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Abstract

We introduce a model of interacting particles imitating a colony of ants looking for a food
source in a continuous plane. The mechanism describing communication between ants via
pheromone deposition is inspired by a model of directed interacting particles previously in-
troduced in [Boissard Degond Motsch, Trail formation based on directed pheromone deposition].
Here, we add a food source and introduce two types of pheromones: one pointing to the food
source and one pointing to the nest. The particularity of our model is that we let the ants dis-
perse in a two-dimensional space without a pre-existing lattice and we do not assume that the
ants know their way back to the nest. We present simulations of our model and we investigate
the ability of the colony to select the shortest path from the nest to the food source in various
situations: with one or several food sources, with a food source whose location changes, with a
food source behind an obstacle. Finally, we discuss the biological relevancy of our assumptions.

Key-words: velocity-jump process, foraging ants, Self-propelled particles, pheromone deposition,
pattern formation, alignment interactions.
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1 Introduction

Social interaction is a key element for the survival of a colony of ants. Ants are known to have low
cognitive capacities but are able to survive as a group using work division, invasive and defensive
strategies, communication, food stocks and sometimes harvests. Very simple interactions between
individuals with low cognitive capacities can achieve very complex tasks, such as building a nest
for the colony [Khuong et al., 2016], developing war strategies to protect the nest [Whitehouse
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and Jaffe, 1996], following routes and regulate the traffic to reduce congestion [Couzin and Franks,
2003,Dussutour et al., 2004] or find food and bring it back to the nest using an optimal route in
the process [Garnier et al., 2009,Goss et al., 1989]. Is has indeed been observed that some ants, e.g.
the Argentine ants Iridomyrmex humilis, can walk their way into a maze, find a food source and
bring it back to their nest using a short path [Goss et al., 1989]. In this paper, we are interested in
the issue of food localization and optimization of the transport by a colony of ants.

The formation of trails in ant colonies has been understood a while ago. There is already a
wide biological literature on the subject [Beckers et al., 1992a, Couzin and Franks, 2003, Detrain
et al., 2001,Edelstein-Keshet, 1994,Edelstein-Keshet et al., 1995,Watmough and Edelstein-Keshet,
1995b,Watmough and Edelstein-Keshet, 1995a]. The general observation is that the formation
of trails is a result of simple local interactions, such as brief antennas contacts [Gordon et al.,
1993,Mailleux et al., 2010] or distant communication, via deposition of chemical markers called
pheromones. We will focus only on pheromones deposition in this paper.

The principle of pheromone communication is simple. An ant can leave a pheromone drop using
the sting on its abdomen [Beckers et al., 1992a,Hangartner, 1969,Jackson and Châline, 2007,Jean-
son et al., 2004,Wilson, 1962,Witte and Maschwitz, 2002]. The ant then keeps walking but the
pheromone drop remains where the ant left it. When a new ant arrives on site, it obtains the
information that an ant was formerly here, but not only. Biologists argue that the pheromone drop
carries more information. Depending on the studied species, pheromones drops can give differ-
ent types of information. An ant can for instance obtain information on the orientation of the ants
which laid the pheromone through a mechanism called osmotropotaxis [Calenbuhr and Deneubourg,
1992, Calenbuhr et al., 1992, Couzin and Franks, 2003] or about the chemical composition of the
pheromone [Wyatt, 2003]. For example Myrmica sabuleti specimens can leave different pheromones
depending on the food they found [Cammaerts and Cammaerts, 1980], the Pharaoh’s ant Monomo-
rium pharaonis is also able to depose attractive or repellent pheromones [Robinson et al., 2008].
Other species such as the Argentine ant Iridomyrmex humilis [Deneubourg et al., 1990, Garnier
et al., 2009, Vittori et al., 2006], the black garden ant Lasius niger [Beckers et al., 1992b, Beck-
ers et al., 1993, Dussutour et al., 2004, Nicolis and Deneubourg, 1999] and the Army ant Eciton
burchelli [Brady, 2003,Couzin and Franks, 2003,Franks et al., 1991], on the other hand, are known
to lay only one type of pheromone. An ant which lays a pheromone signal can also modulate the im-
portance of the information by leaving long or short-lasting pheromones. This was observed, among
other species, for the Pharaoh’s ant [Beekman et al., 2001,Fourcassié and Deneubourg, 1994,Jack-
son et al., 2007, Jackson and Châline, 2007, Jeanson et al., 2003, Sumpter and Beekman, 2003] or
for the big headed ant Pheidole megacephala [Dussutour et al., 2009]. These signals carry simple
informations (location and orientation of the ant, chemical concentration, chemical composition...)
but through multiplication of a large number of signals, the colony as a whole is able to develop
complex social structures, in particular, to form patterns such as trails.

When a colony of ant carries food from a location to the nest, one can observe the formation of
a trail (that is, a path with a high concentration of ants and pheromones) between the food source
and the nest. One remarkable observation about those pheromone trails is that they optimize the
time of food transport. Simply put, the ant colony is able to find the shortest path from the nest
to the food source. When facing an environment with multiple possible routes to a food source, an
ant colony will most of the times choose the shortest one [Sumpter and Beekman, 2003,Bonabeau
et al., 1999,Garnier et al., 2009,Goss et al., 1989]. This is rather spectacular since, once again, ants
have low cognitive capacities. In particular, there is no central power leading the foraging ants and
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only local interactions between them.
Actually, the phenomenon that causes this is rather simple to understand. Assume that there

exists two paths connecting a food source to the ants’ nest. The shortest path of the two allows
ants to bring the food faster so ants walking back and forth on this track will make more travels per
unit of time than their counter specifics on the longest path. Therefore, they will make the travel
more often and hence leave more pheromones so more ants will be recruited on the shortest track.

