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Abstract

We introduce a model of interacting particles imitating a colony of ants looking for a food
source in a continuous plane. The mechanism describing communication between ants via
pheromone deposition is inspired by a model of oriented interacting particles previously in-
troduced in [Boissard Degond Motsch, Trail formation based on directed pheromone deposition).
Here, we add a food source and introduce two types of pheromones: one pointing to the food
source and one pointing to the nest. The particularity of our model is that we let the ants
disperse in a two-dimensional space without a pre-existing lattice and we do not assume that
the ants know their way back to the nest. We present various simulations of our model and we
investigate the ability of the colony to select the shortest path from the nest to the food source.
We introduce a system of kinetic equations that can describe the dynamics of this model at
the mesoscopic scale and leave its rigorous derivation for future work. Finally, we discuss the
biological relevancy of our assumptions by comparing the behavior of our individually-based
model with the one of various species of ants as described in the biology literature and we give
ideas to improve the model from the optimization perspective.

Key-words: velocity-jump process, foraging ants, geodesic, Self-propelled particles, pheromone
deposition, pattern formation, alignment interactions.

AMS Class. No: 92D50, 35Q80, 35L60, 82C70

1 Introduction

Social interaction is a key element for the survival of a colony of ants. Ants are known to have
low cognitive capacities but are able to survive as a group using work division, invasive and defen-
sive strategies, communication, food stocking and sometimes harvesting. Very simple interactions
between individuals with low cognitive capacities can achieve very complex tasks, such as building
a nest for the colony [43], developing war strategies to protect the nest [61], following routes and
regulate the traffic to reduce congestion [18,25| or find food and bring it back to the nest using a
very optimal route in the process [32,34]. Is has indeed been observed that some ants, e.g. the
Argentine ants Iridomyrmex humilis, can walk their way into a maze, find a food source and bring
it back to their nest using a short path [34]. In this paper, we are interested in the issue of food
localization and optimization of the transport by a colony of ants.
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The formation of trails in ant colonies has been understood a while ago. There is already a
wide biological literature on the subject [4,18,21,26,27,59,60]. The general observation is that the
formation of trails is a result of simple local interactions, such as brief antennas contacts [33,44] or
distant communication, via deposition of chemical markers called pheromones. We will only focus
on this last strategy in this paper.

The principle of pheromone communication is simple. One ant leaves a pheromone signal using
the sting on its abdomen [4, 36, 37,40, 62,63]. The ant then keeps walking but the pheromone
remains where the ant left it. When a new ant arrives on site, it obtains the information that an ant
was formerly here, but biologists argue that the pheromone drop carries much more information.
The ant can indeed gain qualitative information about the concentration of pheromones and the
orientation of the ants which laid the pheromone through a mechanism called osmotropotaxis |14,
15,18] or about the chemical composition of the pheromone [64]. For example Myrmica sabuleti
specimens can leave different pheromones depending on the food they found [16], the Pharaoh’s
ant Monomorium pharaonis is also able to depose attractive or repellent pheromones [49]. The ant
which originally laid the pheromone signal can also modulate the importance of the information by
leaving long or short-lasting pheromones. This was observed, among other species, for the Pharaoh’s
ant [8,30,37,38,41,54] or for the big headed ant Pheidole megacephala [24]. Other species such as
the Argentine ant Iridomyrmez humilis [20,32, 58|, the black garden ant Lasius niger [5, 6,25, 45]
and the Army ant Eciton burchelli [13,18,31], on the other hand, are known to lay only one type of
pheromone. These signals carry simple informations (location and orientation of the ant, chemical
concentration, chemical type...) but through multiplication of large numbers of such signals, the
colony as a whole is able to deal with more complex informations and, in particular, to form patterns
such as trails.

One remarkable observation about those pheromone trails in colonies of foraging ants is that
they optimize the time of food transport. Simply put, the ant colony is able to find the shortest
path from the nest to the food source. When facing an environment with two possible routes to
a food source, an ant colony will most of the times choose the shortest one [11,32,34,54|. This
is rather spectacular since, once again, ants have low cognitive capacities. In particular, there is
no central power leading the foraging ants and only local interactions between them. In fact, the
phenomenon that causes this is rather simple to understand. The shortest paths allow ants to bring
the food faster so an ant that goes the path back and forth will make more travels per unit of time
and will therefore leave more pheromones on this path than ants on the longer paths. Theoretically,
the colony will finally prefer the shortest path since it is marked by more pheromones than the
other.

This principle has been understood a while ago and has engendered a complete field of probability
theory called "reinforced random walks". The idea is to find geodesic on graphs using random
walkers (whose behavior is inspired by ants) on the nodes, that use the vertexes (with lengths)
to go from one node to the other. When going on a node or a vertex (depending on models) the
random walkers (robot ants so to speak) leave a signal (pheromone) giving more weight to this
particular node or vertex. So-called "ants algorithms" have proven themselves very efficient to solve
optimization problems such as the well-known "salesman problem" [22,23, 53] among many others.
Moreover, rigorous proofs exist to mathematically establish their efficiency [39]. Ants algorithms
also prove themselves capable of finding geodesic paths in mazes [56].

More biologically relevant mathematical models have been introduced to understand the dy-
namics of trail following. One-dimensional models consider a pre-existing trail and focus on the way



ants sense the trail [14,15,18] or the way they regulate traffic [42,46]. Other models focus on the
decision process which leads ants to follow one trail or the other but in these models, the system
does not produce the pheromone trails itself either |7,20,26,29,34,47,60].

