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SINGULAR SEMIPOSITIVE METRICS ON LINE BUNDLES ON VARIETIES OVER TRIVIALLY VALUED FIELDS

Let X be a smooth projective Berkovich space over a trivially or discretely valued field k of residue characteristic zero, and let L be an ample line bundle on X. We develop a theory of plurisubharmonic (or semipositive) metrics on L. In particular we show that the (non-Archimedean) Monge-Ampère operator induces a bijection between plurisubharmonic metrics and Radon probability measures of finite energy. In the discretely valued case, these results refine earlier work obtained in collaboration with C. Favre. In the trivially valued case, the results are new and will in subsequent work be shown to have ramifications for the study of K-stability.

Introduction 1. Berkovich analytifications 2. Metrics on line bundles 3. The Monge-Ampère operator on DFS metrics 4. Dual complexes 5. Plurisubharmonic metrics 6. Metrics of finite energy 7. The Calabi-Yau theorem Appendix A. Proof of estimates References Introduction Consider a polarized smooth projective variety (X, L) defined over a field k of characteristic zero. Our main objective in this paper is to define and study the class of singular semipositive metrics on the Berkovich analytification of L with respect to the trivial abolute value on k. In forthcoming work [START_REF] Boucksom | A non-Archimedean approach to K-stability[END_REF], we will use these results to study K-stability from a non-Archimedean point of view, continuing the ideas of [BHJ17]. These results will in turn be applied in [BBJ17] to the existence of twisted Kähler-Einstein metrics.

Our results are similar to-but often more precise than-the ones in [BFJ16a, BFJ15, BGJKM16], which dealt with the case of a discretely valued ground field of residue characteristic zero. Namely, first we introduce and study the class PSH(L) of singular semipositive metrics on L. Then we define a subclass E 1 (L) consisting of metrics of finite energy. This class contains the class of continuous semipositive metrics, as studied by many authors. We then define a Monge-Ampère operator on this class, and completely describe its image. Generally speaking, the results are inspired by analogous results in the Archimedean case, by which we mean complex geometry: more on this below, and see the survey [START_REF] Boucksom | The Non-Archimedean Monge-Ampère Equation[END_REF].

Let us now describe the results in the paper in more detail. In what follows, we write X also for the Berkovich analytication of X with respect to the trivial absolute value on k. Similarly, we will write L for the analytification of the total space of a line bundle (or invertible sheaf) L on X. These conventions are reasonable in view of the GAGA results in [Berk90, §3.5].

Singular semipositive metrics. We use additive notation for line bundles and metrics. A metric (resp. singular metric) on a line bundle L on X is then a function on the complement L × of the zero section in L with values in R (resp. R ∪ {-∞}). If φ i is a metric on L i and m i ∈ Z, i = 1, 2, then m 1 φ 1 + m 2 φ 2 is a metric on m 1 L 1 + m 2 L 2 . A metric on O X can and will be identified with a function on X. Any section s of L defines a singular metric log |s|, whose value on the image of s is constantly equal to 0. Since k is trivially valued, there is a canonical trivial metric φ triv on L, using which we can identify metrics by functions: any metric on L can be written as φ = φ triv + ϕ, for some function ϕ on X. Now let L be an ample line bundle on X. Define PSH(L) as the smallest class of singular metrics on L such that:

(i) PSH(L) contains all metrics of the form m -1 log |s|, where m ≥ 1 and s is a nonzero section of mL; (ii) PSH(L) is closed under maxima, addition of constants, and decreasing limits.

Here the last part of (ii) means that if (φ j ) j is a decreasing net in PSH(L) and φ := lim j φ j ≡ -∞ on L × , then φ ∈ PSH(L). The elements of PSH(L) will be called semipositive or plurisubharmonic (singular) metrics.

The definition of PSH(L) makes sense when L is the analytification of an ample line bundle with respect to any multiplicative norm on the ground field k. In particular, it makes sense for the usual (Archimedean) norm on k = C. One can then show that the class PSH(L) coincides with the class of semipositive singular metrics usually considered in complex geometry.

Back in the trivially valued case, the space PSH(L) has two fundamental properties mirroring the Archimedean situation. To state them, we need to define the topology on PSH(L), as well as the analogues of smooth metrics on L. First, the Berkovich space X contains a dense subset X qm of quasimonomial points, and the topology on PSH(L) in defined by pointwise convergence on X qm . Second, define FS(L) ⊂ PSH(L) as the set of Fubini-Study metrics, i.e. metrics of the form

φ = max 1≤l≤N m -1 (log |s l | + a l ),
where m ∈ Z >0 , a l ∈ Z and s l , 1 ≤ l ≤ N are sections of mL having no common zero. The class FS(L) coincides with the class H, defined in [BHJ17] via ample test configurations.

Theorem A. Let L be an ample line bundle on X.

(a) The quotient space PSH(L)/R is compact.

(b) Any singular metric in PSH(L) is the limit of a decreasing net in FS(L).

In the Archimedean case, the compactness statement in (a) is classical, whereas the regularization statement in (b) is due to Demailly [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF]; see also [B lK07].

Theorem A will be deduced from the main results in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF], which dealt with the case of a discretely valued ground field. See below for details.

The Monge-Ampère operator and the Calabi-Yau theorem. The second main result involves the Monge-Ampère equation

MA(φ) = µ, (MA) 
where φ ∈ PSH(L) and µ is a Radon probability measure on X. To state it properly, we need some further definitions. There are by now several ways to define the Monge-Ampère operator on (sufficiently regular) metrics on line bundles, the most flexible of which is the one developed by Chambert-Loir and Ducros [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF] in their pioneering work on forms and currents on Berkovich spaces. Suffice it to say that if φ 1 , . . . , φ n ∈ FS(L), then the mixed Monge-Ampère measure

MA(φ 1 , . . . , φ n ) = V -1 dd c φ 1 ∧ • • • ∧ dd c φ n ,
where V = (L n ), is an atomic probability measure supported on Shilov points in X. We also write MA(φ) := MA(φ, . . . , φ). The Monge-Ampère energy 12 of a metric φ ∈ FS(L) is defined by

E(φ) := 1 n + 1 n j=0 (φ -φ triv ) MA j (φ),
where MA j (φ) = MA(φ, . . . , φ, φ triv . . . , φ triv ) is defined as above, using j copies of φ. For a general metric φ ∈ PSH(L) we set

E(φ) := inf{E(ψ) | ψ ∈ FS(L), ψ ≥ φ},
and define E1 (L) as the space of metrics φ ∈ PSH(L) of finite energy, E(φ) > -∞. This space contains all continuous semipositive metrics, as defined and studied by Zhang [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF], Gubler [START_REF] Gubler | Local heights of subvarieties over non-Archimedean fields[END_REF] and others. In the Archimedean case, the corresponding class was first defined by Guedj and Zeriahi [GZ07], following the fundamental work of Cegrell [START_REF] Cegrell | Pluricomplex energy[END_REF].

The metric φ in the left-hand side of (MA) will be in the class E 1 (L). As for the right-hand side, define the energy of a Radon probability measure µ (with respect to L) by E * (µ) := sup{E(φ) -X (φ -φ triv )µ | φ ∈ E 1 (L)}, and let M 1 (X) be the space of Radon probability measure of finite energy. For example, any finite atomic measure supported on quasimonomial points has finite energy. In the Archimedean case, the space M 1 (X) was introduced in [Ceg98, GZ07].

Theorem B. Let L be an ample line bundle on X.

(a) There exist a unique extension of the Monge-Ampére operator to E 1 (L) that is continuous under increasing and decreasing limits. (b) The operator in (a) defines a bijection

MA : E 1 (L)/R → M 1 (X)
between plurisubharmonic metrics of finite energy modulo constants, and Radon probability measures of finite energy.

Theorem B is the analogue of [BBGZ13, Theorem A], itself is a generalization of the celebrated Calabi-Yau theorem [Yau78] and subsequent work by Ko lodziej [Ko l98]. We note that the injectivity of MA on the space of continuous semipositive metrics modulo constants was first proved in [YZ16], whereas a sketch of a proof of the solvability of (MA) for µ a Dirac mass can be found in [KT00].

Strategy. The definitions of the classes PSH(L), E 1 (L), and the Monge-Ampère operator make sense over any non-Archimedean ground field k, any k-variety X, and any ample line bundle L on X. We partially develop the theory under these assumptions; see also [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampre equations (with an appendix by Robert Lazarsfeld[END_REF][START_REF] Gubler | On Zhang's semipositive metrics[END_REF][START_REF] Gubler | Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals (with an appendix by José Ignacio Burgos Gil and Martín Sombra[END_REF] for important work in this direction. However, we were not able to prove Theorems A and B in full generality.

Instead, following [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF][START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF] we first prove these theorems when k is discretely valued and of residue characteristic zero. In this case, we can use the existence of snc models (constructed using Hironaka's theorem), as well as vanishing theorems in algebraic geometry. Theorem A is essentially a direct consequence of the main results of [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF], except that our definition of the class PSH(L) differs from the one in loc. cit, and some work is needed to prove that the two definitions are equivalent. As for Theorem B, the injectivity of the Monge-Ampère operator was proved in [START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF] (see also [YZ16]), whereas solutions to (MA) were established in [START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF][START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampre equations (with an appendix by Robert Lazarsfeld[END_REF] for measures µ supported on the dual complex of an snc model of X. For a general measure µ ∈ M 1 (X) of finite energy, we apply a regularization process using snc models, inspired by the approach in [GZ07].

We then reduce the case of a trivially valued ground field to the discretely valued case using the non-Archimedean field extension k → k(( )). Indeed, points in the Berkovich space X can be identified with G m -invariant points in the base change X k(( )) or in the product X × k A 1 k . In this way, the role of models of (X, L) is played by test configurations for (X, L).

Applications to K-stability. Following the solution to the Yau-Tian-Donaldson conjecture for Fano manifolds [START_REF] Chen | Kähler-Einstein metrics on Fano manifolds, I-III[END_REF][START_REF] Tian | K-stability and Kähler-Einstein metrics[END_REF]-the existence of a Kähler-Einstein metric is equivalent to K-stability-much interest has gone into analyzing K-stability. In [START_REF] Boucksom | A non-Archimedean approach to K-stability[END_REF] we will show how the the Calabi-Yau theorem naturally fits into this analysis.

Let X be a smooth complex Fano variety, that is, X is smooth and projective over k = C, and L := -K X is ample. As explained in [BHJ17] (and observed much earlier by S.-W. Zhang), K-stability admits a natural non-Archimedean interpretation, using the trivial absolute value on k. Namely, we can define a natural Mabuchi functional M : FS(L) → R with the property that X is K-stable iff M (φ) ≥ 0 for all φ ∈ FS(L), with equality iff φ = φ triv . 3 In [BHJ17, Der15] a stronger notion was introduced: X is uniformly K-stable if there exists δ > 0 such that M ≥ δJ on FS(L). Here J(φ) = max(φ -φ triv ) -E(φ) ≥ 0, with equality iff φ = φ triv + c, c ∈ R. It was shown in [START_REF] Berman | A variational approach to the Yau-Tian-Donaldson conjecture[END_REF] that if X has no nontrivial vector fields, then X admits a Kähler-Einstein metric iff X is uniformly K-stable.

The proof in [START_REF] Berman | A variational approach to the Yau-Tian-Donaldson conjecture[END_REF] uses another natural functional, the Ding functional D : FS(L) → R, and we say that X is uniformly Ding stable if there exists δ > 0 such that D ≥ δJ on FS(L). It was shown using the Minimal Model Program in [START_REF] Berman | A variational approach to the Yau-Tian-Donaldson conjecture[END_REF] (see also [START_REF] Fujita | A valuative criterion for uniform K-stability of Q-Fano varieties[END_REF]) that X is uniformly Ding stable iff it is uniformly K-stable. Further, X is K-semistable iff it is Ding semistable; this corresponds to the case δ = 0.

The Calabi-Yau theorem gives a different proof of this equivalence, not relying on the Minimal Model Program, but instead inspired by thermodynamics and the Legendre transform, as in [START_REF] Berman | A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kaähler-Einstein metrics[END_REF]. For simplicity we only discuss K-semistability. The Mabuchi functional naturally extends to E 1 (L) and can be written as M (φ) = F (MA(φ)), where F (µ), the free energy of the measure µ ∈ M 1 (X), is of the form F (µ) = L * (µ) -E * (µ); here E * (µ) is the energy, whereas L * (µ) = X A µ is the integral of µ agains the log discrepancy function A = A X [START_REF] Jonsson | Valuations and asymptotic invariants for sequences of ideals[END_REF]. Similarly, the Ding functional D is defined on E 1 (L) and satisfies D = L -E, where E(φ) is the energy, and L(φ) = inf X (A + φ -φ triv ). As the notation indicates, E * and L * are the Legendre transforms of E and L, respectively. Using the Calabi-Yau theorem it now follows that M ≥ 0 on E 1 (L) iff F ≥ 0 on M 1 (X) iff D ≥ 0 on E 1 (L).

Fujita [START_REF] Fujita | A valuative criterion for uniform K-stability of Q-Fano varieties[END_REF] and C. Li [START_REF] Li | K-semistability is equivariant volume minimization[END_REF] (see also [START_REF] Fujita | On the K-stability of Fano varieties and anticanonical divisors[END_REF]BlJ17]) have recently given a valuative criterion for K-semistability and uniform K-stability; here we only discuss the former. There exists a natural invariant S(x) ≥ 0 defined for Shilov (or quasimonomial) points x on X such that X is K-semistable iff A(x) ≥ S(x) for all x. Now, the Dirac mass δ x is a probability measure of finite energy, and F (δ x ) = A(x)-S(x), so if X is K-semistable, then A(x) ≥ S(x) for all x. Further, the reverse implication also follows, due to convexity properties of L * and E * .

In summary, the Calabi-Yau theorem can be used to avoid techniques from the Minimal Model Program. Further, they apply also beyond the Fano situation. This gives rise to a stability criterion for the existence of twisted Kähler-Einstein metrics, as explored in [BBJ17].

Possible generalizations. There are several possible extensions of the work of this paper. On the one hand, one could try to prove all the results over an arbitrary non-Archimedean field. We lay the groundwork for doing so; in particular, our definition of the spaces PSH(L) 3 The Mabuchi functional is a variation of the Donaldson-Futaki invariant that has better functorial properties.

and E 1 (L), as well as the Monge-Ampère operator make sense in general. However, we need to assume that k is discretely or trivially valued, of residue charateristic zero, for several of the fundamental results. It would be interesting to see if the tropical charts in [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF][START_REF] Gubler | A tropical approach to non-archimedean Arakelov theory[END_REF] can replace our use of dual complexes; the latter are used to establish the compactness of PSH(L), and to solve the Monge-Ampère equation MA(φ) = µ, by approximating µ by nicer measures.

We also use vanishing theorems for multiplier ideals to prove that the psh envelope of a continuous metric is continuous. This technique requires residue characteristic zero. Very recently, Gubler, Jell, Künnemann and Martin [START_REF] Gubler | Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals (with an appendix by José Ignacio Burgos Gil and Martín Sombra[END_REF] instead used test ideals to prove continuity of envelopes in equicharacteristic p. This allows them to prove solve the Monge-Ampère equation for measures µ supported on a dual complex. For all of this they need to assume resolution of singularities, and that the variety is obtained by base change from a family over a perfect field.

As in the Archimedean case [BBGZ13, [START_REF] Berman | Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties[END_REF], it would also be interesting to relax the assumptions on (X, L). For example, one could consider big line bundles L, singular varieties X, or pairs (X, B). This may require new ideas.

Organization. Following a general discussion of Berkovich analytifications in §1, where we in particular discuss the Gauss extension k ⊂ k(( )), we discuss metrics on line bundles in §2. In particular, we define the classes FS(L) and DFS(L) that in our study play the role of smooth positive and positive metrics, respectively. In §3, we recall the definition of the Monge-Ampère operator on DFS metrics, the associated energy functionals, and state various estimate involving the Monge-Ampère operator on FS metrics. These estimates are proved in the appendix. In §4 we use dual complexes to study analytifications of smooth projective varieties over discretely or trivially valued fields of residue characteristic zero. The discretely valued case was studied in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF], and we use the Gauss extension to treat the trivially valued case. Then, in §5, we introduce the class of PSH(L) of psh metrics on an ample line bundle L. When k is discretely valued, this class is shown to coincide with the class considered in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF]. When k is discretely or trivially valued, of residue characteristic zero, we deduce from loc. cit. the compactness of PSH(L)/R. In §6 we introduce the class E 1 (L) of metrics of finite energy and extend the Monge-Ampère operator and associated energy functionals to this class. Finally, in §7 we prove Theorem B.

Berkovich analytifications

In this section we recall basic facts about the analytification of varieties in the sense of Berkovich, with particular attention to the case when the ground field is discretely or trivially valued. 

= k • /k •• the residue field. The value group of k is |k × | ⊂ R × + , where k × = k \ {0}. We say k is trivially valued if |k × | = {1} and discretely valued if |k × | = r Z for some r ∈ (0, 1). For any subgroup Γ ⊂ R × + we write √ Γ = {r 1/n ∈ R × + | r ∈ Γ, n ∈ N}. The notation k /k means that k is a non-Archimedean field extension of k. Given k /k, set s(k /k) := tr. deg( k / k), t(k /k) := dim Q ( |k × |/ |k × |), and d(k /k) := s(k /k) + t(k /k).
All schemes will be separated. By an ideal on a scheme we mean a coherent ideal sheaf. By a variety over a field k, we mean an integral (separated) scheme of finite type over k.

1.2. Analytification. Let k be any non-Archimedean field. The analytification functor in [Berk90, 3] associates to any variety X (or, more generally, scheme locally of finite type) over k a (good, boundaryless) k-analytic space X an in the sense of Berkovich. Since our focus will be on the Berkovich spaces, we change notation and denote by X the analytification and by X sch the underlying variety, viewed as a scheme. We will also write

A n = A n k , P n = P n k and G m = G m,k for the analytifications of A n = A n k , P n = P n , G m = G m,k
, respectively. As a set, the analytification X of X sch consists of all pairs x = (ξ, | • |), where ξ ∈ X sch is a point and | • | = | • | x is a multiplicative norm on the residue field κ(ξ) extending the norm on k. We denote by H(x) the completion of κ(ξ) with respect to this norm. The map ker : X → X sch sending (ξ, | • |) to ξ is surjective and called the kernel map. If X sch = Spec A is affine, with A a finitely generated k-algebra, X consists of all multiplicative seminorms on A extending the norm on k.

The Zariski topology on X is the weakest topology in which ker : X → X sch is continuous. Unless mentioned otherwise, we work with the Berkovich topology on X, the coarsest refinement of the Zariski topology for which the following holds: for any open affine subset U = Spec A ⊂ X sch and any f ∈ A, the function ker

-1 (U ) x → |f (x)| ∈ R + is continuous, where f (x) denotes the image of f in k(ξ) ⊂ H(x), so that |f (x)| = |f | x .
Then X is Hausdorff, locally compact, and locally path connected. It is compact iff X sch is proper. We say X is projective (resp. quasiprojective, smooth) if X sch has the corresponding properties.

A point x ∈ X is rigid if ker x is a closed point of X sch . This is equivalent to H(x) being a finite extension of k. The set X rig of rigid points is a dense subset of X unless k is trivially valued. The points in X whose kernel is the generic point of X sch are the valuations (in multiplicative terminology) of the function field of X sch extending the valuation on k. They form a dense subset X val ⊂ X.

If x ∈ X, we define s(x) := s(H(x)/k) and similarly t(x), d(x). The Abhyankar inequality 4 Write X qm ⊂ X val for the set of quasimonomial points. In §4 we give a geometric description of quasimonomial point when k is trivially or discretely valued and of residue characteristic zero; see e.g. [Tem16, 7.2.4] for the general case.

says that d(x) ≤ dim ker(x) ≤ dim X. A point x is quasimonomial if d(x) = dim X.
Lemma 1.1. If f : X → X is induced by a surjective morphism of irreducible k-varieties, then f (X qm ) ⊂ X qm .
Proof. Pick x ∈ X qm and set x := f (x ). Since f is surjective, x is a valuation. Now d(x ) = n := dim X, and we must show that d(x) ≥ n := dim X. By considering the non-Archimedean field extensions k ⊂ H(x) ⊂ H(x ), we see that d(x ) = d(x) + d(H(x )/H(x)), so we must show that d(H(x )/H(x)) ≤ n -n. But H(x) and H(x ) are the completions of k(X) and k(X ) with respect to the norms defined by x and x , respectively, and tr. deg(k(X )/k(X)) = n -n, so d(H(x)/H(x)) ≤ n -n by the Abhyankar inequality.

We say that a point x ∈ X is Shilov if s(x) = dim X. When k is trivially valued, the only Shilov point is the trivial valuation on k(X).

If k /k is a non-Archimedean field extension, the ground field extension X k is a k -analytic space, and coincides with the analytification of the k -variety X sch × Spec k Spec k . We have a continuous surjective map π : X k → X whose fiber over a point x ∈ X can be identified with the Berkovich spectrum of the non-Archimedean Banach k-algebra H(x) ⊗k k . 1.3. Models and Shilov points. If X is projective, then a model of X is a flat and projective scheme X over Spec k • , together with an isomorphism of the generic fiber X η onto X sch . The special fiber X 0 of X is a scheme over k.

To any model X of X is associated a reduction map red X : X → X 0 defined as follows. Given x ∈ X, denote by R x the corresponding valuation ring in the residue field κ(ker(x)). By the valuative criterion of properness, the map T x := Spec R x → Spec k • admits a unique lift T x → X mapping the generic point to ker(x). We then let red X (x) be the image of the closed point of T x under this map.5 Each x ∈ X with red X (x) a generic point of X 0 is a Shilov point, and the set Γ(X ) ⊂ X Shi of Shilov points for X so obtained is a finite set. Every Shilov point in X is in fact a Shilov point for some model X , see [GM16, Proposition A.9].

Given any two models X , X of X, there is a canonical birational map X X induced by the isomorphisms of the generic fibers onto X sch . We say that X dominates X if this map is a morphism. Any two models can be dominated by a third. 1.4. The discretely valued case. Assume k is discretely valued, i.e. |k × | = r Z for a unique r ∈ R × + , with r < 1. Then any model is noetherian, with special fiber X 0 a Cartier divisor, of X . If X (and hence X) is normal, X 0 can be decomposed as a Weil divisor X 0 = i∈I b i E i , where E i , i ∈ I are the irreducible components of X 0 and b i ≥ 1, and each E i determines a unique Shilov point x i ∈ X Shi with red X (x i ) the generic point of E i , given by x i = r ord E i /b i , where ord E i : k(X ) × → Z is the order of vanishing along E i . 1.5. The trivially valued case. When k is a trivially valued field, we have an embedding X sch → X, defined by associating to ξ ∈ X sch the point in X defined by the trivial norm on κ(ξ). In this way we can view X sch as a closed subset of X. It consists of all points x ∈ X such that the norm on H(x) is trivial. Obviously the kernel map is the identity on X sch . By using only closed points, we obtain the subset X rig ⊂ X sch ⊂ X of rigid points. The closure of X rig in X is equal to X sch . We will refer to the image in X of the generic point of X sch as the generic point of X; it corresponds to the trivial valuation on k(X).

There is a scaling action of multiplicative group R × + on X defined by powers of norms. We denote by x t the image of

x by t ∈ R × + . If x = (ξ, | • |), then x t = (ξ, | • | t ) for t ∈ R × + ;
in particular, ker(x t ) = ker(x). The set of fixed points of the scaling action is exactly X sch ⊂ X. As t → 0, we have x t → ker x ∈ X sch .

Recall that a point x ∈ X is divisorial, x ∈ X div , if s(x) = dim X -1 and t(x) = 1. All such points arise as follows. There exists a proper birational map X → X, with X normal, a prime Weil divisor E ⊂ X , and r ∈ R × + with r < 1, such that x = r ord E , with ord E the order of vanishing along E.

Any ideal a on X sch induces a continuous function |a| :

X → R + . This function is defined by |a|(x) := max{|f (x)| | f ∈ a • O X sch ,red(x) } for x ∈ X, and is homogeneous: |a|(x t ) = (|a|(x)) t for x ∈ X and t ∈ R × + . Now suppose X is projective. Since k • = k, X sch
is the only model of X. The associated reduction map red : X → X sch has the following properties. Let x ∈ X and set ξ := ker x, so that x defines valuation on κ(ξ)

that is trivial on k. If Y is the closure of ξ in X, then η = red(x) is the unique point in Y such that |f (y)| ≤ 1 for y ∈ O Y,η and |f (y)| < 1 when further f (η) = 0.
Clearly red x is a specialization of ker x, i.e. ker x belongs to the Zariski closure of red x. We have red x = ker x iff x ∈ X sch , and in this case red x = ker x = x. Note that red x t = red x for t ∈ R × + , and that x t → red x as t → ∞. The scaling action induces a dual action on continuous functions: if ϕ ∈ C 0 (X) and t ∈ R × + , then we define t * ϕ ∈ C 0 (X) by t * ϕ(x) := ϕ(x t ). This, in turn, induces an action of R × + on positive (resp. signed) Radon measures 6 on X by setting t * µ, ϕ := µ, t * ϕ for µ a positive (resp. signed) Radon measure on X, t ∈ R × + , and ϕ ∈ C 0 (X). We have t * µ = X δ x t dµ(x).

1.6. The Gauss extension. If k is a non-Archimedean field and r ∈ R × + , the circle algebra k r is a Banach k-algebra defined by

k r := {a = ∞ -∞ a j j | lim j→±∞ |a j |r j = 0},
equipped with the multiplicative norm j a j j = max j |a j |r j .

(1.1)

The Berkovich spectrum C k (r) = M(k r ) is the Berkovich circle of radius r over k. When r ∈ |k × |, k r is a non-Archimedean field and C k (r) a singleton; such field extensions k r /k play a crucial role in the general theory of Berkovich spaces. Now let k be a trivially valued field and pick r ∈ (0, 1). In this case,

k := k r k(( ))
6 A positive (resp. signed) Radon measure on X is a positive (resp. bounded) linear functional on C 0 (X).

Equivalently, it is a positive (resp. signed) Borel measure on X that is inner regular.

is the field of formal Laurent series with coefficients in k, equipped with the natural norm for which

| | = r. Clearly |k × | = r Z . The valuation ring of k is the ring k • = k[[ ]]
of formal power series and we identify the residue field of k with k. The reduction map k • → k sends to 0. For any non-Archimedean extension K/k, we have K ⊗k k K r . Let X be the analytification of a k-variety X sch . Write X := X k for the ground field extension, and π : X → X for the canonical map. For x ∈ X, we have π -1 (x) C H(x) (r).

Lemma 1.2. If x ∈ X and x := π(x ) ∈ X, then we have:

s(x ) = s(H(x )/H(x)) + s(x) (1.2) t(x ) = t(H(x )/H(x)) + t(x) -1 (1.3) d(x ) = d(H(x )/H(x)) + d(x) -1. (1.4)
Proof. The invariant s is additive in towers of non-Archimedean field extensions; hence

s(H(x )/k ) + s(k /k) = s(H(x )/k) = s(H(x )/H(x)) + s(H(x)/k).
By definition, s(x ) = s(H(x )/k ) and s(x) = s(H(x)/k), and (1.1) gives s(k /k) = 0. This proves (1.2). The proofs of (1.3)-(1.4) are identical, using t(k /k) = 1, and d(k /k) = 1.

Corollary 1.3. We have d(x) ≥ d(x ). In particular, if x is quasimonomial, so is x.

Proof. The preimage π -1 (x) C H(x) (r) embeds in the Berkovich affine line over H(x), so d(H(x )/H(x)) ≤ 1 by the Abhyankar inequality. We conclude using (1.4).

As a special case of [Berk90, 5.2], we have a natural continuous section

σ = σ r : X → X of π : X → X. Namely, if x ∈ X, then π -1 (x) C H(x) (r)
is the circle of radius r over H(x), and σ r (x) ∈ π -1 (x) is the point corresponding to the norm on the circle algebra H(x) r . This type of norm is known as a Gauss norm, so we call σ r the Gauss extension.