This principle has been understood a while ago and has nourished a field of probability theory
called "reinforced random walks". One goal of this field is to find geodesics on graphs using random
walkers (whose behavior is inspired by ants) on the graph, that use the vertices (with lengths)
to go from one node to the other. When walking on a vertex the random walkers (robot ants so
to speak) leave a signal (pheromone) giving more weight to this particular vertex, thus, raising
the probability that the next ant will choose the same path. So-called "ants algorithms" have
proven themselves very efficient to solve optimization problems such as the well-known "salesman
problem" [Dorigo et al., 1996,Dorigo and Gambardella, 1997,Stützle and Hoos, 1999] among many
others. Moreover, rigorous proofs exist to mathematically establish their efficiency [Jayadeva et al.,
2013]. Ants algorithms also prove themselves capable of finding geodesic paths in mazes [Vela-Pérez
et al., 2013].

More biologically relevant mathematical models have been introduced to understand the dy-
namics of trail following. Some one-dimensional models consider a pre-existing trail and focus on
the way ants sense the trail [Calenbuhr and Deneubourg, 1992,Calenbuhr et al., 1992,Couzin and
Franks, 2003] or the way they regulate traffic [John et al., 2004,Nishinari et al., 2006]. Other mod-
els focus on the decision process which leads ants to follow one trail or the other [Beckers et al.,
1990, Deneubourg et al., 1990, Edelstein-Keshet, 1994, Goss et al., 1989, Peters et al., 2006,Wat-
mough and Edelstein-Keshet, 1995b]. In these models, the system does not produce the pheromone
trails itself.

Most two-dimensional models in the literature consider a walk on a fixed lattice [Ermentrout
and Edelstein-Keshet, 1993, Edelstein-Keshet et al., 1995, Beckers et al., 1990, Deneubourg et al.,
1990, Rauch et al., 1995, Schweitzer et al., 1997, Tao et al., 2004]. Depending on the model, the
ants can leave the pheromones either on the nodes or on the edges of the lattice. Depending on the
model, they can be cellular automata or Monte-Carlo models. The one thing they share however,
is that they do not consider the system able to self-direct: the pre-existing lattice constraints the
directions in which ants can go. In [Rauch et al., 1995] and [Tao et al., 2004], the authors consider
ants that are able to depose two different kind of pheromones, depending if they carry food or if
they are exploring the environment. We will follow the same approach in this paper.

A two-dimensional model that does not consider a pre-existing lattice is the Boissard-Degond-
Motsch model [Boissard et al., 2013]. In this model, ants are able to explore a two-dimensional
space. Ants leave one type of pheromones behind them that tell other ants in what direction they
were walking when they deposed the pheromone. Their model allows two different interactions:
non-polar ones, where ants can distinguish the orientation of a pheromone but not its direction,
or polar ones. In the present paper, we will only focus on the second kind of interactions. When
considering polar interactions, Boissard, Degond and Motsch observed that the system was able to
produce pheromone trails (that is, a large number of aligned pheromones that are oriented in the
same direction) that ants would follow preferably. It is, to our knowledge, the first model in which
the system was able to create pheromone trails without assuming a pre-existing lattice. Their model
however, did not imply a food source.
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More recently, Ryan [Ryan, 2016] proposed a two-dimensional model of foraging ants, without a
pre-existing lattice. His model considered an ant colony coming out of a nest and looking for a food
source within the environment. In his model, once an ant found the food source, it goes directly to
the nest using the shortest path, leaving pheromones behind itself to recruit other ants on the trail.
The model also includes collective strategies to self-regulate the traffic flow on the path. In Ryan’s
model, the ants already know the shortest way back to the nest, which is in contradiction with our
motivation. This was also assumed in reaction-diffusion equations modeling foraging ants at the
macroscopic scale, which were mathematically analyzed in [Amorim, 2015a,Amorim, 2015b,Alonso
et al., 2016].

Let us summarize: to our knowledge, all models of geodesic path formation are either on a
graph [Vela-Pérez et al., 2013] or assume a pre-existing lattice [Rauch et al., 1995,Tao et al., 2004].
The two-dimensional models that do not consider any pre-existing lattice only consider one type
of pheromone. In particular, they either don’t consider any food source [Boissard et al., 2013]
or consider that the route back to the nest is prescribed [Ryan, 2016, Amorim, 2015a, Amorim,
2015b, Alonso et al., 2016]. In this paper, we will take ideas from those works to build a two-
dimensional model with two kinds of pheromones. The crucial assumption of our model is that the
ants do not have knowledge of where the food source or the nest is. In particular, the route back
to the nest is not prescribed.

Our model is very similar to the Boissard-Degond-Motsch model. We will consider the same
mechanism of pheromone deposition, the same mechanism of ant recruitment on trails and we will
take the same parameter values. Unlike their model, we will consider two populations: a population
of foraging ants and a population of ants coming back to the nest with food. The foraging ants
will leave pheromones that indicate their direction to the ants with food. The ants with food will
do the same with a second kind of pheromone. As in [Boissard et al., 2013], we will consider only
interactions between the ants and the pheromones. In particular, we will not assume that ants can
collide with each other or that they directly communicate when bumping into each other. We will
also consider polar-interactions between ants and pheromones, which means that ants are able to
know in what orientation and in what direction the pheromone is pointing to.

The outcome of our model is that the colony is able to find the food source and to bring it back
to the nest, using a short path. The geodesic path (in most situations, the geodesic path will be
the straight line between the food source and the nest) is never followed by an ant all the way since
it requires that the ant keeps a ballistic trajectory for a very long time (in particular, the geodesic
path has a zero-probability to be walked all the way).