Most two-dimensional existing models consider a walk on a fixed lattice [7,20,27,28,48,52,55].
Depending on the model, the ants can leave the pheromones either on the nodes or on the edges
of the lattice. Depending on the model, they can be cellular automata or Monte-Carlo models.
The one thing they share however, is that they do not consider the system able to self-direct, the
pre-existing lattice indicates what direction ants are supposed to go to. In [48] and [55], the authors
consider ants that are able to depose two different kind of pheromones, depending if they carry food
or if they are exploring the environment. We will follow the same approach in this paper.

A two-dimensional model that does not consider a pre-existing lattice is the Boissard-Degond-
Motsch model [10]. In this model, ants are able to explore a whole two-dimensional space without
bias. Ants leave one type of pheromones behind them that tell other ants that they were here
and what direction they were going to when they deposed the pheromone. Their model allows two
different interactions: non-polar ones, where ants can distinguish the orientation of a pheromone but
not its direction, or polar ones. In this paper, we will only focus on the second kind of interactions.
When considering polar interactions, Boissard, Degond and Motsch observed that the system was
able to produce pheromone trails (that is, a large number of aligned pheromones that are oriented
in the same direction) that ants would follow preferably. It is, to our knowledge, the first model
in which the system was able to create pheromone trails without assuming a pre-existing lattice.
Their model however, did not imply a food source or foraging ants.

More recently, Ryan [50] proposed a two-dimensional model of foraging ants, without a pre-
existing lattice. His model considered an ant colony coming our of a nest and looking for a food
source within the environment. Once an ant found the food source, it would go directly to the nest
using the shortest path, leaving pheromones behind itself to recruit other ants on the trail. The
model also takes collective strategies to self-regulate the traffic flow on the path in consideration.
In Ryan’s model the ants already know the shortest way back to the nest, which is in contradiction
with our motivation. This was also assumed in reaction-diffusion equations modeling foraging ants
at the macroscopic scale, which were mathematically analyzed in [1-3].

Let us summarize: to our knowledge, all models of geodesic path formation are either on a
graph [56] or assume a pre-existing lattice [48,55]. True unbiased two-dimensional models only
consider one type of pheromone. In particular, they either don’t consider any food source [10] or
consider that the geodesic path is already known by the system [1-3,50]. In this paper, we will
take ideas from those works to build a two-dimensional model of short paths formation with two
pheromones between a food source and a nest.

Our model is very similar to the Boissard-Degond-Motsch model. We will consider the same
mechanism of pheromone deposition, the same mechanism of ant recruitment on trails and we will
take the same parameter values. Contrary to their model, we will consider two populations: a
population of foraging ants and a population of ants coming back to the nest with food. The
foraging ants will leave pheromones that indicate the ants with food how to go back to the nest
and the ants with food will leave pheromones that indicate where the food is. As in [10], we will
consider only interactions between the ants and the pheromones. In particular, we will not assume
that ants can collide with each other or that they directly communicate when facing each other.
We will also consider polar-interactions between ants and pheromones, which means that ants are
able to know in what orientation and in what direction the pheromone is pointing to.



The outcome of our model is that the colony is able to find the food source and to bring it back
to the nest, using a short path. The geodesic path (in most situations, the geodesic path will be
the straight line between the food source and the nest) is never followed by an ant all the way since
it requires that the ant keeps a ballistic trajectory for a very long time (in particular, the geodesic
path has a zero-probability to be walked all the way).

Similarly to [10], we will formally derive a kinetic description of the model at the meso-scale.
Kinetic equations are often used in biology to describe the dynamics of self-propelled individuals,
like bird flocking in the Cucker-Smale [19] model or to study how chemotazis allow bacteria (such as
FEscherichia coli') to find locations of high nutrient concentration [51|, among may other examples.

Our paper is organized as follows. In Section 2, we precisely describe the model, we explain
some assumptions made for the simulations and give our choice of parameters. In Section 3, we
present the outcome of various simulations of the model: with only one food location, with two food
locations, with a food source that changes location and finally, with an obstacle between the food
and the nest. In Section 4, we formally derive a kinetic description of the model. In Section 5, we
discuss our model and results and give ideas to improve the model from a biological perspective and
from the optimization perspective. Finally, we draw a conclusion and give pespectives for future
work.
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2 The model

We consider a stochastic model of interacting random walkers on a plane, leaving particles carrying
information behind them. In view of our motivation, we will call the random walkers "ants" and
the particles "pheromones".

Our model is very similar the one of [10]. Namely, the way ants move and choose their directions
are the same. Contrary to [10] though, we consider a food source, two types of pheromones and two
types of ants: the ones that are looking for food and the ones which have found food and are trying
to bring it back to the nest. Moreover, we do not consider that pheromones keep the direction of
their "parent" ants as a unit vector, but rather as an angle in [0, 27). We emphasize that this last
modification is purely superficial and does not change the dynamics of trail formation.

The nest is modeled by a disc centered at the origin of radius R,s+ > 0 and the food source by
a compact set  C R? such that QN D(0, Ryest) = 0, which means that the food source and the
nest are at two different places.

