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Abstract

Abstract-The second order statistical properties of point processes are described by the coincidence

function which can be measured by a coincidence device but such measurements are long and compli-

cated. We propose another method of measurement and we analyze its performances. The starting point

is that the coincidence function can be deduced from the probability density functions of the life times

(the distances between points) of the process. The idea is to transform the point process into a positive

signal whose values are these distances. From an appropriate processing of this signal we deduce the

coincidence function. For the validation of the method we use point processes for which the coincidence

function is known. The agreement between theory and experiment is in general excellent. Finally the

method is applied to measure the coincidence functions of some point processes for which no theoretical

result is available.
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I. INTRODUCTION

Point processes (PP) play an important role in many areas of physics, statistics, and engineering

sciences. For example in optical communications at low levels the only available information is the set

of random instants at which photons are detected. Similarly the time instants at which telephone calls

arrive at a switching center is a PP.

A PP is a random distribution of points in a space. If this space is the time axis we have a time PP

and its random points Pi are time instants ti sometimes called events. All the PPs considered below are

time PPs. In what follows we consider only stationary PPs characterized by the fact that their statistical

properties are invariant in time.

The complete statistical description of a PP is very complicated and in most applications one is obliged

to use only first- or second-order statistical properties. The first-order description of a stationary PP is

contained in its density λ which is the average number of points per unit of time. The transposition to

PPs of the concepts of the correlation function requires a specific analysis. The first attempt to describe

second-order properties of PPs was presented by Bartlett [1], [2]. Since a PP has no correlation function,

the idea was to introduce a similar function which was called the correlation density function. More

recently it was indicated that this function also appears in the description of a PP by coincidence analysis

[3] and this is the reason to use the term coincidence function [4] which contains all the second-order

properties of a PP.

The coincidence function can be measured by a coincidence device, system widely used in Nuclear

Physics. The measurements however are long and complicated and not adapted to various PPs. We propose

another approach which does not start directly from the definition of the coincidence function but from

its relation to the properties of the distances between successive points of the PP sometimes called life

times [5], [6], [7]. Using the standard vocabulary of experimental nuclear physics, the device in order to

measure the coincidence function is then no longer a coincidence circuit but a time to amplitude converter

(TAC) which transforms distances between points into pulses of amplitude proportional to these distances.

These amplitudes constitute a discrete-time positive signal. By an appropriate statistical signal processing

of these distances it it is possible to measure the coincidence function.

Coincidence function and coincidence measurements are at the basis of some applications in statistical

optics and more lately in quantum communication [4], [8], [9]. For example the structure of the coinci-
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dence function is a tool to decide whether or not an optical field is of classical or of non-classical nature

[8].

In Section II we present a short review of properties of coincidence functions and we describe the

principle of their measurement from the analysis of life times. We discuss theoretically the precision of

the method and its limitations. In Section III we test the method by using computer experiments. There are

some PPs for which the coincidence function can be calculated theoretically. By making measurements

on those PPs we can validate the behavior of the method and evaluate its precision. In general the

experimental measurements are in excellent agreement with theoretical results. In the last section we

apply the method in the case of some PPs for which the calculation of the coincidence function is almost

impossible and we present and discuss some examples.

Point processes (PP) play an important role in many areas of physics, statistics, and engineering

sciences. For example in optical communications at low levels the only available information is the set

of random instants at which photons are detected. Similarly the time instants at which telephone calls

arrive at a switching center is a PP.

A PP is a random distribution of points in a space. If this space is the time axis we have a time PP

and its random points Pi are time instants ti sometimes called events. All the PPs considered below are

time PPs. In what follows we consider only stationary PPs characterized by the fact that their statistical

properties are invariant in time.

The complete statistical description of a PP is very complicated and in most applications one is obliged

to use only first- or second-order statistical properties. The first-order description of a stationary PP is

contained in its density λ which is the average number of points per unit of time. The transposition to

PPs of the concepts of the correlation function requires a specific analysis. The first attempt to describe

second-order properties of PPs was presented by Bartlett [1], [2]. Since a PP has no correlation function,

the idea was to introduce a similar function which was called the correlation density function. More

recently it was indicated that this function also appears in the description of a PP by coincidence analysis

[3] and this is the reason to use the term coincidence function [4] which contains all the second-order

properties of a PP.