Our paper is organized as follows. In Section 2, we precisely describe the model, we explain
some assumptions made for the simulations and give our choice of parameter values. In Section 3,
we present the outcome of various simulations of the model: with only one food location, with two
food locations, with a food source whose location changes and finally, with an obstacle between the
food and the nest. In Section 4, we discuss our model and results and give ideas to improve the
model from a biological perspective. Finally, we draw a conclusion and give perspectives for future
work.

2 The model

We consider a stochastic model of interacting random walkers on a continuous plane, leaving particles
carrying information behind them. In view of our motivation, we will call the random walkers "ants"
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and the particles "pheromones".
Our model is very similar to the one of [Boissard et al., 2013]. Namely, the way ants move

and choose their directions are the same. Unlike [Boissard et al., 2013] though, we consider a food
source, two types of pheromones and two types of ants:

• ants that are looking for food,

• ants which have found food and are trying to bring it back to the nest.

Moreover, unlike [Boissard et al., 2013], we consider that pheromones keep the direction of their
"parent" ant as an angle in [0, 2π) and not as a unit vector. We emphasize that this last modification
is purely superficial and does not change the dynamics of trail formation.

The nest is modeled by a disc centered at the origin of radius Rnest > 0 and the food source by
a compact set Ω ⊂ R2 such that Ω ∩ D(0, Rnest) = ∅, which means that the food source and the
nest are at two different places.

We consider N ants moving in a 2-dimensional space. Every ant is either a "foraging" ant or
an ant "with food" but this status can change. We denote by Nf (t) and by Nw(t) the number of
foraging ants and ants with food respectively at time t ≥ 0. Each foraging ant i is described by its
position xi ∈ R2 and the direction of its motion θi ∈ [0, 2π). Each ant with food j is described by
its position yj ∈ R2 and the direction of its motion ωj ∈ [0, 2π).

We assume that ants are able to depose two types of pheromones: foraging ants depose the first
type of pheromones. From now on, we will call those the "green pheromones" out of simplicity.
The ants with food on the other hand lay the second kind of pheromones. We will call those
the "blue pheromones". We denote by Pg(t) the number of green pheromones and by Pb(t) the
number of blue pheromones. Each green pheromone k is described by its position zk and by its
direction αk ∈ [0, 2π). Each blue pheromone m is described by its position ζm and by its direction
βm ∈ [0, 2π). The foraging ants are only sensitive to the blue pheromones. Since those pheromones
are laid by ants with food, which are going away from the food source, following the direction of
this pheromone will make it easier for foraging ants to find the food source. The same mechanism
with green pheromones will enable the ants with food to find their way back to the nest.

Once a pheromone is laid, it remains active (in other words, detectable by an ant) for an
exponential time with parameter 1

Tp
, where Tp > 0 is the mean activity time of pheromones. We

assume that the pheromones have no spatial dynamics: until it is no longer active, a pheromone
stays where it is.

Unlike the pheromones, the ants do move. Every ant follows a so-called "Run & Tumble" motion
(or velocity-jump process). During the running phase, we assume that an ant goes in a straight
line with velocity c > 0 in the direction given by its angle θ or ω such that the motion dynamics of
foraging ants and ants with food is given by

·
xi(t) = c ·

(
cos θi(t)
sin θi(t)

)
, (2.1)

·
yj(t) = c ·

(
cosωj(t)
sinωj(t)

)
. (2.2)

The "Tumble" is an instantaneous phase of velocity redistribution process which is different
depending on the status of the ant and on the pheromones’ concentration. We explain this process
in details in the next two subsections. We assume that the radius of detection of an ant is R > 0
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regardless of the pheromone type or the ant’s status. This means that the ant is sensitive to a
pheromone if and only if the Euclidean distance between the pheromone and the ant is less or equal
to R.

2.1 Foraging ants

After the end of its running phase, a foraging ant chooses a new direction in [0, 2π) depending on
the pheromones’ concentration.

Random velocity jumps: If there is no blue pheromone within the radius of detection of the
ant, we assume that the new direction θ′i of the ant is chosen randomly such that

θ′i(t) ≡ θi(t) + εi(t) mod(2π), (2.3)

where θi(t) is the current direction of the ant and (εi(t))i,t is an independent family of Gaussian
random variables with zero mean and variance σ2 > 0.

Once a foraging ant has chosen this direction, it keeps it for an exponential time of parameter
λf > 0 and then, a new tumble occurs.

Trail recruitment jumps: If there are blue pheromones within the radius of detection of the
foraging ant, the ant chooses one of these pheromones uniformly and aligns its direction with the
chosen pheromone such that its new direction θ′i is

θ′i(t) = βMi , (2.4)

where Mi is uniformly distributed in {m ∈ N, ‖xi(t)− ζm‖ ≤ R}, where ‖·‖ is the standard Euclid-
ian norm on R2.

After the ant has made a trail recruitment jump, the next velocity jump occurs after a random
exponentially distributed time with parameter λb · |{m ∈ N, ‖xi(t)− ζm‖ ≤ R}|, where t is the time
of the trail recruitment jump and |·| is the cardinal of the set. This means that the higher the
number of blue pheromones within the detection zone, the shorter the time until the next tumble.