We consider N ants moving in 2-dimensional space. Every ant is either a "foraging" ant or an
ant "with food" but this status can change in time. We denote by N¢(t) and by N, (t) the number
of foraging ants and food with ants respectively at time ¢t > 0. Each foraging ant ¢ is described by
its position x; € R? and the direction of its motion 6; € [0,27). Each ant with food j is describes
by its position y; € R? and the direction of its motion w; € [0,2m).

We assume that ants are able to depose two types of pheromones: foraging ants are able to
depose pheromone that are pointing to the nest while ants with food are able to depose pheromone



pointing to the food source. Let us recall that the ants never know where the nest and the food
source are. Hence, the pheromones do no point directly to the nest or the food source but rather tell
in which direction the ant was going when it left the pheromone. We denote by P,(t) the number
of pheromones left by foraging ants and by P,(¢) the number of pheromones left by ants with
food. Each pheromone k left by a foraging ant is described by its position z; and by its direction
ay € [0,27). For the sake of simplicity, we will call those pheromones the "green pheromones". Each
pheromone m left by an ant with is described by its position (,, and by its direction 3, € [0, 27).
Once again, out of simplicity, we call those the "blue pheromones".

Once a pheromone is laid, it remains active (in other words: detectable by an ant) for an
exponential time with parameter Tip, where 7}, > 0 is the mean activity time of a pheromone. We
assume that the pheromones have no spatial dynamics: until it is no longer active, a pheromone
stays where it is.

Unlike the pheromones, the ants do move in the plane. Every ant follows a so-called "Run &
Tumble" motion. During the running phase, we assume that an ant goes in a straight line with
velocity ¢ > 0 in the direction given by its angle 6 or w such that the motion dynamics of foraging
and ants with food is given by

o= (),

i = (o). 22)

sin wj;(t)

The "Tumble" is an instantaneous phase of velocity redistribution process which is different
depending on the status of the ant and on the pheromone concentration. We assume that the
radius of detection of an ant is R > 0 regardless of the pheromone type or the ant’s status. This
means that the ant is sensible to a pheromone if and only if the Euclidean distance between the
pheromone and the ant is less or equal to R.

2.1 Foraging ants

After the end of its running phase, a foraging ants chooses a new direction in [0, 27) depending on
the pheromone concentration.

Random velocity jumps: If there’s no blue pheromone within the radius of detection of the ant,
We assume that the new direction 6/ of the ant is chosen randomly such that

0;(t) = 0;(t) + &i(t) mod(27), (2.3)

where 6;(t) is the current direction of the ant and (g(t));+ is an independent family of Gaussian
random variables with zero mean and variance o > 0.

Once a foraging ant has chosen this direction, it keeps it for an exponential time of parameter
Ay > 0 and then, a new tumble occurs.

Trail recruitment jumps: If there are blue pheromones within the radius of detection of the
foraging ant, the ant chooses one of these pheromones uniformly and align its direction with the
chosen pheromone such that its new direction ¢} is



0/(t) = Bas. (2.4)

where M; is a uniformly distributed in {m € N, |z;(t) — (|| < R}, where [|-|| is the standard Eu-
clidian norm on R2.

When the ant makes a trail recruitment jump, it chooses a random exponentially distributed
time with parameter A\, - [{m € N, ||z;(t) — (|| < R}| and will wait that long before making a new
velocity jump. This means that the higher the number of pheromones within the detection zone is,
the shorter the time until the next tumble will be.

Laying pheromones: We assume that with a rate v, > 0, the foraging ants lay green pheromones,
which means that each foraging ant lays a green pheromone at every ticking of an exponentially
distributed clock with parameter v,. When a foraging ant ¢ lays a green pheromone at time ¢, a
green pheromone k is created with the same position as the ant but in opposite direction

2 = x;(t), ar =7+ 0;(t) mod(27). (2.5)

Finding the food source: When the foraging ant find the food source, i.e. x;(t) € Q, a tumble
instantaneously occurs: the ant makes U-turn and becomes an ant with food, which means that its
new velocity wi(t) is given by

wi(t) =7+ 6;(t) mod(2n), (2.6)

where 6;(t) is its current direction.

2.2 Ants with food

The random motion of the ants with food is pretty similar to the counter specifics but ants with food
only lay blue pheromones and are sensible to green pheromones. After the end of its running phase,
an ant with food chooses a new direction in [0, 27) depending on the pheromone concentration.

Random velocity jumps: If there’s no green pheromone within the radius of detection of the
ant, We assume that the new direction wg» of the ant is chosen randomly such that

wj(t) = wj(t) +&5(t) mod(2), (2.7)

where w;(t) is the current direction of the ant and (g;(t)); is an independent family of Gaussian
random variables with zero mean and same variance o > 0 as the foraging ants.

Once an ant with food has chosen this direction, it keeps it for an exponential time of parameter
Aw > 0 and then, a new tumble occurs.

Trail recruitment jumps: If there are green pheromones within the radius of detection of the
ant with food, the ant chooses one of the pheromones uniformly and align its direction with the

chosen pheromone such that its new direction wé- is

wi(t) = ak;, (2.8)



where K is a uniformly distributed in {k € N, [|y;(¢) — 2x|| < R}, where ||| is the standard Eu-
clidean norm on R2.

When the ant makes a trail recruitment jump, it chooses a random exponentially distributed
time with parameter Ay - [{m € N, ||2;(t) — (|| < R}| and will not make a velocity jump until this
time. As for the foraging ants, this means the tumbles occur all the more often when there are
many pheromones.

