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Ceramic matrix composites have good thermo-mechanical properties at high or very high temperatures. The alliance of two brittle materials (SiC fibers and SiC matrix e.g.) via an interface allows a pseudo-ductile macroscopic behavior due to crack deviation. The modeling of the crack networks using damage mechanics is not straight forward. The main reason is the presence of a crack network oriented by the loading direction, which is not known a priori. The aim of this paper is to extend an anisotropic damage model able to describe such behaviors to multi-axial loadings. For that, compliance-like tensorial damage variables are used in a thermodynamic potential able to account for crack closure effects. The damage kinematic is initially completely free and imposed by the evolution laws. The key point of the present paper is to account for an anisotropic history of damage. The results obtained are put in relation to alternate torsion tests performed on SiC/SiC tubes and richly instrumented.

Introduction

Ceramic matrix composites (CMC) are good candidates for the manufacturing of aeronautical engine structures or nuclear energy applications as they present very good specific properties at high temperatures and irradiations. In both cases, engineers have to dispose of mechanical models in order to design and size parts. Regarding SiC/SiC composites, several crack networks can develop depending on the densification of the material and of the fiber/matrix interface. Among them, inter-yarn cracks may develop orthogonally to the loading directions as mentioned by [START_REF] Aubard | Modélisation et identification du comportement mécanique des matériaux composites 2D-C/SiC[END_REF]. It has lead to the so-called anisotropic damage models in the literature [START_REF] Kachanov | Effective elastic properties of cracked solids: critical review of some basic concepts[END_REF]; [START_REF] Ju | Isotropic and anisotropic damage variables in continuum damage mechanics[END_REF]. The introduction of damage variables to describe the effects of crack networks is generally introduced using the effective stress concept. It has been initiated by [START_REF] Kachanov | Time of the rupture process under creep conditions[END_REF]; [START_REF] Rabotnov | Creep rupture[END_REF] for scalar variables. The problem is more difficult while using tensorial damage variables as in [START_REF] Murakami | A continuum theory of creep and creep damage[END_REF]. For example, in [START_REF] Murakami | Mechanical modeling of material damage[END_REF]; [START_REF] Betten | Damage tensors in continuum mechanics[END_REF], a second order damage tensor is used. In order to construct the effective stress, a fourth order effect tensor is built on the basis of this damage description. A difficulty resides in keeping the symmetries of the obtained stress tensor. While an equivalence in strain is generally used, [START_REF] Cordebois | Anisotropie élastique induite par endommagement[END_REF] proposed a solution to that problem assuming an equivalence in energy. This solution has been followed by [START_REF] Voyiadjis | Anisotropic damage effect tensors for the symmetrization of the effective stress tensor[END_REF] and [START_REF] Park | Kinematic description of damage[END_REF] for finite strains. Note that [START_REF] Chaboche | Sur l'utilisation des variables détat interne pour la description du comportement viscoplastique et de la rupture par endommagement[END_REF] worked on the direct use of a fourth order damage tensor to define an effective stress. [START_REF] Ladevèze | An anisotropic damage theory with unilateral effects: applications to laminates and to three-and four-dimensional composites[END_REF] does not use this concept of effective stress.