Laying pheromones: We assume that, with a rate νg > 0, the foraging ants lay green
pheromones, which means that each foraging ant lays a green pheromone at every ticking of an
exponentially distributed clock with parameter νg. When a foraging ant i lays a green pheromone
at time t, a green pheromone k is created with the same position as the ant but in the opposite
direction

zk = xi(t), αk ≡ π + θi(t) mod(2π). (2.5)

Finding the food source: When a foraging ant finds the food source, i.e. xi(t) ∈ Ω, a tumble
instantaneously occurs: the ant’s location does not change but the ant turns in the opposite direction
and becomes an ant with food, which means that its new orientation ω′j(t) is given by

ω′j(t) ≡ π + θi(t) mod(2π), (2.6)

where θi(t) is its current direction. The next tumble will occur as was previously planned by the
ant.
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2.2 Ants with food

The random motion of the ants with food is pretty similar to the one of the foraging ants but
ants with food only lay blue pheromones and are sensitive only to green pheromones. After its
running phase, an ant with food chooses a new direction in [0, 2π) depending on the pheromones’
concentration.

Random velocity jumps: If there is no green pheromone within the radius of detection of the
ant, we assume that the new direction ω′j of the ant is chosen randomly such that

ω′j(t) ≡ ωj(t) + εj(t) mod(2π), (2.7)

where ωj(t) is the current direction of the ant and (εj(t))j,t is an independent family of Gaussian
random variables with zero mean and same variance σ2 > 0 as the foraging ants.

Once an ant with food has chosen this direction, it keeps it for an exponential time of parameter
λw > 0 and then, a new tumble occurs.

Trail recruitment jumps: If there are green pheromones within the radius of detection of the
ant with food, the ant chooses one of the pheromones uniformly and aligns its direction with the
chosen pheromone such that its new direction ω′j is

ω′j(t) = αKj , (2.8)

where Kj is uniformly distributed in {k ∈ N, ‖yj(t)− zk‖ ≤ R}.
When the ant makes a trail recruitment jump, it chooses a random exponentially distributed

time with parameter λg · |{m ∈ N, ‖xi(t)− ζm‖ ≤ R}| and will not make a velocity jump until this
time. As for the foraging ants, this means that the tumbles occur more often when there are many
green pheromones.

Laying pheromone: We assume that with a rate νb > 0, the ants lay blue pheromones. When
an ant with food j lays a blue pheromone at time t, a blue pheromone m is created with the same
position as the ant but in the opposite direction

ζm = yj(t), βj ≡ π + αj(t) mod(2π). (2.9)

Finding the nest: When an ant with food finds the nest, i.e. yj(t) ∈ D(0, Rnest), a tumble
instantaneously occurs: the ant chooses a new direction uniformly on [0, 2π) and becomes a foraging
ant. Its new direction θ′i(t) is therefore distributed as

θ′i(t) ∼ Unif ([0, 2π)) . (2.10)

The next tumble will occur as was previously planned by the ant.
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Figure 1: Illustration of the behavior of an ant facing an obstacle (one example). When arriving at
the foot of the obstacle from the left, the ant starts to walk around the obstacle. In this example, the
ant was going to the East-North-East direction so the ant walks around the obstacle going north.
When the ant no longer faces the obstacle, it keeps the direction that it had before it encountered
the obstacle (unless a tumble occurred in between).

2.3 Dealing with an obstacle

In some simulations, we will consider the existence of an insuperable obstacle. We model this
obstacle by a rectangle [Ol, Or]×[Od, Ou] in the plane such that ([Ol, Or]× [Od, Ou])∩D(0, Rnest) =
∅ and ([Ol, Or]× [Od, Ou])∩Ω = ∅, which means that the obstacle is not located at the same place
as the nest or the food source. We describe here the dynamics of an ant, regardless of its status,
when it encounters an obstacle. The ant tries to walk around the obstacle. This means that the
spatial dynamics of the ant is not described by the running phase ((2.1) or (2.2)) anymore but
rather by this "walking around" phase:

·
xi(t) = c ·

{
(0, sign(sin θi(t))), if xi(t) ∈ {Ol, Or} × [Od,Ou],

(sign(cos θi(t)), 0), if xi(t) ∈ [Ol, Or]× {Od, Ou} ,
(2.11)

·
yj(t) = c ·

{
(0, sign(sinωj(t))), if yj(t) ∈ {Ol, Or} × [Od,Ou],

(sign(cosωj(t)), 0), if yj(t) ∈ [Ol, Or]× {Od, Ou} .
(2.12)

This means that an ant will systematically translate to its left or right when located at the foot
of the obstacle. It will choose left or right according to its current orientation. It then gets back
to a normal run phase when the obstacle is away. The Figure 1 gives a simple illustration of the
behavior of an ant at the foot of the obstacle.

We emphasize that a tumble can still occur during this phase but that the dynamics will be
determined by (2.11)-(2.12) until the ant is away from the obstacle.

2.4 Simulations parameters

For the sake of simulations, we add more parameters to our model.

Discrete time Model We use time steps of size ∆t > 0 and we make any time related random
variables T discrete by considering ∆t · d T∆te instead, where d·e is the upper integer part. We stop
the simulation at a final time Tf .
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Table 1: Model parameters and their values
Parameter Interpretation Value

c Instantaneous speed of ants 2cm/s
λf Random jump frequency of foraging ants 2s−1

λw Random jump frequency of ants with food 10s−1

σ Standard deviation of orientation changes 0.1
λb Trail recruitment jump frequency of foraging ants 2s−1

λg Trail recruitment jump frequency of ants with food 2s−1

νg Green pheromones deposition rate 0.2s−1

νb Blue pheromones deposition rate 0.6s−1

Tp Pheromones mean lifetime 100s
R Detection radius 1cm

Rnest Radius of the nest 1cm
Ω Food source

Ol, Or, Od, Ou Dimensions of the obstacle

"Initial" conditions At t = 0, we assume that a single foraging ant leaves the nest at position
(0, 0) with a direction chosen uniformly on [0, 2π). Then, every second, a new foraging ant leaves
the nest at position (0, 0) with the same direction probability distribution until the maximal number
of ants N is reached.