Laying pheromone: We assume that with a rate 15, > 0, the ants lay blue pheromones. When
an ant with food j lays a blue pheromone at time ¢, a blue pheromone m is created with the same
position as the ant but in opposite direction

Cm = y;(), Bj =7+ a;(t) mod(2m). (2.9)

Finding the nest: When the ant with food finds the nest, i.e. y;(t) € D(0, Rpest), a tumble
instantaneously occurs: the ant chooses a new direction uniformly ion [0, 27) and becomes a foraging
ant. Its new direction 6/(t) is therefore distributed as

0)(t) ~ Unif ([0, 27)) . (2.10)

The new tumble will occur as was previously planned by the ant.

2.3 Dealing with an obstacle

In certain simulations, we will also consider the existence of an insuperable obstacle. We model this
obstacle by a rectangle [0y, O,] x [Og4, O,] in the plane such that [0}, O, x [Og, Ou]| N D(0, Rpest) = 0
and [0, O,] x [Og,0,] N = (), which means that the obstacle is not located at the same place as
the nest or the food source. We describe here the dynamics of an ant, regardless of its status, when
it encounters an obstacle. The ant tries to walk around the obstacle. This means that the spatial
dynamics of the ant is not described by the running phase ((2.1) or (2.2)) anymore but rather by
this "run around" phase:

Gt — e {(o', sign(sin (1)), if () € {01, 0} x [0d, Ou), 1)
(sign(cos 0;(t),0), if z;(t) € [0, 0] X {Og, 04},

gi(t) = c- {(0‘, sign(sinw;(t)), ?f yj(t) € {0, 0.} x [Od, Oul, (2.12)
(sign(cosw;(t),0), if y;(t) € [O1,Or] X {Og, Oy} .

this means that an ant will systematically go left or right when facing an obstacle. It will choose
left or right according to its current orientation. It then gets back to a normal running phase when
the obstacle is away.

We emphasize that tumbling can still occur during this phase but that the direction of the ant
will only matter when the obstacle is away. Then, the direction of the ant (and not only the sign of
its cosine or sine) is used to determine the new position of the ant according to (2.1) or (2.2).

2.4 Simulations

For the sake of simulations, we add more parameters to our model.



Discrete time Model We keep the spatial continuity of our model but we make the time structure
discrete. We use time steps of size At > 0 to do so and we make any time related random variables T’
discrete by considering At - (Alt} instead, where [-] is the upper integer part. We stop the simulation
at a final time T7.

"Initial" conditions At ¢ = 0, we assume that a single foraging ant leaves the nest at position
(0,0) with a direction chosen uniformly on [0,27). Then, every second, a new foraging ant leaves
the nest at position (0,0) with the same direction probability distribution until a maximal number
of ants N is reached.

Boundary conditions We restrict our study to the square box [—%, 4] x [—=5,5]. When an
ant reaches the boundary of the box, we suppose that it dies, regardless of its status. It is then
instantaneously replaced by a new foraging ant, which comes out of the nest with direction chosen
uniformly on [0,27) and next tumble occurring in a random exponentially distributed time with

parameter ;.

Maximal number of pheromones To keep the computations affordable, we impose a maximal
number of pheromones that the system can support. When the maximal number P"** of blue
pheromones or the maximal number P;"** of green pheromones is reached, the corresponding ants
stop deposing those pheromones until the disappearance of other pheromones allow them to produce
some more.

2.5 Choice of parameters

We recap here all the parameters of our model and specify what values we choose for them. When
specified in the table, this parameter value is chosen in all simulations shown in Section 3. When
unspecified, the parameter depends on the simulation.

We emphasize that, when such correspondence can be made, we systematically choose the same
parameter values as in [10]. We discuss the biological relevancy of such choices in Section 5.

The Table 1 shows the chosen values for the model parameters and the Table 2 shows the chosen
values for the simulations parameters.

3 Results

3.1 Typical dynamics of the system

We show in Figure 1 the outcome of one simulation with 7 = 200 seconds and where (2 is a disc of
radius 2 centimeters centered at point (0,40). The so-called green pheromones are represented by
green sticks showing in which direction the pheromone is oriented and the blue pheromones by blue
sticks. Black diamonds represent foraging ants and red diamonds represent ants with food. The
nest is represented by a black circle and the food source by a red circle. After 30 seconds, there
are foraging 31 ants in the environment, which are all making random velocity jumps and deposing
green pheromones. No ant found found yet. After 56.20 seconds, one ant found food and became a
ant with food. The ant then proceeded to come back to the nest following the pheromone that it
(most probably) left. When it didn’t find any pheromones ahead, it started to make random velocity



Table 1: Model parameters and their values

Parameter Interpretation ‘ Value ‘

c Instantaneous speed of ants 2cm/s
Af Random jump frequency of foraging ants 2571
Aw Random jump frequency of ants with food 10s7!
o Standard deviation of ants random velocity jumps 0.1
Ap Trail recruitment jump frequency of foraging ants 2571
Ag Trail recruitment jump frequency of ants with food | 25!
Vg Green pheromone deposition rate 0.2s7!
Vp Blue pheromone deposition rate 0.6s7!
T, Pheromone mean lifetime 100s
R Detection radius lem