Concretely, if x ∈ X, then x = σ r (x) is given as follows. Any f ∈ H(x ) H(x) r can be written as f = j f j j where f j ∈ H(x). Then

|f (x )| = max j |f j (x)|r j .
(1.5)

Corollary 1.4. For any x ∈ X, set x := σ r (x) ∈ X . Then we have:

(i) if r ∈ |H(x) × |, then s(x ) = s(x) + 1 and t(x ) = t(x) -1; (ii) if r ∈ |H(x) × |, then s(x ) = s(x) and t(x ) = t(x); (iii) d(x ) = d(x).
Proof. Clearly (iii) follows from (i) and (ii). To prove (i)-(ii) it suffices by Lemma 1.2 to compute s := s(H(x )/H(x)) and t

:= t(H(x )/H(x)). First assume r ∈ |H(x) × |. By (1.5) we have |H(x ) × |/ |H(x) × | r Q , so t = 1. To compute s, pick any f ∈ H(x ) • and write f = j f j j . Then f = f0 ∈ H(x), so s = 0. Now suppose r ∈ |H(x) × |. Pick n ≥ 1 minimal such that r n ∈ |H(x) × |, g ∈ H(x) × with |g(x)| = r n , and set f = -n g. Then f ∈ H(x )
• and it is easy to see that { f } is a transcendence basis for H(x )/ H(x). Thus s = 1, which completes the proof.

Corollary 1.5. With the same notation as in Corollary 1.4, we have:

(i) x is a valuation iff x is a valuation; (ii) x is quasimonomial iff x is quasimonomial; (iii) x is the trivial valuation iff x = r ord X×{0} ; (iv) x is divisorial iff x is Shilov, x = r ord X×{0} and r ∈ |H(x) × |.
Proof. To prove (i), pick any f ∈ H(x ) H(x) r and write f = j f j j . From (1.5) it follows that |f (x )| = 0 iff |f j (x)| = 0 for all j, which yields (i). The statements in (ii)-(iv) follow from Corollary 1.4 and our definition of quasimonomial and Shilov points.

Let G m be the multiplicative group over k.

Then G m (k) k × acts on k by γ • j a j j = j γ -j a j j ,
and k ⊂ k is the set of k × -invariant points. We also have an induced continuous action on

X . If x ∈ X and γ ∈ k × , the image γ • x ∈ X is characterized by |f (γ • x )| = |(γ • f )(x )| for f ∈ H(x) r , where x = π(x ).
Proposition 1.6. If k is an infinite field, then the image σ r (X) ⊂ X is closed and consists of all k × -invariant points.

Proof. Given x ∈ X , set x := π(x ), and let • be the norm on the circle algebra H(x) r . First suppose x = σ r (x). For any γ ∈ k × , and f = j j f j ∈ H(x) r , we then have

|f (γ • x )| = γ • f = max j r j |γ -j f j (x)| = max j r j |f j (x)| = f = |f (x )|, so x is k × -invariant. Now suppose x is k × -invariant, but that x = σ r (x)
. We can then find f ∈ H(x) r such that |f (x )| < f . Write f = j f j j , and let J be the finite set of indices j for which | j f j (x)| = f . We may assume f j = 0 for j ∈ J.

For γ ∈ k × we have γ • f = j j γ -j f j . By assumption, |(γ • f )(x )| = |f (x )|, and hence | j j γ -j f j (x)| < f for all γ ∈ k × . Pick distinct elements γ i , i ∈ J, of k × .
The matrix (γ -j i ) i,j∈J is of Vandermonde type and therefore invertible. Let (a ij ) i,j∈J be its inverse, so that i a il γ -j i = δ jl . Thus

i a il (γ i • f ) = l f l for each l ∈ J, so f = | l f l (x)| = | i a il (γ i • f )(x )| ≤ max i |(γ i • f )(x )| = |f (x )| < f , a contradiction.
The base change X can also be viewed as a closed subset of X ×A 1 (i.e. the analytification of X sch × A 1 with respect to the trivial valuation on k) cut out by the equation | | = r. In this way, we can view the Gauss extension as a continuous map

σ = σ r : X → X × A 1 .
The scaling actions by R × + on X and X × A 1 interact with the Gauss extension as follows:

σ r t (x t ) = σ r (x) t for x ∈ X, r, t ∈ R × + . Given d ≥ 1, we have a selfmap m d : X × A 1 → X × A 1 induced by the base change → d . We then have σ r d (x) = m d (σ r (x))
for any x ∈ X.

Following [START_REF] Odaka | A generalization of the Ross-Thomas slope theory[END_REF] we define a flag ideal on X sch × A 1 to be a G m -invariant ideal cosupported on the central fiber X sch × {0}. Definition 1.7. A test configuration X for X consists of the following data:

(i) a flat and projective morphism of k-schemes π :

X → A 1 k ; (ii) a G m -action on X lifting the canonical action on A 1 k ; (iii) an isomorphism X 1 ∼ → X.
The trivial test configuration of X is given by the product X sch × A 1 k , with the trivial G maction on X. Given test configurations X , X for X there exists a unique G m -equivariant birational map X X extending the isomorphism X 1 X X 1 . We say that X dominates X if this map is a morphism. Any two test configurations can be dominated by a third. Two test configurations that dominate each other will be identified. Any test configuration dominating the trivial test configuration is obtained by blowing up a flag ideal on

X sch × A 1 k . Now consider the non-Archimedean field extension k = k r = k(( )) of k from §1.6. The inclusion k[ ] → k[[ ]] = k • induces a morphism Spec k • → A 1 k .
Any test configuration X dominating the trivial test configuration therefore gives rise to a G m -invariant model

X := X × A 1 k Spec k • of X := X k dominating X sch k • := X sch × Spec k Spec k • ,
and whose special fiber X 0 can be identified with the central fiber X 0 of X . In fact, every G m -invariant model X of X dominating X sch k • arises in this way. Indeed, X is the blowup of a G minvariant ideal on X sch k • cosupported on the special fiber, and such an ideal comes from a flag ideal on X sch × A 1 k . If X is a test configuration for X dominating the trivial test configuration, write red X : X → X 0 for the composition red X •σ r , where σ r : X → X is the Gauss extension. When X is the trivial test configuration, X 0 = X sch and red X becomes the reduction map in §1.5.

Let X be a normal test configuration for X dominating the trivial test configuration, and write the central fiber as X 0 = i∈I b i E i where E i are the irreducible components. Passing to the model X of X , E i defines a k × -invariant Shilov point x i = r ord E i /b i ∈ X . It follows from Corollary 1.5 that x i = σ r (x i ), where x i ∈ X is either the generic point or a Shilov point. Note that x i depends on the choice of r ∈ R × + , but only up to scaling. Given d ≥ 1, define a new test configuration X = X d for X as the normalization of the fiber product of X → A 1 k and the map A 1 k → A 1 k given by → d . The induced map g = g d : X → X is finite, of degree d. Let Ẽ be an irreducible component of X 0 . Then E := g( Ẽ) is an irreducible component of X 0 . Let x Ẽ and x E be the associated points in X.

Lemma 1.8. With the notation above, we have

x Ẽ = x d E .
Proof. Set e Ẽ := ord Ẽ (g * E). Then ord Ẽ (g * f ) = e Ẽ ord E (f ) for every f ∈ k(X ) = k( X ). Applying this to f = yields db Ẽ = b E , where b E = ord E ( ) and b Ẽ = ord Ẽ ( ). Now suppose f ∈ k(X). Then g * f = f , and hence

|f (x Ẽ )| = |(g * f )(x Ẽ )| = r ord Ẽ (g * f )/b Ẽ = r e Ẽ ord E (f )/b Ẽ = r d ord E (f )/b E = |f (x E )| d ,
which completes the proof.

Metrics on line bundles

This section contains a general discussion of metrics on line bundles, essentially following [CD12, 6.2]. We also introduce classes of metrics that, in our study, play the role of positive smooth and smooth metrics in complex geometry.

Let k be any non-Archimedean field. As we will in part work additively, fix a logarithm log : R × + → R. 7 When k is nontrivially (resp. discretely) valued, we require log |k × | ⊃ Z (resp. log |k × | = Z). When k is trivially valued, the logarithm is chosen compatible with the Gauss extension σ = σ r : k → k r = k(( )) in the sense that log r = -1.

Let X be the analytification of a variety X sch over k.

2.1. Line bundles and their skeleta. By a line bundle L on X we mean the analytification of (the total space of) a line bundle L sch on X sch . 8 Thus we have a canonical map p : L → X, the analytification of the corresponding map L sch → X sch . Write L × for the complement in L of the image of the zero section. We can cover X by Zariski open subsets U = (Spec A) an , where A is a finitely generated k-algebra, such that p -1 (U ) (Spec A[T ]) an and p -1 (U ) ∩ L × (Spec A[T ±1 ]) an ; the map p is then given by restriction of seminorms from A[T ] to A. When k is trivially valued, this description shows that p commutes with the R × + -actions on L and X. The fiber L x over a point x ∈ X is isomorphic to (Spec H(x)[T ]) an , the Berkovich affine line over H(x). Similarly,

L × x = L × ∩L x is isomorphic to (Spec H(x)[T ±1 ]
) an , and comes with a multiplicative action of H(x) × . The skeleton Sk(L x ) ⊂ L ×

x is the set of fixed points under this action, and is isomorphic to R × + , with r ∈ R × + corresponding to the multiplicative norm on H(x)[T ±1 ] defined by | i a i T i | = max i |a i |r i . There is a continuous retraction L ×

x → Sk(L x ) that in this notation sends v ∈ L × x to r := |T (v)|. We define the skeleton Sk(L) ⊂ L × of L as the union of the individual skeleta Sk(L x ). This is a closed subset of L × . 9 The retraction above defines a continuous global retraction L × → Sk(L). With U ⊂ X as above, we have p -1 (U ) ∩ Sk(L) U × R × + . If L and M are line bundles on X, we have a canonical map L × X M → L ⊗ M , where the fiber product on the left is in the category of k-analytic spaces. Using a variant of the * -multiplication in [Berk90, 5.2], this induces a continuous map Sk(L)× X Sk(M ) → Sk(L⊗M ). If v ∈ Sk(L x ) and w ∈ Sk(M x ), the image v * w ∈ Sk((L ⊗ M ) x ) is defined as follows: the norm on the Banach k-algebra H(v) ⊗H(x) H(w) is multiplicative, and hence defines a point in L × M , whose image v * w ∈ L ⊗ M under the canonical map above is easily seen to belong to Sk(L ⊗ M ). Identifying the skeleta with R × + , the map (v, w) → v * w simply becomes the multiplication map (r, s) → rs. In this way, the skeleton Sk(L) of any line bundle L is a torsor for Sk(O X ) = X × R × + . Similarly, if L is a line bundle on X, we have a canonical isomorphism L × → L -1× that restricts to a homeomorphism of Sk(L) onto Sk(L -1 ). For x ∈ X, we can identify Sk(L x ) and Sk(L -1

x ) with R × + , and the map above is then given by r → r -1 .

7 Working multiplicatively throughout would obviate the choice of a logarithm, but the additive convention is very convenient when studying the Monge-Ampère operator and functionals on metrics.

8 There is a notion of a line bundle on an arbitrary k-analytic space. When X sch is projective, the GAGA results in [Berk90, 3] imply that all line bundles on X are analytifications of line bundles on X sch . 9 In the Archimedean case, that is, k = C with the usual norm, one can define the skeleton of a line bundle L as the quotient of L × by the natural S 1 -action.

X L × x 1 x 2 x 3 Figure 1.
The skeleton of a line bundle L over X. The three trees are the fibers L × x i over points x i , i = 1, 2, 3. The vertical segment in each fiber is the skeleton Sk(L

× x i ) ∼ R × + .
If f : Y → X is a morphism of quasiprojective varieties, induced by a morphism Y sch → X sch , and L is a line bundle on X, then f * L is a line bundle on Y , and f induces a map f * L → L that sends Sk(f * L) to Sk(L).

Let k /k be a non-Archimedean field extension and set X := X k . For any line bundle L on X, L := L k is a line bundle on X , and the canonical map L → L maps Sk(L ) onto Sk(L). More precisely, for any x ∈ X , Sk(L x ) maps homeomorphically onto Sk(L x ), where x ∈ X is the image of x . In the special case when k is trivially valued and k = k(( )), the Gauss extension σ : L → L maps Sk(L) into Sk(L ), More precisely, for every x ∈ X, σ maps Sk(L x ) maps homeomorphically onto Sk(L x ), where x = σ(x).

Metrics.

A metric on a line bundle L on X is a function • : L → R ≥0 whose restriction to each fiber

L x A 1 H(x) is of the form v = c|T (v)|
, where c = c(x) ∈ (0, ∞). In particular, the restriction of • to L x is continuous, and we have av = |a| v for a ∈ H(x) × , v ∈ L x , and v > 0 for v ∈ L ×

x . The restriction of the metric to L x is uniquely determined by its value at any point in L ×

x . Choosing a metric on L amounts to specifying the unit circle v = 1 inside L x A 1 H(x) for each x, just like in the complex case. A metric on O X will be identified with a function on X with values in R × + , the identification arising by evaluating the metric on the constant section 1.

A metric • on L is uniquely determined by its restriction to the skeleton Sk(L). In fact, if q : L × → Sk(L) denotes the retraction, then v = q(v) for every v ∈ L × . The metric is affine on the skeleton: if we identify Sk(L x ) R × + for x ∈ X, then r = ar, where a ∈ R × + . Given metrics on line bundles L, M , there is a unique metric on

L ⊗ M such that v ⊗ w = v • w for v ∈ L x (H(x)), w ∈ M x (H(x)). We also have v * w = v • w for (v, w) ∈ Sk(L) × X Sk(M )
. Similarly, a metric on L induces a metric on L -1 satisfying analogous properties.

It will be convenient to use additive notation for both line bundles and metrics. Thus we write L + M := L ⊗ M , -L := L -1 , and describe a metric • on L via

φ := -log • : L × → R.
In fact, by a metric on L we will, from now on, mean such a function φ.10 When needed, the corresponding multiplicative metric will be denoted by

• φ = e -φ .
With this convention, if φ is a metric on L, any other metric is of the form φ + ϕ, where ϕ is a function on X, that is, a metric on O X . If φ i is a metric on L i , i = 1, 2, then φ 1 + φ 2 is a metric on L 1 + L 2 . If φ is a metric on L, then -φ is a metric on -L. If φ is a metric on mL, where m ≥ 1, then m -1 φ is a metric on L. If φ 1 , φ 2 are metrics on L, so is max{φ 1 , φ 2 }.

If φ 1 and φ 2 are metrics on L that induce the same metric on mL for some m ≥ 1, then φ 1 = φ 2 . We can therefore define a metric on a Q-line bundle L as the choice of a metric φ m on mL for m sufficiently divisible, with the compatibility condition lφ m = φ ml .

If φ is a metric on a line bundle L on X, and f : Y → X is a morphism, induced by a morphism Y sch → X sch , then f lifts to a map f * L → L. For any metric φ on L, f * φ = φ • f is then a metric on f * L.

Let k /k be a non-Archimedean field extension. Given a line bundle L on X, set X = X k and L := L k , and write π for the canonical maps L → L and X → X. If φ is a metric on L, then φ • π is a metric on L . In the special case when k is trivially valued and k = k(( )), we have that φ • σ is a metric on L for every metric φ on L , where σ : L → L denotes the Gauss extension.

If k is trivially valued and L is a line bundle on X, then the canonical map L × → X is equivariant for the scaling action of R × + on L × and X, and induces an action on metrics on L: if φ is a metric on L and t ∈ R × + , then φ t : L × → R defined by

φ t (v) := tφ(v 1/t ) (2.1)
is a metric on L.

A metric on a line bundle L is continuous if it is continuous as a function on L × . This is equivalent to the restriction to Sk(L) being continuous. If s ∈ H 0 (X, L) is a nowhere vanishing global section, then φ is continuous iff the function φ • s is continuous on X. A simple partition of unity argument shows that every line bundle admits a continuous metric, see also 2.4. Continuity of metrics is preserved by all the operations above.

If X is proper, we say that a metric φ on L is bounded if for some/any continuous metric ψ on L, the function φ -ψ is bounded.

A singular metric on a line bundle L is a function φ : L × → R ∪ {-∞} such that, for every x ∈ X, the restriction φ| L ×

x is either ≡ -∞ or a metric on L x . All the remarks above about metrics (except continuity) carry over to singular metrics. Note that any metric is a singular metric.

As an important example, any global section s ∈ H 0 (X, L) defines a singular metric φ := log |s| on L as follows: for any x ∈ X we have φ(s

(x)) = 0 if s(x) = 0, whereas φ ≡ -∞ on L × x if s(x) = 0. In other words, φ(v) = log |v/s(x)| for v ∈ L × x .
Note that log |s| restricts to a continuous metric over the Zariski open set {s = 0} ⊂ X. When k is trivially valued, any singular metric φ = log |s| is homogeneous in the sense that φ t = φ for t ∈ R × + . Consider a non-Archimedean field extension k /k, and set X = X k , L = L k . If s ∈ H 0 (X, L) and s ∈ H 0 (X , L ) is defined from s by ground field extension, then log |s | = log |s|•π, where π : L → L is the canonical map. When k is trivially valued and k = k(( )), this implies log |s| = log |s | • σ, where σ : L → L is the Gauss extension.

FS metrics.

Then next class of metrics will, for the purposes of this paper, play the role of positive smooth metrics in complex geometry. Definition 2.1. A Fubini-Study metric ( FS metric for short) on a line bundle L on X is a metric φ of the form

φ := 1 m max α (log |s α | + λ α ), (2.2)
where m ≥ 1, (s α ) is a finite set of global sections of mL without common zero, and λ α ∈ Z.

We write FS(L) for the space of FS metrics on L. The terminology stems from the observation that if X = P N , m = 1, λ α = 0 and the s α are homogenous coordinates, then φ is the (non-Archimedean counterpart of the) Fubini-Study metric on O(1). The constants λ α are only necessary when k is trivially valued, since otherwise the assumption log |k × | ⊃ Z allows us to absorb λ α into s α .

Remark 2.2. If L is ample and m 0, so that mL is very ample, we may in (2.2) assume that the sections (s α ) α∈A of mL define an embedding of X into projective space. Indeed, pick additional sections (s α ) α∈A of mL such that (s α ) α∈A∪A gives an embedding into P N , and set λ α 0 for α ∈ A . Then max α∈A (log

|s α | + λ α ) = max α∈A∪A (log |s α | + λ α ).
Remark 2.3. The terminology differs slightly from [BE17], where real coefficients λ α are allowed in the definition of FS metrics. The present convention is, however, sufficient for the purposes of this article Note that any FS metric is continuous, and that L admits an FS metric iff L is semiample. The following lemma follows easily from the definition.

Lemma 2.4. With notation as above, we have:

(i) if φ ∈ FS(L), then φ + c ∈ FS(L) for any c ∈ Q; (ii) if φ 1 , φ 2 ∈ FS(L), then max{φ 1 , φ 2 } ∈ FS(L); (iii) if φ i ∈ FS(L i ) for i = 1, 2, then φ 1 + φ 2 ∈ FS(L 1 + L 2 ); (iv) if φ is a metric on L, and mφ ∈ FS(mL) for some m ≥ 1, then φ ∈ FS(L); (v) if φ 1 , φ 2 ∈ FS(L), θ 1 , θ 2 ∈ Q + , and θ 1 + θ 2 = 1, then θ 1 φ 1 + θ 2 φ 2 ∈ FS(L); (vi) if f : X → X is (induced
by) a morphism of k-varieties, and φ ∈ FS(L) for some line bundle L on X, then f * φ ∈ FS(f * L).

DFS metrics.

Then next class of metrics will, for us, play the role of smooth metrics in complex geometry.

Definition 2.5. A DFS metric on a line bundle L on X is a metric of the form φ 1 -φ 2 , with φ i an FS metrics on

L i , i = 1, 2, where L = L 1 -L 2 . A DFS-function on X is a DFS metric on O X .
Write DFS(L) for the set of DFS metrics on a line bundle L, and DFS(X) for the set of DFS functions on X. Every DFS metric is continuous. If X is quasiprojective, every line bundle on X admits a DFS metric.

Lemma 2.6. If L is ample, every DFS function on X is a difference of FS metrics on L.

Proof. Consider ϕ ∈ DFS(X). By definition, there exists a semiample line bundle M and ψ 1 , ψ 2 ∈ FS(M ) such that ϕ = ψ 1 -ψ 2 . Pick b ≥ 1 large enough so that bL-M is base point free, and pick any φ ∈ FS(bL -M ). Then

φ i := b -1 (ψ i + φ) ∈ FS(L) and ϕ = φ 1 -φ 2 .
Theorem 2.7. The set DFS(X) is a Q-vector subspace of C 0 (X) which is stable under max and contains all constants. If X is quasiprojective, DFS(X) separates points. If X is projective, DFS(X) is dense in C 0 (X).

Corollary 2.8. If X is projective, then for every line bundle L, DFS(L) is dense in the set of continuous metrics on L.

Proof of Theorem 2.7. It follows easily from Lemma 2.4 that DFS(X) is a Q-vector space which is stable under max and contains all constant functions. Now assume X is quasiprojective. It only remains to prove DFS(X) separates points. Indeed, if X is further projective, then X is compact, so the Boolean version of the Stone-Weierstrass theorem implies that DFS(X) is dense in C 0 (X).

Being quasiprojective, X embeds into some projective space, so since DFS-functions are clearly stable under pull-back, we are reduced to the case X = P n k . Now let x, y ∈ X be two distinct points. By considering a hyperplane not containing x or y, we may further assume

x, y ∈ A n k ⊂ P n k . Since x = y, there exists a polynomial f ∈ k[t 1 , . . . , t n ], say of degree d ≥ 0, such that |f (x)| = |f (y)|. Suppose |f (x)| < |f (y)| for definiteness and write f = s/t d 0 , where s ∈ H 0 (P n k , O(d)). Given m ∈ Z and λ α ∈ Z, 0 ≤ j ≤ n, set ψ = d max 0≤j≤n (log |t α | -λ α ) and u := max{log |s|, ψ -m} -ψ = max{log |s| -ψ, -m}. Then ψ is an FS metric on O(1) and u a DFS-function on P n k . Assume λ 0 = 0 and λ α 1 for j > 0. Then ψ(x) = d log |t 0 (x)| and ψ(y) = d log |t 0 (y)|. If m > -log |f (y)|, this implies u(x) = max{log |s(x)| -d log |t 0 (x)|, -m} = max{log |f (x)|, -m} < max{log |f (y)|, -m} = max{log |s(y)| -d log |t 0 (y)|, -m} = u(y),
completing the proof.

2.5. Smooth and regularizable metrics. We now comment on the relation of FS metrics and DFS metrics to the point of view of Chambert-Loir and Ducros in [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF].

In our study, DFS (resp. FS) metrics, play the role of smooth (resp. smooth positive) metrics in complex geometry. This is in line with earlier work by Zhang [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF], Gubler [START_REF] Gubler | Local heights of subvarieties over non-Archimedean fields[END_REF], Chambert-Loir [START_REF] Chambert-Loir | Mesures et équidistribution sur les espaces de Berkovich[END_REF] and others, but differs from the point of view by Chambert-Loir and Ducros in [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF].

Indeed, a metric φ on a line bundle L is smooth (resp. smooth psh) in the sense of [CD12] iff for every x ∈ X, there exists an open subset U ⊂ X of x, nonvanishing sections s 1 , . . . , s N ∈ Γ(U, L), and a smooth (resp. smooth convex) function χ :

R N → R such that φ = χ(log |s 1 |, . . . , log |s N |) on p -1 (U ).
A continuous metric φ is (locally) psh-regularizable it is locally a uniform limit of smooth psh metrics. Finally, a continuous metric is regularizable if it is a difference of psh-regularizable metrics.

Lemma 2.9. Any FS metric is psh-regularizable, and any DFS metric is regularizable.

The second statement is indeed a consequence of the first, which is proved exactly as in [CD12, 6.3.2].

2.6. Ground field extension and scaling. Next we consider how FS metrics and DFS metrics behave under ground field extension, and under scaling in the trivially valued case.

Proposition 2.10. Consider a non-Archimedean field extension k /k. Let L be a line bundle on X, set L = L k , and let π : L → L be the canonical map.

(i) If φ ∈ FS(L), then φ • π ∈ FS(L ). (ii) If φ ∈ DFS(L), then φ • π ∈ DFS(L ). Proof. It suffices to prove (i). Write φ = 1 m max α (log |s α | + λ α )
, where λ α ∈ Z and s α are global sections of mL without common zero. The sections s α induce global sections s α of mL without common zero, and

φ • π = 1 m max α (log |s α | + λ α ), so φ • π is an FS metric.
Proposition 2.11. Suppose k is trivially valued and set k = k(( )). Let L be a line bundle on X, L = L k , π : L → L the canonical map, and σ : L → L the Gauss extension.

(i) If φ ∈ FS(L ), then φ • σ ∈ FS(L); further, φ • σ • π ≥ φ . (ii) If φ ∈ DFS(L ), then φ • σ ∈ DFS(L).
Proof. It suffices to prove (i). Since log |k × | = Z, we can write any FS metric on L as φ = m -1 max α∈A log |s α |, where the s α are finitely many sections of mL without common zero. For α ∈ A, we can write s α = j j s α,j , where each s α,j arises from a section s α,j ∈ H 0 (X, mL) via ground field extension. For each α we then have

log |s α | • σ = max j {log |s α,j | • σ -j} = max j {log |s α,j | -j}
on L, and hence

φ • σ = m -1 max α,j {log |s α,j | -j}. (2.3)
Since the sections s α,j , α ∈ A, j ∈ Z have no common zero on X, there exists a finite subset J ⊂ Z such that the same is true for α ∈ A, j ∈ J, and the right-hand side of (2.3) is unchanged if we only take the max over α ∈ A and j ∈ J. Thus φ • σ ∈ FS(L). Further,

φ • σ • π = m -1 max α,j (log |s α,j | -j) ≥ m -1 max α log | j j s α,j | = φ ,
which completes the proof.

Proposition 2.12. Assume k is trivially valued. Let L be a line bundle on X and φ a metric on L. For t ∈ R × + , let φ t be the scaled metric on L as in (2.1).

(i) If φ ∈ FS(L), then φ t ∈ FS(L) for t ∈ Q × + . (ii) If φ ∈ DFS(L), then φ t ∈ DFS(L) for t ∈ Q × + . Thus Q × + acts on FS(L) and DFS(L).
Proof. It suffices to prove (i). We can write

φ = 1 m max α (log |s α | + λ α ), (2.4)
where m ≥ 1, the s α are sections on mL without common zero, and

λ α ∈ Z. Since L → X is equivariant for the R × + -action, we have s α (x t ) = s α (x) t for x ∈ X, t ∈ R × + ; hence φ t = 1 m max α (log |s α | + tλ α ), (2.5) 
and the result follows.

2.7. Model metrics. For the rest of §2, assume X is projective. We will give geometric interpretations of FS metrics and DFS metrics.

A model of a line bundle L on X consists of a model X of X together with a Q-line bundle L on X and an isomorphism L| Xη ∼ → L sch . A model L is ample (resp. semiample, nef ) if it is relatively ample (resp. semiample, relatively nef) for the morphism X → Spec k • .

Any model L defines a metric φ L on L as follows. First suppose L is a line bundle. Given x ∈ X, set ξ = red X (x) ∈ X 0 and pick a local section s ∈ Γ(U, L) defined in a Zariski open neighborhood U of ξ, such that s(ξ) = 0. If U = (U ∩X sch ) an , then x ∈ U , s defines a section of L on U , and we declare φ L (s(x)) = 0. When L is a Q-line bundle, we set φ L := m -1 φ mL for m sufficiently divisible.

A metric of the form φ L is called a model metric.

If φ i is a model metric on L i , i = 1, 2, then φ 1 -φ 2 is a model metric on L 1 -L 2 . If φ is a metric on L and a ∈ Z \ {0}, then φ is a model metric on L iff aφ is a model metric on aL.
Proposition 2.13. Assume k is nontrivially valued, and let L be a line bundle on X.

(i) A DFS metric on L is the same as a model metric.

(ii) If L is semiample, then an FS metric on L is the same thing as a model metric defined by a semiample model L of L (iii) If L is ample, then an FS metric on L is the same thing as a model metric defined by an ample model L of L.

