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Abstract: The Senegal River delta in West Africa, one of the finest examples of “wave-influenced”
deltas, is bounded by a spit periodically breached by waves, each breach then acting as a shifting
mouth of the Senegal River. Using European Re-Analysis (ERA) hindcast wave data from 1984 to
2015 generated by the Wave Atmospheric Model (WAM) of the European Centre for Medium-Range
Weather Forecasts (ECMWF), we calculated longshore sediment transport rates along the spit. We also
analysed spit width, spit migration rates, and changes in the position and width of the river mouth
from aerial photographs and satellite images between 1954 and 2015. In 2003, an artificial breach
was cut through the spit to prevent river flooding of the historic city of St. Louis. Analysis of past
spit growth rates and of the breaching length scale associated with maximum spit elongation, and
a reported increase in the frequency of high flood water levels between 1994 and 2003, suggest,
together, that an impending natural breach was likely to have occurred close to the time frame of
the artificial 2003 breach. Following this breach, the new river mouth was widened rapidly by flood
discharge evacuation, but stabilised to its usual hydraulic width of <2 km. In 2012, severe erosion
of the residual spit downdrift of the mouth may have been due to a significant drop (~15%) in the
longshore sand transport volume and to a lower sediment bypassing fraction across the river mouth.
This wave erosion of the residual spit led to rapid exceptional widening of the mouth to ~5 km that
has not been compensated by updrift spit elongation. This wider mouth may now be acting as a large
depocentre for sand transported alongshore from updrift, and has contributed to an increase in the
tidal influence affecting the lower delta. Wave erosion of the residual spit has led to the destruction of
villages, tourist facilities and infrastructure. This erosion of the spit has also exposed part of the delta
plain directly to waves, and reinforced the saline intrusion within the Senegal delta. Understanding
the mechanisms and processes behind these changes is important in planning of future shoreline
management and decision-making regarding the articulations between coastal protection offered by
the wave-built spit and flooding of the lower delta plain of the Senegal River.

Keywords: Senegal River delta; Langue de Barbarie spit; delta vulnerability; river-mouth migration;
spit breaching; ERA hindcast waves; longshore sediment transport
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1. Introduction

The impacts of human activities on coasts are often accompanied by a lack of understanding of
the consequences of these activities on the hydrodynamic and sediment redistribution processes that
shape coasts [1,2]. Alongshore sediment transport, gradients in transport, and interception of drifting
sediment by natural or artificial (man-made) boundaries, including river mouths and inlets, are, from
a coastal management point of view, very important, as these processes are significant drivers of
short-term to medium-term (days to years) shoreline change. Much of the West African coast (Figure 1)
is wave-dominated, and is classified as a cyclone- and storm-free “West Coast Swell Environment” in
the global wave classification scheme of Davies [3], with a subsidiary contribution from shorter-period
trade-wind waves from the Atlantic. In Figure 1, continental shelf width (clearer hue along the coast)
is a fine indicator of the distribution of long stretches of wave-dominated coast (narrow shelf) and the
much more limited, predominantly tidal, estuarine sector between Sierra Leone and Guinea-Bissau
(broad, low-gradient shelf), subject to significant wave energy dissipation [4,5]. The West African
coast is also characterised by a plethora of river deltas, the largest of which are those of the Niger,
Senegal and Volta (Figure 1). Abundant sand supplies and strong wave-induced longshore drift
have favoured the construction of numerous sand barriers, including at the mouths of these three
deltas. These barriers are major settlement sites on the coast as they provide higher-lying areas above
lagoons and wetlands, while acting as valuable aquifers. On the coast of Senegal, the barriers are
generally elongate to curvilinear spits formed at the mouths of tidal or fluvial ria-like embayments.
These spits are commonly capped by dunes, but individual beach ridges are visible in some of the
more southern ones. These spits have a protective role on the back-barrier wetlands and lagoons by
buffering wave energy. By forming alongshore barriers, they are also important in the regulation of the
freshwater-saltwater balance and ecology of these lagoons and back-barrier wetlands, both of which
can be considerably altered by breaches in the spits or by spit erosion [6,7]. This is particularly the case
of the largest of the Senegal wetland systems, that of the lower Senegal River and delta plain (Figure 2).