Rest Radius of the nest lem
Q Food source

0;,0,,04, 0y Dimensions of the obstacle

Table 2: Simulation parameters and their values

’ Parameter ‘ Interpretation Value
Ty Duration of the simulation
At Time increments 0.1s
l Dimension of the box 100cm
N Maximal number of ants 200
prar Maximal number of blue pheromones 1000
pret Maximal number of green pheromones | 1000




jump again, and made a detour but the green pheromones in the square [—10, 0] x [0, 10] put it back
on track. It took the ant 22.2 seconds to walk from the food source back to the nest, whereas the
geodesic (i.e. the straight line which is 37 centimeters long) would have taken 37/c¢=18.5s. After
100 seconds, there are now two ants with food, taking a different (presumably shorter) path to get
back to the nest. After 200 seconds, there are now 24 ants with food and the overall pattern is that
ant with food follow paths that are close to the geodesic.

3.2 Geodesic path from the food source to the path

From now on, for a better understanding of the simulations, we only represent the pheromone trails
and do not represent the ants in our Figures.

We study the long time behavior of the system and we investigate the ability of the ants to
optimize their food transport, that is, to find the geodesic that links the food source to the nest.
In order to measure the length of a path, we adopt the following perspective: given that all ants
constantly walk with speed c=2cm/s, we let the ants with food keep a memory of the time spent
since they encountered the food source. When they finally find their way back to the nest and start
foraging again, we call "path followed by the ant" the trajectory of this ant. In other word, a "path
followed by an ant" is set of the form

{yj(t) | T() <t< Tl, yj(TO) S Q, yj(Tl) € D(O,Rnest)} (313)
and the length of this path is defined as

T -Tp
===

L: (3.14)

We show in Figure 2 and 3 the typical outcome of a simulation after Ty = 1000 seconds when (2
is a disc of radius 2 centimeters centered at (0,40). We first notice that there exists a "pheromone"
highway, that is, a gathering of many pheromone next to the geodesic. The shortest path followed
by ant has length 38 centimeters, which is close to the 37 centimeters of the geodesic. We represent
in the bottom-right corner of Figure 3 the evolution of the path length. The upper-left corner of
Figure 3 shows evidence of a phase transition. It represents the mean-value of (sin )i, where
(ag)r is the orientation of all green pheromones. Since the food source is located North to the
nest, we expect many green pheromones to be oriented to the South and therefore, we expect the
sine of this orientation to be close to -1. We can see that, between 0 and 200 seconds, the mean
sine of the green pheromones orientation first gathers around the mean value 0 of the sine of the
uniform law on [0, 27), as predicted by the strong law of large numbers (let us recall that all new
ants are directed according to this law). But after 200 seconds, due to the presence of ants with
food (see the bottom-left corner for comparison), the green line stabilizes around the middle of 0
and —1, as expected. We emphasize that it does not stabilize around —1 due to our boundary
conditions. Indeed, when foraging ants reach the boundary, they die and are replaced with an ant
which orientation is uniformly distributed in [0, 27). The blue line, as we can see in the upper-right
corner of Figure 3, stays close to 1, which means that most of the clue pheromones are oriented in
the right direction.

3.3 Disconnected food source

In these simulations, we assume that the food source is disconnected, namely that it is the reunion
of a disc of center (30,30) with radius 2 centimeters and an other disc of center (—a,a) and same
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Figure 1: One simulation of the model where the food source is a disc of radius 2cm centered at
(0,40). Top left: Outcome of the simulation after 30s. Top right: Outcome of the simulation after
56.20s (when the first ant finds the food source). Middle-left: Outcome of the simulation after
78.4s (when the first ant with food found its way back to the nest). Middle-right: Outcome of the
simulation after 100s. Bottom: Outcome of the simulation after 200s. Black circle: Nest. Red
circle: Food source. Black diamonds: foraging ants. Red diamonds: ants with food. Green sticks:
"oreen pheromones" left by foraging ants. Blue sticks: "blue pheromones" left by ants with food.
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Figure 2: Simulation of the model with Ty = 1000s. € is a disc of radius 2cm centered at (0, 40).
The left figure shows the "green pheromones" in priority and the right figure shows the "blue
pheromones" in priority. Black circle: nest. Red circle: food source.

radius and we take different values for ¢ > 1. Given what happened in the previous simulations, we
would expect the ant colony to select the shortest path, i.e. to have more pheromones oriented in
the North-West direction when a < 30 and and more pheromones oriented to the North-East when
a > 30. This is indeed the case for the simulations shown in Figure 4, when a = 5, 10, 15, 20, 35, 40, 50
but as, we can in the case a = 25, the probability that the colony does not privilege the shortest
path is non-zero. In some situation, like the simulation with a = 45, the colony goes to both food
locations.

We show in Figure 5, the probability that the North-West food location is chosen as a function
of a. For this, we develop the following statistical estimation. We fix Ty = 100 seconds and for
different values of a, we simulate the random process 100times. We then count the number of blue
pheromones the oriented in the North-East and in the North-West direction:

PNE(100) := ){/p’m 11 <m < Py(100)} N [0, g)‘ (3.15)

PNV (100) = \{@n 1< m < Py(100)} N [gw>‘ (3.16)

and estimate that the colony chose the food in the North-West quadrant over the North-East one
if PlfVW(IOO) > PbNE(IOO). We estimate the probability that the colony privileges the Nort-West
quadrant food by counting how many times the situation occurred among the 100 simulations. The
results are shown in Figure 5. The simulations show that when a increases, the probability that the
colony will choose the food located next to (—a,a) decreases.

