. Fernandez et al. Computing safe contention bounds for multicore
resources with round-robin and FIFO arbitration. IEEE Transactions on
Computers, 66(4):586–600, 2017.

[7] S. Girbal et al. On the convergence of mainstream and mission-critical
markets. In DAC, 2013.

[8] High-Performance Embedded Architecture and Compilation. HiPEAC
vision, 2011, 2013, 2015 and 2017.

[9] S. Law and I. Bate. Achieving appropriate test coverage for reliable
measurement-based timing analysis. In ECRTS, 2016.

[10] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing
architectures in avionics. In EDCC, 2012.

[11] Pine64. Pine64 website, 2016.
[12] Renesas. R-Car H3, 2017. https://www.renesas.com/en-

us/solutions/automotive/products/rcar-h3.html.
[13] P.K. Valsan et al. Taming non-blocking caches to improve isolation in

multicore real-time systems. In RTAS, 2016.

