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Abstract
Ceramic matrix composites have good thermo-mechanical properties at high or very
high temperatures. The alliance of two brittle materials (SiC fibers and SiC matrix
e.g.) via an interface allows a pseudo-ductile macroscopic behavior due to crack
deviation. The modeling of the crack networks using damage mechanics is not
straight forward. The main reason is the presence of a crack network oriented by the
loading direction, which is not known a priori. The aim of this paper is to extend an
anisotropic damage model able to describe such behaviors to multi-axial loadings.
For that, compliance-like tensorial damage variables are used in a thermodynamic
potential able to account for crack closure effects. The damage kinematic is initially
completely free and imposed by the evolution laws. The key point of the present
paper is to account for an anisotropic history of damage. The results obtained
are put in relation to alternate torsion tests performed on SiC/SiC tubes and richly
instrumented.

Keywords
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List of symbols
C0 Initial compliance tensor
∆C,∆Z,∆Cm,∆Zm damage compliance tensors
C = C0 + ∆C
H = C 1

2 and H0 = C
1
2
0

ρΨel State potential ρ is the volumic mass
< . >+, < . >− Classical positive and negative parts
σ,σ+,σ− Stress, positive part of the stress w.r.t. H

negative part of the stress w.r.t. H0

ε Strain
Y′,Y′,Y′′ Thermodynamical forces written in stress
W′,W′,W′′ Thermodynamical forces written in strain
⊗ Tensor product
: Contracted product between 2nd order tensors
:: Contracted product between 4th order tensors
(.)sym Symmetric part of a second order tensor
I Fourth order identity tensor
ȧ Total time derivative of a quantity a
ω̇ Dissipated power
ai Quantity a evaluated at time step ti

Introduction
Ceramic matrix composites (CMC) are good candidates for the manufacturing of
aeronautical engine structures or nuclear energy applications as they present very good
specific properties at high temperatures and irradiations. In both cases, engineers have
to dispose of mechanical models in order to design and size parts. Regarding SiC/SiC
composites, several crack networks can develop depending on the densification of the
material and of the fiber/matrix interface. Among them, inter-yarn cracks may develop
orthogonally to the loading directions as mentioned by Aubard (1992).
It has lead to the so-called anisotropic damage models in the literature Kachanov
(1992); Ju (1990). The introduction of damage variables to describe the effects of crack
networks is generally introduced using the effective stress concept. It has been initiated
by Kachanov (1958); Rabotnov (1969) for scalar variables. The problem is more difficult
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Corresponding author:
Emmanuel Baranger, LMT, ENS-Cachan ,CNRS ,Université Paris-Saclay, 61 avenue du président Wilson,
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Baranger 3

while using tensorial damage variables as in Murakami and Ohno (1981). For example,
in Murakami (1988); Betten (1983), a second order damage tensor is used. In order to
construct the effective stress, a fourth order effect tensor is built on the basis of this
damage description. A difficulty resides in keeping the symmetries of the obtained stress
tensor. While an equivalence in strain is generally used, Cordebois and Sidoroff (1979)
proposed a solution to that problem assuming an equivalence in energy. This solution
has been followed by Voyiadjis and Park (1997) and Park and Voyiadjis (1998) for finite
strains. Note that Chaboche (1977) worked on the direct use of a fourth order damage
tensor to define an effective stress. Ladevèze (2002) does not use this concept of effective
stress.