3.4 Dynamical food source

In these simulations, the food source is dynamical and has two steps. Between 0 and 7/2 = 500
seconds, the food source is located at one place and between T /2 = 500 seconds and Ty = 1000
seconds, it is located at a different place. We simulate this model in a situation where the two
locations and the nest are nearly aligned (Figure 6), one where the two locations and the nest form
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Figure 3: Top-left: dark green line: mean orientation of the green pheromones, green zone: standard
deviation around the mean-value, red line: orientation of the geodesic going from the food source to
the nest, magenta line: Mean value of the uniform distribution on [0, 27). Top-right: dark blue line:
mean orientation of the blue pheromones, light-blue zone: standard deviation around the mean-
value, red line: orientation of the geodesic going from the nest to the food source. Bottom-left:
black line: number of foraging ants. Red line: number of ants with food. Bottom-right: deep blue
line: mean paths length, dark blue line: minimal path length, red line: geodesic length.
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Figure 4: Ten simulations of the model with disconnected food source. The food source is simulta-
neously located at the reunion of the disc of radius 2 centered at (30,30) and the disc with same
radius centered at (—k, k) for k& = 5,10, 15,20, 25, 30, 35,40, 45,50. In all shown simulations but
k = 25 and k = 45, the colony clearly favored the shortest path to the food source. For k = 25,
the colony chose the wrong path and for £ = 45, the colony does not discriminate between the two
locations, with a preference for the closest one though. Green sticks: "green" pheromones. Blue
sticks: "blue" pheromones. Red circle: food source. Black circle: nest.
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Figure 5: White diamonds: probability to choose the food location located at (—a,a) over the one
located at (25,25) as a function of a. Red line: a — ﬁ, where Los is the length of the geodesic
between the nest and the food located at (25,25) and L, if the food located at (—a, a).

a right-angle (Figure 7) and finally, one where the two locations and the nest form an acute angle
(Figure 8). We systematically represent the pheromone trail every 100 seconds after the 500th one.
What these simulations show is that, after a small transition, the ants are able to find the shortest
path from the second food source to the nest, even though the first food source first misled them.

3.5 Dealing with an obstacle

In these simulations, we set T = 1000 seconds and consider that the food source is a disc of center
(0,40) and of radius 2 centimeters. We assume that there is a an obstacle of constant width (O;=20,
0,=22) but with various lengths. The figure 9 shows that if the obstacle is short enough, the colony
is able to find the food source and to bring food back to the nest. As in the first simulations, we
compute the length of the shortest trail by collecting the times spent by the ants with food. What
this study shows is that the colony is able to find a path that is close to the shortest path. Let us
emphasize that the shortest path is very unlikely to be followed by an ant since it requires to have
a nearly ballistic trajectory from the food to the obstacle and from the obstacle to the nest but to
make two sharp turns at the right angles at the obstacle.

4 Kinetic description of the model

In this section, we propose a mesoscopic description of the ant and pheromone dynamics. Since
the kinetic description of the model with one pheromone and no food source has already been done
in [10], we will be brief and refer to this paper for further explanations.

Variables Since there are two types of ants and two types of pheromones, we will consider four
state variables: F', W (respectively the density of foraging ants and ants with food), G and B
(respectively the density of green and blue pheromones). Each of these are functions of the structure
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Figure 6: One simulations of the model with dynamical food source. The food source is a disc
of radius 2 centered first at (20,10) and then at (40,40). Blue sticks: "blue" pheromones. Green
sticks: "green" pheromones. Red circle: Food source. Black circle: nest.
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7: One simulation of the model with dynamical food source. The food source is a disc of
2 centered first at (30,0) and then at (30,30). Green sticks: "green" pheromones. Blue

"blue" pheromones. Red circle: food source. Black circle: nest.
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Figure 8: One simulation of the model with dynamical food source. The food source is a disc of
radius 2 centered first at (30,30) and then at (0,30). Blue sticks: "blue" pheromones. Green sticks:
"green" pheromones. Red circle: Food source. Black circle: nest.

variable t > 0 (time), z € R? (space) and 6 € 27T (orientation), where T is the one-dimensional
torus. We emphasize that, contrary to the microscopic description of the model, we use the same
variable x and 0 for all ants and pheromones regardless of their status.

We model the food source  and the nest I' as a subsets of R?. In our situation, we always set

I':= D(0, Rpest)-
Pheromone dynamics Green pheromones of orientation 8 are deposed by foraging ants of orien-

tation 6+ with a rate v4 and disappear with a rate of 1/7),. The equation for the green pheromone
deposition is therefore

1
0:G(t,z,0) = v F(t,x,0 + ) — TG(t’ z,0), (4.17)
P
and similarly the equation describing the blue pheromones dynamics is
1
0B(t,z,0) = pyW(t,x,0 + ) — ?B(t,x, 0), (4.18)
P

Ant dynamics The equation governing the ant dynamics is a kinetic equation with a Boltzmann-
type conservative operator:

OF + cvg - Vo F = Q(F), (4.19)
OW + cug -V, W = Q(W), (4.20)
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Figure 9: Four simulations of the model with an obstacle. Top left simulation: obstacle=[20, 22] x
[—5, 5], shortest path followed by one ant: 39.90cm, actual geodesic length between the food source
and the nest: ~38.30cm. Top right simulation: obstacle=[20,22] x [—10, 10], shortest path followed
by one ant: ~43.80cm, actual geodesic length between the food source and the nest: 41.95cm.
Bottom left simulation: obstacle=[20,22] x [—15, 15], shortest path followed by one ant: 50.20cm,
actual geodesic length between the food source and the nest: a47.43cm. Bottom right simulation:
obstacle=[20, 22] x [—20, 20], no ant found its way from the food source to the nest. Green sticks:
"oreen" pheromones. Blue sticks: "blue" pheromones. Red circle: food source. Black circle: nest.