The coincidence function can be measured by a coincidence device, system widely used in Nuclear

Physics. The measurements however are long and complicated and not adapted to various PPs. We propose

another approach which does not start directly from the definition of the coincidence function but from

its relation to the properties of the distances between successive points of the PP sometimes called life

times [5], [6], [7]. Using the standard vocabulary of experimental nuclear physics, the device in order to

measure the coincidence function is then no longer a coincidence circuit but a time to amplitude converter
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(TAC) which transforms distances between points into pulses of amplitude proportional to these distances.

These amplitudes constitute a discrete-time positive signal. By an appropriate statistical signal processing

of these distances it it is possible to measure the coincidence function.

Coincidence function and coincidence measurements are at the basis of some applications in statistical

optics and more lately in quantum communication [4], [8], [9]. For example the structure of the coinci-

dence function is a tool to decide whether or not an optical field is of classical or of non-classical nature

[8].

In Section II we present a short review of properties of coincidence functions and we describe the

principle of their measurement from the analysis of life times. We discuss theoretically the precision of

the method and its limitations. In Section III we test the method by using computer experiments. There are

some PPs for which the coincidence function can be calculated theoretically. By making measurements

on those PPs we can validate the behavior of the method and evaluate its precision. In general the

experimental measurements are in excellent agreement with theoretical results. In the last section we

apply the method in the case of some PPs for which the calculation of the coincidence function is almost

impossible and we present and discuss some examples.

II. DEFINITION AND MEASUREMENT OF THE COINCIDENCE FUNCTION

Let N(t) be the number of points of a PP in the interval [0, t[, where 0 is an arbitrary origin of time.

The increment dN(θ) = N(θ + dθ) − N(θ) is the number of points in the interval [θ, θ + dθ[. The

second-order properties of a PP are characterized by its coincidence function c(t) defined by

E[dN(θ)dN(θ′)] = c(θ − θ′)dθdθ′. (1)

The name comes from the fact that this function is generated by a coincident events. Indeed a coincidence

at θ and θ′ is the event defined by [dN(θ) = 1] ∩ [dN(θ′) = 1]. For regular PPs, which are the only

ones studied in this paper, the increment dN(θ) takes only the values 0 or 1 when dθ tends to 0.

As a consequence the expectation value appearing in (1) is the coincidence probability. The function

b(t) = c(t)/λ, where λ is the density or the PP, is called the bunching function because it describes the

bunching effect appearing in the PP obtained in photodetection [4], [8], [9]. It is also sometimes called

the intensity function (see p. 69 of [10]).

Note that the coincidence function is an even function of t and that it tends in general to λ2 when t

tends to infinity. This property comes from the fact that for large values of θ− θ′ the increments dN(θ)

and dN(θ′) become in general uncorrelated and their mean value is λdθ. In the case of Poisson processes

these increments are independent whatever the value of θ−θ′, which implies that the coincidence function

is constant and equal to λ2.
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The coincidence function satisfies a relation which will play a fundamental role in what follows. Let

x
[n]
i be the random variable (RV) equal to the distance between a point ti of the PP and the nth point

posterior to ti, or x[n]i = ti+n − ti. This positive RV is sometimes called the life time of order n. Its

distribution function Fn(t) is the probability P [x
[n]
i ≤ t] and the PDF fn(t) of this life time is the

derivative of Fn(t) with respect to t. For simplicity we assume that x[n]i is a continuous RV or that Fn(t)

has a derivative for any t. Since x[n]i > 0, then fn(t) = 0 when t < 0. It can be shown (see p. 69 of

[10]) that the coincidence function satisfies

c(t) = λ
∞∑
n=1

fn(|t|). (2)

The principle of the proof is presented in the Appendix. This equation appears in a rather different forms

in [5], [6].

This relation is the basis for the estimation of the coincidence function. For this purpose we use a

TAC system which transforms the sequence of random points ti of the PP into a sequence of values

xi = ti+1 − ti. This positive random signal xi describes completely the PP and any PP generates such a

signal xi.

Suppose now that we have M observations of xi, 1 ≤ i ≤ M . The problem is to deduce from these

observations an estimation of the coincidence function c(t). The measurement of λ appearing in (2) is

obvious because the density is the inverse of the mean value of the distances xi. For the estimation of

c(t) the first step is to replace the series (2) by a finite sum of S terms. As a consequence we arrive at the

estimation of the truncated coincidence function cS(t) = λ
∑S

n=1 fn(|t|). The choice of the appropriate

value of S will be discussed later.