The Senegal River delta is an iconic example of a delta subject to strong wave action [8–12].
This delta is often represented in the ternary (river-wave-tide) classification of Galloway [13] at the
wave apex. Using a fluvial dominance ratio—defined as river sediment input versus the potential
maximum alongshore sediment transport away from the delta mouth—to quantify the balance between
river inputs and the ability of waves to spread sediments along the coast, Nienhuis et al. [12] computed
a value of 0.04 for the Senegal, which highlights the strong role of wave-induced longshore transport
along this delta’s shoreline. A manifestation of this strong longshore transport potential is a long
narrow sand spit presently fronting the delta plain, the Langue de Barbarie [10]. This spit has
historically played an important role not only in the protection of the lower Senegal delta plain but also
in regulating saltwater intrusion by diverting the mouth of the river several kilometres southwards.
Of particular significance, in terms of long-term flood-risk and coastal management, is the historic and
picturesque city of St. Louis (population in 2013: 300,000), a UNESCO world heritage site located in
the proximal part of the delta (Figure 2). The cultural attractiveness of St. Louis, a French colonial city,
and the biodiversity of the deltaic wetlands and lagoon bound by the Langue de Barbarie spit have
also generated a substantial rise in tourism. Much of St. Louis, which has undergone a rapid growth in
population over the last 50 years, lies at an elevation of less than 2.5 m above sea level [14], and the
city has, therefore, been prone to the flooding that affects the lower Senegal valley in the rainy season
(May to October).

In October 2003, to avoid flooding of St. Louis in the wake of a massive rise in the water discharge
of the Senegal River, an artificial breach was hastily cut through the Langue de Barbarie, generating
rapid reworking of the spit. In the present paper, we describe the recent dynamics of the spit within
the framework of development of the Senegal delta and specifically aim at disentangling processes
of natural forcing from those of the impact of this breach. Two approaches are used in the study:
(1) clearly define the wave climate and longshore sediment transport potential along the Langue de
Barbarie; and (2) compare spit behaviour patterns prior to, and following the October 2003 artificial
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breach. Both of these approaches are important in understanding the current dynamics prevailing
along this deltaic coast. They should also be of use in planning of future shoreline management and
decision-making regarding the articulations between coastal protection offered by the wave-built spit
and flooding of the lower delta plain of the Senegal River.
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2. The Senegal River and Delta

The Senegal River is about 1800 km long, and is the second longest river in West Africa after the
Niger. The catchment size has been estimated at 345,000 km2 [15], much of it covering the arid western
Sahel. The river’s discharge has been particularly affected by Sahelian droughts since the 1970s [16].
The mean annual water discharge at Bakel, the reference station of the Senegal River, situated 557 km
upstream of St. Louis, is 676 m3/s, and varies from a mean low dry season value of 10 m3/s in May,
to a mean maximum flood value of 3320 m3/s in September at the height of the rainy season [17].
The interannual variability is extremely high, with a mean annual discharge ranging from 250 to
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1400 m3/s. Little is known of the solid discharge of the Senegal. This solid load has been estimated
at 0.9 to 1 × 106 tonnes a year [18], a rather low figure when viewed against the size of the river’s
catchment and when compared to other tropical rivers. The solid discharge is largely dominated by
suspended load transport [19]. The lower Senegal delta is characterised by high biological productivity
and by rich agricultural and fishing sectors. In November 1985, the Diama dam (Figure 2) was built in
the lower river valley 23 km upstream from St. Louis. The dam was commissioned with the twin aims
of preventing saltwater intrusion, which, hitherto, penetrated up to 350 km upstream in the lower
Senegal valley, and regulating the river’s rainy season discharge in order to improve irrigation of
agricultural lands [15]. The delta plain provides 8% of the arable land of Senegal [20].

The Senegal delta coast is fronted by a relatively narrow continental shelf only 15–20 km wide.
The dominant waves are from the northwest, and this direction is especially prevalent during the
dry season from November to June. One of the objectives of this study is to highlight the salient
characteristics of this “West Coast” wave setting (see Results). The tidal regime along the Langue
de Barbarie is semi-diurnal and the range microtidal, comprised between 0.5 m at neap tides and
1.6 m at spring tides. The relatively moderate river discharge, including during the flood season,
the permanence of moderately energetic waves propagating across a relatively narrow shelf, and the
microtidal regime, are three conditions that have been forwarded to explain the wave-dominated
character of the Senegal River delta [10].