Brown rectangle: obstacle.
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where

vg := (cos,sin0). (4.21)

The left hand-side of both equation, the free-transport term, describes the straight motion
with speed ¢ orientated wit angle 6 (the "run") and the right-hand side, the Boltzmann operator,
describes the direction change dynamics (the "tumble"). Since direction changes can happen during
a random velocity jump (with rate Ay and A, respectively) or a trail recruitment jump (with rate
Ay and A, respectively), both operator are decomposed in two:

Q:=Qr +Qp (4.22)
Q:=0Q, +Q, (4.23)
with
)0 = ( [ o0.09P@ar - P0)) (124)
0,(W)(8) = [ t0.00W (@08 - W (o)) (125

where ¢(6,0’) is the probability density distribution to select a new orientation 6, given the
present one €', in our situation, the Gaussian:

00,0 = T (4.26)
= (& 20 .
’ V2ro? 7

and with

— P Sjo—arj<r B(@', 0)da’
Qp(F)(z,0) := )\b/T/m_MKRB(:r,G)dG dx (hfxx/SRB(JU/’H/)dGIdx,pF(x)—F(:J:,Q) :
(4.27)

Q,(F)(z,0) = A / / o e |~ DameisnCEOAT
g ’ . I T J|z—z'||[<R ’ fT ‘[Hx*x/HSR G(m’,Q’)dO’dx’pW ’ ’

(4.28)
where
pr(x) = / Fla,0)dd, (4.29)
T
pw () ::/W(a:,H’)dH'. (4.30)
T
These Boltzmann operator are conservative since one can check that [ Q,(F) = 0 and
fT QP(W) =0.
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One can find detailed and precise explanations of these operators in [10], section 4.2 but let
us give a short motivation hereafter. We focus on the operator acting on foraging ants. The left
hand-side term )\ fT f”x_x,” <R Bdx'df" describes how the rate of trail recruitment jumps raises as
the total number of green pheromones raises within the radius of detection R of the ant, ) is the
constant rate of trail recruitment jumps. The new orientation of is then described by the probability

distribution function given by

 Jjew<r B, 0)da’
- f?l‘ \f”mfx/”<R B(z',0)d0' dz’’

which explains the form of the operator of Boltzmann type: M (6)pr — F'.

M) :

Collecting and leaving food

We finally model the conversion of foraging ants to ants with food (and wvice versa) with boundary
conditions. In a way, a foraging ant walking to the food source vanishes and is replaced by an ant at
the same position with food, walking in the opposite direction. Therefore, our boundary condition
at the food source is

(o}

F(t,z,0) =0, Vo € Q, (4.31)

W(t,z,0) := F(t,x,0 + ), Yz € 09, (4.32)

[¢] [e]
where  is the interior set of {2 and 02 = Q\ Q is its border.
Using the same ideas, recalling that an ant with food drops its food and chooses a new orientation
uniformly on [0, 27), the boundary condition at the nest is

o

W(t,z,0) =0, Vx €T, (4.33)

F(t,2,0) = 2i Wz € o, (4.34)
T

We emphasize that we could also impose that ants with food make a U-turn when they drop
the food. In that case, the boundary condition would become

F(t,x,0) :=W(t,z,0 + ), Yz € OT.

Complete model

Gathering the pieces (4.17) to (4.34) of our model, we obtain a kinetic model with boundary
conditions. We emphasize that our derivation of the model is based only on formal considerations
and that a rigorous derivation of this model is still an open question.

As a last note, we would like to emphasize that a macroscopic limit of our model can be per-
formed. We refer to [10], section 4.3 where such a limit was performed in the case with no food
source.
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5 Discussion

Our model is rather simple. There are immediate biological flaws that one can think of (the fact
that ants do not collide with each other, for instance). On the other hand, as we saw in certain
simulations, the colony does sometimes use unnecessarily long paths to go to the food source and
back. This makes us thinks that the model can be improved from both the biological and the
optimization perspective. The tricky part might be to improve it on both levels at the same time.

5.1 Biological Relevancy

Regarding the modeling of oriented pheromones of the Boissard-Degond-Motsch model, a critical
of the biological relevancy was already written in [10]. We summarize it here but an interesting
reader should read it there for more details. A mechanism called "osmotropotaxis" and described
in [14,15,18] could explain how ants can sense the orientation of a pheromone drop. In the case
of a continuous drop (i.e. the ant which left the pheromone left a continuous trace while keeping
walking) modeled in [12], the pheromone drop has an oval shape with higher chemical concentration
in the middle. The ants is able to sense where the crest line of higher concentration which is oriented
the same way the previous ant was. In the case of discontinuous drops (the ant leaves several little
pheromone drops one after another) modeled by [35], a diffusion process must be taken into account
to homogenize the pheromone drop. A quantitative study of this study with realistic parameter
value was conducted in the appendix of [10].