Proof. Note that (i) follows from (iii), since any DFS metric is a difference of FS metrics on ample line bundles, and any model metric is a difference between model metrics defined by ample models.

To prove (ii), assume L is semiample and consider a metric φ on L. First suppose φ = φ L is a model metric, with L a semiample Q-line bundle. To prove that φ L is an FS metric, we may, after replacing L and L by a suitable multiple, assume L is a base point free line bundle. Let (s j ) 0≤j≤N be global sections of L without common zero on X . For each j, let s j ∈ H 0 (X, L) = H 0 (X sch , L sch ) be the restriction of s j to X sch . Then (s j ) 0≤j≤N have no common zero on X, so ψ := max j log |s j | is an FS metric on L. We claim that ψ = φ, which will complete the proof. Pick any point x ∈ X, and set ξ := red(x) ∈ X 0 . We may assume s 0 (ξ) = 0. By the definition of φ, this implies φ(s 0 (x)) = 0. On the other hand, for any j, we have s j /s 0 ∈ O X ,ξ , so s j /s 0 is a regular function at x, and |s j (x)/s 0 (x)| ≤ 1, by the definition of the reduction map. It follows that ψ = log |s 0 | on L x , and hence ψ(s 0 (x)) = 0 = φ(s 0 (x)), which completes the proof.

Conversely, suppose φ is an FS metric, say φ := m -1 max 0≤j≤N (log |s α | + λ j ), where λ j ∈ Z and the s j are global sections of mL without common zero. Replacing L and φ by mL and mφ, respectively, we may assume m = 1 and that L is very ample. Since log |k × | ⊃ Z, we may further assume λ j = 0 for all j. Thus φ := max 0≤j≤N log |s j |. The sections s j define a morphism f : X sch → P N k , and

L = f * O P N k
(1). Pick any model X of X and let X be the scheme theoretic closure of the graph of f in X × Spec k

• P N k • . Then f extends to a morphism X → P N k • , and if we set L := f * O P N k • (1), then (X , L
) is a semiample model of (X, L). We claim that φ = φ L . But by construction, the sections s j extend to global sections s j of L without common zeros. The same argument as above now shows that φ = φ L , completing the proof of (ii).

Finally assume L is ample. We only need to show any FS metric φ on L is a model metric associated to an ample model of L. Reasoning as above, and also invoking Remark 2.2, we may assume that L is very ample and that φ := max 0≤j≤N log |s α |, where the s j define an embedding X sch → P N k into projective space. Let X be the closure of the image of X sch in P N k • , and

L := O P N k • (1)| X . Then (X , L
) is an ample model of (X, L) and φ = φ L . If (X , L) and ( X , L) are models of (X, L) such that X dominates X , and L is the pullback of L under the morphism X → X , then L and L give rise to the same model metric on L,

φ L = φ L . We say that a metric φ ∈ DFS(L) is determined on a model X of X if φ = φ L for a Q-line bundle L on X . Two Q-line bundles L 1 and L 2 on X define the same metric on L iff L 1 -L 2 is numerically trivial [GM16, 4.5].
2.8. The trivial metric. If k is trivially valued, the only model of (X, L) is (X sch , L sch ). This gives rise to the trivial metric φ triv = φ triv,L on L. The assignment L → φ triv,L is linear in L, in the sense that φ triv,L 1 + φ triv,L 2 = φ triv,L 1 +L 2 and φ triv,mL = mφ triv,L for m ∈ Z.

The following result therefore shows that the trivial metric on a semiample (resp. arbitrary) line bundle is an FS metric (resp. a DFS metric).

Lemma 2.14. If L is base point free and (s α ) are finitely many global sections of L without common zero, then the trivial metric on L is given by φ triv = max α log |s α |.

Proof. Set φ := max α log |s α |. Given x ∈ X, set ξ := red(x) ∈ X, and consider a local section s of L defined in a Zariski open neighborhood of ξ such that s(ξ) = 0. We must prove that φ(s(x)) = max α log |s α (x)/s(x)| = 0. But since ξ = red(x) and s(ξ) = 0, we have |s α (x)/s(x)| ≤ 1 for all α, with equality iff s α (ξ) = 0.

The trivial metric allows us to identify metrics on L with functions on X: if φ is a metric on L, then φ -φ triv is a function on X; the trivial metric itself corresponds to the zero function. The trivial metric is homogeneous, i.e. invariant under the scaling action by R × + .

2.9. Metrics from test configurations. In this section, k is trivially valued. We shall show that DFS metrics are exactly metrics arising from test configurations. These are the only metrics considered in [BHJ17]. The next definition follows loc. cit.

Definition 2.15. A test configuration L for L consists of a test configuration X of X in the sense of Definition 1.7, together with the following data:

(iv) a G m -linearized Q-line bundle L on X ; (v) an isomorphism L| X 1 L.
If more precision is needed, we say that (X , L) is a test configuration for (X, L). A test configuration (X , L) is said to be ample (resp. semiample, nef) if L is relatively ample (resp. semiample, nef) for the canonical morphism L → A 1 .

The trivial test configuration of (X, L) is (X sch × A 1 , L sch × A 1 ), where the action of G m occurs on the A 1 -factors. A test configuration ( X , L) dominates another test configuration (X , L) for (X, L), if X dominates X and L is the pullback of L under X → X .

To explain how a test configuration induces a metric, set k = k(( )) and let (X , L ) = (X k , L k ) be the ground field extension. Suppose (X , L) is a test configuration for (X, L) dominating the trivial test configuration. Then the base change (X , L ) of (X , L) via the

map Spec k[[ ]] → Spec k[ ]
is a model of (X , L ), and hence defines a model metric φ L on L . Using the Gauss extension σ : L → L , this gives rise to a metric φ

L = φ L • σ on L.
When L is a line bundle, any section s ∈ H 0 (X, L) has a G m -invariant extension s ∈ H 0 (X \ X 0 , L). Conversely, any section s ∈ H 0 (X , L) decomposes as s = j j sj , where

s j ∈ H 0 (X, L).
Remark 2.16. When L (and hence L) is a base point free line bundle, the induced metric φ L on L can be described as follows. Consider any point x ∈ X, set ξ := red X (x) ∈ X 0 , and pick a global section s ∈ H 0 (X , L) such that s(ξ) = 0. Write s = j j sj , where

s j ∈ H 0 (X, L).
For any j such that j sj is regular and does not vanish at ξ, we then have

φ L (s j (x)) = -j; this determines φ L on L × x .
If (X , L) and ( X , L) are test configurations for (X, L), with ( X , L) dominating (X , L), then the model ( X , L ) dominates (X , L ), so φ L = φ L and finally φ L = φ L . If L is an arbitrary test configuration for L, we can therefore define the metric φ L on L as the metric defined by any test configuration dominating both (X , L) and the trivial test configuration. We say that an DFS metric φ is determined on a test configuration X for X, if φ = φ L for some test configuration (X , L).

When L is ample, we say, following [BHJ17], that a metric on L is positive if it is defined by a semiample test configuration for L. By [BHJ17, Lemma 6.3], every positive metric is associated to a unique normal ample test configuration for L, but the latter may not dominate the trivial test configuration in general.

Proposition 2.17. Let L be a line bundle on X.

(i) A DFS metric on L is the same thing as a metric defined by a test configuration.

(ii) If L is semiample, then an FS metric on L is the same thing as a metric defined by a semiample test configuration for L. (iii) If L is ample, then an FS metric on L is the same thing as a positive metric on L.

Proof. Most of the statements follows from Proposition 2.13. Set k = k(( )), X = X k , L = L k , and let π : L → L denote the canonical map. Consider a metric φ on L and set φ := φ • π, If φ = φ L for a test configuration L, then φ = φ L , where L is the associated model of L . By Proposition 2.13, φ is a DFS metric, hence so is φ = φ • σ by Proposition 2.11. The same argument shows that if L is semiample, then φ is an FS metric.

It only remains to prove that any FS metric φ is defined by a semiample test configuration. Passing to multiples of L and φ, respectively, we may assume φ = max 0≤j≤N (log |s j | -λ j ), where N ≥ 0, s j ∈ H 0 (X, L) = H 0 (X sch , L sch ), λ j ∈ Z for each j, and the sections s j have no common zero. Define sections s j of L sch × A 1 over X sch × G m by s j := λ j s j . Then (s j ) 0≤j≤N define a rational map τ : X sch × A 1 P N × A 1 that is regular outside the central fiber. Let X be the graph of this rational map and L the pullback of O(1)×A 1 . Then (X , L) is a semiample test configuration for (X, L), and φ = φ L . This completes the proof.

We later need an alternative description of DFS functions on X, analogous to [BFJ16a, Proposition 2.2]. Recall that a flag ideal is a G m -invariant ideal on X sch × A 1 cosupported on the central fiber. Any flag ideal a defines continuous function ϕ a := log |a| • σ on X, where σ : X → X × A 1 is the Gauss extension. Note that ϕ a ≡ -1 for a = ( ).

Proposition 2.18. The Q-vector space generated by all functions ϕ a coincides with DFS(X), and is hence dense in C 0 (X).

Proof. It suffices to prove the following two statements:

(i) if φ ∈ FS(L) and φ ≤ φ triv , then φ -φ triv = m -1 ϕ a for some m ≥ 1 and flag ideal a;

(ii) if a is a flag ideal, then there exist L and φ ∈ FS(L) such that φ = φ triv + ϕ a . Here φ triv denotes the trivial metric on L.

To prove (i), write φ = m -1 max 0≤j≤N {-j + max s∈A j log |s|}, where m, N ≥ 1 and A j is a finite set of global sections of mL, and the sections in A N have no common zero. Let a j be the base ideal defined by the sections in A j , Then a N = O X sch , a := N 0 j a j is a flag ideal, and φ = φ triv + m -1 ϕ a . Now suppose a = N j=0 ( j )a j , is a flag ideal, where the a j are ideals on X sch and a N = O X sch . Pick L ample such that L ⊗ a j is globally generated, say by sections (s j,l ) l∈L j for all j. Then ϕ a = max j (max l log |s j,l | -j) -φ triv , proving (ii). 2.10. Scaling and base change. Assume k is trivially valued. The scaling action on metrics can then be interpreted geometrically as a base change, as in [BHJ17, §6.3]. Indeed, consider a normal test configuration (X , L) for (X, L) and an integer d ≥ 1. As in §1.7, let X be the normalization of the base change under → d , and g : X → X the induced map. Set L = g * L. Then ( X , L) is a normal test configuration for (X, L). Proof. The statement is true when (X , L) is the trivial test configuration, and φ = φ triv . By linearity it therefore suffices to treat the case when L = O X and L = O X (D) for a divisor D supported on the central fiber. We then view φ = φ D as a function on X and must show that φ g * D (x d ) = dφ D (x) for all x ∈ X. Since φ D is continuous, it suffices to do this for x ∈ X Shi . Passing to a higher model, we may assume that x = x E for an irreducible component E ⊂ X 0 . Let Ẽ be an irreducible component of X 0 such that g( Ẽ) = E. By Lemma 1.8 we have

x Ẽ = x d E . Further, b E e Ẽ = db Ẽ , where b E = ord E (X 0 ), b Ẽ = ord Ẽ ( X 0
) and e Ẽ = ord Ẽ (g * E). This leads to

φ g * D (x d E ) = φ g * D (x Ẽ ) = b -1 Ẽ ord Ẽ (g * D) = b -1 Ẽ e Ẽ ord E (D) = db -1 E ord E (D) = dφ D (x E ), completing the proof.
2.11. Shilov points and the Izumi inequality. We will later need two results on the uniform behavior of functions on X of the form φ -φ ref , where φ ref ∈ DFS(L) is a reference metric (assumed to be the trivial metric when k is trivially valued) and φ ranges over metrics in FS(L).

The first result concerns the suprema of such functions.

Lemma 2.20. For any φ ref ∈ DFS(L), there exists a finite subset Z ⊂ X Shi of Shilov points such that sup X (φ

-φ ref ) = max Z (φ -φ ref ) for every φ ∈ FS(L).
Proof. By Proposition 2.13, φ ref is a model metric, associated to a model X of X. In this case, we can take Z = Γ(X ) ⊂ X Shi , the finite set of Shilov points associated to X . Indeed, this follows from [BE17, Lemma 4.18] when φ = log |s| for a nonzero section s ∈ H 0 (X, L), or more generally, φ = 1 m log |s| for s ∈ H 0 (X, mL). Taking maxima yields the same result for FS metrics φ.

The second result is deeper, and can be viewed as a global version of the Izumi inequality, see [BFJ14] for a discussion. A proof when k is discretely valued case of residue characteristic zero, can be found in [BFJ16a, §6.1]. The result in the trivially valued case is equivalent to [BKMS16, Proposition 2.12]. Our proof is completely different from the ones in loc. cit.

Theorem 2.21. For any metric φ ref ∈ DFS(L) and any two quasimonomial points x 1 , x 2 ∈ X qm , there exists a constant

C = C(L, x 1 , x 2 , φ ref ) such that |(φ -φ ref )(x 1 ) -(φ -φ ref )(x 2 )| ≤ C (2.6)
for any metric φ ∈ FS(L).

Proof. We may assume dim X ≥ 1. We first prove that if the statement is true over a non-Archimedean extension k of k, then it is true over k. Indeed, set X = X k , L = L k , and write π for the canonical maps X → X and L → L. Since x i ∈ X qm , we have d(x i ) = n. By [Berk90, 9.1.4], there exist points

x i ∈ π -1 (x i ), i = 1, 2, such that d(x i ) ≥ d(x i ) = n. But then d(x i ) = n by the Abhyankar inequality, so x i ∈ X qm . Now φ ref := φ ref • π ∈ DFS(L ) and φ := φ • π ∈ FS(L) for any φ ∈ FS(L). Further, (φ -φ ref )(x i ) = (φ -φ ref )(x i ), for i = 1, 2, so we can pick C = C(L , x 1 , x 2 , φ ref ).
We may therefore assume that k is algebraically closed and nontrivially valued. We may of course also assume x 1 = x 2 . Let us first treat the case when X is the analytification of a smooth projective curve. The result can then be proved using potential theory, as systematically developed by Thuillier [Thu05]; see also [BR10, [START_REF] Baker | Non-archimedean geometry, tropicalization, and metrics on curves[END_REF][START_REF] Jonsson | Dynamics on Berkovich spaces in low dimensions[END_REF].

We can equip H := X \ X rig ⊃ X qm with a natural structure of a metric space. For any strictly semistable model X of X, the dual graph (or skeleton) ∆ X is a connected metrized graph that embeds isometrically into H. Further, any point x ∈ X qm belongs to some dual graph ∆ X . Pick a strictly semistable model X of X such that x 1 , x 2 ∈ ∆ X and φ ref is associated to a Q-line bundle L on X . Let V ⊂ X Shi be the set of vertices of ∆ := ∆ X . Each x ∈ V corresponds to an irreducible component E of the special fiber of X , and we set r(x)

:= deg(L ref | E ) ∈ Q. (The measure x∈V r(x)δ x on X is the Monge-Ampère measure dd c φ ref , see §3.1.)
Given φ ∈ FS(L), the restriction of the function ϕ := φ -φ ref to ∆ is then continuous and has the following properties:

(i) ϕ is convex and piecewise affine (with rational slopes) on each edge of ∆; (ii) for each vertex x ∈ V , we have r(x) + v∈Ex D v ϕ ≥ 0, where E x is the set of edges of ∆ emanating from x and D v ϕ is the slope of ϕ at x along each such edge.

It is now easy to see from (i)-(ii) that |D v ϕ| is uniformly bounded independently of ϕ.

From the convexity statement in (ii) it now follows that ϕ| ∆ is uniformly Lipschitz. Since x 1 , x 2 ∈ ∆, the estimate (2.6) follows.

The case of curves being settled, the general case of Theorem 2.21 is now a consequence of Lemma 2.22 below. Indeed, the line bundle M := f * L on Y is ample. If we write f : M → L for the canonical map, then

ψ ref := φ ref • f ∈ DFS(M ). Further, if φ ∈ FS(L), then ψ := φ • f ∈ FS(M ), and (φ -φ ref )(x i ) = (ψ -ψ ref )(y i ). We can therefore pick C = C(M, y 1 , y 2 , ψ ref ).
Lemma 2.22. For any two quasimonomial points x 1 , x 2 ∈ X qm , there exists an algebraically closed extension k /k, a morphism f : Y → X k from a smooth projective k -analytic curve and quasimonomial points y 1 , y 2 ∈ Y qm such that f (y i ) = x i .

The proof relies on the next result.

Lemma 2.23. Let k be a non-Archimedean field, X a k-analytic space of pure dimension n ≥ 1, and x ∈ X qm a quasimonomial point. We can then find a non-Archimedean field extension k /k such that the preimage of x under the induced map π : X k → X has nonempty topological interior.

Proof of Lemma 2.23. We are grateful to A. Ducros and J. Poineau for help with the following argument.

For any /k, the -analytic space X has dimension n, the map π : X → X is continuous and surjective, and by [Berk90, 9.1.4] there exists a quasimomonial point y ∈ π -1 (x). We may therefore replace k by any non-Archimedean extension.

In particular, we may assume k algebraically closed and nontrivially valued. By [Poi13, Corollaire 3.14], for any non-Archimedean extension k /k, we have a canonical section σ : X → X of π. Indeed, the norm on the Banach k-algebra M(H(x) ⊗k k ) is multiplicative and defines a point σ(x) =:

x in π -1 {x} = M(H(x) ⊗k k ) ⊂ X . It follows from [Berk90, 9.1.4, 9.3.2] that x is also quasimonomial. If we choose k := H(x), then |H(x ) × | = |k × |, so t(x ) = 0, and hence s(x ) = n, i.e. x is Shilov.
We may therefore assume that k is algebraically closed, nontrivially valued, and that x is Shilov. We will prove that any algebraically closed extension k of H(x) yields the desired conclusion.

By [START_REF] Poineau | Les espaces de Berkovich sont angéliques[END_REF]4.16], there exists a strictly k-affinoid Laurent domain V = M(A) ⊂ X whose Shilov boundary is the singleton {x}. The canonical character A → H(x) → k and the identity on k induce a character χ : A → k . Let y ∈ V (k ) be the rigid point defined as the image of the corresponding map M(k ) → M(A V ) = V . Its reduction ỹ = red (y ) is a closed point, given by the image of the morphism Spec k → Spec à = Ṽ . On the one hand, π(ỹ ) is the generic point of Ṽ , so π(y ) = x. On the other hand, the preimage under red of any closed point in Ṽ is open in V , and hence so is its preimage in X . Thus y lies in the topological interior of π -1 (x) in X .

Then V = V k = M(A ) is a Laurent domain in X = X k ,
Proof of Lemma 2.22. Lemma 2.23 yields an algebraically closed k /k such that π -1 (x i ) ⊂ X has nonempty interior for i = 1, 2. Since k is nontrivially valued, X rig is dense in X , so we can pick x i ∈ X rig ∩ π -1 (x i ) for i = 1, 2, and it is then easy to construct an irreducible curve on the variety X k passing through x 1 , x 2 (see for instance [Mum70, Lemma, §2.6, p.53]). Let Y be the normalization of this curve and Y be the corresponding k -analytic space. We then have points

z i ∈ Y (k ), i = 1, 2, and a map f : Y → X such that f (z i ) = x i , i = 1, 2. Write f := π • f : Y → X. Since f -1 (x i ) = (f ) -1 π -1 (x i ) is open in Y and nonempty, it contains some point y i ∈ Y qm , i = 1, 2.

The Monge-Ampère operator on DFS metrics

In this section we recall the definition of the mixed Monge-Ampère operator on DFS metrics, as well as the energy functionals E, I and J on FS metrics. We also prove estimates that are, for the most part, well known in the Archimedean setting. Unless otherwise stated, k is an arbitrary non-Archimedean field, and X is a geometrically integral projective variety over k.

3.1. The mixed Monge-Ampère operator. Let φ i be a DFS metric on a line bundle L i for 1 ≤ i ≤ n. To this data is associated a mixed Monge-Ampère measure

dd c φ 1 ∧ • • • ∧ dd c φ n .
This was defined by Chambert-Loir [START_REF] Chambert-Loir | Mesures et équidistribution sur les espaces de Berkovich[END_REF] when k is discretely valued and contains a countable dense subfield, and extended by Gubler [START_REF] Gubler | Equidistribution over function fields[END_REF] to the general nontrivially valued case.

Later, Chambert-Loir and Ducros [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF] developed a general theory of forms and currents on Berkovich spaces using ideas from tropical geometry, and used their theory to define mixed Monge-Ampère measures of regularizable metrics, and hence of DFS metrics. 11 See §2.5 for the terminology used in what follows, and [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF] for details.

First, when the φ i are smooth metrics, dd c φ i is defined as a (1, 1)-form, and the wedge product

dd c φ 1 ∧ • • • ∧ dd c φ n is a smooth (n, n)-form
on X, which is then identified with a measure on X. It is a positive measure when the φ i are smooth psh.

Second, when the φ i are psh-regularizable, i.e. locally given as uniform limits of smooth psh metrics (φ j i ) j , the locally defined measures

dd c φ j 1 ∧ • • • ∧ dd c φ j n converge as j → ∞ to a measure dd c φ 1 ∧ • • • ∧ dd c φ n independent on the choice of local regularization φ j i . The assigment (φ 1 , . . . , φ n ) → dd c φ 1 ∧ • • • ∧ dd c φ n
is symmetric and multilinear on the semigroup of n-tuples of psh-regularizable metrics. We can therefore define dd c φ 1 ∧• • •∧dd c φ n when the φ i are regularizable (i.e. differences of psh-regularizable metrics).

By Lemma 2.9, any FS metric (resp. DFS metric) is psh-regularizable (resp. regularizable), so the mixed Monge-Ampère measure dd c φ 1 ∧ • • • ∧ dd c φ n is a positive Radon measure (resp. Radon measure) on X when the φ i are FS metrics (resp. DFS metrics).

We need the following result, which in implicit in [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF] (see [BE17, Lemma 6.2]).

Lemma 3.1. For 1 ≤ i ≤ n, let φ i be a regularizable metric on a line bundle L i . Let k /k be a non-Archimedean field extension, write π for the canonical maps X k → X and L i,k → L i , and set

φ i := φ i • π for 1 ≤ i ≤ n. Then dd c φ 1 ∧ • • • ∧ dd c φ n = π * (dd c φ 1 ∧ • • • ∧ dd c φ n ). (3.1)
As a consequence, we have

X ψ dd c φ 1 ∧ • • • ∧ dd c φ n = X ψ dd c (φ 1 ∧ • • • ∧ dd c φ n ) (3.2)
for any continuous function ψ on X, where ψ = ψ • π.

Proposition 3.2. If φ i is a DFS (resp. FS) metrics on a line bundle L i , 1 ≤ i ≤ n, then the mixed Monge-Ampère measure

dd c φ 1 ∧ • • • ∧ dd c φ n is a finite atomic signed (resp. positive) measure on X qm of total mass (L 1 • . . . • L n ).
11 Alternatively, the approach in [START_REF] Gubler | A tropical approach to non-archimedean Arakelov theory[END_REF] treats DFS metrics more directly, without regularization.

Proof. When k is nontrivially valued, this was proved in [CD12, 6.9.2], see §3.2 below. The mixed Monge-Ampère measure is supported on Shilov points in this case. When k is trivially valued, we get the same result using Lemma 2.22 with the ground field extension k = k(( )). In this case, the Monge-Ampère measure is now supported on Shilov points and the generic point of X, see §3.4.

3.2. Geometric description. Suppose k is nontrivially valued. Then each DFS metric φ i , 1 ≤ i ≤ n, is a model metric associated to a model L i of L. We may assume that the L i are all Q-line bundles on a common model X of X. Let E i , i ∈ I be the irreducible components of the special fiber X 0 , and let x j ∈ X Shi be the Shilov point associated to E j . In this case, we have

dd c φ 1 ∧ • • • ∧ dd c φ n = j λ j δ x j , (3.3) 
where λ j ∈ R, see [CD12, 6.9.2]. If the non-Archimedean field k is stable, then

λ j = [|H(x) × | : |k × |](L 1 | E j • . . . • L n | E j ), (3.4) 
see [CD12, 6.9.3]. Important cases of stable fields include algebraically closed fields, and trivially or discretely valued fields.12 Let us say a few more words about Gubler's construction in [START_REF] Gubler | Equidistribution over function fields[END_REF], adapted (and specialized) to our situation. Assume k is algebraically closed. For 0 ≤ i ≤ n, let φi = (L i , φ, s i ) be the datum of a line bundle L i of X, a model (i.e. DFS) metric φ i on L i , and a rational section s i of L i . Assuming that the divisors of the s i have empty intersection, Gubler [START_REF] Gubler | Local heights of subvarieties over non-Archimedean fields[END_REF] defines a local height λ φ0 ,..., φn of X. This is symmetric and multilinear in ( φ0 , . . . , φn ). Now suppose that L 0 = O X , so that φ 0 is a DFS-function, and that s 0 ≡ 1. In this case, the local height λ φ0 ,..., φn is independent of s 1 , . . . , s n . Further, φ 0 → λ φ0 ,..., φn is linear and given by integration against the Monge-Ampère measure. In other words,

λ φ0 ,..., φn = φ 0 dd c φ 1 ∧ • • • ∧ dd c φ n .
(3.5) 3.3. The discretely valued case. When k is discretely valued, the special fiber of X is a Cartier divisor X 0 = j b j E j , where b j ∈ Z >0 . In this case, (3.3)-(3.4) give

dd c φ 1 ∧ • • • ∧ dd c φ n = j b j (L 1 | E j • . . . • L n | E j )δ x j , (3.6) 
consistent with the construction in [START_REF] Chambert-Loir | Mesures et équidistribution sur les espaces de Berkovich[END_REF]. The formula in (3.5) can be interpreted as follows. Consider any φ 0 ∈ DFS(X). We may assume φ 0 is determined on X by a Cartier divisor D = j r j E j on X supported on the special fiber. We then have

φ 0 dd c φ 1 ∧ • • • ∧ dd c φ n = λ φ0 ,..., φn = (D • L 1 • . . . • L n ) = j r j (L 1 | E j • . . . • L n | E j ).
3.4. The trivially valued case. When k is trivially valued, we can interpret the mixed Monge-Ampère measure of DFS metrics in terms of test configurations, in line with [BHJ17]. Indeed, consider metrics φ i ∈ DFS(L i ), 1 ≤ i ≤ n. These are defined by normal test configurations (X , L i ) for (X, L i ), with X independent of i and dominating the trivial test configuration. Now apply Lemma 3.1 to k = k(( )). It follows from the discussion in §3.3 that if we write the central fiber as X 0 = j b j E j , then

dd c φ 1 ∧ • • • ∧ dd c φ n = j b j (L 1 | E j • . . . • L n | E j )δ x j , (3.7) 
where x j ∈ X is the point associated to E j . Further, if ψ ∈ DFS(X) is defined by a Q-Cartier Q-divisor D = j r j E j on X , supported on the central fiber, then

ψ dd c φ 1 ∧ • • • ∧ dd c φ n = (D • L 1 • . . . • L n ).
Here the intersection number on the right is a sum of intersection numbers on the E j . There is also another useful expression. As in [BHJ17, §2.2], we can define canonical compactifications ( X , Li ) of (X , L i ) (with X still independent of i). We then have

ψ dd c φ 1 ∧ • • • ∧ dd c φ n = (D • L1 • . . . • Ln ),
this being an ordinary intersection number on the projective k-scheme X .

Proposition 3.3. Assume k is trivially valued. For 1 ≤ i ≤ n, let φ i be a DFS metric on a line bundle L i on X. If φ i,t denotes the scaling of φ i by t ∈ Q × + as in (2.1), then

dd c φ 1,t ∧ • • • ∧ dd c φ n,t = t * (dd c φ 1 ∧ • • • ∧ dd c φ n ).
(3.8)

As a consequence, for any ψ ∈ DFS(X), we have

ψ t dd c φ 1,t ∧ • • • ∧ dd c φ n,t = t ψ dd c φ 1 ∧ • • • ∧ dd c φ n .
(3.9)

Proof. Note that (3.9) follows from (3.8), since t * ψ t (x) = ψ t (x t ) = tψ(x) for any ψ ∈ DFS(X). Conversely (3.9) implies (3.8), since DFS(X) is dense in C 0 (X). Thus it suffices to prove (3.9). Since we are dealing with group actions of Q × + , it suffices to consider the case when t = d is a positive integer. To do this, we follow [BHJ17, §6.6]. Pick a normal test configuration X for X, dominating the trivial test configuration, Let X be the pullback of X by the map A 1 k → A 1 k given by → d , and let g d : X → X be the resulting map. Set

L i = g * d L i , 1 ≤ i ≤ n and D := g * d D
. By Proposition 2.19, φ i,d and ψ d are the model metrics associated to L i and D , respectively.