Another major problem is to account for crack closure effects i.e. restauration of the stiffness in compression. Important for CMCs like in [START_REF] Gasser | Damage mechanisms of a woven sicsic composite: Modelling and identification[END_REF], this problem of stiffness recovery in compression is also well known in the field of brittle material modeling [START_REF] Halm | An anisotropic model of damage and frictional sliding for brittle materials[END_REF] for e.g.). The difficulty resides in the obtention of continuous stress/strain relations i.e. convex potential for multi-axial non-proportional loadings [START_REF] Chaboche | Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition[END_REF]; [START_REF] Willam | Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage[END_REF]. For that, two main approaches have been developed for CMCs. The first one is to discretize the potential crack directions in the plane and use associated scalar damage variables in fixed directions as in [START_REF] Marcin | Development of a macroscopic damage model for woven ceramic matrix composites[END_REF]Bernachy-Barbe et al. (2015a). The second one is to use tensorial damage variables. The simplest approach is to use a second order tensor damage variable as in [START_REF] Chaboche | New progress in micromechanics-based CDM models and their application to CMCs[END_REF]; [START_REF] Gasser | Damage mechanisms of a woven sicsic composite: Modelling and identification[END_REF]. Several difficulties associated to the model of Chaboche and Maire are mentioned in [START_REF] Cormery | A critical review of some damage models with unilateral effect[END_REF] and by the authors themselves. Another approach is to use directly fourth order tensors as in [START_REF] Chaboche | Le concept de contrainte effective appliqué à l'élasticité et à la viscoplasticité en présence d'un endommagement anisotrope[END_REF]. For example, [START_REF] Ladevèze | An anisotropic damage theory with unilateral effects: applications to laminates and to three-and four-dimensional composites[END_REF] used compliance tensors as damage variables. He defined associated special positive and negative parts of the stresses in order to get the good properties on the free energy potential [START_REF] Curnier | Conewise linear elastic materials[END_REF]. This model is the basis of this paper. Note that, complex tensorial damage models have been simplified to scalar damage models in the litterature, for example [START_REF] Chaboche | New progress in micromechanics-based CDM models and their application to CMCs[END_REF] leads to [START_REF] Marcin | Development of a macroscopic damage model for woven ceramic matrix composites[END_REF]. An automatic strategy adapted to that purpose can be found in [START_REF] Baranger | Building of a reduced constitutive law for ceramic matrix composites[END_REF]; [START_REF] Friderikos | Automatic building of a numerical simplified constitutive law for ceramic matrix composites using singular value decomposition[END_REF].

Recent experiences performed at CEA by Bernachy-Barbe et al. (2015b); [START_REF] Bernachy-Barbé | Caractérisation des mécanismes d'endommagement et modélisation du comportement mécanique sous chargements multi-axiaux de tubes composites SiC/SiC[END_REF], and richly instrumented via digital image correlation, confirm macroscopic observations done by ONERA Maire and [START_REF] Pacou | Essais de traction-compression-torsion sur tubes composites céramique-céramique[END_REF] on tension-torsion tests on SiC/SiC tubes. Concerning the experiments of Bernachy-Barbé, the main crack network is oriented by the loading direction. Therefore, alternate torsion tests leads to the creation of two orthogonal networks oriented by the two main loading directions. It will be shown that the model developed by [START_REF] Ladevèze | An anisotropic damage theory with unilateral effects: applications to laminates and to three-and four-dimensional composites[END_REF] is not able to account for such a non-proportional loading as the history is isotropic. Thus, this paper aims at extending this model to account for anisotropic history using concepts developed by [START_REF] Desmorat | Delay-active damage versus nonlocal enhancement for anisotropic damage dynamics computations with alternated loading[END_REF]. Note that similar concepts seems to have been developed by Chaboche while comparing the evolution of his papers [START_REF] Chaboche | Phenomenological damage mechanics of brittle materials with description of unilateral damage effects[END_REF]; Maire and [START_REF] Lesne | A damage model for ceramic matrix composites[END_REF], but it is not explicitly mentioned by the authors. The identification of such anisotropic models is not straigth-forward. It has been done in [START_REF] Baranger | Identification and validation of a multiphysic macro model for the lifetime prediction of self-healing ceramic matrix composites[END_REF] based on macroscopic tests and some physical considerations. The rich experimental tests from Bernachy-Barbe et al. (2015b) are a major contribution for that problem.

In this paper, two versions of the original model from [START_REF] Ladevèze | An anisotropic damage theory with unilateral effects: applications to laminates and to three-and four-dimensional composites[END_REF] are presented in the next section. Then, predictions of the models are compared to some experimental results to determine whether the models are able to describe the crack orientations (section 3). In section 4, it will be shown that the models are unable to represent nonproportionnal loadings because the history description is isotropic. Based on this, the models are enhanced to account for anisotropic histories and validated (section 5). This last part is the main contribution of this paper.