Another major problem is to account for crack closure effects i.e. restauration of the
stiffness in compression. Important for CMCs like in Gasser et al. (1996), this problem
of stiffness recovery in compression is also well known in the field of brittle material
modeling (Halm and Dragon (1998) for e.g.). The difficulty resides in the obtention of
continuous stress/strain relations i.e. convex potential for multi-axial non-proportional
loadings Chaboche (1992); Carol and Willam (1996). For that, two main approaches
have been developed for CMCs. The first one is to discretize the potential crack
directions in the plane and use associated scalar damage variables in fixed directions as
in Marcin et al. (2011); Bernachy-Barbe et al. (2015a). The second one is to use tensorial
damage variables. The simplest approach is to use a second order tensor damage variable
as in Chaboche and Maire (2001); Gasser et al. (1996). Several difficulties associated to
the model of Chaboche and Maire are mentioned in Cormery and Welemane (2002) and
by the authors themselves. Another approach is to use directly fourth order tensors as
in Chaboche (1982). For example, Ladevèze (2002) used compliance tensors as damage
variables. He defined associated special positive and negative parts of the stresses in
order to get the good properties on the free energy potential Curnier et al. (1994). This
model is the basis of this paper. Note that, complex tensorial damage models have been
simplified to scalar damage models in the litterature, for example Chaboche and Maire
(2001) leads to Marcin et al. (2011). An automatic strategy adapted to that purpose can
be found in Baranger (2013); Friderikos and Baranger (2016).

Recent experiences performed at CEA by Bernachy-Barbe et al. (2015b); Bernachy-
Barbé (2014), and richly instrumented via digital image correlation, confirm macroscopic
observations done by ONERA Maire and Pacou (1996) on tension-torsion tests on
SiC/SiC tubes. Concerning the experiments of Bernachy-Barbé, the main crack network
is oriented by the loading direction. Therefore, alternate torsion tests leads to the creation
of two orthogonal networks oriented by the two main loading directions. It will be shown
that the model developed by Ladevèze Ladevèze (2002) is not able to account for such a
non-proportional loading as the history is isotropic. Thus, this paper aims at extending
this model to account for anisotropic history using concepts developed by Desmorat
et al. (2010). Note that similar concepts seems to have been developed by Chaboche
while comparing the evolution of his papers Chaboche et al. (1994); Maire and Lesne
(1997), but it is not explicitly mentioned by the authors. The identification of such
anisotropic models is not straigth-forward. It has been done in Baranger et al. (2008)
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based on macroscopic tests and some physical considerations. The rich experimental
tests from Bernachy-Barbe et al. (2015b) are a major contribution for that problem.

In this paper, two versions of the original model from Ladevèze (2002) are presented
in the next section. Then, predictions of the models are compared to some experimental
results to determine whether the models are able to describe the crack orientations
(section 3). In section 4, it will be shown that the models are unable to represent non-
proportionnal loadings because the history description is isotropic. Based on this, the
models are enhanced to account for anisotropic histories and validated (section 5). This
last part is the main contribution of this paper.

Original damage model
In order to introduce versatile damage kinematics, different authors have chosen to
describe damage using fourth order tensors Chaboche (1982); Ju (1990). In this part, the
model from Ladevèze for SiC/SiC composites is emphasized Ladevèze (2002); Cluzel
et al. (2009); Genet et al. (2014). The first main idea of this model is to let the damage
kinematic completely free a priori and to specify it using the evolution laws. The second
idea is to separate the contributions of the different crack networks. The objective is
to have a mechanical model that could be linked to physico-chemical one to treat self-
healing aspects of lifetime predictions Cluzel et al. (2009); Genet et al. (2012).

State potential and damage variables
The elastic potential ρΨel is written in stress as the sum of three contributions: the
first is a contribution only active in tension, the second is a contribution active only in
compression and the third is a contribution active both in tension and compression (i.e.
mainly shear). It reads:

ρΨel =
1

2
σ+ : C : σ+ +

1

2
σ− : C0 : σ− +

1

2
σ : ∆Z : σ (1)

∆C = C− C0 and ∆Z are the damage variables of the model, by definition they are
positive and have the symmetries of a compliance tensor so that their square roots H and
H0 exist. σ+ and σ− are positive and negative parts of the stress σ defined to manage
unilateral contact in cracks (the shear stiffness recovery is not taken into account in this
form as it is linked to friction) and to keep a convex potential even for non-proportional
loadings. For that, two spectral decompositions are used. The first is used to define the
positive part:

σ+ = H−1 :< H : σ >+ (2)

The second is used to define the negative part:

σ− = H−10 :< H0 : σ >− (3)
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For diagonal compliance tensors, these positive and negative parts are equal to the
classical one but not in the general case. The use of classical positive and negative
parts would lead to a non-convex potential and therefor to non-continuous stress-strain
relation. This is due to the presence of terms mixing eigenvalues as shown in Ladeveze
(1983). With the proposed positive and negative parts, the state potential is convex with
respect to σ as demonstrated in Ladevèze et al. (2014). It allows to get a continuous
stress-strain relation even during crack closure.The stress-strain relation is given by (see
appendix of Baranger (2013) for some calculus elements):

ε =
∂ρΨel

∂σ
= C : σ+ + C0 : σ− + ∆Z : σ (4)

The total damage is separated in different contributions related to the different crack
networks (inter-yarn cracks, intra longitudinal yarn cracks, intra transverse cracks for
example) as in Cluzel et al. (2009). The total damage is the sum of the different
contributions. For the sake of simplicity and due to the mechanical properties of the
material characterized by Bernachy-Barbe et al. (2015b), in the present paper, the damage
is reduced to the inter-yarn cracking network (noted with underscore m). The associated
damage contributions are called: ∆Cm and ∆Zm while in Cluzel et al. (2009) other
contributions are added. Therefor:

∆C = ∆Cm (5)
∆Z = ∆Zm (6)

Thermodynamical forces
The thermodynamical forces associated to the damage variables are also fourth order
tensors:

Y =
∂ρΨel

∂∆Z
=

1

2
σ ⊗ σ (7)

Y′ =
∂ρΨel

∂∆C
=

1

2
σ+ ⊗ σ+ (8)

Another force is introduced to deal with shear, in 2D:

Y′′ =
1

2
(Rπ

2
.σ+)sym ⊗ (Rπ

2
.σ+)sym (9)

whereRπ
2

is a π
2 rotation in the plane.

Several other thermodynamical forces are also introduced. While the previous ones
(noted with Y) rely on the stress, the following ones (noted W) rely on the strain. They
read:

W =
1

2
(C : σ) ⊗ (C : σ) (10)

W′ =
1

2
(C : σ+) ⊗ (C : σ+) (11)

W′′ =
1

2
(Rπ

2
.(C : σ+))sym ⊗ (Rπ

2
.(C : σ+))sym (12)
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Damage evolution laws
To build the damage evolution laws, an equivalent driving force is introduced as:

zm(A) =
(
(1 − a)Tr[An+1] + aTr[A]n+1

) 1
n+1 (13)

(14)

In the following, A will be either Y′ or W′. a allows to pass from isotropic to anisotropic
damage and n allows to emphasis the directionality of damage. If n is odd, then zm is
positive.

The maximum force over time is defined by:

z̄m(t) = sup
τ≤t

zm(A(τ)) (15)

Regarding the evolution laws, several choices can be found in the literature.
Model (1) In Ladevèze (2002), the damage is driven by the stress. This model is noted

(1), the evolution laws read:

∆Ċm = α̇m
(1 − a)Y′n + aTr[Y′]nI

z̄nm
(16)

∆Żm = α̇m
bY′′n

z̄nm
(17)

z̄m(t) = sup
τ≤t

zm(Y′(τ)) (18)

The dissipated power ω̇ reads:

ω̇ = ∆Ċm :: Y′ + ∆Żm :: Y (19)

Model (2) In Ladevèze et al. (2014), the strain is privileged. This model is noted (2),
the evolution laws read:

C−1 : ∆Ċm : C−1 = ˙̃αm
(1 − a)W′n + aTr[W′]nI

z̄nm
(20)

C−1 : ∆Żm : C−1 = ˙̃αm
bW′′n

z̄nm
(21)

z̄m(t) = sup
τ≤t

zm(W′(τ)) (22)

The form used for the flow rules is related to the dissipated power that reads:

ω̇ = ∆Ċ :: Y ′ + ∆Ż :: Y

= (C−1 : ∆Ċ : C−1) :: W′ + (C−1 : ∆Ż : C−1) :: W (23)