The morphism A 1 k → A 1 k above extends to a morphism P 1 k → P 1 k , and the compactification X of X is the base change of X → P 1 k with respect to this morphism, so g d extends to a morphism g d : X → X , and the compactification L i of L i is equal to g * d Li . Thus

ψ d dd c φ 1,d ∧ • • • ∧ dd c φ n,d = (D • L 1 • . . . • L n ) = (g * d D • g * d L1 • . . . • g * d Ln ) = d(D • L1 • . . . • Ln ) = d ψ dd c φ 1 ∧ • • • ∧ dd c φ n ,
where the third equality follows from the projection formula.

3.5. Fundamental properties. We now state two fundamental properties of the Monge-Ampère operator on DFS metrics. First, we have the following integration by parts formula.

Proposition 3.4. For any DFS-functions f , g on X and DFS metrics φ 1 , . . . , φ n-1 on line bundles L 1 , . . . , L n-1 on X, we have

f dd c g ∧ dd c φ 1 ∧ • • • ∧ dd c φ n-1 = gdd c f ∧ dd c φ 1 ∧ • • • ∧ dd c φ n-1 .
(3.10)

Proof. After ground field extension, we may assume that k is nontrivially valued. In this case, we can express both sides of (3.10) as local heights, and the equality follows from (3.5) and the symmetry of the local height. Alternatively, one can argue using [CD12, 3.12.2].

Second, we have the following Cauchy-Schwarz inequality. It is a special case of the local Hodge index theorem (Theorem 2.1) in [YZ16]. The case when k is discretely or trivially valued is also treated in [BFJ15, Proposition 2.21] and [BHJ17, Lemma 6.14], respectively. Proposition 3.5. Let φ 1 , . . . , φ n-1 be FS metrics on semiample line bundles L 1 , . . . , L n-1 .

(i) The symmetric bilinear form

(f, g) → - X f dd c g ∧ dd c φ 1 ∧ • • • ∧ dd c φ n-1 on DFS(X) is positive semidefinite. (ii) If f ∈ DFS(X) is a nonconstant function, and there exists ε ∈ Q × + such that φ i ±εf ∈ FS(L i ) for 1 ≤ i ≤ n, then X f dd c f ∧ dd c φ 1 ∧ • • • ∧ dd c φ n-1 < 0.
Remark 3.6. The local Hodge index theorem in [YZ16] is much more general than Proposition 3.5. For example, it holds when f is associated to a vertical R-Cartier R-divisor on a model of X.

Propositions 3.4 and 3.5 form the engine that drives the Monge-Ampère vehicle.

3.6. Mixed Monge-Ampère measures and Shilov points. The following conjecture states that there are "many" mixed Monge-Ampère measures.

Conjecture 3.7. Assume that k is nontrivially valued, X is geometrically integral, and L is ample. Let f : X Shi → R be a function such that

X Shi f dd c ψ 1 ∧ • • • ∧ dd c ψ n = 0 for any FS metrics ψ i ∈ FS(L), 1 ≤ i ≤ n. Then f ≡ 0.
Proposition 3.8. If k is discretely valued, of residue characteristic zero, and X is smooth, then Conjecture 3.7 is true.

Proof. Given any point x ∈ X Shi , pick a regular model X of X such that x corresponds to an irreducible component of X 0 , and such that L admits an ample model L on X . This is possible by the assumptions on k and X. Let ψ ∈ FS(L) be the metric induced by L. Let E 1 , . . . , E N be the irreducible components of X 0 , with associated points x 1 , . . . , x N ∈ X Shi . We may assume

x 1 = x. Write X 0 = N 1 b i E i , where b i ≥ 1. Set L i = L and ψ i = ψ for 2 ≤ i ≤ N . Given t ∈ Q N , set M t = L + t 1 E 1 + • • • + t N E N , χ t = φ Mt , and µ t = dd c χ t ∧ dd c ψ 2 ∧ • • • ∧ dd c ψ N . We claim that we can pick t such that µ t = (L n )δ x 1 . Then (L n )f (x) = f µ t = 0, completing the proof.
Define a map g = (g 1 , . . . , g N ) :

Q N → Q N by g i (t) = µ t {x i }. We claim that the image of g is the set W of z ∈ Q N such that i z i = (L n ).
Clearly the image of g is contained in W . To prove the converse, note that g is an affine function, with linear part given by h :

Q N → Q N , where h i (t) = b i (M t | E i • L| n-1 E i ).
It suffices to prove that h has 1-dimensional kernel. But h(t) = 0 implies that the divisor D t = t i E i satisfies (D 2 t • L n-1 ) = 0. By the Hodge Index Theorem, this implies that t i = cb i , 1 ≤ i ≤ N , for some c ∈ Q, completing the proof. 3.7. Normalized Monge-Ampère operator. For the rest of this section, we fix a semiample line bundle L that we furthermore suppose is big, i.e.

V := (L n ) > 0.
It is convenient to normalize the Monge-Ampère operator. Given FS metrics φ 1 , . . . , φ n on L, we set

MA(φ 1 , . . . , φ n ) := V -1 dd c φ 1 ∧ • • • ∧ dd c φ n .
This is then a probability measure on X. We also write

MA(φ) := MA(φ, . . . , φ) = V -1 (dd c φ) n .
When k is trivially valued, Proposition 3.3 implies MA(φ t ) = t * MA(φ) for φ ∈ DFS(L) and t ∈ Q × + . Further, (3.6) shows that MA(φ triv ) is a Dirac mass at the generic point of X.

3.8. The Monge-Ampère energy functional. Define the Monge-Ampère energy13 of a metric φ ∈ DFS(L) relative to another metric ψ ∈ DFS(L) as

E(φ, ψ) = 1 n + 1 n j=0 V -1 (φ -ψ)(dd c φ) j ∧ (dd c ψ) n-j .
(3.11)

The energy functional has many nice properties. First, it is evidently antisymmetric:

E(ψ, φ) = -E(φ, ψ)
for φ, ψ ∈ DFS(L). Second, it satisfies the following cocycle property

E(φ, ψ) = E(φ, χ) + E(χ, ψ), (3.12) 
for φ, ψ, χ ∈ DFS(L), as follows from integration by parts (Proposition 3.4). Since evidently E(φ + c, φ) = c for φ ∈ DFS(L) and c ∈ Q, this implies the following translation property

E(φ + c, ψ) = E(φ, ψ) + c for any c ∈ Q.
Third, it is antiderivative of the Monge-Ampère operator in the sense that

d dt t=0 E(φ + tf, ψ) = f MA(φ), (3.13) 
for any metrics φ, ψ ∈ DFS(L) and any function f ∈ DFS(X). Note that φ + tf is a priori only a DFS metric for t ∈ Q. However, t → E(φ + tf, ψ) is a polynomial in t of degree at most n + 1, and the left hand side of (3.13) means the derivative of this polynomial at t = 0.

Differentiating once more, we see that

d 2 dt 2 t=0 E(φ + tf ) = V -1 f dd c f ∧ (dd c φ) n-1 . (3.14)
When restricted to FS metrics, the Monge-Ampère operator has even more properties. First, we have E(φ 1 , φ 2 ) ≤ 0 when φ 1 , φ 2 ∈ FS(L) and φ 1 ≤ φ 2 . By the cocycle property, this implies that E is increasing in the first argument:

E(φ 1 , ψ) ≤ E(φ 2 , ψ), for φ 1 , φ 2 ∈ FS(L) and ψ ∈ DFS(L) when φ 1 ≤ φ 2 .
Second, if φ, ψ ∈ FS(L), the terms in (3.11) are nonincreasing in j, since

(φ -ψ)(dd c φ) j ∧ (dd c ψ) n-j -(φ -ψ)(dd c φ) j+1 ∧ (dd c ψ) n-1-j = -(φ -ψ)dd c (φ -ψ) ∧ (dd c φ) j-1 ∧ (dd c ψ) n-1-j ≥ 0.
by the Cauchy-Schwartz inequality (Proposition 3.5). This implies that

(φ -ψ) MA(φ) ≤ E(φ, ψ) ≤ (φ -ψ) MA(ψ) (3.15)
for φ, ψ ∈ FS(L). Third, the right-hand side of (3.14) is nonpositive when φ ∈ FS(L). This implies that for any ψ ∈ FS(L), E(•, ψ) is Q-concave on FS(L), in the sense that

E(θ 1 φ 1 + θ 2 φ 2 , ψ) ≥ θ 1 E(φ 1 , ψ) + θ 2 E(φ 2 , ψ)
for φ 1 , φ 2 ∈ FS(L), ψ ∈ DFS(L), and θ 1 , θ 2 ∈ Q + such that θ 1 + θ 2 = 1.

3.9. The I and J-functionals. Next we introduce two other functionals based on the Monge-Ampère operator. Given two FS metrics φ and ψ on L, set

I(φ, ψ) = (φ -ψ)(MA(ψ) -MA(φ)).
Clearly, I is symmetric, I(φ, ψ) = I(ψ, φ), and translation invariant, I(φ+c, ψ +d) = I(φ, ψ) for any constants c, d. By (3.15), we have I(φ, ψ) ≥ 0, as can also be seen from

I(φ, ψ) = - n-1 j=0 V -1 (φ -ψ)dd c (φ -ψ) ∧ (dd c φ) j ∧ (dd c ψ) n-1-j . (3.16)
The closely related J-functional is defined by

J ψ (φ) := -E(φ, ψ) + (φ -ψ) MA(ψ).
By (3.11), this is also nonnegative, and it can be written as

J ψ (φ) = - n-1 j=0 j + 1 n + 1 V -1 (φ -ψ)dd c (φ -ψ) ∧ (dd c φ) n-1-j ∧ (dd c ψ) j . (3.17) The Q-concavity of φ → E(φ, ψ) implies that φ → J ψ (φ) is Q-convex on FS(L).
Lemma 3.9. For any FS metrics φ, ψ ∈ FS(L) we have

I(φ, ψ) = J ψ (φ) + J φ (ψ) (3.18) and n -1 J φ (ψ) ≤ J ψ (φ) ≤ I(φ, ψ) ≤ (n + 1)J ψ (φ). (3.19)
Proof. The equality (3.18) is immediate from the definition, and implies J ψ (φ) ≤ I(φ, ψ) since J φ (ψ) ≥ 0. The last inequality in (3.19) follows from (3.16) and (3.17). It remains to prove the first inequality. But

nJ φ (ψ) -J ψ (φ) = (n + 1)(E(φ) -E(ψ)) + n (ψ -φ) MA(φ) + (ψ -φ) MA(ψ),
which is nonnegative since the terms in (3.12) are decreasing.

We will prove in Corollary 6.28 that I(φ, ψ) = 0 iff φ -ψ is a constant.

3.10. Reference metric. The functionals E, I and J above depend on two arguments. It will be convenient to fix a reference metric φ ref ∈ FS(L) and use this as the second argument. 14 In the trivially valued case, we will always pick φ ref = φ triv , the trivial metric on L. In the discretely valued case, there is no canonical choice of a reference metric. Thus we set Similarly, Proposition 3.3 implies the following result, which generalizes Lemma 7.3 and Proposition 7.8 of [BHJ17], and shows that the energy functionals are homogeneous with respect to the scaling action by Q × + . Corollary 3.11. If k is trivially valued, φ, ψ ∈ FS(L) and t ∈ Q × + , then E(φ t , ψ t ) = tE(φ, ψ), I(φ t , ψ t ) = tI(φ, ψ), and J ψt (φ t ) = tJ ψ (φ).

E(φ) := E(φ, φ ref ) = 1 n + 1 n j=0 V -1 (φ -φ ref )(dd c φ) j ∧ (dd c φ ref ) n-j . J(φ) := J φ ref (φ) = (φ -φ ref ) MA(φ ref ) -E(φ).
Setting ψ = φ triv , this yields E(φ t ) = tE(φ), I(φ t ) = tI(φ), and J(φ t ) = tJ(φ).

14 Alternatively, the functionals could be considered as metrics on suitable line bundles over a point. This would remove the need for a reference metric; see e.g. [START_REF] Boucksom | Uniform K-stability and asymptotics of energy functionals in Kähler geometry[END_REF] or [BE17].

3.12. Estimates. The results in this section will be used for studying the Monge-Ampère operator on the class of metrics of finite energy. They typically have a closely related analogue in the complex setting; for the convenience of the reader we indicate some of the precise results from [BBGZ13, BBEGZ16] below. The proofs, which are surprisingly similar in the complex and non-Archimedean case, appear in Appendix A.

We will let C n denote various constants (that can easily be made explicit) depending only on n. Similarly, D ref is a constant that depends on n, X, L, and on the choice of reference metric φ ref ∈ FS(L). When k is trivially valued and φ ref = φ triv , we can choose D ref = 0. Lemma 3.12.

If φ ∈ FS(L), then 0 ≤ sup(φ -φ ref ) -(φ -φ ref ) MA(φ ref ) ≤ D ref . Corollary 3.13. If φ ∈ FS(L) and sup(φ -φ ref ) = 0, then -E(φ) -D ref ≤ J(φ) ≤ -E(φ). Lemma 3.14. [BBGZ13, Proposition 2.3]. If φ, ψ ∈ FS(L) and t ∈ [0, 1] ∩ Q, then I(tφ + (1 -t)ψ, ψ) ≤ nt 2 I(φ, ψ).
Lemma 3.15. [BBEGZ16, Lemma 1.9]. For any FS metrics φ 1 , φ 2 , ψ on L we have

-V -1 (φ 1 -φ 2 )dd c (φ 1 -φ 2 ) ∧ (dd c ψ) n-1 ≤ C n I(φ 1 , φ 2 ) 1 2 n-1 max i=1,2 I(φ i , ψ) 1-1 2 n-1 .
Lemma 3.16. [BBEGZ16, Theorem 1.8]. For any FS metrics φ 1 , φ 2 , φ 3 on L, we have

I(φ 1 , φ 3 ) ≤ C n max{I(φ 1 , φ 2 ), I(φ 2 , φ 3 )}.
Corollary 3.17. For any FS metrics φ, ψ on L we have I(φ, ψ) ≤ C n max{J(φ), J(ψ)}.

Corollary 3.18. For any FS metrics φ 1 , φ 2 , ψ 1 , . . . , ψ n-1 on L we have

-V -1 (φ 1 -φ 2 )dd c (φ 1 -φ 2 ) ∧ dd c ψ 1 ∧ • • • ∧ dd c ψ n-1 ≤ C n I(φ 1 , φ 2 ) 1 2 n-1 max{max i=1,2 J(φ i ), max 1≤i≤n-1 J(ψ i )} 1-1 2 n-1 .
Corollary 3.19. For any FS metrics ψ 1 , ψ 2 and φ i , φ i , 1 ≤ i ≤ n on L we have

V -1 (ψ 1 -ψ 2 )dd c φ 1 ∧ • • • ∧ dd c φ n -(ψ 1 -ψ 2 )dd c φ 1 ∧ • • • ∧ dd c φ n ≤ C n I(ψ 1 , ψ 2 ) 1 2 n max 1≤p≤n I(φ p , φ p ) 1 2 n M 1-1 2 n-1 ,
where M = max{J(ψ 1 ), J(ψ 2 ), max p J(φ p ), max p J(φ p )}.

Corollary 3.20. For any FS metrics φ 1 , φ 2 , ψ 1 , ψ 2 on L we have

(ψ 1 -ψ 2 )(MA(φ 1 ) -MA(φ 2 )) ≤ C n I(ψ 1 , ψ 2 ) 1 2 n I(φ 1 , φ 2 ) 1 2 n M 1-1 2 n-1 ,
where M = max{J(φ 1 ), J(φ 2 ), J(ψ 1 ), J(ψ 2 )}.

Corollary 3.21. For any FS metrics φ, ψ on L, we have

max{|I(φ) -I(ψ)|, |J(φ) -J(ψ)|} ≤ C n I(φ, ψ) 1 2 n max{J(φ), J(ψ)} 1-1 2 n .
Lemma 3.22. [BBGZ13, Lemma 2.7]. If φ 0 , φ 1 , . . . , φ n are FS metrics on L, then

(φ 0 -φ ref ) MA(φ 1 , . . . , φ n ) ≥ (φ 0 -φ ref ) MA(φ ref ) -C n (D ref + max i J(φ i )).
Lemma 3.23. [BBGZ13, Lemma 3.13]. For any FS metrics φ 1 , φ 2 , ψ on L, we have

(ψ -φ ref ) MA(φ 1 ) -(ψ -φ ref ) MA(φ 2 ) ≤ C n I(φ 1 , φ 2 ) 1 2 (D ref + max{J(ψ), J(φ 1 ), J(φ 2 )}) 1 2 .

Dual complexes

In this section, k is discretely or trivially valued, of residue characteristic zero, and X is smooth and projective. Following [BFJ16a], we will show how X can be described using dual complexes. This technique will be crucial to understanding the deeper properties of singular semipositive metrics on ample line bundles. 4.1. Snc models and test configurations. If k is discretely valued, a model X of X is an snc model if X is regular and the special fiber X 0 has strict normal crossing support. Let E i , i ∈ I be the irreducible components of X 0 . A stratum of X 0 is a connected component of a nonempty intersection j∈J E j , where J ⊂ I. By Hironaka's theorem, the set SNC(X) of snc models is directed and cofinal in the set of all models.

Similarly, if k is trivially valued, a test configuration X for X is an snc test configuration if X dominates the trivial test configuration and the central fiber X 0 has strict normal crossing support. As above we define the notion of a stratum of X 0 . Again, Hironaka's theorem implies that the set SNC(X) of snc test configurations is directed and cofinal in the set of all test configurations.

If k is trivially valued and X is an snc test configuration for X, then the base change

X = X × A 1 k Spec k • is an snc model of X = X k .
Further, the strata of X 0 and X 0 are in 1-1 correspondence. 4.2. Dual complexes of snc models. First assume k is discretely valued, i.e. |k × | = r Z , where 0 < r < 1. The discussion below follows [BFJ16a, §2.4]. Let X be an snc model, with special fiber X 0 = i∈I b i E i . The dual complex ∆ X of X is the (generalized) simplicial complex with one vertex for each E i and a p-dimensional face for each stratum of X 0 of codimension p. We equip ∆ X with an integral affine structure, and define an embedding emb X : ∆ X → X as follows.

Consider the simplex σ Y of ∆ X corresponding to a stratum Y of X 0 . Let E 0 , . . . , E p be the irreducible components of X 0 containing Y . Identify σ Y with the simplex {w ∈ R p+1 + | p 0 b i w i = 1} and equip it with the integral affine structure induced by Z p+1 ⊂ R p+1 . Now let η ∈ X 0 be the generic point of Y and pick a system (z j ) 0≤j≤p of regular parameters for O X ,η with z j defining E j . By Cohen's structure theorem, O X ,η κ(η)[[z 0 , . . . , z p ]]. Let val w be the restriction to O X ,η of the monomial valuation on this power series ring, taking value w j on z j , i.e. val w α∈N p+1 c α z α = min { p 0 w j α j | c α = 0}, and set emb X (w) := r valw . Then emb X (∆ X ) ⊂ X qm . If w ∈ ∆ X , then emb X (w) ∈ X Shi iff w is a rational point; in particular, Shilov points are dense in emb X (∆ X ).

There is also an evaluation map ev X : X → ∆ X , defined as follows. Given x ∈ X, set ξ := red X (x) ∈ X 0 , so that |f (x)| ≤ 1 for f ∈ O X ,ξ and |f (x)| < 1 for f ∈ m X ,ξ . Let E 0 , . . . , E p be the irreducible components of X 0 containing ξ, and let Y be the minimal stratum of X 0 containing ξ. Then ev X (x) ∈ σ Y is the point with weight w = (w 0 , . . . , w p ) given by w j = log |z j (x)|/ log r, where z j is a local equation for E j , 0 ≤ j ≤ p.

The composition p X := emb X • ev X : X → X is continuous and equal to the identity on emb X (∆ X ); in other words, it is a retraction of X onto emb X (∆ X ). 4.3. Dual complexes of snc test configurations. Now assume k is trivially valued. For any snc test configuration X of X, we define the dual complex ∆ X exactly as in the discretely valued case. For example, the dual complex of the trivial test configuration has a single vertex, corresponding to X × {0}.

Pick any r ∈ (0, 1) and set k = k r = k(( )). The base change X of X is then an snc model of X = X k and we can identify the dual complexes of X and X .

The image of ∆ X under emb X : ∆ X → X consists of k × -invariant points. Hence there exists an embedding emb X : ∆ X → X such that emb X = σ • emb X , where σ = σ r : X → X is the Gauss extension. Here emb X (w) ∈ X div iff w ∈ ∆ X is a rational point, so divisorial points are dense in emb X (∆ X ).

We also define the evaluation map ev X : X → ∆ X as the composition ev X = ev X •σ. As before, the composition p X := emb X • ev X : X → X is a retraction onto emb X (∆ X ). The maps emb X and ev X depend on r, but only up to scaling. Note that σ • p X = p X • σ.

4.4. Limits of dual complexes. In both the discretely valued and trivially valued case we shall, for convenience, view a dual complex ∆ X , where X ∈ SNC(X), as a subset of the Berkovich space X. Thus emb X : ∆ X → X is simply the inclusion, p X = ev X is a retraction of X onto ∆ X , and Shilov points are dense in ∆ X . For example, the dual complex of the trivial test configuration of X is a singleton, consisting of the generic point of X.

Theorem 4.1. The following properties hold in both the discretely and trivially valued case.

(i) We have X qm = X ∆ X , where X runs over elements of SNC(X). (ii) If X , Y ∈ SNC(X) and X dominates Y, then:

(a) p Y • p X = p Y on X; (b) ∆ Y ⊂ ∆ X ,
and hence p X = id on ∆ Y . (iii) For every x ∈ X, we have lim X p X (x) = x.

Proof. In the discretely valued case, all the statements are proved in [BFJ16a, §3.2]. Now suppose k is trivially valued.

The statements in (ii) follow from the discretely valued case. Indeed, if X ≥ Y, then the model X dominates Y . This first gives p Y • p X = p Y on X , and hence

σ • p Y • p X = p Y • σ • p X = p Y • p X • σ = p Y • σ = σ • p Y .
This implies p Y • p X = p Y since σ is injective. Similarly, ∆ Y ⊂ ∆ X as subsets of X , and hence ∆ Y ⊂ ∆ X , again by the injectivity of σ. This proves (ii).

To prove (i) and (iii) we need to revisit the arguments in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF]. First consider (i). If x ∈ ∆ X , then σ(x) ∈ ∆ X ⊂ X qm , and hence x ∈ X qm by Corollary 1.5. Now suppose x ∈ X qm . We have x := σ(x) ∈ X qm , and hence x ∈ ∆ X for some X ∈ SNC(X), but there is a priori no reason for the model X to be G m -invariant and hence arise from a test configuration. However, we can adapt the proof of [JM12, Proposition 3.7] (itself based on the proof of [ELS03, Proposition 2.8]) to x = σ(x), viewed as a k × -invariant valuation in X × A 1 , to construct a test configuration X ∈ SNC(X) such that x ∈ ∆ X , where X is the associated snc model, and then x ∈ ∆ X .

Finally consider (iii). By Proposition 2.18 it suffices to prove that lim X ϕ • p X = ϕ pointwise on X for every function ϕ of the form ϕ = log |a| • σ, where a is a flag ideal on X × A 1 . But ϕ = ϕ • p X as soon X ∈ SNC(X) dominates the blowup of X sch × A 1 k along a.

Valuations and dual cone complexes.

When k is trivially valued, we can, as a special case of [START_REF] Jonsson | Valuations and asymptotic invariants for sequences of ideals[END_REF], describe both X val and X qm in terms of cone complexes.

Let π : Y → X sch be a proper birational morphism with Y smooth, and D a reduced simple normal crossings divisor on Y such that π is an isomorphism outside the support of D. To such a log smooth pair (Y, D) over X sch we associate a dual cone complex ∆(Y, D), and embed the latter into X val as the set of monomial points with respect to coordinates associated to irreducible components of D. The apex of ∆(Y, D) is the trivial valuation on X. We have x ∈ X qm iff x ∈ ∆(Y, D) for some log smooth pair (Y, D) over X sch , see [JM12, §3.2], and X val is naturally an inverse limit of cone complexes over all log smooth pairs.

Thus we have two different descriptions of X qm : as a union of simplicial complexes or as a union of simplicial cone complexes. Figure 2 illustrates the situation in dimension 1.

Question 4.2. Suppose ∆ = ∆ X ⊂ X is a dual complex in the sense of §4.3. Does there exist a log smooth pair (Y, D) over X sch such that ∆ ⊂ ∆(Y, D)? Conversely, suppose K is a compact subset of some punctured cone complex ∆(Y, D) × . Does there exist an snc test configuration X such that K ⊂ ∆ X .

We expect the answers to be 'yes', but cannot prove this. In this paper, we shall work with dual complexes of test configurations rather than dual cone complexes.

Figure 2. The left picture shows the Berkovich analytification X of a smooth curve X sch over a trivially valued field. The middle picture shows the dual cone cone complex ∆(X, D) of a reduced divisor D of degree 8 on X sch . The right picture shows the dual complex ∆ X associated to an snc test configuration X for X Finally, various subsets of Berkovich analytifications can be analyzed using a different kind of dual complexes. For example, consider the affine space A n k over a trivially valued field. In [START_REF] Boucksom | Valuations and plurisubharmonic singularities[END_REF], it was shown that the open subset of points centered at a given closed point ξ ∈ A n k is a cone over a compact space V ξ , the valuation space at ξ. This space is homeomorphic to the inverse limit of dual complexes of log smooth pairs (Y, D) over A n k , with D lying over ξ. In dimension n = 2, the valuation space has a natural tree structure and is called the valuative tree [START_REF] Favre | The valuative tree[END_REF]. These spaces, as well as their cousins "at infinity" have proved useful in dynamics [FJ07, FJ11] and singularity theory [START_REF] Favre | Valuative analysis of planar plurisubharmonic functions[END_REF][START_REF] Favre | Valuations and multiplier ideals[END_REF], but we shall not consider them further here.

Plurisubharmonic metrics

Let k be a non-Archimedean field, X the analytification of a geometrically integral projective k-variety, and L a semiample line bundle on X. In this section, we define and study a class PSH(L) of singular metrics on L that we call plurisubharmonic (psh) or semipositive. They are defined as decreasing limits of FS metrics.

When k is discretely or trivially valued and of residue characteristic zero, X is smooth, and L is ample, we use dual complexes to prove that PSH(L)/R is compact, and that the psh envelope of a continuous metric is continuous. In the discretely valued case, we show that PSH(L) coincides with the class of singular semipositive metrics used in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF][START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF]. 5.1. Definitions and basic properties. Let k, X and L be as above.

Definition 5.1. A singular metric φ on L is plurisubharmonic (psh) if it is the pointwise limit of a decreasing net of FS metrics on L, and φ ≡ -∞ on L × . We write PSH(L) for the set of psh singular metrics on L.

We sometimes say semipositive instead of plurisubharmonic to conform with usage elsewhere in the literature.

If φ ∈ PSH(L), then a decreasing net (φ j ) j in FS(L) such that φ = lim j φ j is called a regularization of φ. Such nets always exist by our definition of PSH(L).

For brevity we will often refer to the elements of PSH(L) as metrics rather than singular metrics, unless the distinction is important. In any case, there are no singularities above quasimonomial points.

Proposition 5.2. If φ ∈ PSH(L), then φ > -∞ on p -1 (X qm ), where p : L → X is the canonical map.

Proof. Pick any metric ψ ∈ DFS(L). It suffices to prove that φ -ψ > -∞ on X qm . But this follows the Izumi inequality (Theorem 2.21) applied to a regularization of φ.