Boundary conditions We restrict our study to the square box [− l
2 ,

l
2 ] × [− l

2 ,
l
2 ]. When an

ant reaches the boundary of the box, we suppose that it dies, regardless of its status. It is then
instantaneously replaced by a new foraging ant, which comes out of the nest with direction chosen
uniformly on [0, 2π).

Maximal number of pheromones To keep the computations affordable, we impose a maximal
number of pheromones that the system can support. When the maximal number Pmax

b of blue
pheromones or the maximal number Pmax

g of green pheromones is reached, the corresponding ants
stop deposing those pheromones until the disappearance of other pheromones allow them to produce
some more.

2.5 Choice of parameters

We recap here all the parameters of our model and specify what values we choose for them. The
Table 1 shows the values of the model parameters and the Table 2 shows the values of the simulations
parameters. When specified in the tables, this parameter value is chosen in all simulations shown in
Section 3. When not specified, the parameter value depends on the simulation and will be specified
in the corresponding subsection.

We emphasize that, when such correspondence can be made, we systematically choose the same
parameter values as in [Boissard et al., 2013]. We discuss the biological relevancy of such choices in
Section 4.

9



Table 2: Simulations parameters and their values
Parameter Interpretation Value

Tf Duration of the simulation
∆t Time increments 0.1s
l Dimension of the box 100cm
N Maximal number of ants 200

Pmax
b Maximal number of blue pheromones 1000
Pmax
g Maximal number of green pheromones 1000

3 Results

3.1 Typical dynamics of the system

We show in Figure 2 the outcome of one simulation with Tf = 200 seconds and where Ω is a disc of
radius 2 centimeters centered at point (0, 40). The so-called green pheromones are represented by
green sticks showing in which direction the pheromone is oriented and the blue pheromones by blue
sticks. Black squares represent foraging ants and red squares represent ants with food. The nest
is represented by a black circle and the food source by a red circle. After 30 seconds, there were
31 foraging ants in the environment, which were all making random velocity jumps and deposing
green pheromones. No ant found food yet. After 56.20 seconds, one foraging ant found food and
became an ant with food. The ant then proceeded to come back to the nest following the green
pheromones that it left when it was still foraging. When it didn’t find any pheromones ahead, it
started to make random velocity jumps again, and made a detour but the green pheromones in
the square [−10, 0] × [0, 10] put it back on track (see the middle-left part of the figure and more
specifically, the blue pheromones). It took the ant 22.2 seconds to walk from the food source back
to the nest, whereas the geodesic (i.e. the straight line which is 37 centimeters long) would have
taken 37/c=18.5s. After 100 seconds, there were two ants with food, taking a different (presumably
shorter) path to get back to the nest. After 200 seconds, there were 24 ants with food and the
overall pattern was that ants with food walked on the straight line from the food source to the nest.

3.2 Geodesic path from the food source to the path

From now on, for a better understanding of the simulations, we only represent the
pheromone trails and do not represent the ants in our figures.

We study the long time behavior of the system and we investigate the ability of the ants to
optimize their food transport, that is, to find the geodesic that links the food source to the nest.
In order to measure the length of a path, we adopt the following perspective: given that all ants
constantly walk with speed c=2cm/s, we let the ants with food keep a memory of the time spent
since they encountered the food source. When they finally find their way back to the nest and start
foraging again, we call "path followed by the ant" the trajectory of this ant. In other word, a "path
followed by an ant" is a set of the form

{yj(t) | T0 ≤ t ≤ T1, yj(T0) ∈ Ω, yj(T1) ∈ D(0, Rnest)} (3.13)
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Figure 2: One simulation of the model where the food source is a disc of radius 2cm centered at
(0, 40). Top left: Outcome of the simulation after 30s. Top right: Outcome of the simulation after
56.20s (discovery of the food source by one ant). Middle-left: Outcome of the simulation after
78.4s (when the first ant with food found its way back to the nest). Middle-right: Outcome of the
simulation after 100s. Bottom-left: Outcome of the simulation after 200s. Bottom-right: Outcome
of the simulation after 200s (only the pheromones’ locations are shown and blue pheromones are
shown in priority over the green ones). Black circle at the origin: Nest. Red circle: Food source.
Black squares: foraging ants. Red squares: ants with food. Green sticks: "green pheromones" (left
by foraging ants). Blue sticks: "blue pheromones" (left by ants with food).
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Figure 3: Simulation of the model with Tf = 1000s. Ω is a disc of radius 2cm centered at (0, 40). The
left figure shows the "green pheromones" in priority and the right figure shows the "blue pheromones"
in priority. Black circle: nest. Red circle: food source.

and the length of this path is defined as

L := c (T1 − T0) . (3.14)

We show in Figure 3 and Figure 4 the typical outcome of a simulation after Tf = 1000 seconds
when Ω is a disc of radius 2 centimeters centered at (0, 40). We first notice that there exists a
"pheromone highway", that is, a high concentration of pheromones next to the geodesic. The
shortest recorded path followed by an ant is 38 centimeters long, which is close to the 37 centimeters
of the geodesic (there is 40cm between the two centers of the food source and the nest and the radii
are 1cm and 2cm long). We represent in the bottom-right corner of Figure 4 the evolution of
the shortest recorded path’s length. The upper-left corner of Figure 4 shows evidence of a phase
transition. It represents the mean-value of (sinαk)k, where (αk)k is the orientation of all green
pheromones. Since the food source is located North to the nest, we expect many green pheromones
to be oriented to the South and therefore, we expect the sine of this orientation to be close to -1.
We can see that, between 0 and 200 seconds, the mean sine of the green pheromones orientation
first gathers around the mean value 0 of the sine of the uniform law on [0, 2π), as predicted by the
strong law of large numbers (let us recall that the direction of the foraging ants is initially uniformly
distributed). But after 200 seconds, due to the presence of ants with food (see the bottom-left corner
for comparison), the green line stabilizes around the middle of 0 and −1. We emphasize that it
does not stabilize around −1 due to our boundary conditions. Indeed, when foraging ants reach
the boundary, they die and are replaced with an ant whose orientation is uniformly distributed in
[0, 2π). The blue line, as we can see in the upper-right corner of Figure 3, stays close to 1, which
means that most of the blue pheromones are oriented in the North direction.