Original damage model

In order to introduce versatile damage kinematics, different authors have chosen to describe damage using fourth order tensors [START_REF] Chaboche | Le concept de contrainte effective appliqué à l'élasticité et à la viscoplasticité en présence d'un endommagement anisotrope[END_REF]; [START_REF] Ju | Isotropic and anisotropic damage variables in continuum damage mechanics[END_REF]. In this part, the model from Ladevèze for SiC/SiC composites is emphasized [START_REF] Ladevèze | An anisotropic damage theory with unilateral effects: applications to laminates and to three-and four-dimensional composites[END_REF]; [START_REF] Cluzel | Mechanical behaviour and lifetime modelling of self-healing ceramic-matrix composites subjected to thermomechanical loading Prepared using sagej.cls in air[END_REF][START_REF] Genet | On structural computations until fracture based on an anisotropic and unilateral damage theory[END_REF]. The first main idea of this model is to let the damage kinematic completely free a priori and to specify it using the evolution laws. The second idea is to separate the contributions of the different crack networks. The objective is to have a mechanical model that could be linked to physico-chemical one to treat selfhealing aspects of lifetime predictions [START_REF] Cluzel | Mechanical behaviour and lifetime modelling of self-healing ceramic-matrix composites subjected to thermomechanical loading Prepared using sagej.cls in air[END_REF]; [START_REF] Genet | Computational prediction of the lifetime of self-healing CMC structures[END_REF].

State potential and damage variables

The elastic potential ρΨ el is written in stress as the sum of three contributions: the first is a contribution only active in tension, the second is a contribution active only in compression and the third is a contribution active both in tension and compression (i.e. mainly shear). It reads:

ρΨ el = 1 2 σ + : C : σ + + 1 2 σ -: C 0 : σ -+ 1 2 σ : ∆Z : σ (1) 
∆C = C -C 0 and ∆Z are the damage variables of the model, by definition they are positive and have the symmetries of a compliance tensor so that their square roots H and H 0 exist. σ + and σ -are positive and negative parts of the stress σ defined to manage unilateral contact in cracks (the shear stiffness recovery is not taken into account in this form as it is linked to friction) and to keep a convex potential even for non-proportional loadings. For that, two spectral decompositions are used. The first is used to define the positive part:

σ + = H -1 :< H : σ > + (2)
The second is used to define the negative part:

σ -= H -1 0 :< H 0 : σ > - (3) 
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For diagonal compliance tensors, these positive and negative parts are equal to the classical one but not in the general case. The use of classical positive and negative parts would lead to a non-convex potential and therefor to non-continuous stress-strain relation. This is due to the presence of terms mixing eigenvalues as shown in [START_REF] Ladeveze | On an anisotropic damage theory[END_REF]. With the proposed positive and negative parts, the state potential is convex with respect to σ as demonstrated in [START_REF] Ladevèze | Ceramic Matrix Composites: Materials, Modeling and Technology, chapter Damage and Lifetime Modeling for Structure Computations[END_REF]. It allows to get a continuous stress-strain relation even during crack closure.The stress-strain relation is given by (see appendix of [START_REF] Baranger | Building of a reduced constitutive law for ceramic matrix composites[END_REF] for some calculus elements):

ε = ∂ρΨ el ∂σ = C : σ + + C 0 : σ -+ ∆Z : σ (4)
The total damage is separated in different contributions related to the different crack networks (inter-yarn cracks, intra longitudinal yarn cracks, intra transverse cracks for example) as in [START_REF] Cluzel | Mechanical behaviour and lifetime modelling of self-healing ceramic-matrix composites subjected to thermomechanical loading Prepared using sagej.cls in air[END_REF]. The total damage is the sum of the different contributions. For the sake of simplicity and due to the mechanical properties of the material characterized by Bernachy-Barbe et al. (2015b), in the present paper, the damage is reduced to the inter-yarn cracking network (noted with underscore m). The associated damage contributions are called: ∆C m and ∆Z m while in [START_REF] Cluzel | Mechanical behaviour and lifetime modelling of self-healing ceramic-matrix composites subjected to thermomechanical loading Prepared using sagej.cls in air[END_REF] other contributions are added. Therefor:

∆C = ∆C m (5) ∆Z = ∆Z m (6)

Thermodynamical forces

The thermodynamical forces associated to the damage variables are also fourth order tensors:

Y = ∂ρΨ el ∂∆Z = 1 2 σ ⊗ σ (7) Y = ∂ρΨ el ∂∆C = 1 2 σ + ⊗ σ + (8)
Another force is introduced to deal with shear, in 2D:

Y = 1 2 (R π 2 .σ + ) sym ⊗ (R π 2 .σ + ) sym (9)
where R π 2 is a π 2 rotation in the plane. Several other thermodynamical forces are also introduced. While the previous ones (noted with Y) rely on the stress, the following ones (noted W) rely on the strain. They read:

W = 1 2 (C : σ) ⊗ (C : σ) (10) W = 1 2 (C : σ + ) ⊗ (C : σ + ) (11) W = 1 2 (R π 2 .(C : σ + )) sym ⊗ (R π 2 .(C : σ + )) sym (12) 
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Damage evolution laws

To build the damage evolution laws, an equivalent driving force is introduced as:

z m (A) = (1 -a)T r[A n+1 ] + aT r[A] n+1 1 n+1 (13) (14) 
In the following, A will be either Y or W . a allows to pass from isotropic to anisotropic damage and n allows to emphasis the directionality of damage. If n is odd, then z m is positive.

The maximum force over time is defined by:

zm (t) = sup τ ≤t z m (A(τ )) (15) 
Regarding the evolution laws, several choices can be found in the literature.

Model (1) In [START_REF] Ladevèze | An anisotropic damage theory with unilateral effects: applications to laminates and to three-and four-dimensional composites[END_REF], the damage is driven by the stress. This model is noted (1), the evolution laws read:

∆ Ċm = αm (1 -a)Y n + aT r[Y ] n I zn m (16) ∆ Żm = αm bY n zn m (17) zm (t) = sup τ ≤t z m (Y (τ )) (18) 
The dissipated power ω reads:

ω = ∆ Ċm :: Y + ∆ Żm :: Y (19)
Model (2) In [START_REF] Ladevèze | Ceramic Matrix Composites: Materials, Modeling and Technology, chapter Damage and Lifetime Modeling for Structure Computations[END_REF], the strain is privileged. This model is noted (2), the evolution laws read:

C -1 : ∆ Ċm : C -1 = αm (1 -a)W n + aT r[W ] n I zn m (20) C -1 : ∆ Żm : C -1 = αm bW n zn m (21) zm (t) = sup τ ≤t z m (W (τ )) (22) 
The form used for the flow rules is related to the dissipated power that reads:

ω = ∆ Ċ :: Y + ∆ Ż :: Y = (C -1 : ∆ Ċ : C -1 ) :: W + (C -1 : ∆ Ż : C -1 ) :: W (23)
For both models, the damage kinematic is imposed by the flow rules. It has to be noted that for a = 0, the damage is oriented by Y or W . This choice is retained in the following. α m (z m ) and αm (z m ) are scalar increasing functions. As mentioned in [START_REF] Genet | On structural computations until fracture based on an anisotropic and unilateral damage theory[END_REF], these two models lead to positive dissipated powers (a demonstration relies on the use of equation 53 in appendix).

Numerical integration

The numerical implementation of such evolution laws requires robust integration schemes as in [START_REF] Genet | On structural computations until fracture based on an anisotropic and unilateral damage theory[END_REF]. Note that, many eigenvalue problems have to be solved due to the positive and negative parts. This is rather time consuming. In the present case, as in [START_REF] Cluzel | Mechanical behaviour and lifetime modelling of self-healing ceramic-matrix composites subjected to thermomechanical loading Prepared using sagej.cls in air[END_REF]; [START_REF] Baranger | Effects of the thermomechanical loading path on the lifetime prediction of self-healing ceramic matrix composites[END_REF], a very simple explicit scheme is used. The model being written in stress, it is rather easy to use to exploit classical experimental mechanical tests while it is more difficult to use in a finite element framework.

Crack orientations for tensile loadings and localization

First, it is interesting to check if the proposed models, introducing tensorial damage variables, are able to give some information on the crack directions. Experimental data from Bernachy-Barbe et al. ( 2015b) are used as a reference. These data are obtained from multi-axial loading on SiC/SiC pipes. The principal and secondary crack networks orientations are presented on Figure 1 for several angles of applied uniaxial loads. The orientations are measured using digital image correlation on the surface of the tube at the scale of the reinforcement.

From damage principal directions

For both models (1) and ( 2), with a = 0 and n = 1, the damage evolution laws rely on Y and W . In that sens, the description of the mean crack orientations via the damage variables rely on the principal directions of σ + and C 2 : σ + . The directions given by the damage principal directions are plotted on Figure 1. For low applied stress levels, the model (1) leads to a single straight line of slope 1, this is not the case for model (2) which accounts for the initial anisotropy of the material. These simulations are performed at the beginning of damage. It can be seen that the second model is more appropriate to describe the mean crack orientations. Note that this consideration relies on a fine scale description of the matrix as crack orientations are observed at the scale of the reinforcement.