For a given value of S such that M/S is an integer N , and for each k satisfying 1 ≤ k ≤ S, we

deduce from the observation xi a set of S signals s[k]i defined by

s
[k]
i = x(k−1)N+i , 1 ≤ i ≤ N, (3)

and zero otherwise. From these signals we construct a set of S vectors X[k] with N components defined

by

X
[k]
i = s

[k]
i + s

[k]
i+1 + ...+ s

[k]
i+k−1 , 1 ≤ i ≤ N. (4)

The histogram of these components will clearly yield an estimation of the PDF fk(t). As a consequence

the histogram of the components of the vector X = X[1] + X[2] + ...+ X[S] yields an estimation of the

truncated bunching function bS(t) = (1/λ)cS(t). More precisely, consider an interval [t, t+ ∆T [ and let

nk(t,∆T ) be the number of samples X [k]
i recorded in this interval. If ∆T is sufficiently small the mean

value n̄k(t,∆T ) of nk(t,∆T ) is approximately Nfk(t)∆T . Let n(t,∆T ) the number of samples of the
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components of the vector X recorded in the same interval. From the definition of X and cS(t) = λbS(t)

the mean value n̄(t,∆T ) of n(t,∆T ) is

n̄(∆T ) = bS(t)∆TN = bS(t)
M∆T

S
. (5)

The histogram of X yields for each experiment a value of the recorded number n(t,∆T ). If N is

sufficiently large this number yields an estimation of n̄(t,∆T ), and then of bS(t) or cS(t). This procedure

necessarily introduces a statistical error analyzed below. Finally if we are interested only in the shape of

the coincidence function, the histogram can be represented in arbitrary units and the factor M∆T/S can

be omitted.

Let us now discuss the influence of the various parameters appearing in this measurement. The two most

important are the number N of samples recorded and the number S of terms used for the construction

of the vector X or for the approximation of the series (2) by a sum of S terms. On a pure mathematical

point of view, the approximation of a function like c(t) defined as a series of other functions requires the

discussion of the uniform convergence of the series. There are PDFs for which this uniform convergence

is guaranteed, but as the method is used in the case where the PDFs fn(t) of (2) are unknown it is

impossible to introduce in advance more details on this point.

The number N determines the statistical precision of the histogram and the number S determines the

precision of an approximation of a series by a finite sum. These numbers are not completely independent.

Indeed the total number of samples analyzed by the histogram that yields the estimation of cS(t) is

M = S ×N . It is this number which determines the duration of the measurement or the complexity of

the computer analysis. It is often necessary to introduce an upper bound of this number and in this case

we must choose N and S for a given value of M . This introduces a compromise analogous to the one

existing between bias and variance in many statistical measurements, as for example spectral analysis.

This will be discussed more precisely in the next section.

There are two last parameters appearing in the construction of the histogram yielding the approximation

of the coincidence function. The first is the range ∆R of values of t of the function c(t). This range

must be limited for great values of t. Indeed it is clear that cS(t) tends to 0 when t→∞ because it is a

finite sum of PDFs while, as seen above, c(t)→ λ2. The second is the number of bins of the histograms

of values belonging to ∆R. Here also there is a well known compromise. Too many bins yields a better

precision of the approximation of cS(t) but also decreases the number of samples belonging to each bin

and therefore increases their variance. This compromise between bias and variance in estimation of the

PDF of signals has been analyzed in numerous statistical signal processing papers.
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Finally it must be noticed that there is a systematic error in the k − 1 last components of the vector

X[k]. In particular X [k]
N = s

[k]
N = xkN which is not a sum of k terms. This kind of error also appears

in all the measurements of correlation functions of random signals. There are ways to correct this error,

but this does not play any role in our methods because in our experiments N >> S.

III. PERFORMANCES OF THE METHOD

There are only a few PPs for which the coincidence function can be explicitly calculated. They will

now be used to look at the agreement between theoretical results and those of computer experiments

which yields an indication on the quality of the method.

A. Poisson Processes

The PDF of the life time of order n of a Poisson process is

fn(t) = λ
(λt)n−1

(n− 1)!
exp(−λt). (6)

Inserting this expression in (2) yields c(t) = λ2, which illustrates the fact that a Poisson process has

no memory. The error when approximating (2) by a finite sum calculated for λ = 1 is then εS(t) =

1− exp(−t)
∑S

n=1 t
n/n!.