3.3 Disconnected food source

From now on, we will show the outcome of our simulations by representing the green
and blue pheromones but we will show the blue pheromones in priority, in the same
fashion as in the right-hand side of Figure 3. We emphasize that, where there is a

12



0 100 200 300 400 500 600 700 800 900 1000

−1

0

1

time (s)

0 100 200 300 400 500 600 700 800 900 1000

−1

0

1

time (s)

0 1000

0

50

100

150

200

time (s)

N
u

m
b

e
r 

o
f 

a
n

ts

0 1000

35

36

37

38

39

40

time (s)

le
n

g
th

 (
c
m

)

Figure 4: Evidence of a phase transition. Top-left: dark green line: mean orientation of the green
pheromones, green zone: standard deviation around the mean-value, red line: orientation of the
geodesic going from the food source to the nest, magenta line: Mean value of the uniform distribution
on [0, 2π).Top-right: dark blue line: mean orientation of the blue pheromones, light-blue zone:
standard deviation around the mean-value, red line: orientation of the geodesic going from the
nest to the food source. Bottom-left: black line: number of foraging ants. Red line: number of ants
with food. Bottom-right: deep blue line: mean paths length, dark blue line: minimal path length, red
line: geodesic length.

13



high concentration of blue pheromones, there is also a high concentration of green
pheromones, even though they may not appear in the figures.

In these simulations, we assume that the food source is disconnected, namely that it is the
reunion of a disc of center (30, 30) with radius 2 centimeters and an other disc of center (−a, a) and
same radius. From now on, we will call the first disc "the North-East food location" and the second
disc "the North-West food location". We take different values for a > 3 (let us notice that the
food source and the nest have a non-empty intersection when a ≤ 3). Given what happened in the
previous simulations, we would expect the ant colony to select the shortest path, i.e. to have more
pheromones oriented in the North-West direction when a < 30 and and more pheromones oriented
to the North-East when a > 30. This is indeed the case for the simulations shown in Figure 5,
when a = 5, 10, 15, 20, 35, 40 but as, we can in the case a = 25, the probability that the colony does
not privilege the shortest path is non-zero. In some situation, like the simulation with a = 45, the
colony goes to both food locations.

We show in Figure 6, the probability that the North-West food location (i.e. the disc centered
at (−a, a)) is chosen over the North-East one (i.e. the disc centered at (30, 30)) as a function of a.
For this, we develop the following statistical approach.

For each a ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, we simulate our model 500 times. Since this is
a rather large number of simulations, we need to reduce the computational cost of all simulations.
Hence, for the purpose of drawing Figure 6 and for this purpose only, we fix Pmax

b = 200 and
Pmax
g = 600 and we stop the simulation once the maximal number of blue pheromones is attained.

We call this stopping time τ . We then count the number of blue pheromones whose orientation lies
in
[
0, π2

)
and consider them as pheromones pointing to the North-West quadrant. We also count

the number of blue pheromones whose orientation lies in
[
π
2 , π

)
and consider them as pheromones

pointing to the North-East quadrant:

PNEb (τ) :=
∣∣∣{βm | 1 ≤ m ≤ Pb(τ)} ∩

[
0,
π

2

)∣∣∣ , (3.15)

PNWb (τ) :=
∣∣∣{βm | 1 ≤ m ≤ Pb(τ)} ∩

[π
2
, π
)∣∣∣ . (3.16)

We estimate that the colony chose the food location in the North-West quadrant over the North-
East one if and only if PNWb (τ) > PNEb (τ). We estimate the probability that the colony privileges
the Nort-West quadrant food by counting how many times this event occurred among the 500
simulations. The results are shown in Figure 6. The simulations show that when a increases, the
probability that the colony will choose the food located next to (−a, a) decreases linearly.

3.4 Dynamical food source

In these simulations, the food source’s location varies. There are two steps. Between 0 and Tf/2 =
500 seconds, the food source is located at one place and between Tf/2 = 500 seconds and Tf = 1000
seconds, it is located at a different place. We simulate this model in a situation where the two
locations and the nest are nearly aligned (Figure 7), one where the two locations and the nest form
a right-angle (Figure 8) and finally, one where the two locations and the nest form an acute angle
(Figure 9). We systematically represent the pheromone trail every 100 seconds after the 500th one.
What these simulations show is that, after a small transition, the ants are able to find the second
food source, even though they were first misled. The pheromone trail keeps memory of the first
part of the simulation, as we clearly see in Figure 9. Indeed, even though the geodesic to the second
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Figure 5: Nine simulations of the model with disconnected food source. The food source is simulta-
neously located at the reunion of the disc of radius 2cm centered at (30, 30) and the disc with same
radius centered at (−a, a) for a = 5, 10, 15, 20, 25, 30, 35, 40, 45. In all above simulations but the ones
obtained with a = 25 and a = 45, the colony clearly favored the shortest path to the food source. For
a = 25, the colony did not choose the shortest path and for a = 45, the colony brings food from the
two locations, with a preference for the closest one. Green sticks: "green" pheromones. Blue sticks:
"blue" pheromones. Red circle: food source. Black circle: nest.
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Figure 6: Estimated probability that the colony chooses the food location located at a disc of radius
2cm and center (−a, a) over one located at a disc of radius 2cm and center (30, 30) as a function
of a. Red line: linear regression (y = −0.0181(x− 3) + 0.9874).

food location is a straight path, the ant colony follows an S-shaped trail because of the history of
the simulation.