The topology on PSH(L) is defined in terms of pointwise convergence on X qm : φ j → φ iff the functions φ j -φ on X qm converge pointwise to 0. We sometimes call this the weak topology, and refer to pointwise convergence on X qm as weak convergence. It plays the role of L 1 -convergence in the Archimedean case. 15 We will see in §5.2 that PSH(L) is Hausdorff.

When k is discretely or trivially valued, and of residue characteristic zero, PSH(L)/R is compact, see Corollary 5.35. In the discretely valued case, PSH(L) coincides with the class of semipositive singular metrics defined in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF], see Corollary 5.36.

Remark 5.3. Our definition of PSH(L) is global. One could define a (potentially) more general notion of singular semipositive limits using decreasing limits of smooth psh metrics in the sense of [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF], see §2.5. However, the class PSH(L) is sufficiently large for the purposes of this paper.

Definition 5.4. A function ϕ : X → [-∞, +∞) is quasi-plurisubharmonic, or qpsh, if there exists a semiample line bundle L such that ϕ = φ -ψ, where φ ∈ PSH(L) and ψ ∈ DFS(L). We write QPSH(X) for the set of quasi-psh functions on X.

In the trivially valued case we have the following more precise notion. Definition 5.5. When k is trivially valued, a function ϕ :

X → [-∞, +∞) is L-psh if φ triv + ϕ ∈ PSH(L)
, where φ triv is the trivial metric on L.

Note that any semipositive metric is upper semicontinuous (usc) since it is the decreasing limit of continuous metrics. Thus any qpsh function is usc.

Proposition 5.6. The following properties hold:

(i) if φ ∈ PSH(L), then φ + c ∈ PSH(L) for any c ∈ R; (ii) if φ i ∈ PSH(L i ), i = 1, 2, then φ 1 + φ 2 ∈ PSH(L 1 + L 2 ); (iii) if φ 1 , φ 2 ∈ PSH(L), then max{φ 1 , φ 2 } ∈ PSH(L); (iv) if φ is a singular metric on L, m ≥ 1, and mφ ∈ PSH(mL), then φ ∈ PSH(L); (v) if φ 1 , φ 2 ∈ PSH(L), θ 1 , θ 2 ∈ R + , and θ 1 + θ 2 = 1, then θ 1 φ 1 + θ 2 φ 2 ∈ PSH(L); (vi) If (φ j ) j is a decreasing net in PSH(L) and φ := lim j φ j ≡ -∞, then φ ∈ PSH(L); (vii) If (φ j
) j is a net of psh metrics in PSH(L) and φ j converges uniformly to a metric φ, then φ ∈ PSH(L).

Proof. The statements in (i)-(iv) follow from the corresponding statements in Lemma 2.4. Using (i), we see that (vi) implies (vii). Further, (vi) and (vii) imply (v). Indeed, Lemma 2.4 shows that (v) holds when φ i ∈ FS(L i ) and θ i ∈ Q + . Using (vii) and that Q + is dense in R + , we conclude (v) when φ i ∈ FS(L i ) and θ i ∈ R + ; the general case then follows from (vi). It remains to prove (vi). For each j, let (φ j,l ) l∈L j be a decreasing net in FS(L) converging to φ j , and for m ∈ N × , set φ j,l,m := φ j,l + m -1 ∈ FS(L). Let I be the set of triples (j, l, m), where j ∈ J, l ∈ L j and m ∈ N × . Define a partial order on I by (j 1 , l 1 , m 1 ) ≥ (j 2 , l 2 , m 2 ) iff φ j 1 ,l 1 ,m 1 ≤ φ j 2 ,l 2 ,m 2 . Let us show that I is directed, i.e. any two elements (j 1 , l 1 , m 1 ) and (j 2 , l 2 , m 2 ) can be dominated by a third. To see this, first pick j ≥ j 1 , j 2 so that φ j ≤ φ j 1 and φ j ≤ φ j 2 . Also pick m = 2 max{m 1 , m 2 }. We claim that φ j,l,m ≤ φ j 1 ,l 1 ,m 1 and φ j,l,m ≤ φ j 2 ,l 2 ,m 2 for l ∈ L j large enough. To see this, note that the set

U l := {x ∈ X | (φ j,l -φ j i ,l i )(x) < (2m i ) -1 for i = 1, 2}
is open for all l ∈ L j . Further, (U l ) l is an increasing family and l U l = X, so by compactness of X there exists l ∈ L j such that U l = X, and then φ j,l,m ≤ max i=1,2 φ j i ,l i ,m i . By construction, (φ i ) i∈I is now a decreasing net in FS(L) converging to φ, so since φ ≡ -∞, we have φ ∈ PSH(L).

Proposition 5.7. Let f : X → X be induced by a morphism of projective k-varieties, and set

L := f * L. If φ ∈ PSH(L) and φ := φ • f , then either φ ≡ -∞ on L × or φ ∈ PSH(L ). When f is surjective, φ ∈ PSH(L ).
Proof. Let (φ j ) j be a decreasing net in FS(L) converging to φ. By Lemma 2.4, (f * φ j ) is a decreasing net in FS(L ) converging to φ . Thus either φ ∈ PSH(L ) or φ ≡ -∞ on L × by Proposition 5.6. Now suppose f is surjective and pick x ∈ X qm . By Lemma 1.1,

x := f (x ) ∈ X qm , so since φ = -∞ on L ×
x , see Proposition 5.14, it follows that φ = -∞ on L ×

x . Proposition 5.8. Any (possibly singular) metric of the form

φ := max α∈A (m -1 log |s α | + λ α ), (5.1)
where m ≥ 1, (s α ) α∈A is a finite set of nonzero global sections of mL, and λ α ∈ R, is semipositive.

Here the sections s α are allowed to have common zeros.

Proof. After replacing m by a multiple, and the sections s α by the corresponding tensor powers, we may assume L is base point free. Pick global sections s α , α ∈ A of L such that (s α ) α∈A∪A have no common zero, and set

φ j := max{max α∈A (m -1 log |s α | + 2 -j 2 j λ α ), max α∈A (m -1 log |s α | -j)}
for j ∈ Z >0 . Then (φ j ) j is a decreasing sequence of FS metrics on L converging to φ.

Corollary 5.9. If k is trivially valued and a is any ideal on X, then the function log |a| is qpsh. More precisely, it is L-psh for any L such that the sheaf L ⊗ a is globally generated.

Proof. Suppose L ⊗ a is globally generated, say by sections s α , α ∈ A. If φ triv denotes the trivial metric on L, then φ triv + log |a| = max α log |s α | ∈ PSH(L) by Proposition 5.8.

We can now show that the space PSH(L) can be described as in the introduction.

Corollary 5.10. PSH(L) is the smallest class of singular metrics on L that: (i) contains all singular metrics of the form m -1 log |s|, where m ≥ 1 and s is a nonzero section of mL; (ii) is closed under maxima, addition of constants, and decreasing limits.

By "closed under decreasing limits" we mean that (vi) of Proposition 5.6 holds.

Proof. That PSH(L) satisfies (i) follows from Proposition 5.8. Similarly, Proposition 5.6 implies that PSH(L) satisfies (ii). Conversely, any class of singular metrics satisfying (i) and (ii) must contain all FS metrics, and, more generally, all decreasing limits of FS metrics. Hence it must contain PSH(L).

Corollary 5.11. If ψ ∈ DFS(L), the function φ → sup X (φ -ψ) is continuous on PSH(L).

Proof. By Lemma 2.20 there exists a finite subset Z = Z(ψ) ⊂ X Shi such that sup X (φ-ψ) = max Z (φ -ψ) for every φ ∈ FS(L). Considering regularizations, the same equality holds for all φ ∈ PSH(L). This completes the proof, since the topology on PSH(L) is defined by pointwise convergence on X qm ⊃ X Shi . Proposition 5.12. Consider a non-Archimedean field extension k /k and set

L = L k . (i) If φ ∈ PSH(L), then φ • π ∈ PSH(L ), where π : L → L is the canonical map. (ii) if k is trivially valued, k := k(( ))
, and σ : L → L is the Gauss extension, then:

(a) φ • σ ∈ PSH(L) and φ ≤ φ • σ • π for any φ ∈ PSH(L ). (b) the maps φ → φ • π and φ → φ • σ above are continuous.
Proof. Proposition 2.10 shows that (i) holds when φ ∈ FS(L). This implies the general case: if (φ j ) j is a decreasing net in FS(L), then (φ j • π) j is a decreasing net in FS(L ), and lim j (φ j •π) = (lim j φ j )•π. The argument for (ii) (a) is similar, using Proposition 2.11 (i), and the continuity statements in (b) follows from the fact that π(X qm ) ⊂ X qm and σ(X qm ) ⊂ X qm , see Corollary 1.3 and Corollary 1.5 (ii).

Finally we prove that in the trivially valued case, PSH(L) is invariant under the scaling action on metrics on line bundles defined in (2.1). Proposition 5.13. If k is trivially valued and φ ∈ PSH(L), then φ t ∈ PSH(L) for all t ∈ R × + . Further, the function t

→ φ t (v) is convex for all v ∈ L × . It is decreasing if φ ≤ φ triv .
Proof. By definition, there exists a decreasing net (φ j ) j in FS(L) converging to φ. For any t ∈ R × + , the net (φ j,t ) j of scaled metrics decreases to φ t . By (2.5) and Proposition 5.8 we see that φ j,t ∈ PSH(L), so Proposition 5.6 (vi) implies that φ t ∈ PSH(L).

The fact that t → φ t (v) is convex is clear from (2.5) if φ ∈ FS(L), and the general case follows by approximation. Now suppose that φ ≤ φ triv . If φ ∈ FS(L), this means that φ is of the form (2.2) with λ j ≤ 0 for all j. From (2.5) it is then clear that t → φ t (v) is decreasing. For a general φ ∈ PSH(L) with φ ≤ φ triv , pick a decreasing net (φ j ) j in FS(L) converging to φ. Pick ε j ∈ Q × + such that ε j → 0 and φ j -φ triv ≤ ε j . Then φ j -ε j ∈ FS(L), so by what precedes, we get that t → φ j,t -tε j is pointwise decreasing. Since φ j,t decreases pointwise to φ t , and ε j → 0, this completes the proof.

Hausdorff property.

It is not obvious that the topology on PSH(L) is Hausdorff, since it is defined in terms of pointwise convergence on X qm only. Nevertheless, we have Proposition 5.14. For any semiample line bundle L, the weak topologies on PSH(L) and PSH(L)/R are Hausdorff.

Corollary 5.15. If φ j is a decreasing net in PSH(L) converging weakly to φ ∈ PSH(L), then the convergence holds pointwise everywhere on L × .

Proof. Let φ be the pointwise limit of φ j . We know from Proposition 5.25 (vii) that φ ∈ PSH(L). Since φ -φ = 0 on X qm , it follows that φ = φ. The proof of Proposition 5.14 relies on the following result.

Lemma 5.16. Given any function ϕ ∈ QPSH(X) and any point x ∈ X, there exists a net (x α ) α∈A in X qm such that lim α x α = x and lim α ϕ(x α ) = ϕ(x).

Proof. First assume k is nontrivially valued. There exists an ample line bundle L such that ϕ = φ -ψ, where ψ ∈ DFS(L) and φ ∈ PSH(L). Then ψ is a model metric, determined by a Q-line bundle L on a model X of X. After replacing ψ and φ by multiples, we may assume L is an actual line bundle. We may cover X by open affine subsets U on which L admits trivializing sections. Then X is covered by the corresponding Zariski open sets U = (U ∩ X sch ) an . Pick U such that x ∈ U and let τ be a trivializing section of L on U. Given s ∈ H 0 (X, mL), we can write s = f τ m on U , where f ∈ O X (U ), and then

m -1 log |s| -ψ = m -1 log |f | on U .
We can write φ as the limit of a decreasing net (φ j ) j∈J of FS metric on L, for some directed set J. For each j, write φ j = m -1 j max l∈L j log |s j,l |, where m j ≥ 1 and s j,l , l ∈ L j , is a finite set of global sections of m j L without common zero. As above we can write m -1 j log |s j,l |-ψ = m -1 j log |f j,l |, where f j,l ∈ O X (U ). Hence ϕ j := φ j -ψ = m -1 j max l∈L j,l log |f j,l | on U . Now let (V α ) α∈A be a decreasing net of strictly affinoid neighborhoods of x in U , with intersection equal to {x}. Let Γ α ⊂ X Shi be the Shilov boundary of V α . This is a finite set, and for each (j, l) there exists a point in Γ α at which the maximum of |f j,l | over V α occurs. Thus, for each j, the maximum of ϕ j over V α occurs at some point x j,α ∈ Γ α ; in particular, ϕ j (x j,α ) ≥ ϕ j (x). Passing to a subnet, we may assume that x α := x j,α is independent of j. This implies ϕ(x α ) ≥ ϕ(x) for all α, which completes the proof when k is nontrivially valued. Now suppose k is trivially valued. Set k = k(( )) and X := X k . Write π : X → X for the canonical map and σ : X → X for the Gauss extension. Then ϕ := ϕ • π ∈ QPSH(X), so by what precedes there exists a net (x α ) α in X qm such that x α → x := σ(x) and lim α ϕ (x α ) = ϕ (x ). By Corollary 1.3, we have x α := π(x α ) ∈ X qm . Further, ϕ (x α ) = ϕ(x α ) and ϕ (x ) = ϕ(x), and since π is continuous, we have lim α x α = x. This completes the proof.

Proof of Proposition 5.14. Consider metrics φ 1 , φ 2 ∈ PSH(L) with φ 1 = φ 2 . Pick any ψ ∈ DFS(L), and set ϕ i := φ i -ψ ∈ QPSH(X), i = 1, 2. Then there exists x ∈ X such that ϕ 1 (x) = ϕ 2 (x), say ϕ 1 (x) > ϕ 2 (x). By Lemma 5.16 there exists a net (x α ) α in X qm such that x α → x and ϕ 1 (x α ) → ϕ(x). Now ϕ 2 is usc, so lim sup α ϕ 2 (x α ) ≤ ϕ 2 (x). Thus there exists α such that ϕ 1 (x α ) > ϕ 2 (x α ). This implies that φ 1 and φ 2 belong to disjoint open subsets of PSH(L).

Similarly, suppose that φ 1 = φ 2 in PSH(L)/R. We may assume there exists x ∈ X and y ∈ X qm such that ϕ 1 (y) = ϕ 2 (y) but ϕ 1 (x) = ϕ 2 (x). As above, there must then exist x ∈ X qm such that ϕ 1 (x ) = ϕ 2 (x ), which means φ 1 and φ 2 belong to disjoint open neighborhhods of PSH(L)/R. 5.3. Continuous plurisubharmonic metrics. The subset of PSH(L) consisting of continuous metrics play an important role in the theory. Following Gubler and Martin [START_REF] Gubler | On Zhang's semipositive metrics[END_REF], we now characterize this class. In particular, we show that the continuous metrics in PSH(L) are exactly the semipositive metrics studied by Zhang [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF] and Gubler [START_REF] Gubler | Local heights of subvarieties over non-Archimedean fields[END_REF].

We start by characterizing psh DFS metrics on ample line bundles.

Proposition 5.17. Let φ ∈ PSH(L) be a psh metric, where L is ample. As a direct consequence of (i) we have:

Corollary 5.18. When k is discretely valued and of residue characteristic zero, X is smooth, and L is ample, the class DFS(L) ∩ PSH(L) coincides with the class of semipositive model metrics defined in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF].

Proof of Proposition 5.17. First consider the nontrivially valued case. In the terminology of [START_REF] Gubler | On Zhang's semipositive metrics[END_REF], a model metric on L is then semipositive if it is defined by a nef model of L. Suppose φ ∈ DFS(L). In particular, φ is a model metric by Proposition 2.13 (i). Now φ is the limit of a decreasing net (φ j ) j in FS(L). By Proposition 2.13 (ii), each φ j is a model metric associated to an semiample (and hence nef) model of L. Thus [GM16, Theorem 1.3] implies that φ is a model metric associated to a nef model of L.

Conversely, suppose φ is a model metric defined by a nef model (X , L) for (X , L). Arguing as in the proof of [GM16, Proposition 4.14] we may (after passing to a different model) assume that for every m ≥ 1 there exists a model metric φ m on L associated to an ample model (X , L m ) on L, such that 0 ≤ φ m -φ ≤ 2 -m . Then φ m ∈ FS(L) by Proposition 2.13 (iii). Now (φ m + 2 -m ) m is a decreasing sequence in FS(L) converging to φ, so φ ∈ PSH(L). Now consider the case when k is trivially valued. First assume φ is defined by a nef test configuration. Then φ := φ • π ∈ PSH(L ) is defined by the nef model L of L . By what precedes, φ ∈ DFS(L ), and this implies φ ∈ DFS(L) by Proposition 2.10.

Conversely, suppose φ ∈ DFS(L). By Proposition 2.12 (i), φ = φ L , where (X , L) is a test configuration for (X, L). The base change (X , L ) is a model of (X , L ), and φ := φ • π = φ L . Since φ ∈ PSH(L) by Proposition 5.12, the Q-line bundle L must be relatively nef. Since the central fiber X 0 of X can be identified with the special fiber X 0 of X , it follows that L is also relatively nef, completing the proof.

The following theorem is the main result of [START_REF] Gubler | On Zhang's semipositive metrics[END_REF].

Theorem 5.19. Let (φ j ) j be a net in PSH(L) ∩ DFS(L) converging in PSH(L) to a metric φ ∈ PSH(L). Then φ ∈ PSH(L) ∩ DFS(L).
Proof. If k is nontrivially valued, this is a special case of [GM16, Theorem 1.3]. Now suppose k is trivially valued and consider the non-Archimedean field extension k = k r = k(( )) of k. Write L = L k , let π : L → L be the canonical map and σ : L → L the Gauss extension. Write φ := φ • π and φ j := φ j • π. By Proposition 5.12, we have φ , φ j ∈ PSH(L ) and φ j → φ . Since φ j ∈ DFS(L ) by Proposition 2.10, we have φ ∈ DFS(L) by what precedes. This implies φ = φ • σ ∈ DFS(L) by Proposition 2.11.

We now turn to more general continuous psh metrics.

Proposition 5.20. If φ is a continuous metric on L, the following conditions are equivalent:

(i) φ ∈ PSH(L);
(ii) φ is a uniform limit of metrics in FS(L); (iii) φ is a uniform limit of metrics in PSH(L) ∩ DFS(L). (iv) φ is a uniform limit of continuous metrics in PSH(L);

In view of Proposition 5.17, it follows that φ is a continuous semipositive metric in the sense of Zhang [Zha95] iff it is a continuous psh metric. See also [START_REF] Gubler | On Zhang's semipositive metrics[END_REF] for a discussion.

Proof. That (i) implies (ii) follows from Dini's theorem, and the reverse implication is elementary: if φ j ∈ FS(L) and φ j converges uniformly to φ, then we can find ε j ∈ Q + such that ε j → 0 and φ j + ε j decreases to φ. Knowing that (i) and (ii) are equivalent, we immediately see that (iv) implies (i). Since the implications (ii) =⇒ (iii) and (iii) =⇒ (iv) are obvious, this completes the proof. 5.4. Envelopes. The class PSH(L) is closed under decreasing nets. It is useful to also consider increasing nets. This leads to the various types of envelopes. Definition 5.21. We define the psh envelope of a continuous metric ψ on L by

P (ψ) = sup{φ ∈ PSH(L) | φ ≤ ψ}.
Despite the terminology, it is not obvious that P (ψ) is psh, see the discussion below. At any rate, the psh envelope can be computed using only FS metrics.

Lemma 5.22. For any continuous metric ψ on L, we have

P (ψ) = sup{φ ∈ FS(L) | φ ≤ ψ}.
and ψ is usc, we have P (ψ) * ≤ ψ. Thus P (ψ) * is a competitor in the definition of P (ψ) so P (ψ) * ≤ P (ψ), and hence P (ψ) * = P (ψ), since the reverse inequality is obvious. Proof. If φ ∈ PSH(L) and φ ≤ ψ, then φ • π ∈ PSH(L ) by Proposition 5.12 (i), and

φ • π ≤ ψ • π. Thus P (ψ • π) ≥ P (ψ) • π, proving (i). Now assume k = k(( ))
. The proof of (a) is the same as that of (i), but using (ii) of Proposition 5.12. It remains to prove (b), so let ψ be a continuous metric on L. Then

P (ψ • π) ≥ P (ψ) • π = P (ψ • π • σ) • π ≥ P (ψ • π) • σ • π ≥ P (ψ • π).
Here the first two inequalities follow from (i) and (a), whereas the last inequality follows from from Proposition 5.12 (b) and the definition of P (ψ • π).

Proposition 5.26. If k is trivially valued, then the scaling operation on metrics commutes with the psh envelope: if ψ is a continuous metric on L, then P (φ t ) = P (φ) t for all t ∈ R × + .

Proof. This is a formal consequence of the definition and of Proposition 5.13. 5.5. Continuity of envelopes. We now study finer properties of psh metrics. For the rest of this section, assume that k is discretely or trivially valued, of residue characteristic zero, that X is smooth and that L is ample. The proof of the next theorem uses these assumptions via the technique of multiplier ideals. However, the theorem may hold more generally. See [START_REF] Gubler | Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals (with an appendix by José Ignacio Burgos Gil and Martín Sombra[END_REF] for recent results in equicharacteristic p, obtained using test ideals.

Theorem 5.27. For any DFS metric ψ on L, the psh envelope P (ψ) is continuous.

Corollary 5.28. Properties (i)-(vi) of Proposition 5.23 are all true.

Proof of Theorem 5.27. It suffices to consider the case when k is discretely valued. Indeed, in the trivially valued case, we consider the non-Archimedean field extension

k = k(( ))/k. If ψ is a continuous metric on L, then ψ • π is continuous metric on L = L k and P (ψ • π) = P (φ)
• π by Proposition 5.25 (ii), so if Theorem 5.27 holds in the discretely valued case, then

P (φ) • π is continuous; hence so is P (φ) = P (φ) • π • σ.
Thus suppose k is discretely valued. We only sketch the proof, referring to the proof of Theorem 8.5 of [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF] for most of the details. However, some minor details are simpler here because of an altered order of presentation. Write ψ = φ L , where (X , L) is an snc model of (X, L). For m sufficiently divisible, let a m be the base ideal of mL; this is cosupported on the special fiber since L is ample, and satisfies a l • a m ⊂ a l+m . Set

φ m := ψ + m -1 log |a m | = m -1 max{log |s| | s ∈ H 0 (X , mL)}.
Then φ m ∈ FS(L) and P (ψ) = lim m sup m φ m . We claim that in fact φ m converges uniformly, so that P (ψ) is continuous.

To prove the uniform convergence, we use multiplier ideals. Let b m be the multiplier ideal of a m . The inclusion a m ⊂ b m is elementary, and we have b ml ⊂ b l m for all m, l by the subadditivity of multiplier ideals. This implies that

m -1 log |b m | ≥ (ml) -1 log |b ml | ≥ (ml) -1 log |a ml |
for all sufficiently divisible m and l. Letting l → ∞ shows that

ψ + m -1 log |b m | ≥ P (ψ) ≥ ψ + m -1 log |a m | (5.2)
for all sufficiently divisible m. We may assume there exists an effective Q-divisor E on X supported on the special fiber, such that A := L -E is relatively ample. By the uniform global generation of multiplier ideals there exists m 0 ∈ N such that O X ((mL + m 0 A)) ⊗ b m is globally generated for all sufficiently divisible m. This implies that

log |b m | ≤ log |a m+m 0 | + C
for a constant C independent of m. Combining this with (5.2) shows that

φ m ≤ P (ψ) ≤ m m -m 0 φ m + 1 m -m 0 C
which shows that φ m converges uniformly to P (ψ).

5.6. Psh metrics and dual complexes. We keep the assumptions on (k, X, L) from §5.5.

As in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF], this allows us to use dual complexes of snc models and test configurations. Recall from §4 that when k is discretely (resp. trivially) valued, SNC(X) denotes the poset of snc models of X (resp. snc test configurations for X). To each X ∈ SNC(X) is associated a dual complex ∆ X ⊂ X, and we have a retraction p X : X → ∆ X . When X ≥ Y, we have ∆ Y ⊂ ∆ X and p Y = p Y • p X . Further, lim X p X = id pointwise on X.

When k is trivially valued, consider the non-Archimedean field extension k = k(( )). Set X = X k , L = L k , and write π for the canonical maps X → X and L → L, and σ for the Gauss extensions X → X and L → L . Given X ∈ SNC(X), set X := X × A 1 k Spec k • . Then X ∈ SNC(X ), and π and σ restrict to affine homeomorphisms between ∆ X and ∆ X . Further, p X = π • p X • σ.

Theorem 5.29. Pick a reference metric φ ref ∈ DFS(L) and X ref ∈ SNC(X) on which φ ref is determined.

(i) For every X ∈ SNC(X) we have that {φ -

φ ref | φ ∈ PSH(L)} is an equicontinuous family of finite-valued functions on ∆ X . (ii) If X ∈ SNC(X), X ≥ X ref and φ ∈ PSH(L), the function ϕ := φ -φ ref is convex on each face of ∆ X and satisfies ϕ ≤ ϕ • p X on X. (iii) For any φ ∈ PSH(L), the net ((φ-φ ref )•p X ) X of continuous functions on X, indexed by X ∈ SNC(X) with X ≥ X ref , is decreasing, with limit φ -φ ref .
Proof. First assume that k is discretely valued. All the assertions then essentially follow from [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF], but since the definition of singular semipositive metrics in loc. cit. ostensibly differs from the one here, we need to argue in a somewhat roundabout way. By Proposition 2.13, φ ref is a model metric, and hence defines a closed (1, 1)-form θ ∈ Z 1,1 (X) in the terminology of [BFJ16a, §4.2]. Similarly, any φ ∈ FS(L) is a model metric associated to an semiample, hence nef, model of L, so the function φ-φ ref is θ-psh in the sense of [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF]§5].

It now follows from [BFJ16a, Corollary 7.8] that {(φ-φ ref )| ∆ X | φ ∈ FS(L)}
is an equicontinuous family of finite-valued functions on ∆ X . Since the metrics in PSH(L) are decreasing limits of metrics in L, the full equicontinuity statement in (i) follows.

Similarly, by [BFJ16a, Proposition 7.5], the properties in (ii) hold for φ ∈ FS(L). The same properties then carry over to φ ∈ PSH(L). Indeed, this is clear for the second assertion, and convexity is closed under taking decreasing limits.

Finally [BFJ16a, Proposition 7.6] shows that if φ ∈ FS(L), and ϕ := φ -φ ref , the net X ref ≤ X → ϕ • p X is decreasing. The same property then holds for all φ ∈ PSH(L). In particular, ϕ(x) ≤ lim inf X ϕ(p X (x)) for any x ∈ X. But since ϕ is usc and lim X p X = id by Theorem 4.1, we get ϕ(x) ≥ lim sup X ϕ(p X (x)). This completes the proof of (iii). Now assume k is trivially valued and use the notation immediately before the theorem. Set

φ ref := φ ref • π ∈ DFS(L ). If φ ∈ PSH(L), then φ := φ • π ∈ PSH(L ) by Proposition 5.12. Further, φ -φ ref = (φ -φ ref ) • σ and σ : ∆ → ∆ is a homeomorphism, so if {φ -φ ref | φ ∈ PSH(L )} is an equicontinuous family of finite valued functions on ∆ , then {φ -φ ref | φ ∈ PSH(L)
} is an equicontinuous family of finite valued functions on ∆. This takes care of (i), and (ii)-(iii) are treated in the same way, except for the last assertion of (iii), which is instead proved exactly as above, using Theorem 4.1.

Corollary 5.30. When k is trivially valued and φ ∈ PSH(L), the function φ -φ triv attains its maximum at the generic point of X.

Proof. This follows by using φ ref = φ triv and X ref the trivial test configuration for X.

Corollary 5.31. Let ϕ ∈ QPSH(X).

(i) For any sufficiently large X ∈ SNC(X), ϕ is continuous on ∆ X , convex on each face, and satisfies ϕ ≤ ϕ • p X . (ii) Then ϕ is the limit of the eventually decreasing net (ϕ•p X ) X of continuous functions on X, where X ranges over SNC(X). As a consequence, ϕ is determined by its values on X qm , and in fact on its values on X Shi (resp. X div ) when k is nontrivally valued (resp. trivially valued).