From localization directions

Damage models are well known to present problems of localization. Hereafter, the existence of singular points is studied in a simplified context with n = 1 and for pure tensile loadings. In this context, the strain is given by:

ε = C : σ + ( 24 
)
The term Z : σ describes shear contributions and therefor disappeared from the expression of ε. Bifurcation may occur if σ+ = 0, Therefor the evolution of the strain has to satisfy :

ε = Ċ : σ + (25)
For model (1), at constant applied stress, there is no possible evolution of the damage magnitude and orientation i.e. Ċ = O. Bifurcation cannot occur for model (1). For model ( 2), replacing the damage evolution law leads to:

ε = αm 2 (C 2 : σ + ) ⊗ (C 2 : σ + ) : σ + (26) = αm 2 (C : ε) ⊗ (C : ε) : σ + (27) = αm 2 (C : ε) (ε : C : σ + ) (28) 
At constant applied stress, αm is not necessarily zero. Bifurcation may occur in the direction given by C : ε. It is the same as the principal directions of damage for this kind of loadings. Note that localization will lead to a rather difficult identification of the model in the present case. Finding an evolution law leading to a delayed maximum stress level on the stress/strain curve is not an easy task on the experimental data from Bernachy-Barbé. Only a very rough one has been performed.

Limitations of the model for non-proportional loadings

Experimental comparison and model limitations

To test the previous models on non-proportional loadings, alternate shear loadings performed on a [±45] tube under torsion have been used. On Figure 2, the shear stress is plotted versus the axial, hoop and shear strains. For that, Bernachy-Barbé ( 2014) assumed an homogeneous state of stress and a simple kinematic. The loading consists of different phases. The loading begins by a positive torsion increasing from points O to point A. The torsion is decreased down to O and to B by applying a negative Prepared using sagej.cls torsion. The tube is then reloaded by O and A up to C. A positive (resp. negative) shear stress corresponds to a positive (resp. negative) torque. On this figure, the relation of the axial strain and the shear stress relies uniquely on the compliance evolution in the reinforcement directions i.e. to damage evolution ∆C projected on the +45 o direction and -45 o direction. Note that the damage does not evolve until the shear stress reaches the absolute value of about 100 MPa. Also note that this figure is symmetric. Two independent orthogonal crack networks are formed in the directions of the reinforcement. Figure 3 is a result of a simulation of model ( 1). It can be noticed that it is not symmetric (regarding the abscissa axis) while the experimental one from Bernachy-Barbé ( 2014) is (see Figure 2). The same holds for model (2).

Analysis of the history description of the models

Model (1) In fact, zm (t) being a scalar, the damage history is resumed as an isotropic value even if the damage kinematic is very rich. Another way is to note that the damage flow can be rewritten, in a similar manner with the flow rule given by equations 16 and 20.

For model (1), it is simple, it reads: γ is a damage multiplier, some Khun-Tucker conditions are associated ( γ ≥ 0, f ≤ 0, γf = 0). The criterion of damage reads:

∆ Ċm = γ ∂z m ∂Y (29) 
f (d act ) = d act -β m (z m ) (30) 
If

d act = T r[∆C m ],
the damage multiplier is given by:

γ = β m (z m ) T r[ ∂zm ∂Y ] = αm (31) 
This expression depends only on Y . Thus the model is equivalent to the model (1) presented in the previous section. It is another way to present the isotropic history description of the model.

Model

(2) Regarding model (2), it is more difficult. One has to define d act from its evolution law:

ḋact = T r[C -1 : ∆ Ċm : C -1 ] (32)
The flow rule is:

C -1 : ∆ Ċm : C -1 = γ ∂z m ∂W (33) 
The damage multiplier reads:

γ = βm T r[ ∂zm ∂W ] = αm (34) 
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Once again, it depends only of W .

Remark: the shear parts of the damage can be rewritten in the same way:

∆ Żm = γ bY n zn m (35) C -1 : ∆ Żm : C -1 = γ bW n zn m (36)

Enhanced damage model with anisotropic history

Model improvement

As illustrated above, the evolution equations have to be modified to account for anisotropic history. [START_REF] Desmorat | Delay-active damage versus nonlocal enhancement for anisotropic damage dynamics computations with alternated loading[END_REF] proposed a framework for that on 2D damage tensors. His approach is followed here.