For both models, the damage kinematic is imposed by the flow rules. It has to be
noted that for a = 0, the damage is oriented by Y′ or W′. This choice is retained in the
following. αm(z̄m) and α̃m(z̄m) are scalar increasing functions. As mentioned in Genet
et al. (2014), these two models lead to positive dissipated powers (a demonstration relies
on the use of equation 53 in appendix).
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Numerical integration
The numerical implementation of such evolution laws requires robust integration
schemes as in Genet et al. (2014). Note that, many eigenvalue problems have to be solved
due to the positive and negative parts. This is rather time consuming. In the present case,
as in Cluzel et al. (2009); Baranger et al. (2011), a very simple explicit scheme is used.
The model being written in stress, it is rather easy to use to exploit classical experimental
mechanical tests while it is more difficult to use in a finite element framework.

Crack orientations for tensile loadings and localization
First, it is interesting to check if the proposed models, introducing tensorial damage
variables, are able to give some information on the crack directions. Experimental data
from Bernachy-Barbe et al. (2015b) are used as a reference. These data are obtained
from multi-axial loading on SiC/SiC pipes. The principal and secondary crack networks
orientations are presented on Figure 1 for several angles of applied uniaxial loads. The
orientations are measured using digital image correlation on the surface of the tube at the
scale of the reinforcement.

From damage principal directions
For both models (1) and (2), with a = 0 and n = 1, the damage evolution laws rely on
Y′ and W′. In that sens, the description of the mean crack orientations via the damage
variables rely on the principal directions of σ+ and C2 : σ+. The directions given by
the damage principal directions are plotted on Figure 1. For low applied stress levels, the
model (1) leads to a single straight line of slope 1, this is not the case for model (2) which
accounts for the initial anisotropy of the material. These simulations are performed at the
beginning of damage. It can be seen that the second model is more appropriate to describe
the mean crack orientations. Note that this consideration relies on a fine scale description
of the matrix as crack orientations are observed at the scale of the reinforcement.

From localization directions
Damage models are well known to present problems of localization. Hereafter, the
existence of singular points is studied in a simplified context with n = 1 and for pure
tensile loadings. In this context, the strain is given by:

ε = C : σ+ (24)

The term Z : σ describes shear contributions and therefor disappeared from the
expression of ε. Bifurcation may occur if σ̇+ = 0, Therefor the evolution of the strain
has to satisfy :

ε̇ =Ċ : σ+ (25)

For model (1), at constant applied stress, there is no possible evolution of the damage
magnitude and orientation i.e. Ċ = O. Bifurcation cannot occur for model (1).
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Figure 1. Crack angles vs. loading angle.

For model (2), replacing the damage evolution law leads to:

ε̇ =

( ˙̃αm
2

(C2 : σ+) ⊗ (C2 : σ+)

)
: σ+ (26)

=

( ˙̃αm
2

(C : ε) ⊗ (C : ε)

)
: σ+ (27)

=
˙̃αm
2

(C : ε) (ε : C : σ+) (28)

At constant applied stress, ˙̃αm is not necessarily zero. Bifurcation may occur in the
direction given by C : ε. It is the same as the principal directions of damage for this
kind of loadings. Note that localization will lead to a rather difficult identification of
the model in the present case. Finding an evolution law leading to a delayed maximum
stress level on the stress/strain curve is not an easy task on the experimental data from
Bernachy-Barbé. Only a very rough one has been performed.

Limitations of the model for non-proportional loadings

Experimental comparison and model limitations
To test the previous models on non-proportional loadings, alternate shear loadings
performed on a [±45] tube under torsion have been used. On Figure 2, the shear stress
is plotted versus the axial, hoop and shear strains. For that, Bernachy-Barbé (2014)
assumed an homogeneous state of stress and a simple kinematic. The loading consists
of different phases. The loading begins by a positive torsion increasing from points
O to point A. The torsion is decreased down to O and to B by applying a negative
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torsion. The tube is then reloaded by O and A up to C. A positive (resp. negative)
shear stress corresponds to a positive (resp. negative) torque. On this figure, the relation
of the axial strain and the shear stress relies uniquely on the compliance evolution
in the reinforcement directions i.e. to damage evolution ∆C projected on the +45o

direction and −45o direction. Note that the damage does not evolve until the shear stress
reaches the absolute value of about 100 MPa. Also note that this figure is symmetric. Two
independent orthogonal crack networks are formed in the directions of the reinforcement.