Proof. Write ϕ = φ -φ ref , where φ ∈ PSH(L) and φ ref ∈ DFS(L) for some semiample line bundle L. Pick X ref ∈ SNC(X) such on which φ ref is determined. Then (i) immediately follows, as does (ii), except for the very last assertion, which follows from the fact that Shilov points (resp. divisorial points) are dense on any dual complex ∆ X when k is nontrivially valued (resp. trivially valued) and the continuity of ϕ on ∆ X .

Corollary 5.32. A net (φ j ) j in PSH(L) converges weakly to φ ∈ PSH(L) iff φ j -φ → 0 pointwise on Shilov points (resp. divisorial points) when k is nontrivially valued (resp. trivially valued).

Proof. The direct implication is trivial since φ j → φ weakly means that φ j -φ → 0 pointwise on X qm , which contains all Shilov points (resp. divisorial points). The reverse implication follows from the fact that any point in X qm belongs to some dual complex ∆ X , together with the equicontinuity statement in Theorem 5.29 and the fact that Shilov points (resp. divisorial points) are dense in ∆ X . 5.7. Compactness. Keep the assumptions on (k, X, L) from §5.5. Our next goal is to prove that PSH(L) is compact modulo constants. For this we use dual complexes as well as the continuity of envelopes, see Theorem 5.27. The key is the following lemma.

Lemma 5.33. A singular metric φ on L belongs to PSH(L) iff it is usc, and: (i) for any X ∈ SNC(X), there exists a sequence (φ m ) ∞ 1 (depending on X ) in PSH(L) such that lim m (φ m -φ) = 0 uniformly on ∆ X ; (ii) given any reference metric

φ ref ∈ DFS(L), we have φ -φ ref ≤ (φ -φ ref ) • p X on X,
for any sufficiently large X ∈ SNC(X).

Before proving this lemma, we record some consequences.

Corollary 5.34. Fix a reference metric

φ ref ∈ DFS(L). Then φ → ((φ -φ ref )| ∆ X ) X gives an embedding of PSH(L) onto a closed subset of X ∈SNC(X) C 0 (∆ X ).
In particular, the topology on PSH(L) is equivalent to the topology of uniform convergence on dual complexes.

Here the latter topology is the one for which a basis of open subsets of φ ∈ PSH(L) is given by {ψ ∈ PSH(L) | sup ∆ X |ψ -φ| < ε}, where X ranges over SNC(X).

Proof. The map is well-defined and injective by Corollary 5.31. It is further continuous by Theorem 5.29: if (φ j ) j is a net in PSH(L) converging to φ ∈ PSH(L), then for each X ∈ SNC(X), (φ j -φ)| ∆ X is an equicontinuous net in C 0 (∆ X ) converging to zero pointwise on a dense subset, hence must converge to zero uniformly. It now follows that the map PSH(L) → X C 0 (∆ X ) is a homeomorphism onto its image. Let us finally prove that this image is closed. 16 Thus suppose we have a net (φ j ) j in PSH(L) and an element (g X ) X ∈ X C 0 (∆ X ) such that lim j ϕ j | ∆ X = g X uniformly on ∆ X for every X , where

ϕ j := φ j -φ ref . It is clear that if X ≥ X , then g X ≤ g X • r X on ∆ X ,
with equality on ∆ X . For any x ∈ X, the net (g X (r X (x))) X is therefore decreasing, and we set ϕ(x) := lim X g X (r ∆ X (x)). The singular metric φ := φ ref + ϕ then satisfies the conditions of Lemma 5.33, so φ ∈ PSH(L). This completes the proof since the image of φ under the map PSH(L) → X C 0 (∆ X ) above is equal to (g X ) X . Proof. The continuity of φ → sup(φ -φ ref ) was established in Corollary 5.11. To prove properness, we must prove that the set

F C := {φ ∈ PSH(L) | | sup(φ -φ ref )| ≤ C}
is compact for any C > 0. By Tychonoff's theorem and Corollary 5.34, it suffices to prove that for any dual complex ∆ ⊂ X, the set of functions (φ -φ ref )| ∆ for φ ∈ F C , forms a precompact family of continuous functions on ∆. But this follows from Theorem 5.29 and the Arzelà-Ascoli theorem.

Corollary 5.36. If k is discretely valued of residue characteristic zero, then PSH(L) coincides with the class of singular semipositive metrics on L as defined in [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF].

Proof. In the current language, a singular metric φ is semipositive in the sense of [BFJ16a, Definition 7.3] if it is usc, satisfies Lemma 5.33 (ii), and satisfies Lemma 5.33 (i) with φ m a model metric associated to a nef model of L, i.e. a φ m is a metric in DFS(L) ∩ PSH(L), see Proposition 5.17. It then follows from Lemma 5.33 that φ ∈ PSH(L).

Conversely, if φ ∈ PSH(L), then φ is usc and satisfies Lemma 5.33 (ii) by Theorem 5.29 (ii). Pick a decreasing net (φ j ) j in FS(L) converging to φ, and consider any dual complex ∆ ⊂ X. By Theorem 5.29 (i), the functions φ j -φ are continuous on ∆ and hence converge uniformly to zero by Dini's theorem. We can therefore extract a sequence (φ m ) m in FS(L) such that φ m -φ converges uniformly to 0 on ∆. By Proposition 2.13 (ii), φ m is a model metric associated to a semiample (hence nef) model of L, so φ is semipositive in the sense of [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF].

Proof of Lemma 5.33. Let PSH (L) be the set of usc singular metrics on L satisfying (i)-(ii). Then PSH(L) ⊂ PSH (L). Indeed, if φ ∈ PSH(L), then φ is usc by definition, (i) is trivial, and (ii) follows from Theorem 5.29 (ii), so φ ∈ PSH (L).

For the reverse inclusion, we consider the following modified envelope:

P (ψ) := sup{ϕ ∈ PSH (L) | ϕ ≤ ψ}
for ψ a continuous metric on L. Let us first prove that P (ψ) = P (ψ). The envelope P has the same Lipschitz property as in Lemma 5.24, so by Corollary 2.8 we may assume that ψ is a DFS metric. Write ϕ = P (ψ) -φ ref and ϕ = P (ψ) -φ ref .

We need to prove that ϕ(x) = ϕ (x) for all x ∈ X. Clearly ϕ ≤ ϕ , so it suffices to prove ϕ (x) ≤ ϕ(x).

First assume x ∈ X qm , and pick X sufficiently large so that x ∈ ∆ X and ψ -φ ref = (ψ -φ ref ) • p X ; the latter is possible since ψ ∈ DFS(L). Pick any ε > 0. By the definition of ϕ there exists φ ∈ PSH (L) such that φ ≤ ψ and (φ -

φ ref )(x) ≥ ϕ(x) -ε. Since φ -ε ∈ PSH (L), we may further find φ ∈ PSH(L) such that |φ -(φ -ε)| ≤ ε on ∆ X .
In fact, we may assume φ ∈ FS(L). Indeed, there exists a decreasing net (φ j ) j in FS(L) such that φ j -φ converges pointwise to 0 on X. By Theorem 5.29, the restriction of φ j -φ to ∆ X is continuous, so Dini's theorem implies that φ j -φ converges uniformly to 0 on ∆ X . Then

φ -φ ref ≤ (φ -φ ref ) • p X ≤ (φ -φ ref ) • p X ≤ (ψ -φ ref ) • p X = ψ -φ ref ,
so that φ ≤ ψ. On the other hand, we have

(φ -φ ref )(x) ≥ (φ -φ ref )(x) -2ε ≥ ϕ (x) -3ε.
This implies that ϕ(x) ≥ ψ (x) -3ε. Hence ϕ ≥ ϕ on X qm , as claimed. Now consider a general point x ∈ X. From the definition of PSH (L) we have ϕ ≤ ϕ • p X for every sufficiently large X ∈ SNC(X). Thus

ϕ (x) ≤ lim X ϕ • p X (x) = lim X ϕ • p X (x) = ϕ(x),
where the last equality follows from Corollary 5.31 since ψ ∈ QPSH(X).

Thus we know that P (ψ) = P (ψ) for every continuous metric ψ on L. Let us now show that in fact PSH (L) = PSH(L). Consider any singular metric φ ∈ PSH (L). We need to show that φ is the limit of a decreasing net of FS metrics. For this we argue exactly as in the implication (iii) =⇒ (i) of [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF]Lemma 8.9]. Namely, we first prove that for every x ∈ X we have

(φ -φ ref )(x) = inf{(φ -φ ref )(x) | φ ∈ FS(L), φ ≥ φ }.
(5.3) Indeed, fix ε > 0. Since φ is usc, there exists a continuous metric u on L such that φ ≤ u and (u -φ )(x) ≤ ε. Since φ ∈ PSH (L), we have φ ≤ P (u). But P (u) = P (u) by what precedes, and P (u) is continuous by Corollary 5.28. The definition of P (u) and Dini's theorem then yields a metric φ ∈ FS(L) such that P (u) ≤ φ ≤ P (u) + ε. Thus we have φ ≥ φ and (φ -φ )(x) ≤ 2ε, which completes the proof of (5.3). Now let J be the set of metrics φ ∈ FS(L) such that φ > φ . We claim that J is a directed set. Indeed, given φ 1 , φ 2 ∈ J there exists ε > 0 such that φ i -φ ≥ 3ε for i = 1, 2, since φ i is continuous and φ usc. This implies φ ≤ P (min{φ 1 , φ 2 }) + 3ε = P (min{φ 1 , φ 2 }) + 3ε. Now pick φ ∈ FS(L) such that |φ -P (min{φ 1 , φ 2 })| ≤ ε. Then φ + ε ≤ φ -ε ≤ min{φ 1 , φ 2 }, so φ ∈ J and φ ≤ φ i for i = 1, 2. Thus J is a directed set, and the associated net (φ j ) j∈J is decreasing. It now follows from (5.3) that its limit equals φ , which completes the proof.

Metrics of finite energy

In §5 we introduced the class PSH(L) of psh metrics17 on L. Here we define the subspace E 1 (L) ⊂ PSH(L) of metrics of finite energy, and extend the Monge-Ampère operator and associated functionals to this space.

To begin with, k is an arbitrary non-Archimedean field, whereas X is a geometrically integral variety and L an ample line bundle on X. However, for some of the deeper results, we need further restrictions on k and X.

6.1. Metrics of finite energy. We start by extending the Monge-Ampère energy functional to the space of all psh metrics. Fix a reference metric φ ref ∈ FS(L). Definition 6.1. For any metric φ ∈ PSH(L) we set

E(φ) = inf{E(ψ) | ψ ≥ φ, ψ FS metric on L} ∈ R ∪ {-∞}.
We define

E 1 (L) ⊂ PSH(L)
as the set of psh metrics φ with E(φ) > -∞.

Note that E extends the functional earlier defined on FS metrics, since the latter is nondecreasing. In particular, FS(L) ⊂ E 1 (L). Proof. We follow the proof of [BFJ15, Proposition 6.2]. That E is nondecreasing is obvious. Similarly, the formula E(φ+c) = E(φ)+c follows since it holds for φ ∈ FS(L) and c ∈ Q. To prove that E is usc, pick φ 0 ∈ PSH(L) and s 0 ∈ R such that E(φ 0 ) < s 0 . By the definition of E(φ 0 ), there exists ψ 0 ∈ FS(L) and t 0 < s 0 such that ψ 0 ≥ φ 0 and E(ψ 0 ) < t 0 . Since φ → sup X (φ -ψ 0 ) is continuous, see Corollary 5.11, there exists an open neighborhood U of φ 0 in PSH(L) such that φ -ψ 0 < s 0 -t 0 for φ ∈ U . Since E is nondecreasing, this gives E(φ) ≤ E(ψ 0 + s 0 -t 0 ) = E(ψ 0 ) + s 0 -t 0 < s 0 for φ ∈ U . Now that we know that E is usc, continuity along decreasing nets follows formally from E being nondecreasing. Finally we prove that E is concave. Pick φ, ψ ∈ PSH(L) and consider decreasing nets (φ i ) i and (ψ j ) j in FS(L) converging to φ and ψ, respectively. For t ∈ Q ∩ [0, 1] we know that E((1 -t)φ i + tψ j ) ≥ (1 -t)E(φ i ) + tE(φ j ) for all i, j. Since E is continuous under decreasing nets, this implies E((1 -t)φ + tψ) ≥ (1 -t)E(φ) + tE(φ) for t ∈ [0, 1] ∩ Q. The same inequality must then hold for all t ∈ [0, 1] since E is usc. Thus E is concave.

Corollary 6.3. The space E 1 (L) has the following properties:

(i) E 1 (L) does not depend on the choice of reference metric φ ref ; (ii) if φ ∈ E 1 (L) and c ∈ R, then φ + c ∈ E 1 (L); (iii) if φ ∈ E 1 (L), ψ ∈ PSH(L) and ψ ≥ φ, then ψ ∈ E 1 (L); (iv) E 1 (L) is convex; (v) any bounded psh metric is in E 1 (L);
Proof. Statements (ii)-(iii) follow easily from the definition, and imply (v) since FS(L) ⊂ E 1 (L). That E 1 (L) is convex follows since E is concave. Finally, (i) is a consequence of (3.12). Indeed, if E (φ) denotes the energy with respect to a different reference metric φ ref , then

E(φ) -E (φ) = E(φ ref , φ ref ).
Corollary 6.4. For any C > 0, the set Proof. Note that φ t := (1 -t)φ + tψ ∈ E 1 (L) for 0 ≤ t ≤ 1 by concavity of E.

E 1 C (L) := {φ ∈ E 1 (L) | φ ≤ φ ref , E(φ) ≥ -C} ⊂ PSH(L)
First assume φ, ψ ∈ FS(L). Then φ t ∈ FS(L) for t ∈ [0, 1] ∩ Q, and uit follows from the definition of the functional E that there exists a polynomial p(t) of degree at most n + 1 such that E(φ t ) = p(t) for t ∈ Q ∩ [0, 1]. The same equality must then hold for all t ∈ [0, 1]. Indeed, given t ∈ [0, 1], and a sequence (t m ) m in [0, 1] ∩ Q with t m → t, there exists ε m > 0 with lim m ε m = 0 such that φ tm + ε m decreases to φ t as m → ∞, and then

E(φ t ) = lim m E(φ tm + ε m ) = lim m (E(φ tm ) + ε m ) = lim m p(t m ) + ε m = p(t).
Now consider any φ, ψ ∈ E 1 (L). We can find decreasing nets (φ j ) j and (ψ j ) j in FS(L), with the same index set J, converging to φ and ψ, respectively. Then φ j,t := (1 -t)φ j + tψ j decreases to φ t for any t ∈ [0, 1]. Thus the sequence (p j (t)) j of functions on [0, 1] decreases to the finite-valued function p(t) := E(φ t ). Since p j (t) is given by a polynomial of degree at most n + 1 for all j, the same is true for p(t). Proposition 6.7. Let k /k be a non-Archimedean extension, set L := L k , and let π : L → L be the canonical map.

(i) If φ ∈ PSH(L), then E(φ • π) = E(φ). Thus φ • π ∈ E 1 (L ) iff φ ∈ E 1 (L). (ii) If k is trivially valued, k := k(( )), σ : k → k is the Gauss extension, and φ ∈ E 1 (L ), then φ • σ ∈ E 1 (L) and E(φ • σ) ≥ E(φ ).
Proof. To prove (i), let (φ j ) j be a decreasing net in FS(L) converging to φ. Then (φ j • π) j is a decreasing net in FS(L ) converging to φ • π. For each j, we have E(φ j • π) = E(φ j ), see Corollary 3.10. Since E is continuous for decreasing nets, we have E(φ) = E(φ • π). Now assume k is trivially valued, and let (φ j ) j be a decreasing net in FS(L ) converging to φ ∈ E 1 (L ). Then (φ j • σ) j is a decreasing net in FS(L) converging to φ • σ. For each j, we have

E(φ j • σ) = E(φ j • σ • π) ≥ E(φ j ) since φ j ≤ φ j • σ • π, see Proposition 2.11 (i).
Thus (ii) follows, since E is continuous along decreasing nets. Proposition 6.8. Assume k is trivially valued. If φ ∈ E 1 (L), then φ t ∈ E 1 (L) and E(φ t ) = tE(φ) for all t ∈ R × + . Proof. After adding a constant, we may assume φ ≤ φ triv . Then t → φ t is decreasing by Proposition 5.13, so it suffices to consider t ∈ Q × + . This case follows from regularization and Corollary 3.11. 6.2. Monge-Ampère operator. Next we extend the Monge-Ampère operator to the space E 1 (L). In the complex case, this is usually done in two steps: first one considers the case of bounded metrics, following the approach by Bedford-Taylor [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF][START_REF] Bedford | Fine topology, Shilov boundary and (dd c ) n[END_REF] who treated bounded plurisubharmonic functions in C n ; then one uses the canonical approximation φ t := max{φ, φ ref -t}, t ≤ 0 to treat the general case [START_REF] Cegrell | Pluricomplex energy[END_REF][START_REF] Guedj | Intrinsic capacities on compact Kähler manifolds[END_REF]. This approach was adapted to the case of discretely valued fields of residue characteristic zero in [START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF].

Here we follow a different strategy that bypasses the intermediate step of bounded metrics and instead uses the estimates of §3.12 to directly treat metrics of finite energy. Theorem 6.9. There exists a unique operator (φ 1 , . . . , φ n ) → MA(φ 1 , . . . , φ n ) taking an n-tuple in E 1 (L) to a Radon probability measure on X, such that (i) the definition is compatible with the one for FS metrics in §3.1;

(ii) we have (ψ -φ ref ) MA(φ 1 , . . . , φ n ) > -∞, when ψ, φ 1 , . . . , φ n ∈ E 1 (L);
(iii) for any decreasing nets ψ j → ψ and φ j i → φ i in E 1 (L) we have

(ψ j -φ ref ) MA(φ j 1 , . . . , φ j n ) -→ (ψ -φ ref ) MA(φ 1 , . . . , φ n ).
Remark 6.10. Following [Ceg98, GZ05, BEGZ10, BBGZ13] in the complex case and [START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF] in the non-Archimedean case, it is possible to define the Monge-Ampère operator for an even larger class than E 1 (L), but we shall not do so here.

We will also prove that the Monge-Ampère operator is continuous also along increasing nets in E 1 (L). Note that such a net may not converge pointwise everywhere. This continuity result is useful since psh metrics can be constructed as usc envelopes, see §5.4. Theorem 6.11. For any increasing nets ψ j → ψ and φ j i → φ i in E 1 (L) we have

(ψ j -φ ref ) MA(φ j 1 , . . . , φ j n ) -→ (ψ -φ ref ) MA(φ 1 , . . . , φ n ).
Theorem 6.11 is new also in the setting of [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF][START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF]. In the original work of Bedford-Taylor [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF], continuity of the Monge-Ampère operator along increasing sequences of locally bounded psh functions in C n was proved using capacity theory. Here we take a more direct approach, using the estimates in §3.12 and their extensions to metrics of finite energy (see Corollary 6.16).

The proof of Theorems 6.9 and 6.11 are given in §6.8 below. For now, we deduce some consequences.

Corollary 6.12. Let (φ j i ) j , 1 ≤ i ≤ n be nets in E 1 (L), all decreasing or all increasing, converging to metrics φ i ∈ E 1 (L). Then lim j MA(φ j 1 , . . . , φ j n ) = MA(φ 1 , . . . , φ n ).

Proof. In the case of decreasing nets, this follows from Theorem 6.9 (iii) by taking ψ j = ψ to be an FS metric on L and using the fact that any continuous function on X can be uniformly approximated by differences of FS metrics on L, see Lemma 2.6 and Theorem 2.7. The case of increasing nets is handled in the same way, using Theorem 6.11.

Corollary 6.13. For any metrics φ i ∈ E 1 (L) and c i ∈ R, 1 ≤ i ≤ n, we have

MA(φ 1 + c 1 , . . . , φ n + c n ) = MA(φ 1 , . . . , φ n ). (6.1)
Proof. This holds when φ i ∈ FS(L) and c i ∈ Q; the general case follows by regularization.

Corollary 6.14. If (ψ j ) j and (φ j i ) j , 1 ≤ i ≤ n, are nets in E 1 (L) converging uniformly to metrics ψ and φ i , then ψ, φ i ∈ E 1 (L) and

ψ j MA(φ j 1 , . . . φ j n ) -→ ψ MA(φ 1 , . . . , φ n ).
Proof. After adding small constants to the φ j i and ψ j , and invoking Corollary 6.13, we may assume that all the nets are decreasing.

Corollary 6.15. The mapping (φ 1 , . . . , φ n ) → MA(φ 1 , . . . , φ n ) is symmetric in its arguments, and additive in the following sense:

MA(tφ 1 + (1 -t)φ 1 , φ 2 , . . . , φ n ) = t MA(φ 1 , φ 2 , . . . , φ n ) + (1 -t) MA(φ 1 , φ 2 , . . . , φ n ) for 0 ≤ t ≤ 1.
Proof. This holds when φ i ∈ FS(L) and t ∈ Q; the general case follows by regularization. 6.3. Energy functionals. It is straightforward to extend the energy functionals I and J to E 1 (L). Namely, we define I(φ, ψ) and J ψ (φ) for φ, ψ ∈ E 1 (L) using the same formulas as in §3.9. We see that if (φ j ) j and (ψ j ) j are decreasing (or increasing) nets in E 1 (L) converging to φ, ψ ∈ E 1 (L), then lim j I(φ j , ψ j ) = I(φ, ψ) and J ψ (φ) = lim j J ψ j (φ j ). Using regularization, we also get Corollary 6.16. All the estimates in §3.12 for FS metrics on L extend to metrics in E 1 (L).

The estimate in Lemma 3.14 also holds for all real t ∈ [0, 1]. Later we will need a similar estimate, proved in Appendix A. Lemma 6.17. [Din88, Remark 2]. For φ, ψ ∈ E 1 (L) and t ∈ [0, 1] we have

J ψ (tφ + (1 -t)ψ) ≤ t 1+ 1 n J ψ (φ).
In the rest of this subsection, we deduce consequences of the estimates in §3.12. First we consider continuity properties. For a general Radon measure µ on X (e.g. for µ = δ x , x ∈ X rig ), the functional φ → (φ -φ ref )µ may fail to be continuous. However, we have Proposition 6.18. For any metric ψ ∈ E 1 (L), the functional φ →

(φ -φ ref ) MA(ψ) is weakly continuous on E 1 C (L) for every C > -∞. Proof. Let (φ i ) i be a net in E 1 C (L) converging weakly to φ ∈ E 1 C (L)
. We must prove that lim i (φ i -φ) MA(ψ) = 0. Pick any ε > 0. Let (ψ j ) j be a decreasing net of FS metrics converging to ψ. Then lim j I(ψ j , ψ) = 0, whereas sup i I(φ i , φ) < ∞, sup i J(φ i ) < ∞ and sup j J(ψ j ) < ∞, see Corollary 3.17. It therefore follows from Corollary 3.20 that lim j sup i | (φ i -φ)(MA(ψ j ) -MA(ψ))| = 0. Since, for every j, we have lim i (φ iφ) MA(ψ j ) = 0, see Lemma 6.19 below, this uniform estimate completes the proof. Lemma 6.19. Let φ 1 , . . . , φ n be DFS metrics on line bundles L 1 , . . . , L n . Then the map

QPSH(X) ϕ → ϕdd c φ 1 ∧ • • • ∧ dd c φ n is continuous.
Proof. This follows by the definition of the topology on QPSH(X), since the measure dd c φ 1 ∧ • • • ∧ dd c φ n is a finite signed atomic measure supported on quasimonomial valuations. (i) If we set

φ i = φ i • π for 1 ≤ i ≤ n and ψ = ψ • π, then X (ψ -φ ref ) MA(φ 1 , . . . , φ n ) = X (ψ -φ ref ) MA(φ 1 , . . . , φ n ).
(ii) If k is trivially valued, then, for any t ∈ R × + we have

(ψ t -φ triv ) MA(φ 1,t . . . , φ n,t ) = t (ψ -φ triv ) MA(φ 1 , . . . , φ n ).
Proof. The equality in (i) follow directly from Proposition 3.2 and regularization. We similarly obtain (ii) when t ∈ Q × + . To treat the general case we may assume that ψ ≤ φ triv and φ i ≤ φ triv for 1 ≤ i ≤ n. In this case, t → ψ t and t → φ i,t are decreasing, so the result follows by approximating any t ∈ R × + by a increasing sequence in Q × + . Corollary 6.21. The functionals E, I and J are invariant under ground field extension, in the sense that all the assertions Corollary 3.10 hold for φ, ψ ∈ E 1 (L). Further, the homogeneity properties of Corollary 3.11 hold for all t ∈ R × + . 6.5. Countable regularization. We have the following countable regularization result. Corollary 6.22. If L is ample, then every metric φ ∈ E 1 (L) is the limit of a decreasing sequence in FS(L).

Proof. Let (φ j ) j∈J be a decreasing net in FS(L) converging to φ. Then lim j I(φ j , φ) = 0 and lim j (φ j -φ) MA(φ ref ) = 0. We can therefore pick an increasing sequence (j m ) m in I such that I(φ j(m) , φ) ≤ m -1 and 0 ≤ (φ j(m) -φ) MA(φ ref ) ≤ m -1 for all m. To simplify notation, write φ m := φ j(m) . We claim that lim m→∞ φ m = φ in PSH(L), i.e. lim m (φ m -φ)(x) = 0 for every x ∈ X qm .

In fact, it suffices to consider the case x ∈ X Shi . Indeed, there exists a non-Archimedean field extension k /k and a point x ∈ X Shi k such that π(x ) = x. Here π denotes the canonical map X k → X as well as the corresponding map L

k → L. Write φ m = φ m • π and φ = φ • π. Then I(φ m , φ ) ≤ m -1 and 0 ≤ (φ m -φ ) MA(φ ref ) ≤ m -1 , where φ ref = φ ref • π.
Further, X k is geometrically integral and L k ample. If we can prove that lim m (φ m -φ )(x ) = 0, it will then follow that lim m (φ m -φ)(x) = 0.

Thus suppose x ∈ X Shi . Pick a sufficiently large model X of X such that x corresponds to an irreducible component of X 0 , and such that L admits an ample model L on X . Let ψ ∈ FS(L) be the metric induced by L. By Corollary 3.20 (or rather, its version for metrics in E 1 (L), see Corollary 6.16), we have lim m→∞ (φ m -φ)(MA(ψ) -MA(φ ref )) = 0, and hence lim m→∞ (φ m -φ) MA(ψ) = 0. But φ m -φ ≥ 0, and MA(ψ) is a probability measure putting mass on x, so we conclude that lim m→∞ (φ m -φ)(x) = 0. Remark 6.23. Suppose k is discretely or trivially valued and of residue characteristic zero, X is smooth, and L ample. Then we have a countable regularization result also in PSH(L).

In the discretely valued case, this was proved in [BFJ15] using capacity theory. The trivially valued case follows using ground field extension.

6.6. The strong topology. In this subsection, we assume for simplicity that k is discretely or trivially valued, of residue characteristic zero and X is smooth. These assumptions are not necessary for the basic definitions, but we need them for the proofs of the main results.

Following [BBGZ13, §2] we define the strong topology on E 1 (L) as the coarsest refinement of the weak topology inhereted from PSH(L) such that E : E 1 (L) → R is continuous. Thus a net (φ j ) j in E 1 (L) converges strongly to φ ∈ E 1 (L) iff lim j (φ j -φ) = 0 on X qm and lim j E(φ j ) = E(φ). Note that this notion does not depend on the choice of reference metric φ ref ∈ FS(L). Also note that if φ j is a decreasing net in PSH(L) and φ := lim j φ j ∈ E 1 (L), then φ j converges strongly to φ. Lemma 6.24. Every strongly convergent net in E 1 (L) is eventually contained in E 1 C (L) for some C > 0.

Proof. Let (φ j ) j be a strongly convergent net, and set φ = lim j φ j . Then lim j sup(φ j -φ ref ) = sup(φ-φ ref ) by Corollary 5.11, and lim j E(φ j ) = E(φ) by definition, so the result follows.