By a simple calculation we see that we can approximate c(t), which is here equal to 1, by using 10

terms with an error smaller that 10−2 for t < 4. With 15 terms this range becomes t < 7. Similarly by

using 20 terms we can approximate c(t) with an error smaller than 10−3 for t < 9. This value of S is

the greatest used in the experiments described below.

Let us now present experimental results with Poisson processes. A stationary Poisson process is a

renewal PP with an exponential PDF. Then the distances xi between successive points are independent

and identically distributed (IID) random variables and their common PDF is given by (6) with n = 1. It is

easy to generate in a computer experiment such a sequence, which allows us to discuss the performance

of the method in terms of the various parameters appearing in its construction. The experiments are

realized with a Poisson process of density λ = 1. This implies that bS(t) = cS(t).

In Fig. 1 we present experimental results obtained when processing M = 2.106 samples of the life

times xi. The parameters of these histograms are S = 5, S = 10, S = 15, S = 20. The widths of the

bins of the histograms are 10−2. This means that there are 2.103 values recorded in the interval [0, 20]

of the figure. Three comments must be made.

First we verify experimentally the fact that the histograms are constant in an interval increasing with

S. In the last histogram obtained for S = 20 the methods yields excellent results for t < 12, which

means a duration twelve times greater than the mean distance between points of the Poisson process.
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Secondly, as the range of possible values increases with S, the statistical precision decreases because

the number of samples recorded in each bin decreases. When comparing the first and the last histograms

we observe an increase of the statistical fluctuations. The only way to decrease these fluctuations is to

increase the total number M of samples analyzed.

Thirdly the number of points recorded in each bin corresponds to the values deduced from (5). Applying

this expression for t = 0 and noting that in our experiment cS(0) = c(0) = 1 because λ = 1, we obtain

n̄(∆T ) = M∆T/S. In this experiment M = 2.106, ∆T = 10−2. The values of n̄(∆T ) corresponding to

the four values of S used are then 4.104, 2.103, 1.33.103, and 103, which cleanly appears on the figure.

B. Erlang Processes

Erlang processes belong to a class of PPs in which the PDF of the life time of order 1 is

f1(t) = µ(µt) exp(−µt). (7)

The mean value of the life time is 2/µ and the density λ is then µ/2. According to (6) this means that

f1(t) is the PDF of the life time of order 2 of a Poisson process of density µ.

Since the PDF (7) does not define a specific PP there are various different Erlang processes. Their

difference comes from the fact that, even if the PDFs of the RVs xi are the same, the other statistical

properties are different. There are of course a great variety of Erlang processes, depending on the

correlation between the xis. We shall only consider the two simplest cases.

The first case is the renewal Erlang process. It is the renewal PP defined by the PDF (7). It can be

generated by the following procedure. Let ui and vi be two independent signals and suppose that they are

sequences of IID RVs with the same exponential distribution. It is clear that xi = ui + vi is a sequence

of IID RVs with the common PDF (7).

In order to calculate the coincidence or the bunching function b(t) = c(t)/λ we use the following

procedure. The Laplace transform (LT) of (7) is F (s) = [µ/(s + µ)]2. The assumption that the PP is a

renewal process yields that the LT of fn(t) is Fn(t) = [F (t)]n. Then the LT of the bunching function is

B(s) = F (s)/[1 + F (s)] or

B(s) =
µ2

(s+ µ)2 − µ2
=
µ

2

[
1

s
− 1

s+ 2µ

]
. (8)

As a result the bunching function is

b(t) =
µ

2
[1− exp(−2µt)] . (9)

The second Erlang process is defined as follows. Consider a Poisson process and let xi be the life time

of order 1, or the distance between successive points. Let yi = xi + xi+1. It is clear that yi is the life
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time of order 2 of the Poisson process and its PDF is given by (7). The RVs yi however are no longer

independent because, for example, xi appears in yi and yi−1. Consider now the PP defined by the fact

that yi is the distance between successive points. It is then an Erlang process but not a renewal process.

Changing the origin of time we can write y[1] = x1 + x2 and

y[n] = x1 + 2(x2 + x3 + ...+ xn) + xn+1 , n > 1, (10)

where the xis are IID RVS with the exponential distribution µ exp(−µt). We deduce that the LT of the

PDF of y[n], the life time of order n, is

Fn(s) =

(
µ

s+ µ

)2 ( µ

2s+ µ

)n−1
, n ≥ 1. (11)

It is easy to calculate the LT of the bunching function defined by B(s) =
∑∞

n=1 Fn(s) and its inverse

LT is

b(t) =
µ

2

[
1− (1− t

µ
) exp(−µt)

]
, (12)

which must be compared to (9) obtained previously.