Figure 2. Experimental evolution of the shear stress vs. strain for a pipe loaded in alternate
torsion from Bernachy-Barbé (2014).

Figure 3 is a result of a simulation of model (1). It can be noticed that it is not
symmetric (regarding the abscissa axis) while the experimental one from Bernachy-
Barbé (2014) is (see Figure 2). The same holds for model (2).

Analysis of the history description of the models

Model (1) In fact, z̄m(t) being a scalar, the damage history is resumed as an isotropic
value even if the damage kinematic is very rich. Another way is to note that the damage
flow can be rewritten, in a similar manner with the flow rule given by equations 16 and
20.

For model (1), it is simple, it reads:

∆Ċm = γ̇
∂zm
∂Y′

(29)
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Figure 3. Simulated evolution of the shear stress vs. axial strain for a pipe loaded in
alternate torsion.

γ̇ is a damage multiplier, some Khun-Tucker conditions are associated (γ̇ ≥ 0, f ≤
0, γ̇f = 0). The criterion of damage reads:

f(dact) = dact − βm(zm) (30)

If dact = Tr[∆Cm], the damage multiplier is given by:

γ̇ =
βm(zm)

Tr[∂zm∂Y′ ]
= α̇m (31)

This expression depends only on Y′. Thus the model is equivalent to the model (1)
presented in the previous section. It is another way to present the isotropic history
description of the model.

Model (2) Regarding model (2), it is more difficult. One has to define dact from its
evolution law:

ḋact = Tr[C−1 : ∆Ċm : C−1] (32)

The flow rule is:

C−1 : ∆Ċm : C−1 = γ̇
∂zm
∂W′

(33)

The damage multiplier reads:

γ̇ =
β̇m

Tr[∂zm∂W′ ]
= ˙̃αm (34)
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Once again, it depends only of W′.

Remark: the shear parts of the damage can be rewritten in the same way:

∆Żm = γ̇
bY′′n

z̄nm
(35)

C−1 : ∆Żm : C−1 = γ̇
bW′′n

z̄nm
(36)

Enhanced damage model with anisotropic history

Model improvement
As illustrated above, the evolution equations have to be modified to account for
anisotropic history. Desmorat et al. (2010) proposed a framework for that on 2D damage
tensors. His approach is followed here.

For model (1), one introduces:

dact = ∆Cm ::
Y′

zm(Y′)
(37)

In the following, the damage evolution laws are written at time step ti+1. First, the
projection of damage at the current (dact,i+1) and previous (d∗act,i+1) time steps on the
current loading direction read:

dact,i+1 = ∆Cm,i+1 ::
Y′i+1

zm,i+1
(38)

d∗act,i+1 = ∆Cm,i ::
Y′i+1

zm,i+1
(39)

The flow rule is written as :

(∆Cm,i+1 − ∆Cm,i) = δγi+1

(
∂zm
∂Y′

)
i+1

(40)

Subtracting equations 38 and 39 and introducing the flow rule leads to (see appendix
for the simplification):

dact,i+1 − d∗act,i+1 = (∆Cm,i+1 − ∆Cm,i) ::
Y′i+1

zm,i+1
(41)

= δγi+1

(
∂zm
∂Y′

)
i+1

::
Y′i+1

zm,i+1
(42)

= δγi+1 (43)
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Therefor, if damage increases i.e. dact,i+1 − d∗act,i+1 > 0, then δγi+1 ≥ 0 and
dact,i+1 = βm(zm,i+1) and:

∆Ċm,i+1 =
(
βm(zm,i+1) − d∗act,i+1

)(∂zm
∂Y′

)
i+1

(44)

Note that, implicitly, the loading direction is assumed to remain constant over a time
step. The dissipated power is positive, the proof is very similar to the one related to the
original model.