The stratigraphy and patterns of Holocene geomorphic development of the Senegal delta have
been highlighted from borehole data, limited radiocarbon dating, and analysis of plan-view sand
barrier and longshore drift patterns in relation to the courses of the river [21,22]. The delta plain
prograded as a bayhead delta within a confined setting rich in Late Pleistocene aeolian deposits
(Ogolian dunes) that extended as subaerial forms over the then exposed shelf during the last lowstand
that peaked at 19,000 year B.P. [21,22]. Mud supplied by the river and fine sand derived from reworking
of dunes inland by river-channel meandering have generated up to 8.5 km of essentially fine-grained
delta-plain progradation within this bayhead setting. Although the delta plain does not protrude
significantly into the Atlantic Ocean (Figure 2), probably because of the combination of this embayed
setting and the relatively steep narrow shelf, the Senegal has, nevertheless, formed quite a large delta
with an area of about 4254 km2, much of which is subaerial, the ratio of the subaerial to subaqueous
delta being 2:1 [9]. This mud-rich delta plain is bound by massive sandy barriers [21] built by
waves propagating over loose aeolian deposits on the submerged narrow shelf. These coarse-grained
barriers are separated by swales comprising abandoned river courses. Efficient trapping of river-borne
sediments by the aggrading delta plain behind these wave-built sand barriers probably explains the
high subaerial-subaqueous ratio of this delta, which is also consistent with the limited delta bulge
compared to the more cuspate form commonly evinced by wave-dominated deltas. Remnants of these
degraded barriers with beach ridges are discernible within the outer margins of the delta plain south
of St. Louis. These spits are ancestral to the present Langue de Barbarie spit. Michel [21] dated the
formation of these barriers at between 4000 and 1900 B.P. In essence, therefore, much of the Holocene
development of the Senegal delta has consisted in embayment infilling behind the protection of these
sand barriers, thus potentially giving rise to two distinct facies arrangements: wave-built sand bodies
and back-barrier embayment facies represented by infilling fluvial deposits, including fine sands
reworked from the Ogolian dunes by river meandering.

We used European Re-Analysis (ERA) hindcast wave data from 1984 to 2015 generated by the
ECMWF Wave Atmospheric Model to characterise the wave climate affecting the Senegal River delta
and to calculate longshore sediment transport rates along the spit. We then analysed changes in the
position of the river mouth, rates of spit migration and spit width from aerial photographs and satellite
images between 1954 and 2015 in order to characterise the shoreline morphodynamic context of the
delta (see Materials and Methods).
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3. Results

3.1. Wave Climate and Alongshore Sediment Transport

The wave climate of the Senegal delta shoreline is characterised by two components with strongly
contrasting behaviour: wind waves generated locally and a dominant component of long swell waves
from mid- to high latitudes (Figure 3). The region is not directly affected by major storms or cyclones
but the influence of these distant high-energy events in the North Atlantic is materialised in the wave
climate. Averaging over the 1984–2015 period gives annual significant swell and wind wave heights
respectively of Hs = 1.52 m and 0.53, and peak swell and wind wave periods of Tp = 9.23 s and 3.06 s.
The dominant swell waves originate from WNW to N and have a mean direction of 325◦. The direction
graph (bottom, Figure 3) shows a brief August swing dominated by swell waves from the south.
Wind waves show a much wider directional window and a mean of 295◦. There is a clear seasonal
modulation, swell activity peaking during the northern hemisphere winter with strong storm activity
at mid to high latitudes. Wind waves also show larger day-to-day and monthly variability. Contrary
to swell waves, these wind waves are driven by local tropical winds and show peaks in spring and
autumn that correspond to the passages of the Intertropical Convergence Zone over Senegal.
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Figure 3. Mean wave characteristics (significant wave height (Hs), peak wave period (T), and incident
direction (◦)) along the Senegal River delta coast from 1984 to 2015 ERA hindcast data. Orange: swell
waves, blue: wind waves.