The experimental results for these two Erlang processes appear in Fig. 2. These figures use arbitrary

units because we are only interested in the shape of the coincidence function in comparison with its

theoretical value. Fig. 2.1 corresponds to the Erlang renewal process. The continuous curves are those

deduced from (9) in Fig. 2.1 and (12) in Fig. 2.2 and the experimental points are obtained from an

experiment with 106 samples and with µ = 1 and S = 10. We see that there is excellent agreement

between theory and experiment. Even if the the difference between the two Erlang processes is rather

small, it appears clearly.

All the results of this section show the good performance of the method of measurement of the

coincidence function introduced in this paper.

C. Poisson Process with Input Dead Time

Dead time effects appear in almost all the PPs practically used. Dead time occur when two points of

a PP are so close together that they cannot both be registered. This means that some points are erased.

If the value D of the dead time is very small compared to the mean distance between points, its effect

can be neglected. On the other hand when the density µ of the process increases there is always a value

of the density such that dead time must be taken into consideration.

The input dead time is characterized by the fact that each point ti of the PP generates an interval

[ti, ti +D[ such that all the points of the process arriving in this interval are erased. It is clear that when

the density µ increases the number of points erased increases and for very large density almost all the
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points of the initial PP are erased. This corresponds to the classical congestion phenomenon. Note that

the input dead time is sometimes called type II counter (see p. 101 of [7]).

The dead time effect transforms a given PP into another one. As in our approach a PP is defined by

the life times, or the distance between successive points, the first problem is to calculate the life time

after dead time in terms of the life time of the initial PP. The explicit expression of the result is almost

impossible to obtain in closed form. A recursive algorithm, however, has been introduced and analyzed

in [11]. This algorithm is used for the estimation of the coincidence function when the initial PP is a

Poisson process. In this case the theoretical calculation of the coincidence function with input dead time

is especially simple. For this it suffices to start from (1). If θ − θ′ < D the expectation is zero because

one of the two points is necessarily erased. Otherwise c(t) is constant and its value is λ2. Note that

λ is the density of the PP with dead time. If the density of the initial Poisson process is µ a simple

calculation yields that λ = µ exp(−µD). This expression explains the congestion phenomenon indicated

above because λ tends to 0 when D tends to infinity. In the opposite case λ = µ if D = 0.

Experimental results are presented in Fig. 3. The density of the Poisson process is µ = 1 and two

values of the dead time are used : 0.5 and 1. The number S of terms in the sum defining c(t) is 10,

which ensures good precision of the results for t < 3. The fact that c(t) = 0 for t < D is well verified.

On the other hand the fact that c(t) is constant for t > D is also verified although statistical fluctuations

of the estimation remain. These fluctuations are more important for D = 1 than for D = 0.5 because

more points are erased in the second case than in the first. Finally, as in these experiments M = 3.6 106,

∆T = 10−2, and S = 10, the application of (5) with bS(t) = µ exp(−µD) yields that the mean number

of points n̄(∆T ) in each bin is for t > D equal to 2.183 or 1.324 for the cases 1 or 2 respectively. This

is very well verified in the two histograms of Fig. 3.

IV. ANALYSIS OF SOME PARTICULAR POINT PROCESSES

In this section we shall analyze the second-order properties of some point processes interesting

in various applications but for which theoretical analysis is difficult, which justifies the experimental

approach.

A. Poisson Process with Output Dead Time

This dead time, also called type I counter (see p. 101 of [7]), is characterized by the fact that each

point θi of the Poisson process which is not erased generates an interval [θi, θi + D[ such that all the

points ti of the PP in this interval are erased. This means that only the points not erased contribute to the
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dead time. In this case when µ→∞ the PP after dead time becomes a periodic process, or a sequence

of points with equal distances D.

The calculation of the life time after output dead time in terms of the life time of the initial PP is very

complicated. As previously, however, a recursive algorithm for this purpose has been introduced in [11].

We shall use this algorithm for the estimation of the coincidence function after output dead time effect

when the input is a Poisson process.