The strong topology on E 1 (L)/R is defined as the quotient topology induced by the strong topology on E 1 (L). If (φ j ) j is a net in E 1 (L) and φ ∈ E 1 (L), we slightly abusively say that φ j → φ strongly in E 1 (L)/R if there exist c j , c ∈ R such that lim j φ j + c j = φ + c strongly in E 1 (L). We can then pick c j = max(φ j -φ ref ) and c = max(φ -φ ref ). Proposition 6.25. Assume k is trivially valued and set k = k(( )), L := L k . Let π : L → L be the canonical map. Then the map E

1 (L) φ → φ • π ∈ E 1 (L ) is strongly continuous. Further, if (φ j ) j is a net in E 1 (L) and φ ∈ E 1 (L), then lim φ j = φ strongly iff lim j φ j • π = φ • π strongly.
Proof. This follows from φ → φ•π being weakly continuous and from the formula E(φ•π) = E(φ) for φ ∈ E 1 (L), where we use the reference metric φ ref • π on L . Proposition 6.26. If (φ j ) j is a net in E 1 (L) and φ ∈ E 1 (L), then the following conditions are equivalent:

(i) φ j → φ strongly in PSH(L)/R; (ii) lim j I(φ j , φ) = 0; (iii) lim j J φ (φ j ) = 0.
Proof. The case when k is trivially valued easily reduces to the discretely valued case using the field extension k = k(( )), so we may assume that k is nontrivially valued.

The equivalence of (ii) and (iii) follows from (3.19), wo we only need to prove that (i) and (iii) are equivalent. For this, we use the formula

J φ (φ j ) = E(φ) -E(φ j ) + (φ j -φ) MA(φ). (6.2)
First assume that φ j → φ strongly in E 1 (L)/R. After normalizing φ j and φ by max(φ jφ ref ) = max(φ -φ ref ) = 0, this simply means φ j → φ strongly in E 1 (L). In particular, E(φ j ) → E(φ), and there exists C > 0 such that φ j ∈ E 1 C (L) for all j. Since φ j → φ weakly, it follows from Proposition 6.18 that (φ j -φ) MA(φ) → 0. Thus J φ (φ j ) → 0 by (6.2).

Conversely suppose that lim j J φ (φ j ) → 0. We must prove that φ j → φ strongly in E 1 (L)/R. In this case, we normalize φ j and φ by (φ j -φ ref ) MA(φ ref ) = 0 and (φφ ref ) MA(φ ref ) = 0, respectively. We then claim that φ j → φ weakly. Granted this, we argue as follows. From Lemma 3.16 and (3.21) we have sup j J(φ j ) < ∞, so there exists C > 0 such that φ j ∈ E 1 C for all C, and then E(φ j ) → E(φ) follows from (6.2) and Proposition 6.18. Proving that φ j → φ weakly amounts to showing φ j -φ → 0 pointwise on X qm . In fact, it suffices to prove φ j -φ → 0 pointwise on X Shi , see Corollary 5.32. Set f j := φ j -φ and view f j as a function on X Shi . By the Izumi inequality (Theorem 2.21), there exists, for any x ∈ X Shi a constant C(x) ≥ 0 such that |f i (x)| ≤ C(x) for all i. By Tychonoff's theorem, we may, after replacing f by a subnet, assume that f j converges pointwise to a function f :

X Shi → R such that |f (x)| ≤ C(x) for all x ∈ X Shi . We must then prove f ≡ 0 on X Shi . Given metrics ψ i ∈ FS(L), 1 ≤ i ≤ n, we have f dd c ψ 1 ∧ • • • ∧ dd c ψ n = lim i f i dd c ψ 1 ∧ • • • ∧ dd c ψ n = lim i f i dd c ψ 1 ∧ • • • ∧ dd c ψ n -f i (dd c φ ref ) n = 0,
where the first equality holds since dd c ψ 1 ∧ • • • ∧ dd c ψ n is a finite atomic measures supported on X Shi , the second by the normalizations of φ and the φ i , and the third by Corollary 3.19 and the assumption lim i I(φ i , φ) = 0. In view of Proposition 3.8, this implies f ≡ 0.

Remark 6.27. If Conjecture 3.7 is true, Proposition 6.26 holds for any non-Archimedean field k, any geometrically integral projective variety X, and any ample line bundle L on X. Indeed, we only used the assumptions on k and X to prove that lim j I(φ j , φ) = 0 implies that φ j → φ weakly, i.e. pointwise on X qm . Using Lemma 2.23, it suffices to prove that (φ j -φ) → pointwise on X Shi , and the argument above shows that this follows from Conjecture 3.7.

Since the topology on PSH(L)/R is Hausdorff, the strong topology on E 1 (L)/R must also be Hausdorff. We have the following slightly more precise statement. Corollary 6.28. If φ 1 , φ 2 ∈ E 1 (L), the following statements are equivalent:

(i) I(φ 1 , φ 2 ) = 0; (ii) MA(φ 1 ) = MA(φ 2 ); (iii) the function φ 1 -φ 2 is constant on X.
By (3.18)-(3.19), these conditions are also equivalent to J φ 1 (φ 2 ) = 0 and to J φ 2 (φ 1 ) = 0.

Proof. It is clear that (iii) =⇒ (ii) =⇒ (i). Hence it suffices to show that (i) implies (iii). But this follows from Proposition 6.18 applied to a constant net.

The assignment (φ 1 , φ 2 ) → I(φ 1 , φ 2 ) (presumably) does not define a metric on E 1 (L)/R, but it does satisfy the quasi-triangle inequality I(φ 1 , φ 3 ) ≤ C n max{I(φ 1 , φ 2 ), I(φ 2 , φ 3 )}, see Lemma 3.16. It hence defines a uniform structure on E 1 (L)/R. The next result says that this structure is complete. Proposition 6.29. If (φ j ) j∈J is a net in E 1 (L) with lim i,j I(φ i , φ j ) = 0, then there exists φ ∈ E 1 (L), unique up to an additive constant, such that φ j → φ strongly in E 1 (L)/R.

Proof. We may assume sup(φ j -φ ref ) = 0 for all j. It follows from Lemma 3.16 that sup j J(φ j ) < ∞. By weak compactness of PSH(L)/R, there exists an accumulation point φ of the net φ j , and it satisfies sup(φ-φ ref ) = 0. We claim that lim j I(φ j , φ) = 0. Pick a subnet (φ j(α) ) α∈A converging to φ in PSH(L). Since E is usc, we have E(φ) ≥ lim sup α E(φ j(α) ). Fix an index i ∈ J. For any α ∈ A we have

J φ i (φ j(α) ) = E(φ i ) -E(φ j(α) ) + (φ j(α) -φ i ) MA(φ i ).
Now let α → ∞. The last integral converges to (φ -φ i ) MA(φ i ) by Proposition 6.18, so by what precedes, we get

J φ i (φ) = E(φ i ) -E(φ) + (φ -φ i ) MA(φ i ) ≤ lim α J φ i (φ j (α)).
Since J φ i (φ) ≥ 0, this shows that lim i J φ i (φ) = 0, and hence lim i I(φ i , φ) = 0 by (3.19). Using Proposition 6.26, we see that lim i φ i = φ strongly in E 1 (L)/R. 6.7. Orthogonality and differentiability. As in §6.6 we assume that k is discretely or trivially valued, of residue characteristic zero and that X is smooth.

Recall from §5.5 that the psh envelope P (ψ) of a continuous metric ψ on L is a continuous psh metric on L. In particular, P (ψ) ∈ E 1 (L). In this subsection we state two key facts about the interaction of the operator P and the Monge-Ampère operator.

Theorem 6.30. The following two properties hold:

(i) For any continuous metric ψ on L, we have (ψ -P (ψ)) MA(P (ψ)) = 0.

(ii) The composition E • P is Gateaux differentiable on the space of continuous metrics on L, with derivative given by (E • P ) = MA •P . Equivalently, we have

E(P (ψ + f )) = E(P (ψ)) + 1 0 dt f MA(P (ψ + tf ))
for every continuous metric ψ on L and every f ∈ C 0 (X).

Following [START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF] we refer to (i) as the orthogonality property for L, whereas (ii) is the differentiability property.

Proof. For k discretely valued, the orthogonality property was proved in [START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF] under an additional technical assumption; the general case appears in [BGJKM16, Theorem 6.3.2]. Further, differentiability was shown in [BFJ15, Theorem 7.2] to follow from orthogonality. Thus Theorem 6.30 holds in the discretely valued case. Now assume k is trivially valued. Set k = k(( )) and consider the base changes X = X k and L = L k . Write π for the canonical maps X → X and L → L. By Proposition 5.25,

The Calabi-Yau theorem

In this section we study the Calabi-Yau problem, by which we mean finding a solution φ ∈ E 1 (L) to the the non-Archimedean Monge-Ampère equation MA(φ) = µ, (7.1) for a suitable measure µ. This problem makes sense in the setting of an ample line bundle L on a projective variety X over any non-Archimedean field k, and we shall work in this setting as far as possible. However, we will only prove the existence of solutions when the ground field k is discretely or trivially valued, of residue characteristic zero. and X is smooth.

In the discretely valued case, our result is more general than the ones in [BFJ15, BGJKM16]. In the trivially valued case, it is completely new. The analogous Archimedean result is [BBGZ13, Theorem A]. See also [START_REF] Gubler | Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals (with an appendix by José Ignacio Burgos Gil and Martín Sombra[END_REF] for recent (contitional) results in equicharacteristic p.

Fix a reference metric φ ref ∈ FS(L). When k is trivially valued, we assume that φ ref = φ triv is the trivial metric on L.

7.1. The Calabi-Yau theorem. The strategy to solve (7.1) is to consider the functional

F µ : E 1 (L) → R ∪ {+∞} defined by F µ (φ) := E(φ) -(φ -φ ref )µ. (7.2)
At least formally, we have F µ (φ) = MA(φ) -µ, so a metric maximizing F µ should be a solution to (7.1). However, it is nontrivial that a maximum φ exists, and even if one does exist, it is not obvious that it satisfies (7.1). At any rate, for this strategy to work, the functional F µ must be bounded from above on E 1 (L). This leads to the following definition.

Definition 7.1. The energy of a Radon probability measure µ on X is

E * (µ) := sup φ∈E 1 (L) F µ (φ) = sup φ∈E 1 (L) (E(φ) -(φ -φ ref )µ) ∈ R ∪ {+∞}.
We say that µ has finite energy if E * (µ) < ∞, and write M 1 (X) for the set of probability measures of finite energy.

Changing the reference metric φ ref only changes F µ by an additive constant. Hence the same is true for E * (µ), so the space M 1 (X) is independent of the choice of reference metric.

Let us give two examples of measures of finite energy. First, the Izumi inequality in Theorem 2.21 shows that any finite atomic measure supported on quasimonomial points has finite energy. Second. Monge-Ampère measures of finite energy metrics are of finite energy: Proposition 7.2. If φ ∈ E 1 (L) and µ := MA(φ), then E * (µ) = (I -J)(φ) < ∞.

Proof. For any ψ ∈ E 1 (L) we see, by unwinding the formulas in §3.9 that E(ψ) -(ψ -φ ref )µ -(I -J)(φ) = E(ψ) -E(φ) -(ψ -φ) MA(φ) = J φ (ψ) ≥ 0, with equality if ψ = φ, so taking the supremum over ψ shows that E * (µ) = (I -J)(φ).

We can now state the Calabi-Yau theorem. Proof. The implications (i) =⇒ (ii) =⇒ (iii) are trivial. Further, (iv) implies (i) since in the definition of E * (µ), it suffices to consider φ normalized by sup(φ -φ ref ) = 0, and for such φ we have J(φ) ≤ -E(φ) and E(φ) ≤ 0. We will use contradiction arguments to prove (iii) =⇒ (ii) and (ii) =⇒ (iv). To prove (iii) =⇒ (ii), we may assume there exist C ∈ R and a sequence (φ j ) ∞

1 in E 1 C (L) such that (φ j -φ ref )µ ≤ -2 j for all j. To prove (ii) =⇒ (iv), we similarly assume that there exists a sequence (φ j ) j in E 1 (L) such that sup(φ j -φ ref ) = 0, t j := J(φ j ) 1/2 → 0, and t j (φ j -φ ref )µ → -∞. Set φj := t j φ j + (1 -t j )φ ref . Then ( φj -φ ref )µ = t j (φ j -φ ref )µ → -∞.

On the other hand, Lemma 3.14 gives I( φj ) ≤ nt 2 j I(φ j ); hence J( φj ) is uniformly bounded in view of (3.21). Since E( φj ) = ( φj -φ ref ) MA(φ ref )-J( φj ), and the first term is uniformly bounded in j, there exists C > 0 such that φj ∈ E 1 C for all j, contradicting (ii). Corollary 7.9. If µ ∈ M 1 (X), then there exist A, B > 0 such that F µ (φ) ≤ A -J(φ) -BJ(φ) 1/2 (7.4) for all φ ∈ E 1 (L). Hence there exists C > 0 such that E * (µ) = sup φ∈E 1 C (L) F µ (φ). Proof. To prove (7.4), we may assume φ is normalized by sup(φ -φ ref ) = 0. In this case, we have E(φ) ≤ -J(φ), so (7.4) follows from Proposition 7.8 (iv). By (7.4), E * (µ) equals the supremum of F µ (φ) normalized as above and such that J(φ) ≤ C , for C > 0 large enough. But if φ is normalized, then E(φ) ≥ -J(φ)-D ref , where D ref ≥ 0 only depends on φ ref , so the last assertion of the Corollary holds for C = C + D ref .

While the energy E * (µ) of a probability measure µ depends on the line bundle L, we have the following result, due to Di Nezza [DiN16, Proposition 4.1] in the Archimedean case.

Corollary 7.10. The set M 1 (X) does not depend on the choice of ample line bundle L.

Proof. Let L 1 and L 2 be ample line bundles on X, and µ a Radon probability measure on X. By symmetry, and by Proposition 7.8 it suffices to prove that if ϕ 1 µ > -∞ for every L 1 -psh function ϕ 1 then ϕ 2 µ > -∞ for every L 2 -psh function ϕ 2 . But there exists a constant C > 0 such that CL 2 -L 1 is ample. This implies that Cϕ 2 is L 1 -psh for every L 2 -psh function ϕ 2 . Hence ϕ 2 µ > -∞.

Proposition 7.11. Consider a non-Archimedean field extension k /k. Set X := X k , L := L k , and let π : X → X be the canonical map.

(i) If µ is a Radon probability measure on X , then E * (π * µ ) ≤ E * (µ ).

(ii) if k is trivially valued, k = k(( )) and σ : X → X is the Gauss extension, then E * (σ * µ) = E * (µ) for any Radon probability measure µ on X. Here the energies are computed with respect to L and L , using reference metrics φ ref and φ ref := φ ref • π, respectively. In (ii) we use φ ref = φ triv . Proof. To prove (i), note that Proposition 6.7 (i) shows that

E * (π * µ ) = sup φ∈E 1 (L) (E(φ) -(φ -φ ref )π * µ ) = sup φ∈E 1 (L) (E(φ • π) -(φ • π -φ ref )µ ) ≤ sup φ ∈E 1 (L ) (E(φ ) -(φ -φ ref )µ ) = E * (µ ),
which proves (i). Similarly, Proposition 6.7 (ii) together with φ triv • σ = φ triv gives

E * (σ * µ) = sup φ ∈E 1 (L ) (E(φ ) -(φ -φ triv )σ * µ) ≤ sup φ ∈E 1 (L ) (E(φ • σ) -(φ • σ -φ triv )µ) ≤ sup φ∈E 1 (L) (E(φ) -(φ -φ triv )µ) = E * (µ),
Combining these two inequalities, and using π * σ * = id, we get E * (σ * µ) = E * (µ).

Proposition 7.12. If k is trivially valued, and µ is a Radon probability measure on X, then E * (t * µ) = tE * (µ) for any t ∈ R × + . Proof. Note that φ → φ t is a bijection of E 1 (L) (with inverse φ → φ t -1 ). Proposition 6.7 (iii) and (2.1) then yield

E * (t * µ) = sup φ∈E 1 (L) (E(φ) -(φ -φ triv )t * µ) = sup φ∈E 1 (L) (E(φ) -t * (φ -φ triv )µ) = sup φ∈E 1 (L) (E(φ t ) -t * (φ t -φ triv )µ) = sup φ∈E 1 (L)
t(E(φ) -(φ -φ triv )µ) = tE * (µ), which completes the proof. 7.3. Proof of Theorem 7.3: general remarks. We now continue the proof of Theorem 7.3. For the rest of this section, k is discretely or trivially valued and X is smooth. We must show that the equation (7.3) has a solution for every µ ∈ M 1 (X). We start by proving that such solutions are exactly minimizers of the functional F µ . For this we use the differentiability property in in §6.7. Lemma 7.13. Given µ ∈ M 1 (X) and φ ∈ E 1 (L), the following two conditions are equivalent:

(i) MA(φ) = µ;

(ii) φ maximizes the functional F µ . When these conditions hold, we have E * (µ) = F µ (φ) = (I -J)(φ).

Proof. The implication (i) =⇒ (ii) and the last assertion of the lemma both follow from Proposition 7.2. It remains to prove (ii) =⇒ (i). This is done as in [BBGZ13, Theorem 4.1] or [BFJ15, §8.2]. Namely, given f ∈ C 0 (X), define a function g on R by g(t) = E(P (φ + tf )) -(φ -φ ref )µ -t f µ.

By Corollary 6.32, g is differentiable at t = 0, and g (0) = f MA(φ) -f µ. Now g has a maximum at t = 0, since F µ (P (φ + tf )) ≤ F µ (φ) and P (φ + tf ) ≤ φ + tf for all t. Thus g (0) = 0, and hence MA(φ) = µ, since f was arbitrary.

Corollary 7.14. Assume k is trivially valued and use notation as in Proposition 7.11. Let µ ∈ M 1 (X), set µ := σ * µ, and assume there exists φ ∈ E 1 (L ) such that MA(φ ) = µ . Then φ := φ • σ ∈ E 1 (L), and we have φ = φ • π and MA(φ) = µ.

Proof. By Proposition 6.7 we have φ ∈ E 1 (L) and E(φ) ≥ E(φ ). Further, ψ := φ • π ∈ E 1 (L ), and E(ψ ) = E(φ) ≥ E(φ ). ψ • σ = φ = φ • σ, so (φ -φ triv )µ = (φ -φ triv ) • σ µ = (ψ -φ triv ) • σ µ = (ψ -φ triv )µ . This implies F µ (ψ ) ≥ F µ (φ ), so Lemma 7.13 gives MA(ψ ) = MA(φ ) = µ . Since also sup(φ -φ triv ) = sup(φ -φ triv ) = sup(ψ -φ triv ), Corollary 6.28 now shows that φ = ψ = φ • π, as desired.

Corollary 7.15. Given µ ∈ M 1 (X), the following conditions are equivalent:

(i) there exists φ ∈ E 1 (L) such that MA(φ) = µ;

(ii) the functional φ → (φ -φ ref )µ is continuous on E 1 C (L) for all C > 0; (iii) the functional F µ is usc on E 1 C (L) for all C > 0. Proof. Since E is usc, (ii) implies (iii). Further, (i) implies (ii) by Proposition 6.18. It remains to see that (iii) implies (i). But (iii) and Corollary 7.9 imply that F µ attains its supremum on E 1 (L), since E 1 C (L) is compact for all C > 0, and this implies (i) in view of Lemma 7.13. 7.4. Proof of Theorem 7.3: dual complexes. To solve (7.3), we first treat the case when µ is supported on a dual complex, then treat the general case by approximation.

Corollary 7.16. If µ is a Radon probability measure supported on some dual complex ∆ ⊂ X, then µ ∈ M 1 (X).

Proof. For any φ ∈ E 1 (L) ⊂ PSH(L), the function φ -φ ref is finite-valued and continuous on ∆, see Theorem 5.29. The result therefore follows from Proposition 7.8 (iii).

Corollary 7.17. If µ ∈ M 1 (X) is supported on a dual complex, then µ = MA(φ) for some φ ∈ E 1 (L).

Proof. By Lemma 7.13 it suffices to find a minimizer of F µ on E 1 (L). It follows from Proposition 7.8 that there exists C > 0 such that sup E 1 C (L) F µ = sup E 1 (L) F µ . It therefore suffices to prove that F µ attains its supremum on E 1 C (L). But E is usc on E 1 (L) and the Proof. By Proposition 6.29, φ j converges strongly in E 1 (L) to a metric φ ∈ E 1 (L) with sup(φ -φ ref ) = 0. To get the estimate in the proposition, note that E(φ j ) -E(φ l ) -ϕ j µ j + ϕ l µ j = J φ j (φ l ) ≤ I(φ j , φ l ) ≤ (n + 1)(E * (µ) -E * (µ j ))

for j ≤ l. Now let l → ∞. Since E is usc we have E(φ) ≥ lim l E(φ l ), and since µ j is supported on a dual complex, we have ϕµ j = lim l ϕ l µ j , where ϕ = φ -φ ref . This yields J φ j (φ) = E(φ j ) -E(φ) -ϕ j µ j + ϕµ j ≤ (n + 1)(E * (µ) -E * (µ j )), and hence I(φ j , φ) ≤ (n + 1)J φ j (φ) ≤ (n + 1) 2 (E * (µ) -E * (µ l )).

Proposition 7.24. We have MA(φ) = µ. 7.5. The strong topology. In analogy with the strong topology on E 1 (L) introduced in §6.6, we define the strong topology on M 1 (X) as the coarsest refinement of the weak topology such that E * : M 1 (X) → R is continuous. Thus a net (µ j ) j in M 1 (X) converges strongly to µ ∈ M 1 (X) iff µ j → µ weakly and lim j E * (µ j ) = E * (µ). The Calabi-Yau theorem can now be supplemented as follows.

Theorem 7.25. The map MA : E 1 (L)/R → M 1 (X) is homeomorphism in the strong topology.

In the proof we shall use the pairing E 1 (L)×M 1 (X) → R given by (ψ, µ) → (ψ -φ ref )µ. In this way, every measure µ ∈ M 1 (X) defines a function on E 1 (L), and every metric φ ∈ E 1 (L) a function on M 1 (X).

Lemma 7.26. For C > 0, set M C (X) := {µ ∈ M 1 (X) | E * (µ) ≤ C}. Then:

(i) every µ ∈ M 1 (X) defines a continuous function on E 1 C (L) for any C > 0; (ii) every ψ ∈ E 1 (L) defines a continuous function on M C (X) for any C > 0.

Here continuity is in the weak topology on E 1 C (L) and M C (X), respectively. Proof. The statement in (i) is clear when µ = MA(φ) for φ ∈ FS(L), since µ is then a finite atomic measure supported on quasimonomial points. Similarly, (ii) is clear when ψ ∈ FS(L), since ψ -φ ref is then a continuous function on X. To treat the general case in (i) and (ii) we use the Calabi-Yau theorem together with the estimates in §3.12. Specifically, to prove (i) in general, write µ = MA(φ) where φ ∈ E 1 (L), and pick a decreasing net (φ l ) l in FS(L) converging to φ. Then φ l → φ strongly, so I(φ l , φ) → 0. Lemma 3.23 therefore shows that lim l (ψ -φ ref )(MA(φ l ) -µ) = 0 uniformly in ψ ∈ E 1 C (L), Since ψ → (ψ -φ ref ) MA(φ l ) is continuous on E 1 C (L), so is ψ → (ψ -φ ref )µ. Similarly, to prove (ii), let (ψ j ) be a decreasing net in FS(L) converging to ψ. Then lim j I(ψ j , ψ) = 0 and lim j (ψ j -ψ) MA(φ ref ) = 0. Further, any µ ∈ M C (X) is of the form µ = MA(φ), where φ ∈ E 1 (L) and J(φ) ≤ n(I -J)(φ) = nE * (µ) ≤ nC. Corollary 3.20 now shows that lim j (ψ j -ψ)(µ -MA(φ ref )) = 0 uniformly in µ ∈ M C (X); hence µ → (ψ -φ ref )µ is continuous on M C (X).

Proof of Theorem 7.25. We already know that the map MA is a bijection. To prove that it is continuous, consider a net (φ j ) j in E 1 (L)/R converging strongly to φ ∈ E 1 (L). We must prove that µ j := MA(φ j ) converges weakly to µ := MA(φ), and that E * (µ j ) → E * (µ). The latter assertion follows from Corollary 3.21 since E * (µ j ) = (I -J)(φ j ), E * (µ) = (I -J)(φ) and I(φ j , φ) → 0. To prove that µ j converges weakly to µ, it suffices to prove that lim j (ψφ ref )µ j = (ψ -φ ref )µ for every ψ ∈ FS(L), since differences of functions of the form ψ -φ ref are dense in C 0 (X) by Theorem 2.7. But this equality follows from Lemma 3.23. It remains to prove that the inverse of MA is continuous. Thus consider a net (φ j ) j in E 1 (L) and assume that the measures µ j := MA(φ j ) converge strongly to µ ∈ M 1 (X). We must prove that φ j → φ strongly in E 1 (L), where MA(φ) = µ. Pick C such that µ j , µ ∈ M C (X) for all j. Lemma 7.26 (ii) implies that lim j (φ -φ ref )µ j = (φ -φ ref )µ, Next, note that E * (µ) = (I -J)(φ) = E(φ)-(φ-φ ref )µ, and similarly E * (µ j ) = E(φ j )-(φ j -φ ref )µ j for all j. Since lim j E * (µ j ) = E * (µ), we conclude that J φ j (φ) = E(φ j ) -E(φ) -(φ j -φ)µ j → 0, and hence I(φ j , φ) by (3.19), so that φ j → φ strongly in E 1 (L)/R.

For completeness, we also prove the following result.

Proposition 7.27. Consider a measure µ ∈ M 1 (X) and let (φ j ) j be a net in E 1 (L)/R such that F µ (φ j ) → E * (µ). Then lim j φ j = φ strongly in E 1 (L)/R, where φ ∈ E 1 (L)/R is the unique solution to MA(φ) = µ.

Proof. We may assume that the φ j are normalized by sup(φ j -φ ref ) = 0. By Corollary 7.9 there exists C > 0 such that φ j ∈ E 1 C (L) for large j. By weak compactness of E 1 C (L), we can therefore find a subnet (φ j(α) ) α converging to some φ ∈ E 1 C (L). Since F µ is usc, we have F µ (φ) ≥ lim α F µ (φ j(α)) = E * (µ). Hence MA(φ) = µ.

Remark 7.28. In the Archimedean case, the space M 1 (X) enjoy certain compactness properties in the strong topology, see [START_REF] Berman | Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties[END_REF]2.4]. These are not valid in the non-Archimedean setting. For example, let k be trivially valued, X = P 1 k , and L = O(1). Let (ξ n ) ∞ 1 be a sequence of pairwise distinct closed points in X sch , and set x n = r ord ξn , for some r ∈ (0, 1). If µ n = δ xn , then µ n ∈ M 1 (X) and E * (µ n ) > 0 is independent of n. Now µ n converges weakly to the measure µ which is the DIrac mass at the generic point of X, but E * (µ) = 0, so µ n → µ strongly. so the Cauchy-Schwarz inequality yields |a p+1 -a p | 2 ≤ A p B p , where A p = -V -1 (ψ -φ ref )dd c (ψ -φ ref ) ∧ (dd c φ 1 ) p ∧ (dd c φ 2 ) n-p-1 ≤ -V -1 (ψ -φ ref )dd c ψ ∧ (dd c φ 1 ) p ∧ (dd c φ 2 ) n-p-1 ≤ C n (D ref + max{J(ψ), J(φ 1 ), J(φ 2 )}), the last inequality following from Lemma 3.22 and Lemma 3.12, and where B p = -V -1 (φ 1 -φ 2 )dd c (φ 1 -φ 2 ) ∧ (dd c φ 1 ) p ∧ (dd c φ 2 ) n-p-1 ≤ I(φ 1 , φ 2 ).

We thus obtain the desired estimate by invoking the triangle inequality.

Proof of Lemma 6.17. Set φ t := tφ + (1 -t)ψ. Then φ t -ψ = t(φ -ψ) and J ψ (φ t ) = E(ψ) -E(φ t ) + t (φ -ψ) MA(ψ) Differentiating this with respect to t, gives d dt J ψ (φ t ) = -(φ -ψ) MA(φ t ) + (φ -ψ) MA(ψ) = t -1 I(φ t , ψ) ≥ n + 1 n t -1 J ψ (φ t ) for 0 < t ≤ 1, where the last inequality follows from (3.21). The desired estimate follows.