3.5 Dealing with an obstacle

In these simulations, we set Tf = 1000 seconds and consider that the food source is a disc of center
(0, 40) and of radius 2 centimeters. We assume that there is a an obstacle of constant width (Ol=20,
Or=22) but with various lengths. The Figure 10 shows that if the obstacle is short enough, the
colony is able to find the food source and to bring food back to the nest. As in the first simulations,
we compute the length of the shortest trail by collecting the times spent by the ants with food.
What this study shows is that the colony is able to find a path that is close to the shortest path.
Let us emphasize that the shortest path is very unlikely to be followed by an ant since it requires
to have a nearly ballistic trajectory from the food to the obstacle and from the obstacle to the nest
but to make two sharp turns: one when arriving at the obstacle, one when leaving it.
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Figure 7: One simulation of the model with a dynamical food source. The food source is a disc of
radius 2cm centered first at (20, 10) and then at (40, 40) after 500s. Blue sticks: "blue" pheromones.
Green sticks: "green" pheromones. Red circle: Food source. Black circle: nest.
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Figure 8: One simulation of the model with a dynamical food source. The food source is a disc of
radius 2cm centered first at (30, 0) and then at (30, 30) after 500s. Green sticks: "green" pheromones.
Blue sticks: "blue" pheromones. Red circle: food source. Black circle: nest.
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Figure 9: One simulation of the model with a dynamical food source. The food source is a disc of
radius 2cm centered first at (30, 30) and then at (0, 30) after 500s. Blue sticks: "blue" pheromones.
Green sticks: "green" pheromones. Red circle: Food source. Black circle: nest.

4 Discussion

Our model is rather simple but it has proven itself very effective to localize a food source and to
bring it back to the nest in a quite optimal way. When no obstacle is involved, the colony tends to
concentrate on a "highway" located on the straight line linking the food source to the nest. When
two food locations are involved the colony tends to favor the closest one. Sometimes, the colony
does not the closest food location (Figure 5, a = 25) but the probability to choose the "wrong"
food location decays almost linearly as its distance increases (cf Figure 6). Hence, the colony makes
"big mistakes" (choosing a food location far away when one is much closer) with a rather small
probability. Even when the location of the food changes, the colony is able to find the new location
quite rapidly. In this scenario, the pattern keeps a memory of the history of the experiment and
the colony can follow non-straight paths (cf Figure 9). The colony is also able to find an optimal
trail when an obstacle is involved. Let us now discuss the biological relevancy of our model.

Regarding the modeling of directed pheromones of Boissard, Degond and Motsch, a discussion
about the biological relevancy was already conducted in [Boissard et al., 2013]. We summarize
it here but an interested reader should read it (see [Boissard et al., 2013], Section 3.6) since it
contains many arguments supporting the hypothesis of directed pheromones. A mechanism called
"osmotropotaxis" described in [Calenbuhr and Deneubourg, 1992,Calenbuhr et al., 1992,Couzin and
Franks, 2003] could explain how ants can sense the orientation of a pheromone drop. There are two
possible hypothesis to explain the sensitivity of ants to the direction of a pheromones drop: either
ants leave long continuous pheromone drops or they leave several small drops one after an other.
In the case of continuous pheromones drop modeled in [Bossert and Wilson, 1963], the pheromone
drop has an oval shape with higher chemical concentration in the middle. In this scenario, the

18



0−40 −20 20 40−50 −30 −10 10 30 50

0

−40

−20

20

40

−50

−30

−10

10

30

50

t=1000s, L=39.9cm

0−40 −20 20 40−50 −30 −10 10 30 50

0

−40

−20

20

40

−50

−30

−10

10

30

50

t=1000s, L=43.8cm

0−40 −20 20 40−50 −30 −10 10 30 50

0

−40

−20

20

40

−50

−30

−10

10

30

50

t=1000s, L=50.2cm

0−40 −20 20 40−50 −30 −10 10 30 50

0

−40

−20

20

40

−50

−30

−10

10

30

50

t=1000s

Figure 10: Four simulations of the model with an obstacle. Top left simulation: obstacle=[20, 22]×
[−5, 5], shortest path followed by one ant: 39.90cm, actual geodesic length between the food source and
the nest: ≈38.30cm. Top right simulation: obstacle=[20, 22]×[−10, 10], shortest path followed by one
ant: ≈43.80cm, actual geodesic length between the food source and the nest: 41.95cm. Bottom left
simulation: obstacle=[20, 22]× [−15, 15], shortest path followed by one ant: 50.20cm, actual geodesic
length between the food source and the nest: ≈47.43cm. Bottom right simulation: obstacle=[20, 22]×
[−20, 20], no ant found the food source. Green sticks: "green" pheromones. Blue sticks: "blue"
pheromones. Red circle: food source. Black circle: nest. Brown rectangle: obstacle.
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ants are able to sense the orientation of the crest line of higher concentration. In the case of
discontinuous drops modeled by [Haefner and Crist, 1994], a diffusion process must be taken into
account to homogenize the pheromone drop. A quantitative study of this homogenization process
with realistic parameter value was conducted in the appendix of [Boissard et al., 2013].