Let us first present how this coincidence function can be calculated in this case. It is easy to see that

the PP after dead time is a renewal process entirely defined by the PDF of its life time. This PDF is

f(t) = u(t−D)µ exp[−µ(t−D)], (13)

where u(.) is the unit step function, D the value of the dead time and µ the density of the Poisson

process. It results from this expression that the mean value of the life time after dead time is D + 1/µ.

This quantity is the inverse of the density which then is λ = µ/[1 +µD]. We observe that when µ→∞,

λ → D, which was indicated above. Furthermore when D → ∞, λ → 0, which appears with any dead

time effect.

As the PP analyzed is a renewal process, its PDF fn(t) is deduced from (13) by n convolutions and

the result is

fn(t) = u(t− nD)µ
[µ(t− nD)]n−1

(n− 1)!
exp[−µ(t− nD)]. (14)

In order to calculate the coincidence function we can use (2). There is no explicit analytic expression

for c(t), but its numerical calculation is possible. Indeed because of the term u(t−nD) in (14) the series

is always limited to a finite sum. As we must have t− nD > 0, the number of terms in this sum is the

greatest integer smaller than t/D.

Numerical results of calculations are presented in Fig. 4 where some examples of the bunching function

b(t) = (1/λ)c(t) are presented. The value of µ is 1 and the values of D are 1/4, 2/3, 1, 3/2, in such a

way that the corresponding values of the density λ are 0.8, 0.6, 0.5, 0.4. We verify that b(t)→ λ when

t→∞. In reality the values of t are limited to the interval 0 < t < 8 and for this interval the sum (2)

is truncated to 12 terms.

We see on this figure that when D = 1/4 the effect of the dead time on the coincidence function

disappears when t > 2/3. For D = 1 this inequality becomes t > 4. Furthermore all these curves show

a discontinuity of the derivative for the value t = 2D which is the time at which the second term f2(t)

appears in the sum (2).

The experiments with output dead time are much more difficult. Indeed the algorithm yielding the life

time after dead time presented in [11] introduces much more complexity and calculation time. This limits
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the possible values of M , and thus the statistical precision of the procedure. This effect is increased by

the fact that, as in any experiment with dead time, many points are erased and the number of those

playing a role in the estimation tends to 0 when D increases.

Experimental results appear in Fig. 5. Estimations of the coincidence function are presented for D = 0.5

and D = 1.5. The results are in a rather good agreement with those of Fig. 4, but some statistical

fluctuations remain. Their suppression would require more memory and computer time.

B. Renewal Process with Uniform Distribution

Consider a renewal PP in which the PDF f(t) of the distance between successive points is a rectangular

function equal to 1/2b when t is in the interval [m − b,m + b] and zero otherwise. This kind of PDF

appears in the description of jitter phenomena in which the distance between successive points is not

strictly constant, which appears if b → 0. The mean value of the distance is clearly m and as a result

the density λ of the corresponding PP is 1/m.

The PDFs fn(t) can be calculated by successive convolutions. The calculation is possible but rapidly

becomes very complicated and no explicit expression of the convolution is available. Two points however

can be noted. First the PDF f2(t) of the second order life time is a triangular function equal to (1/4b2)[− |

t−2m | +2b] for | t−2m |< 2, and zero otherwise. In particular f2(2m) = 1/2b. Secondly when n >> 1,

fn(t) tends to have a Gaussian shape of the form N(nm, nσ2), where σ2 is the variance associated with

the PDF f(t) and equal to b2/3.

Experimental results are presented in Fig. 6. The bunching function of the PP is estimated for the values

m = 1. The values chosen for b are 1/10, 1/3, 1/2, and 1. The number of samples used is M = 3.106,

the number of terms in (2) is S = 9, and the width of the bins is ∆T = 10−2. As a consequence the

coefficient M∆T/S in (5) is (1/3)104.

These functions suggest the following comments. We note first that if b → 0, the PP tends toward a

periodic PP, which means a periodic distribution of points with a period equal to 1. This is easily verified

experimentally but has no practical interest. The value b = 0.1 is still rather small and a memory of the

periodic structure remains. The different PDFs fn(t) appearing in the figure do not overlap, at least for

t < 8 used in Fig. 6.1 . We observe clearly the rectangular and triangular functions f1(t) and f2(t). For

large values of t not represented in the figure the Gaussian shapes overlap in such a way that their sum

becomes constant and equal to the asymptotic value 1 of b(t). This, however, requires very great values

of S and M which cannot be obtained in our experiments.