As both swell and wind waves originate dominantly from W to N, this results in an oblique
approach to the coastline that generates a large longshore sediment transport (LST) towards the
south. Figure 4 depicts the annual LST along the Senegal delta coast for swell waves and wind waves
computed using the formula of Kaczmarek et al. [23] as described in the Methods Section. The mean
annual net transport induced by swell waves over the 32-year period of the ERA dataset is of the order
of 669 × 103 m3/year, i.e., ~89% of the total transport, the total wind-wave-induced LST amounting
to only 80 × 103 m3/year. LST is very largely dominated by southwards swell-induced drift which
amounts to an annual mean of 611 × 103 m3/year, while net wind-wave-induced transport in the same
direction is only 59 × 103 m3/year. Counter LST towards the north is nearly an order of magnitude
less: 58 × 103 m3/year for swell waves and 21 × 103 m3/year for wind waves, i.e., only ~14% of the
total LST. These computed sediment transport volumes are remarkably similar to those provided by
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the French engineering firm [24] SOGREAH (1994) who calculated a drift volume that decreases from
north to south along the spit from 700 to 600 × 103 m3/year.
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Figure 4. Gross annual longshore sediment transport (LST) along the Senegal River delta coast from
1984 to 2015. Orange: swell waves, blue: wind waves. Note the significant drop in swell-induced LST
between 2009 and 2012, corresponding to a decrease of >35%, and the sharp rise the following year.

3.2. LST and Growth Dynamics of the Langue de Barbarie Spit

The Langue de Barbarie spit is a product of the strong wave action and high LST that have
controlled the morphosedimentary development of the seaward fringe of the Senegal River delta
(Figure 2). These observations and the satellite data also provide insight on the sand sourcing the
seaward face of the Langue de Barbarie, which is derived from the coast and shoreface of Mauritania
updrift of the historic mouth of the Senegal (Figure 1), in agreement with a conclusion also reached
by Barusseau et al. [25]. The satellite data show that the Langue de Barbarie spit is a 100–400 m-wide
feature. The spit is capped by aeolian dunes 5–10 m high. Widening of the spit and dune accretion
occur through abstraction of the large alongshore sediment supply, especially in the distal section
where bare, unvegetated dunes prevail, as well as through distal spit extension [26]. In contrast, the
proximal sector, near St. Louis has been characterised by a much more stabilised dune system. Since
1900, a major coastal management preoccupation in the lower Senegal delta has been that of preventing
natural breaches in the Langue de Barbarie in the vicinity of St. Louis, as this posed a threat for
developing tourist facilities and infrastructure on the spit downdrift of every breach. Spit protection
was achieved through the fixing and consolidation of the aeolian dunes via plantations of Filao
(Casuarina equisetifolia) [27]. The alongshore transport volume would appear to undergo increasingly
larger aeolian dune trapping of sand in the relatively poorly vegetated distal zone, compared to the
relatively more urbanised and vegetated proximal sector of St. Louis. The former zone also represents
one of active remigration following past natural breaches. The longshore gradient in sediment transport
highlighted by SOGREAH [24] would appear to correspond to these morphological variations as one
goes from the proximal to the distal sector of the spit.

The successive locations of the mouth of the Senegal River have been controlled by spit breaching
followed by downdrift spit elongation. Spit breaching has generally been caused by increases in river
water level, especially over the narrowest and lowest parts of the spit [26]. Once breaching occurs,
the new breach is exploited by river discharge, tidal ingression, and waves, and forms a new river
mouth. This leads to the older mouth becoming underfit and sealed by distal spit attachment to the
shore. Natural breaching is attended by spit elongation through the classic formation of dune-capped
beach ridges at the distal end, and this process has undoubtedly been favoured by the shallow overall
depths of the mouth (2.5–3.5 m according to Bâ et al. [28]). The mouth is characterised by bars and spit
recurves, remnants of which are identified in updrift locations on the spit. The mouth bars apparently
serve as platforms for spit extension and eventual river-mouth diversion southwards.

3.3. Historical and Recent Changes of the Langue de Barbarie Spit Prior to the 2003 Artificial Breach

Joiré [29] and Tricart [30] situated the mouth of the river in the vicinity of St. Louis at about
the mid-17th century, while a historical analysis of spit mobility and of the associated locations of
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mouth openings documented even earlier mouth scars north of St. Louis [27]. The Langue de Barbarie
lengthened by 11 km between 1850 and 1900 (about 220 m a year), with a distal tip located 15 km south
of St. Louis at the turn of the 20th century, and the spit was affected over this 50-year period by seven
breaches [27]. Between 1900 and 1973, 13 other breaches occurred across the Langue de Barbarie [27],
thus suggesting a breaching timescale (see Nienhuis et al. [31]) of ~6 years. There were no breaches
between 1973 and 2003.