For model (2), one introduces:

dact = ∆Cm ::

(
C−1 :

W′

zm(W′)
: C−1

)
(45)

At time step i+ 1:

dact,i+1 = ∆Cm,i+1 ::

(
C−1i+1 :

W′i+1

zm,i+1
: C−1i+1

)
(46)

d∗act,i+1 = ∆Cm,i ::

(
C−1i+1 :

W′i+1

zm,i+1
: C−1i+1

)
(47)

Subtracting these two expressions and introducing the flow rule leads to (see appendix
for the simplification):

dact,i+1 − d∗act,i+1 = (∆Cm,i+1 − ∆Cm,i) ::

(
C−1i+1 :

W′i+1

zm,i+1
: C−1i+1

)
(48)

= δγi+1

(
Ci+1 :

(
∂zm
∂W′

)
i+1

: Ci+1

)
::

(
C−1i+1 :

W′i+1

zm,i+1
: C−1i+1

)
(49)

= δγi+1 (50)

Therefor, if damage increases i.e. dact,i+1 − d∗act,i+1 > 0, then dact,i+1 = β̃m(zm,i+1)
and:

C−1i+1 : ∆Ċm,i+1 : C−1i+1 =
(
β̃m(zm,i+1) − d∗act,i+1

)(∂zm
∂W′

)
i+1

(51)

Once again, the dissipated power is positive for the same reason as the original model.

Experimental validation
For alternate shear loadings performed on a [±45] tube under torsion, the shear stress
is plotted versus the axial strain on Figure 4 for model (1). It can be noticed that it
is now symmetric as for the experimental one Figure 2. Due to localization, it has not
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been possible to identify correctly model (2) to illustrate this case on the material from
Bernachy-Barbe et al. (2015b). However, Figure 5 gives an illustration of the behavior of
a fictitious material. The definition of dact in model (2) introducing the strain, the figure
may not be exactly symmetric as the loading is driven by the stress and the damage
evolves between the two loading directions at +45 and -45. The first model is easier to
use and better suited in this case. Contrary to crack orientations prediction, this time, the
description occurs at the macroscopic scale. The two models are thus complementary.
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Figure 4. Simulated evolution of the shear stress vs. axial strain for a pipe loaded in torsion
for model (1).

Conclusion

In this paper, an anisotropic damage model has been enhanced in order to account for
non-proportional loadings. For that, an anisotropic history has been taken into account by
projecting the fourth order damage variable on the loading direction. In order to validate
the model, simulations have been compared to experimental results at two scales. At fine
scale, the model driven by the strain is better suited to describe crack orientations. At
the macroscopic scale, on SiC/SiC pipes under alternate torsion, the model driven by the
strain is too difficult to identify and only a basic illustration is given. The model driven
by the stress shows a good agreement with the experimental data. The on going work
focuses on the shear damage deactivation while cracks are in compression.

Prepared using sagej.cls



14 Journal Title XX(X)

0 0.005 0.01 0.015 0.02 0.025 0.03

Axial strain (%)

-150

-100

-50

0

50

100

150

200

S
h

e
a

r 
s

tr
e

s
s

 (
M

P
a

)

Figure 5. Simulated evolution of the shear stress vs. axial strain for a pipe loaded in torsion
for model (2).

Appendix: Damage flow direction
The variation of zm reads

δzm =
∂zm
∂A

:: δA

= ((1 − a)(n+ 1)An :: δA + a(n+ 1)Tr[An]Tr[δA])

1

n+ 1

(
(1 − a)Tr[An+1] + aTr[A]n+1

)− n
n+1

=
1

zm(A)n
((1 − a)A′n :: δA′ + aTr[A′]nTr[δA′])

Therefor the damage flow direction reads:

∂zm
∂A

=
1

zm(A)n
((1 − a)An + aTr[A]nI) (52)

Note that:

∂zm
∂A

:: A =
1

zm(A)n
(
(1 − a)Tr[An+1] + aTr[A]n+1I

)
= zm(A) (53)
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en présence d’un endommagement anisotrope. In: Mechanical Behavior of Anisotropic
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