Fig. 6.2 corresponds to b = 1/3. This value has been chosen because it is the greatest value of b for

which f1(t) and f2(t) do not overlap. The corresponding limit point is t = 1+1/3, which clearly appears
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on the figure. For this value of b the rectangular function f1(t) is equal to 3/2. Applying (5) with the

value calculated above yields (1/2)104 = 5000, which clearly appears in Fig. 6.2. The same can be said

for f2(2) which has the same value. Finally for t → ∞ the bunching function tends to 1, which yields

a number of samples in each bin of (1/3)104, which appears in Figs. 7.2, 7.3, and 7.4.

Theoretical calculation of the bunching function corresponding to the values used in Figs. 6.3 and 6.4

is almost impossible. This justifies the interest of experimental results displayed on these figures.

C. Point Process with Uniform Distribution and Correlated Life Times

In this section we assume that the PDF of the life time is still rectangular, as in the previous one,

but that the PP is no longer a renewal PP. This means that the distances between successive points are

identically distributed (rectangular distribution) but no longer independent.

An algorithm for generating this kind of life time has been presented in [11], and its principle is

outlined in the Appendix. The normalized correlation function of the first order life time is exponential,

or p|n|. If p = 0, we find again the case of the previous section.

Experimental results are presented in Fig. 7. The parameters of this figure are the same as in Fig. 6.2

and our objective is only to evaluate the effect of the correlation characterized by the parameter p. Fig. 7.1

corresponds to p = 0, the same situation as in Fig. 6.2, and we find again the same form of coincidence

function. When p increases this coincidence function is strongly modified and theoretical calculations

are impossible because of the complexity of the model. But the effect of a correlation is perfectly clear

in Figs. 7.2, 7.3, and 7.4. In all these figures f1(t) is the same, and this appears for values of t smaller

than 1.333. We have then a good example of point processes with the same distribution of life time and

entirely different second order properties characterized by the coincidence functions represented in Fig.

7.

V. CONCLUSION

The second order properties of a point process are entirely contained in its coincidence function. In this

paper we have shown that this function can be measured by an appropriate processing of the distance

between successive points obtained for example from a time-to-amplitude converter. The theoretical

foundation of this processing is an expression that yields a relation between the coincidence function and

the probability density function of the life time of the PP. For its practical realization we replace a series

by a sum of a finite number of terms constructed from appropriate histograms of samples of the signal.

The method has been tested in the case of PPs where the coincidence function has an explicit theoretical

expression as in the case of Poisson processes with or without dead time, and also of some Erlang PPs.
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The experimental results are in excellent agreement with the theoretical calculations. Finally, when this

method is used for the measurement of coincidence functions that cannot be obtained theoretically, the

experimental results exhibit various interesting features.

VI. APPENDIX

The expectation (1) defining the coincidence function is equal to the probability P{[dN(θ) = 1] ∩

[dN(θ′) = 1]}. This probability can be written

P{[dN(θ) = 1] ∩ [dN(θ′) = 1]} = P [dN(θ) = 1].P{[dN(θ′) = 1]|[dN(θ) = 1]}. (15)

We deduce from the definition of the density λ that P [dN(θ) = 1] = λdθ. The PDF fn(θ−θ′) is defined

by

fn(θ − θ′)dθ′ = P{[dN(θ′) = 1]|An(θ′ − θ) ∩ [dN(θ) = 1]}, (16)

where An(θ′ − θ) is the event that there are n− 1 points of the PP in [θ + dθ, θ′[. It is clear that

P{[dN(θ′) = 1]|[dN(θ) = 1]} =
∞∑
n=1

P{[dN(θ′) = 1]|An(θ′ − θ) ∩ [dN(θ) = 1]} (17)

This yields (2).

The statistical signal used in Section IV C is constructed as follows. Let uk and vk be two independent

IID random variables. Suppose furthermore that uk takes only the value 0 or 1 and let p be the probability

that uk = 1. Let f(.) be the PDF of the vk. Consider now the signal xk = ukxk−1 + (1 − uk)vk. It

is clear that if the PDF of x1 is f(.), all the other xk have the same PDF. It can be shown that this is

asymptotically verified whatever the PDF of x1. The xks have then the same PDF but are correlated.

Their correlation function γk satisfies the recursion γk = pγk−1. This yields γk = σ2pk, where σ2 is the

variance of the RVs vk. For p = 0, xk = vk, while for p = 1 all the RVs xis are equal.
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