Following the 1973 breach, the Langue de Barbarie lengthened by 12.5 km (at a mean rate of
~400 m/year) before the spit was artificially breached in 2003. Spit elongation calculated from satellite
images, aerial photographs and field measurements has, however, fluctuated widely from low values
of nearly nil to <170 m/year (1985–1986, 1990–1991) to >1200 m/year (1987–1989, 2000–2002) (Figure 5).
Gac et al. [27] showed that the farthest downdrift position of the mouth of the river, which corresponds
to the maximal distal spit extension, did not exceed 30 km over the 80-year period covered by their
observations, which is close to a value of 28 km reported in an earlier study [32]. The successive
locations of the mouth of the Senegal River since 1973, which also correspond to those of the distal tip
of the southward-extending spit, are shown in Figure 5, alongside the migration rates. The migration
between 1973 and 2003 brought the distal tip of the spit close to the maximum spit length. The data
from satellite images show a relatively narrow mouth (0.25–<1 km-wide) with the exception of the
years 1968–1973 and 1988–1989 when the width exceeded 1.5 km (Figure 6).
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Figure 6. Width of the mouth of the Senegal River delta between 1954 and 2015. Except for the years
1968–1973 and 1987–1988, the width did not exceed 1 km, prior to the 2003 artificial breach. Following
this breach, the width of the mouth fluctuated to attain ~1 km in 2008, which corresponds to the average
width of the “fluvial” river mouth. A further rapid increase, not related to river-mouth hydraulics
(see Discussion), occurred thereafter, peaking in 2013.

3.4. The Artificial Breach in 2003 and Post-Breach Spit and River-Mouth Evolution

An emergency water level in St. Louis prompted artificial breaching, on the night of 3 October
2003, of the Langue de Barbarie in the vicinity of the city to alleviate flooding. This high flood level
had been preceded by several other episodes in the 1990s. One function of the Diama dam was to
alleviate floods in the lower valley, notably in the deltaic sector. Mietton et al. [33] highlighted the
rather mixed results from the flood-control function of the dam since the 1990s, and reported repeated
episodes of severe flooding in St. Louis in 1994 (1.26 m above IGN datum), 1995 (1.21 m), 1997 (1.28 m),
1998 (1.43 m), 1999 (1.47 m), 2001 (1.2 m) and 2003 (1.38 m). The latter events preceding the artificial
breach are depicted in Figure 7. The water level of 1.47 m above IGN datum attained at the height of
the 1999 high-flow season exceeded the 1.2 m flooding threshold for 12 days, and the concern voiced
by the population of St. Louis regarding this flooding progressively brought pressure to bear on the
administrative authorities in their recourse to artificial breaching [34]. A 4 m-long and 1.5 m-deep
trench was cut across a relatively narrow (100 m-wide) portion of the spit about 7 km south of St. Louis
by engineers in the night of 3 October 2003. This induced a rapid overnight drop in water level of up to
1 m (Figure 7) that prevented further flooding [34]. Following this opening, the trench widened rapidly
(Figure 8) and became the new river mouth, a case of inadvertent delta-mouth diversion generated by
humans. The width of this artificial breach grew to 250 m 3–4 days after the opening. The depth of the
breach increased to 6 m by 2007 [28], while the width increased to nearly 2 km in October 2006, three
years after the breach (Figure 6), before decreasing once more to ~1 km in early 2008. Channelling of
the Senegal River flow in the new enlarged mouth led to closure of the former natural mouth located
further downdrift. An accelerated phase of widening ensued afterwards, peaking to nearly 5.5 km
between October 2012 and June 2013 (Figure 6). Figure 9 summarises the dynamics of the spit and river
mouth since the 2003 artificial breach. The rapid widening was related to an additional natural breach
created in October 2012 by overwash 500 m south of the new mouth. Much of the remaining spit
between this new opening and the mouth was eroded through several other washovers that tended to
coalesce, widening the mouth and sea-intrusion pathways, as sand was transported southward by
longshore drift.
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delta, and direct wave attack of parts of the delta plain hitherto protected by the residual spit. 
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Figure 9. Assemblage from Google Earth images showing changes in the Langue de Barbarie spit and
Senegal River mouth between March 2003, prior to the October 2003 artificial breach, and 2015. Black:
Langue de Barbarie spit and beach sand; dark grey: subaerial lower delta plain potentially subject to
river flooding (including St. Louis); light grey: delta plain seasonally flooded by the Senegal River.
From 2012 to 2013, rapid wave-induced erosion of the residual spit downdrift of the mouth led to
considerable mouth widening, an increase in tidal influence within the lower Senegal delta, and direct
wave attack of parts of the delta plain hitherto protected by the residual spit.