For model (1), one introduces:

d act = ∆C m :: Y z m (Y ) (37) 
In the following, the damage evolution laws are written at time step t i+1 . First, the projection of damage at the current (d act,i+1 ) and previous (d * act,i+1 ) time steps on the current loading direction read:

d act,i+1 = ∆C m,i+1 :: Y i+1 z m,i+1 (38) 
d * act,i+1 = ∆C m,i ::

Y i+1 z m,i+1 (39) 
The flow rule is written as :

(∆C m,i+1 -∆C m,i ) = δγ i+1 ∂z m ∂Y i+1 (40) 
Subtracting equations 38 and 39 and introducing the flow rule leads to (see appendix for the simplification):

d act,i+1 -d * act,i+1 = (∆C m,i+1 -∆C m,i ) :: Y i+1 z m,i+1 (41) 
= δγ i+1 ∂z m ∂Y i+1 ::

Y i+1 z m,i+1 (42) 
= δγ i+1 (43)

Prepared using sagej.cls Therefor, if damage increases i.e. d act,i+1 -d * act,i+1 > 0, then δγ i+1 ≥ 0 and d act,i+1 = β m (z m,i+1 ) and:

∆ Ċm,i+1 = β m (z m,i+1 ) -d * act,i+1 ∂z m ∂Y i+1 (44) 
Note that, implicitly, the loading direction is assumed to remain constant over a time step. The dissipated power is positive, the proof is very similar to the one related to the original model.

For model (2), one introduces:

d act = ∆C m :: C -1 : W z m (W ) : C -1 (45) 
At time step i + 1:

d act,i+1 = ∆C m,i+1 :: C -1 i+1 : W i+1 z m,i+1 : C -1 i+1 (46) d * act,i+1 = ∆C m,i :: C -1 i+1 : W i+1 z m,i+1 : C -1 i+1 (47) 
Subtracting these two expressions and introducing the flow rule leads to (see appendix for the simplification):

d act,i+1 -d * act,i+1 = (∆C m,i+1 -∆C m,i ) :: C -1 i+1 : W i+1 z m,i+1 : C -1 i+1 (48) = δγ i+1 C i+1 : ∂z m ∂W i+1 : C i+1 :: C -1 i+1 : W i+1 z m,i+1 : C -1 i+1 (49) = δγ i+1 (50) 
Therefor, if damage increases i.e. d act,i+1 -d * act,i+1 > 0, then d act,i+1 = βm (z m,i+1 ) and:

C -1 i+1 : ∆ Ċm,i+1 : C -1 i+1 = βm (z m,i+1 ) -d * act,i+1 ∂z m ∂W i+1 (51) 
Once again, the dissipated power is positive for the same reason as the original model.

Experimental validation

For alternate shear loadings performed on a [±45] tube under torsion, the shear stress is plotted versus the axial strain on Figure 4 for model (1). It can be noticed that it is now symmetric as for the experimental one 

Conclusion

In this paper, an anisotropic damage model has been enhanced in order to account for non-proportional loadings. For that, an anisotropic history has been taken into account by projecting the fourth order damage variable on the loading direction. In order to validate the model, simulations have been compared to experimental results at two scales. At fine scale, the model driven by the strain is better suited to describe crack orientations. At the macroscopic scale, on SiC/SiC pipes under alternate torsion, the model driven by the strain is too difficult to identify and only a basic illustration is given. The model driven by the stress shows a good agreement with the experimental data. The on going work focuses on the shear damage deactivation while cracks are in compression. 
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 1 Figure 1. Crack angles vs. loading angle.

Figure 2 .

 2 Figure 2. Experimental evolution of the shear stress vs. strain for a pipe loaded in alternate torsion from Bernachy-Barbé (2014).
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 3 Figure 3. Simulated evolution of the shear stress vs. axial strain for a pipe loaded in alternate torsion.
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 24 Figure 4. Simulated evolution of the shear stress vs. axial strain for a pipe loaded in torsion for model (1).
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 5 Figure 5. Simulated evolution of the shear stress vs. axial strain for a pipe loaded in torsion for model (2).
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