1. 1 .

 1 Setup. A non-Archimedean field is a field k equipped with a complete multiplicative, non-Archimedean norm | • |. We denote by k • := {|a| ≤ 1} ⊂ k the valuation ring of k, by k •• = {|a| < 1} its maximal ideal, and by k :

1. 7 .

 7 Test configurations. Assume k is trivially valued and X projective. As already noted, X sch is the only model of X. Instead of models, we use the notion of a test configuration, first introduced by Donaldson [Don02]. The definition below essentially follows [BHJ17].

  Proposition 2.19. If φ = φ L and φ = φ L are the model metrics associated to L and L, respectively, then φ = φ d , i.e. φ scaled by a factor d.

  with Shilov boundary {x }, where x = σ(x), and A = A ⊗k k . Consider the reduction maps red : V → Ṽ and red : V → Ṽ = Spec à , where à = à ⊗ k k . If π : V → V is the canonical map, and π : Ṽ → Ṽ the reduction, then π • red = red •π.

  ) := I(φ, φ ref ) = (φ -φ ref ) MA(φ ref ) -(φ -φ ref ) MA(φ). From (3.18) and (3.19) it then follows that n -1 J ≤ I -J ≤ nJ. (3.21) 3.11. Ground field extension and scaling. Consider a non-Archimedean field extension k /k. Write X = X k and L := L k , and let π : X → X and π : L → L be the canonical maps. From Lemma 3.1 we get Corollary 3.10. If φ, ψ ∈ FS(L) and φ := φ • π, ψ := ψ • π, then E(φ , ψ ) = E(φ, ψ), I(φ , ψ ) = I(φ, ψ) and J ψ (φ ) = J ψ (φ). With ψ = φ ref and ψ = φ ref • π, we get E(φ ) = E(φ), I(φ ) = I(φ), and J(φ ) = J(φ).

  (i) If k is nontrivially valued, then φ ∈ DFS(L) iff φ is a model metric associated to a nef model of L. (ii) If k is trivially valued, then φ ∈ DFS(L) iff φ is a metric defined by a nef test configuration for L.

Proposition 5. 25 .

 25 Consider a non-Archimedean field extension k /k and set L := L k . (i) If ψ is a continuous metric on L, then P (ψ • π) ≥ P (ψ) • π, where π : L → L is the canonical map. (ii) if k is trivially valued, k = k(( )) and σ : L → L is the Gauss extension, then: (a) P (ψ • σ) ≥ P (ψ ) • σ for every continuous metric ψ on L . (b) P (ψ • π) = P (ψ) • π for every continuous metric ψ on L.

Corollary 5. 35 .

 35 For any φ ref ∈ DFS(L), the map PSH(L) φ → sup(φ-φ ref ) is continuous and proper. Hence PSH(L)/R is compact.

Proposition 6. 2 .

 2 The function E : PSH(L) → [-∞, +∞) is nondecreasing, concave, and satisfies E(φ + c) = E(φ) + c for any c ∈ R. It is also upper semicontinuous, and continuous along decreasing nets.

  is a convex and weakly closed.Proof. The convexity of E 1 C (L) follows from the concavity of E. That E 1 C (L) is weakly closed follows since E is usc and φ → sup(φ-φ ref ) is continuous on PSH(L), see Corollary 5.11. Corollary 6.5. If k is trivially or discretely valued, of residue characteristic zero, X is smooth, and L is ample, then E 1 C (L) is weakly compact for any C > 0. Proof. By Corollary 6.4, E 1 C is a closed subset of P C:= {φ ∈ PSH(L) | max(φ -φ ref ) ∈ [-C, 0]},which is compact under the hypotheses on (k, X, L), see Corollary 5.35. Proposition 6.6. If φ, ψ ∈ E 1 (L), then the function [0, 1] t → E((1 -t)φ + tψ) is the restriction of a polynomial of degree at most n + 1.

6. 4 .

 4 Ground field extension and scaling. Consider a non-Archimedean field extension k /k and set X = X k , L = L k . Write π : X → X and π : L → L for the canonical maps. Use φ ref := φ ref • π as reference metric on L . Corollary 6.20. Consider metrics ψ, φ 1 , . . . , φ n ∈ E 1 (L).

(

  ii) inf{ (φ -φ ref )µ | φ ∈ E 1 C (L)} > -∞ for every C ∈ R; (iii) (φ -φ ref )µ > -∞ for every φ ∈ E 1 (L). (iv) there exists A, B > 0 such that (φ -φ ref )µ ≥ -A -BJ(φ) 1/2 for every φ ∈ E 1 (L)with sup(φ -φ ref ) = 0.

  Set ψ m := 2 -m φ ref + m j=1 2 -j φ j for m ≥ 1. Then ψ m is a decreasing sequence in PSH(L) converging to ψ := ∞ j=1 2 -j φ j . By concavity of E we have E(ψ m ) ≥ -C for all m; hence E(ψ) = lim m→∞ E(ψ m ) ≥ -C. On the other hand, monotone convergence gives (ψ -φ ref )µ = lim m→∞ (ψ m -φ ref )µ = lim m→∞ m j=1 2 -j (φ j -φ ref ) = -∞, contradicting (iii).

Proof.

  It suffices to show that (ψ -φ ref ) MA(φ) = (ψ -φ ref )µ for every FS metric ψ on L such that sup(ψ -φ ref ) = 0. By Lemma 3.23 we have (ψ -φ ref ) MA(φ) -(ψ -φ ref ) MA(φ j ) ≤ C I(φ j , φ) ≤ C(n + 1) E * (µ) -E * (µ j ) for some constant C independent of j. Hence (ψ -φ ref ) MA(φ) = lim j→∞ (ψ -φ ref ) MA(φ j ) = lim j→∞ (ψ -φ ref )µ j = (ψ -φ ref )µ,which completes the proof.

In the Archimedean case, this also goes under the name Aubin-Mabuchi energy.

In [BHJ17], the Monge-Ampère operator MA, the energy functional E, as well as many related functionals were all written with a superscript "NA", but we don't do so here.

Such points have many other names in the literature, including "monomial" or "Abhyankar" points.

If x ∈ X val , that is, s(x) is the generic point of X sch , then redX (x) is the center of x on X in valuative terminology [Vaq00]; this is also the terminology used in[START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF].

The term "weight" is sometimes used in the literature for such a function φ.

See [BGR, 3.6] for details on stable fields. Recall that we require non-Archimedean fields to be complete.

This functional is known under several different names (and notation), e.g. the Aubin-Mabuchi energy.

This step was overlooked in the proof of [BFJ16a, Theorem 7.10].

Recall that we refer to the elements of PSH(L) as metrics even though some of them are singular metrics.
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Proof. Set P (ψ) = sup{φ ∈ FS(L) | φ ≤ ψ}. Clearly P (ψ) ≤ P (ψ). For the reverse inequality, fix ε ∈ Q × + . Given x ∈ X, pick φ ∈ PSH(L) such that φ ≤ ψ and (φ -P (ψ))(x) ≥ -ε. Then pick a decreasing net (φ j ) j in FS(L) converging to φ. Since (φ j -ψ) j is a decreasing net of usc functions on a compact space, whose limit is nonpositive, there exists j such that φ j -ψ ≤ ε. Then φ j -ε ∈ FS(L), φ j -ε ≤ ψ, and (φ j -ε -P (ψ))(x) ≥ -2ε. It follows that P (ψ) ≥ P (ψ) -2ε, which completes the proof.

Following [BE17], we now discuss whether the psh envelope is indeed psh. This question admits several equivalent reformulations. Given a bounded metric ψ on L, write ψ * for the usc regularization of ψ, i.e. the smallest usc metric bounded below by ψ.

Proposition 5.23. Given k, X and L, the following conditions are equivalent:

(i) for any continuous metric ψ on L, the psh envelope P (ψ) is continuous and psh;

(ii) for any continuous metric ψ on L, the psh envelope P (ψ) is psh;

(iii) for any DFS metric ψ on L, the psh envelope P (ψ) is psh;

(iv) for any DFS metric ψ on L, the psh envelope P (ψ) is continuous and psh;

(v) for any family (φ α ) α∈A of metrics in PSH(L) that is uniformly bounded from above, the usc upper envelope (sup α φ α ) * is psh. (vi) for any increasing net (φ j ) j of metrics in PSH(L) that is uniformly bounded from above, the usc limit (lim j φ j ) * is psh.

We shall show in Theorem 5.27 that (i)-(vi) hold when k is discretely or trivially valued, of residue characteristic zero, X is smooth, and L is ample It would be very interesting to know if they hold more generally.

To prove Proposition 5.23, we need the following elementary but useful lemma.

Lemma 5.24. The psh envelope has the following properties: (i) if ψ 1 and ψ 2 are continuous metrics on L and ψ 1 ≤ ψ 2 , then P (ψ 1 ) ≤ P (ψ 2 ); (ii) if ψ is a continuous metric on L and c ∈ R, then P (ψ + c) = P (ψ) + c;

(iii) sup X |P (ψ 1 ) -P (ψ 2 )| ≤ sup X |ψ 1 -ψ 2 | for any continuous metrics ψ 1 , ψ 2 on L.

Proof. That (i) holds is obvious, and (ii) follows from the fact that PSH(L) is closed under addition of constants. Finally (iii) is a formally consequence of this remark and of (i)-(ii).

Proof of Proposition 5.23. From Lemma 5.22 it follows that P (ψ) is lsc, since FS metrics are continuous. Hence (i) and (ii) are equivalent, as are (iii) and (iv). Further, (v) obviously implies (vi), and the reverse implication holds by considering the net (ψ j ) j∈J , where J is the set of finite subsets of A and ψ j := max α∈j ϕ α . Clearly, (i) implies (iii) and the reverse implication follows from the Lipschitz property of Lemma 5.24 together with the fact that DFS metrics are dense in the set of continuous metrics on L, see Corollary 2.8 and also Proposition 5.20. We shall complete the proof by showing that (ii) and (v) are equivalent. First assume (ii) holds and consider a family as in (v). Since φ := (sup α φ α ) * is usc, it can be written as a decreasing net (τ j ) j of continuous (not necessarily psh) metrics. By (ii) the metric ψ j := P (τ j ) is psh for each j. Since φ α ≤ τ j and φ α is psh, it follows that φ α ≤ ψ j for each α and j. Thus sup α φ α ≤ ψ j , and since ψ j is usc we get φ ≤ ψ j for all j. The net (ψ j ) j is clearly decreasing. Since φ ≤ ψ j ≤ τ j and lim j τ j = φ, we must have lim j ψ j = φ, so by Proposition 5.6 (vii) we conclude φ ∈ PSH(L).

Conversely, suppose (v) holds and let ψ be a continuous metric on L. We apply (v) to the family of all metrics φ ∈ PSH(L) such that φ ≤ ψ. Thus P (ψ) * is psh. But since P (ψ) ≤ ψ we have P (ψ • π) = P (ψ) • π. Corollary 6.20 now yields

where the last equality follows from the orthogonality property in the discretely valued case. This proves (i). As for (ii), write ψ := ψ • π, f = f • π. For t ∈ R we then have P (ψ + tf ) = P (ψ + tf ) • π by Proposition 5.25, and hence E(P (ψ + tf )) = E(P (ψ + tf )) by Proposition 6.7. Thus

where the second equality follows from the differentiability in the discretely valued case, and the third equality from Corollary 6.20 (i). This completes the proof.

When solving the Monge-Ampère equation in §7.3 we need a generalized version of the differentiability property. Given a usc metric ψ on L that dominates some psh metric, set

Lemma 6.31. We have P (ψ) ∈ PSH(L). If ψ is continuous, then so is P (ψ).

Proof. We saw in Theorem 5.27 that P (ψ) is psh and continuous when ψ is continuous. By Corollary 5.28, all the properties in Proposition 5.23 hold. Property (v) applied to the family of psh metrics bounded above by ψ shows that the usc regularization P (ψ) * is psh. Now u is usc and P (ψ) ≤ u, so P (ψ) * ≤ u. Thus P (ψ) * is a candidate in the definition of P (ψ), so P (ψ) * ≤ P (ψ), and hence P (ψ) = P (ψ) * is psh. Corollary 6.32. If φ ∈ E 1 (L) and f ∈ C 0 (X), then P (φ + tf ) ∈ E 1 (L) for all t ∈ R. Further, the function t → E(P (φ + tf )) is differentiable, and d dt E(P (φ + tf ))| t=0 = MA(φ). Proof. We repeat the proof of [BFJ15, Corollary 7.3]. First note that P (φ + tf ) ≥ φ -t inf f , so P (φ + tf ) ∈ E 1 (L) for all t. It now suffices to prove that E(P (φ + f )) -E(φ) = 1 0 dt f MA(P (φ + tf )) for all f ∈ C 0 (X). For this, we use Corollary 6.22, which yields a decreasing sequence (φ m ) ∞ 1 in FS(L) converging to φ. For each m we have

It is easy to see that P (φ m + tf ) decreases to P (φ + tf ) for all t. Hence the left hand side of (6.3) converges to E(P (φ+f ))-E(φ). Further, f MA(P (φ m +tf )) converges weakly to f MA(P (φ + tf ) by Theorem 6.9. We conclude using the dominated convergence theorem, since f MA(P (φ m + tf )) is uniformly bounded in m and t ∈ [0, 1]. 6.8. Proof of Theorem 6.9. We follow [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF]. The proof below works in both the discretely and trivially valued case. Fix 0 ≤ p ≤ n and consider the following statement.

Assertion A(p). To any metrics φ 1 , . . . , φ p in E 1 (L) and φ p+1 , . . . , φ n in FS(L) is associated a Radon probability measure M p (φ 1 , . . . , φ p ) = M p (φ 1 , . . . , φ p ; φ p+1 , . . . , φ n ) such that:

(i) if φ 1 , . . . , φ p are FS metrics, then M p (φ 1 , . . . , φ p ; φ p+1 , . . . , φ n ) = MA(φ 1 , . . . , φ p , φ p+1 , . . . , φ n ) (6.4)

We shall prove A(p) by induction on p. For p = n, this proves Theorem 6.9.

The assertion A(0) is clear using Proposition 5.2, since M 0 = MA(φ 1 , . . . , φ n ) is a finite sum of Dirac masses at points in X qm in view of Proposition 3.2. Now assume 1 ≤ p ≤ n, that A(p -1) holds, and let φ p+1 , . . . , φ n ∈ FS(L). Given metrics φ 1 , . . . , φ p ∈ E 1 (L), we define M p (φ 1 , . . . , φ p ) by forcing the integration by parts formula

for every FS metric ψ on L.

By A(p -1), the right-hand side of (6.5) is well-defined and continuous along decreasing nets as a function of (φ 1 , . . . , φ p ). Further if the φ i are all FS metrics, then equality holds in (6.5) when M p (φ 1 , . . . , φ p ) is replaced by MA(φ 1 , . . . , φ p , φ p+1 , . . . , φ n ). It then follows by regularization that the right-hand side is linear in ψ, and non-negative when ψ ≥ φ ref .

Since the space of differences of FS metrics on L is dense in C 0 (X), it follows that M p (φ 1 , . . . , φ p ) is well-defined as a Radon probability measure on X, and is continuous along decreasing nets as a function of (φ 1 , . . . , φ p ).

Next we prove (ii). We may assume ψ, φ i ≤ φ ref .

Set

Let (ψ j ) j and (φ j i ) j , 1 ≤ i ≤ p, be decreasing nets of FS metrics converging to ψ and φ i , respectively. Then J(ψ j ) ≤ B, J(φ j i ) ≤ B for 1 ≤ i ≤ p, and J(φ i ) ≤ B for p < i ≤ n. Fix any index j 0 . For j ≥ j 0 we have

where the second inequality follows from Lemma 3.22 and the last inequality from (ψ -

by the continuity of (φ 1 , . . . , φ p ) → M p (φ 1 , . . . , φ p ) along decreasing nets. Since M p (φ 1 , . . . , φ p ) is a Radon probability measure and (ψ j ) j is a decreasing net of usc metrics, it follows from [Fol99, 7.12] that

which completes the proof of (ii).

Finally we prove (iii). Let (φ j i ) j , i = 1, . . . , p and (ψ j ) j be decreasing nets in E 1 (L) converging, respectively, to metrics φ i and ψ in E 1 (L). Set µ j := M p (φ j 1 , . . . , φ j p ). Then (µ j ) j is a net of Radon measures converging weakly to µ := M p (φ 1 , . . . , φ p ). Further, (ψ j -φ ref ) j is a decreasing net of usc functions converging pointwise to ψ -φ ref , so it follows from general integration theory (see

For the reverse estimate, we rely on the following approximate monotonicity property: Lemma 6.33. Let ψ and χ i ≥ φ i , i = 1, . . . , p be metrics in E 1 (L). Then

The lemma implies that, for each j:

By the inductive hypothesis, the sum in the right-hand side tends to 0 as j → ∞. Thus we obtain lim j (ψ j -φ ref )µ j ≥ (ψ -φ ref )µ. Together with (6.6), this completes the proof of (iii) and hence the proof of Theorem 6.9.

Proof of Lemma 6.33. Since M p (χ 1 , . . . , χ p ) and M p (φ 1 , . . . , φ p ) are Radon probability measures, we may after regularization assume that ψ is an FS metric. Further, since we already know that (φ 1 , . . . , φ p ) → M p (φ 1 , . . . , φ p ) is continuous along decreasing nets, we may by regularization assume that all φ i and χ i are FS metrics. Integration by parts (Proposition 3.4) then yields

We similarly have

Iterating this argument and summing up then yields the desired result.

6.9. Proof of Theorem 6.11. Consider increasing nets ψ j → ψ and

We shall prove this by induction on q, where q is the largest integer such that φ j p = φ p for all j and p > q.

First consider the case q = 0. Thus φ j p = φ p for 1 ≤ p ≤ n. For each p, pick a decreasing net (φ p,l ) p of FS metrics on L converging to φ p .

Pick any ε > 0. By Corollary 3.19 we can find l such that the last line is bounded by ε for all j. Since dd c φ 1,l ∧ • • • ∧ dd c φ n,l is a finite atomic measure supported on quasimonomial points, we then have 0 ≤ (ψ -ψ j ) MA(φ 1,l , . . . , φ n,l ) ≤ ε for j 0. Thus 0 ≤ (ψψ j ) MA(φ 1 , . . . , φ n ) ≤ 2ε. Now assume 0 < q ≤ n. For 0 ≤ p ≤ n set

With this notation, we must prove that lim

To this end, we first claim that lim

for 0 ≤ p ≤ q and every χ ∈ E 1 (L). Indeed, this is clear for p = 0, since µ j 0 = µ, and for 1 ≤ p ≤ q we have

which tends to zero by the inductive assumption. Now we turn to (6.7). On the one hand, the fact that ψ j ≤ ψ implies that lim

where we have used (6.8). On the other hand, for every index j we have ψ j ≥ ψ j for j ≥ j , and hence

where the second equality follows from (6.8) and the last equality follows from the inductive assumption. This completes the proof.

Theorem 7.3. Assume k is discretely or trivially valued, of residue characteristic zero, X is smooth, and L is ample. Then the Monge-Ampère operator defines a bijection

Further, given a measure µ ∈ M 1 (X) and a metric φ ∈ E 1 (L), the following two conditions are equivalent: (i) MA(φ) = µ;

(ii) φ maximizes the functional F µ . When these conditions hold, we have E * (µ) = F µ (φ) = (I -J)(φ).

Note that E * (µ) ≥ 0 for all µ ∈ M 1 (X), since F µ (φ ref ) = 0.

Corollary 7.4. Under the assumptions of Theorem 7.3, we have E * (µ) = 0 iff µ = MA(φ ref ). When k is trivially valued and φ ref = φ triv is the trivial metric, this means µ is a Dirac mass at the generic point of X.

The proof of Theorem 7.3 will be presented in the rest of this section. We start by making some preliminary remarks. Proposition 7.2, together with the formula MA(φ + c) = MA(φ) implies that the map in (7.3) is well-defined. It follows from Corollary 6.28 that it is injective, under the assumptions on k and X. We shall prove surjectivity shortly. 7.2. Measures of finite energy. Before proving the surjectivity of the the map in (7.3), we record some further properties of the energy operator E * and the space M 1 (X) of measures of finite energy. In this subsection, k is arbitrary and X is an arbitrary variety. We first prove that the energies E and E * are Legendre dual, in the following sense.

Proposition 7.5. For φ ∈ E 1 (L) we have

Proof. The inequality E(φ) ≤ inf µ E * (µ) + (φ -φ ref )µ is definitional, and by Proposition 7.2, the reverse inequality follows by choosing µ = MA(φ).

Lemma 7.6. The function µ → E * (µ) on the space of Radon probability measures on X is lsc and convex in the sense that E * (t

To prove that E * is lsc, it suffices, for the same reason, to prove that µ → (φ -φ ref )µ is usc for each φ ∈ E 1 (L). But this follows from φ -φ ref being usc.

Corollary 7.7. The set M 1 (X) is convex.

The following characterization of measures of finite energy, closely related to [BBGZ13, Proposition 3.4], is quite useful. Recall that E 1 C (L) denotes the set of metrics φ ∈ PSH(L) with sup(φ -φ ref ) = 0 and E(φ) ≥ -C. Proposition 7.8. For a Radon probability measure µ on X, the following assertions are equivalent:

(i) E * (µ) < +∞; equicontinuity assertion in Theorem 5.29 implies that φ → (φ -φ ref )µ is continuous on E 1 (L). Since E 1 C (L) is weakly compact, the supremum of F µ is attained. In the discretely valued case, Corollary 7.17 was proved in [START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF] under an additional algebraicity assumption on X, that was removed in [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampre equations (with an appendix by Robert Lazarsfeld[END_REF]. The proof is essentially the same as the one given here.

Theorem 7.18. Under the assumptions of Corollary 7.17, the metric φ is continuous.

Proof. In the discretely valued case, this was proved in [BFJ15, §8.3] using capacity theory. We shall not revisit this proof here. In the trivially valued case, the continuity of the solution follows from Corollary 7.14.

To prove Theorem 7.3 in general, we approximate the measure µ ∈ M 1 (X) by measures supported on dual complexes. The proof below works in both the discretely and trivially valued case. Recall that SNC(X) is the directed set of snc models for X (resp. snc test configurations for X). For any X ∈ SNC(X), set

where p X : X → ∆ X is the retraction. The operation µ → µ X should be thought of as a smoothing procedure.

Lemma 7.19. For any φ ∈ E 1 (L), the net

the result therefore follows from [Fol99, 7.12].

Corollary 7.20. The net (E * (µ X )) X is eventually increasing, and lim X E * (µ X ) = E * (µ).

Pick an increasing sequence (X j ) ∞ 1 in SNC(X). such that E * (µ j ) → E * (µ), where µ j := µ X j . For each j there exists a unique (continuous) metric φ j ∈ E 1 (L) such that sup(φ jφ ref ) = 0 and MA(φ j ) = µ j . We shall prove that φ j converges to a metric φ ∈ E 1 (L) such that MA(φ) = µ. To simplify notation, write φ j = φ ref + ϕ j , where ϕ j ∈ QPSH(X).

Lemma 7.21. For every j we have J(φ j ) ≤ nE * (µ) < ∞.

Proof. We have J(φ j ) ≤ n(I -J)(φ j ) = nE * (µ j ) ≤ nE * (µ).

Lemma 7.22. For j ≤ l we have

Proof. We have I(φ j , φ l ) ≤ (n + 1)J φ l (φ j ). Using Lemma 7.19 we also have

completing the proof.

Lemma 7.23. The sequence (φ j ) j converges strongly to a metric φ ∈ E 1 (L) with sup(φφ ref ) = 0. Further, we have J(φ) ≤ nE * (µ) and I(φ j , φ) ≤ (n + 1) 2 (E * (µ) -E * (µ j )) → 0.

Appendix A. Proof of estimates

In this section we prove the estimates in §3.12.

Proof of Lemma 3.12. The first inequality is trivial. Since MA(φ ref ) is supported on a finite set of quasimonomial points, the second inequality follows from the Izumi estimate in Theorem 2.21. When k is trivially valued, MA(φ triv ) is a Dirac mass at the generic point of X, and φ-φ triv attains its supremum at this point by Lemma 2.20, so we can pick D ref = 0.

Proof of Corollary 3.13. This follows immediately from (3.20) and Lemma 3.12.

Proof of Lemma 3.14. Adding a constant to φ, we may assume (φ -ψ)(dd c ψ) n = 0. Set φ t := tφ + (1 -t)ψ. Then φ t -ψ = t(φ -ψ), so (φ t -ψ)(dd c ψ) n = 0, and

Here the integral vanishes for j = 0 and is bounded below by (φ -ψ)(dd c φ) n for j > 0, so

Proof of Lemma 3.15. Set φ := 1 2 (φ 1 + φ 2 ), u := φ 1 -φ 2 , and, for 0 ≤ p < n, b p := -V -1 udd c u ∧ (dd c ψ) p ∧ (dd c φ) n-1-p .

We aim to bound b n-1 . Set A := I(φ 1 , φ 2 ) and B := max i=1,2 I(φ i , ψ).

Note that b 0 ≤ A. To get a preliminary bound on b n-1 we write u = (φ 1 -ψ) + (ψ -φ 2 ) and use the triangle inequality resulting from Cauchy-Schwartz:

Here we can use Cauchy-Schwartz to bound the each of the last two terms:

Using dd c φ i ≤ 2dd c φ we can bound the first factor by 2b p , and the second factor by 

In this case, we prove by induction that

for 0 ≤ p ≤ n -1. Setting p = n -1 will complete the proof. We already know that b 0 ≤ A, so (A.3) holds for p = 0 with C n,0 = 1. When 0 ≤ p ≤ n-2, we get from (A.2) and the induction hypothesis that

, where C n,p+1 = C n,p + 4 (n + 1)C n,p . The proof is complete.

Proof of Lemma 3.16. For ψ ∈ FS(L) and u ∈ DFS(X), we set

By Cauchy-Schwartz, this defines a seminorm on DFS(X). Now set φ := (φ 1 + φ 2 )/2. It follows from (3.16) that

Together with the triangle inequality for • φ , this yields

We can now use Lemma 3.15 to get, for i = 1, 2,

2) and the convexity of φ → J ψ (φ), we have

Altogether, this yields

where

On the other hand, since C n ≥ 1, which we may assume, then the same inequality trivially holds also when I(φ 1 , φ 2 ) ≤ max i=1,2 I(φ i , φ 3 ). This completes the proof.

Proof of Corollary 3.17. This follows from Lemma 3.16 applied to φ 1 = φ, φ 2 = φ ref and φ 3 = φ, and using the inequalities I(φ) ≤ (n + 1)J(φ), I(ψ) ≤ (n + 1)J(ψ).

Proof of Corollary 3.18. Note that ψ :=

Here the left hand side is bounded above by C n I(φ 1 , φ 2 ) 1 2 n-1 max i=1,2 I(φ i , ψ) 1-1 2 n-1 in view of Lemma 3.15. Now I(φ i , ψ) ≤ C n max{J(φ i ), J(ψ)} by Corollary 3.17, and J(ψ) ≤ max i J(ψ i ) by convexity. This completes the proof.

Proof of Corollary 3.19. We proceed as in the proof of Lemma 3.15. For 0 ≤ p ≤ n, set

We want to estimate |a n -a 0 |. Cauchy-Schwartz gives |a p -a p-1 | 2 ≤ A p B p , where where the last inequality follows from Lemma 3.12. Now expand the left-hand side:

V -1 ϕ(dd c φ) n ≤ 1 (n + 1) 2 V -1 ϕ 0 (dd c φ) n ≤ n! (n + 1) n+2 ϕ 0 MA(φ 1 , . . . , φ n ), which completes the proof.

Proof of Lemma 3.23. We may assume max(ψ -φ ref ) = max(φ i -φ ref ) = 0. For p = 0, . . . , n set a p := V -1 (ψ -φ ref )(dd c φ 1 ) p ∧ (dd c φ 2 ) n-p .

Our goal is to estimate |a n -a 0 |. Note that a p+1 -a p = V -1 (ψ -φ ref )dd c (φ 1 -φ 2 ) ∧ (dd c φ 1 ) p ∧ (dd c φ 2 ) n-p-1 ,