A second issue regarding the pheromone modeling is our choice of polar interactions. More
precisely, our modeled pheromones keep information of the orientation and the direction of the
"parent" ant. Non-polar interactions seem more biologically accurate since no evidence of polar
oriented pheromone exist to our knowledge. In [Vincent and Myerscough, 2004], the authors modeled
these interactions as follows: when an ant walks with orientation θ and encounters a pheromone
of orientation θ′, the ant can either pick the orientation θ′ or θ′ ± π but chooses the closest angle
to its current orientation. This way, the trajectory of the ant does not make acute angles. We
emphasize that such a choice might interfere in the process of selection of the shortest path since
much information is lost compared to the polar interaction scenario.

Our choice of parameters was made to match the one from [Boissard et al., 2013] when a
connection could be made. We refer to this reference and to [Bernadou and Fourcassié, 2008,Casellas
et al., 2008,Beckers et al., 1992a] for a motivation of this choice of parameter values for Lasius niger.

Our model considers two types of pheromones. There is evidence showing that some ants,
such as the Pharaoh’s ant [Beekman et al., 2001,Fourcassié and Deneubourg, 1994, Jackson et al.,
2007,Jackson and Châline, 2007,Jeanson et al., 2003,Sumpter and Beekman, 2003], can lay different
type of chemicals using different glandes to produce them. Other ants species, such as the big headed
ant Pheidole megacephala [Dussutour et al., 2009] vary the concentration of deposed pheromones
to vary the pheromonal information. Other mathematical models also exist where two types of
pheromones are used to differentiate trail that are exploring the field from the ones that are coming
back to the nest [Rauch et al., 1995,Tao et al., 2004]. We emphasize that, since our model is adapted
from the Boissard-Degond-Motsch model, our choice of parameter values is adapted to the black
garden ant Lasius niger, even though this species can only lay one type of pheromone [Beckers et al.,
1992b,Beckers et al., 1993,Dussutour et al., 2004,Nicolis and Deneubourg, 1999].

One assumption of our model, which is physically irrelevant, is the absence of collisions between
ants. As was previously observed in experiments and models [Ryan, 2016,Dussutour et al., 2004,
Couzin and Franks, 2003], this issue is crucial since a large number of ants can be at the same time on
a narrow track. Reduction of traffic congestion is very important to optimize the food transport by
ants. Physical interactions between ants can be modeled using a repulsive Lennard-Jones repulsive
operator in the same spirit as Ryan’s work [Ryan, 2016]. We could also consider communication
between ants when a collision occurs. As was observed in many biological experiments (see [Gordon
et al., 1993,Mailleux et al., 2010] among many others), antennas contacts between individuals is
a key element to understand how complex tasks are achieved by ants societies. Taking these into
account is likely to improve the capacity of the model to optimize food transport since exchange of
informations is the key to the ants’ complex social structures. On the other hand, taking physical
interactions, like Ryan did, does not slow the foraging process as was observed in [Ryan, 2016] but
we expect that it will raise the computational cost of the simulation since interactions between a
large number of ants would have to be taken into account.
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5 Conclusion

We have presented a model of foraging and pheromones deposing ants with two types of pheromones.
The model has two strengths:

1. It is rather simple. Indeed, the local interactions between ants and pheromones is very simply
described and the pheromones’ lifetime process as well.

2. It allows the modeled colony to find the food source and to bring it back to the nest in a quite
optimal way.

We then showed the outcome of simulations of the model in various situations, namely: simulations
with one or two food locations, simulations with one food source which location that changes during
the experiment and simulations with an obstacle between the food source and the nest. We showed
that even in these situations, the ants were capable of finding a way to bring the food back to the
nest, using an optimal path. The actual geodesic path is never followed by ants since, in those cases,
it requires the ant to have a nearly ballistic trajectory.

Throughout our discussion of the model, we underlined that the model can be improved from
the biological perspective by letting ants communicate with each other and by considering a model
with physical interactions between ants.

There are other perspectives for future work. A possible sequence of this work is to derive
the kinetic equations that describe the dynamics of the system at the mesoscale. Such a (formal)
derivation was conducted in Boissard Degond and Motsch’s article [Boissard et al., 2013] as well as
a hydrodynamic limit of the equation. The purpose of such a derivation is to get a kinetic partial
differential equation whose numerical resolution is faster than the simulation of our model. In a
recent work [Amorim, 2015a], Amorim established a description of a chemotactic model of foraging
ants at the macroscopic scale. He further analyzed the corresponding system of diffusive equations
along with Alonso and Goudon in [Alonso et al., 2016]. Amorim’s numerical resolution shows the
emergence of a trail from the food source to the nest [Amorim, 2015b]. We emphasize that, in
Amorim’s description, the ants know the shortest way to get back to the nest. As a perspective for
future work, we could do the same kind of analysis: we could derive (formally or rigorously) the
kinetic Kolmogorov equation of our model and solve it numerically. This can be challenging since
there will be 4 structure variables: the time variable, the two space variables and the orientation
variable θ. From the reading of the present paper, we expect that this numerical simulation gives
an algorithm that approaches the geodesic between the food source and the nest by spotting the
high concentrations of pheromones.

In conclusion, the purpose of this work is to open perspectives in two different fields. From the
biology perspective, we presented a model in which a colony of ants finds optimal paths to bring food
back to the nest without assuming any pre-existing lattice, which seems more naturally accurate
than the previous models. We hope that this work will get attention from the biology community and
that it will help understanding the behavior of some insects. From the mathematics perspective, we
hope to have set a first stone towards a kinetic partial differential equation method to find geodesics
on a plane.
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