A second issue regarding the pheromone modeling is our choice of polar interactions. Namely,
our modeled pheromones keep information of the angle of the ant which left it. This gives the
second ant an information about the orientation (on what route should I walk?) but also on the
direction (e.g. should I walk the route to the East or to the West?). Non-polar interactions seem
more biologically accurate since no evidence of polar oriented pheromone exist to our knowledge.
In [57], the authors modeled these interactions as follows: when an ant walks with orientation 6
and encounters a pheromone of orientation €', the ant can either pick the orientation ¢’ or ' £ 7
but chooses the closest angle to its current orientation. This way, the trajectory of the ant does not
make acute angles. We emphasize that such a choice might interfere in the process of selection of
the shortest path since much information is lost compared to the polar interaction scenario.

Our choice of parameters was made to match the one from [10| when a connection could be
made. We refer to this reference and to [4,9,17] for a motivation of this choice of parameter values
for Lasius niger .

Our model considers two types of pheromones. There are evidence showing that some ants, such
as the Pharaoh’s ant [8,30,37,38,41,54], can lay different type of chemicals using different glandes
to produce them. Other ants species, such as the big headed ant Pheidole megacephala [24] vary
the concentration of deposed pheromones to vary the pheromonal information. Other mathematical
models also exist where two types of pheromones are used to differentiate trail that are exploring
the field from the ones that are coming back to the nest [48,55].

One assumption of our model, which is rather physically than biologically irrelevant is the
absence of collisions between ants. As was previously observed in experiments and models [18,25,50],
this is crucial factor to optimize the food collection by ants. Physical interactions between ants
can be modeled using a repulsive Lennard-Jones repulsive operator in the same spirit a in Ryan’s
work [50]. We could also consider communication between ants when an encounter occurs. As
was observed in many biological experiments (see [33,44] among many others), antennas contacts
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between individuals is a key element to understand how complex tasks are achieved by ants societies.
One important thing we would like to emphasize is that this biologically relevant modification is
likely to improve the model from the optimization perspective since exchange of informations is the
key to ants complex achievements. On the other hand, taking physical interactions as Ryan did
does not slow the foraging process as was observed in [50] but it is likely to raise the computational
cost of the simulation since interactions between a large number of ants would have to be taken to
account.

5.2 Optimize the model

As we saw in our various simulations, our model can sometimes select quite non-optimal paths or
worth, it may not be able to locate the food source. There are ways we can improve the model in
this perspective. Off course, one could let the ants be aware of all existing paths at all time but
that would take us out of our framework, since we only want to consider local interactions. Even
considering only local interactions, we can speculate that some modifications might improve the
model.

For instance, one think we immediately think of is communication between ants. In our simula-
tions, we let the ants with food know how much time passed since they collected the food. We could
improve the model by allowing those ants to communicate this time with foraging ants. This way,
when facing two different pheromone trails, a foraging ant would select one over the other based on
informations from ants coming back. This could probably improve the shortest path selection but
seem biologically irrelevant since no such time memory was observed on ants.

We could also let the colony have "cleaner ants". In this scenario, blue pheromones do not
only keep memory of the orientation of the ant, but also of the time spent since the food discovery.
When ants with food come back to the nest, they tell cleaner ants how long it took them to get
beck to the nest. Cleaner ants then have knowledge of the current time record and go clean every
blue pheromone that was left after this current critical time. At first, cleaner ants will only clean
pheromones that are close to the nest, therefore foraging ants will not be led on misleading path but
after a while, cleaner ants will come closer to the food source and leave only the "best" pheromones
traces. Once again, no such behavior was observed on ants to our knowledge so this modification
might be contradictory with biological relevancy.

We could also let all ants be aware of the time record when they come back to the nest. This
way, if an ant with food realizes that it has passed this record, it stops leaving blue pheromones.
This way, no long paths are created. In our two previous scenarios, we kept the hypothesis that
only local interactions occur but we allowed ants to have a "memory" which weakens the model
from the biological perspective.

6 Conclusion

We have presented a model of foraging and pheromones deposing ants with two types of pheromones.
The model has two strengths:

1. Tt is rather simple. Indeed, the local interactions between ants and pheromones is very simply
described and the pheromone activity process too

2. It allows the modeled colony to find a food source and to bring it back to the nest in a quite
optimal way
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We then showed the outcome of a simulation of the model in various situations, namely: simula-
tions with two food locations, simulations with one food location that changes location during the
experiment and simulations with an obstacle between the food source and the nest. We showed that
even in these situations, the ants were capable of finding a way to bring the food back to the nest,
using an optimal path. The actual geodesic path is never followed by ants since, in those cases, it
requires the ant to have a nearly ballistic trajectory.

We then formally derived a kinetic description of the model at the meso scale. Rigorous deriva-
tion of the kinetic equations and performing the macroscopic limit are still open questions.

Throughout our discussion of the model, we underlined that the model can be improved from
the biological perspective by taking more realistic parameters, by letting ants communicate with
each other and by considering a model with physical interactions. On the other hand, the model can
be improved from the optimization perspective by considering "more intelligent" particles which are
able to privilege the shorter paths of two. It is likely, however, that those two perspectives conflict
each other.
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