4. Discussion

The shoreline of the Senegal delta offers an interesting example of strong wave influence on delta
evolution. Two clear manifestations of this strong influence are the absence of a notable classic deltaic
“bulge”, and the presence of a persistent sand spit, the Langue de Barbarie, an extremely mobile
feature that generates river-mouth diversion. This spit has been subject to repeated past breaches,
and delta-mouth migration over a total distance of 28–30 km at least since the mid-17th century.
The dominant natural mode of behaviour of the Senegal delta shoreline is thus one imprinted by strong
longshore transport of sand generated by Atlantic waves from NW to N. The Senegal River mouth
is thus a fine example of a wave-influenced delta illustrating the relationship between river-mouth
migration, spit elongation and spit breaching by the river mouth [31], although a simple relationship
between these processes cannot be expected because of the influence of fluctuations in river discharge
and river-mouth bar dynamics [11]. Whereas high river discharge and the formation of river-mouth
bars can lead to reduced sediment bypassing, which affects in turn the river-mouth migration rate
and the size of the river-mouth spit [31], reduced discharge at the river mouth, tantamount to a
decrease in hydraulic efficiency, can lead to bypassing of sediment around the mouth, thus reducing
migration [31,35]. Natural breaches of spits barring river mouths and tidal inlets are a commonly
cyclic process determined by a combination of spit lengthening, river discharge and river hydraulic
efficiency, and also in many cases, storm wave action [31,36].

The absence of breaching between 1973 and 2003 associated with the lengthening of the Langue de
Barbarie spit over this period constitutes a much longer timescale than past breaching timescales [27].
The reasons for this are not clear. They are unlikely to be related to the wave climate, which is devoid
of storms, whereas breaching tends to be initiated by high river discharge during the flood season.
The longshore transport volumes, of which the period 1984–2003 may be considered as representative,
fluctuated but presumably were high enough to ensure spit elongation, without natural breaching
updrift that could have been caused by a decrease in the alongshore budget. Spit morphometry (width,
depth and migration range) as a criterion for determining the fraction of the LST sequestered in the
spit, yields a value of 54%. This value is moderate relative to the relatively high hindcast and predicted
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values of the sediment bypassing fraction, β [31] (respectively, 0.83 and 0.74, 1 representing 100%
bypassing) for the Senegal River mouth. These rates are, however, quite similar to those (0.8–0.9)
calculated from our data on spit morphometry and LST using the sediment bypassing fraction equation
and 50% of the river mouth depth as an estimate of the “updrift sediment spit depth” (see Materials
and Methods). The mouth of the Senegal has thus been characterised by moderate to high bypassing
that assured a degree of growth of the Langue de Barbarie but also the stability of the barrier and
coast downdrift of the 2003 artificial breach. The absence of breaching over this long phase has been
attributed to a decrease in river discharge [37]. Unfortunately, there are no available data on river
water discharge to enable us to tie up natural breaches with the hydraulic efficiency of the river mouth.
Mietton et al. [33] noted a total absence of critical floods between 1974 and 1993 associated with the
Sahelian drought. This period also incorporates the construction of the Diama dam in 1986.

While the breaching timescale since 1973 appears exceptional compared to the pre-1973 conditions,
the breaching length is also an important parameter in the onset of breaching [31]. The elevation of the
water surface at the upstream boundary of a river channel is directly related to the channel length,
such that an increase in the latter, as the river mouth migrates, results in a constant water surface
slope, with the eventuality of breaching when a critical channel length is attained [31]. Guilcher [32]
and Gac et al. [27] reported that the Langue de Barbarie spit generally did not exceed a maximum
length of 28–30 km, beyond which breaching tended to occur. This length probably corresponds to the
breaching length defined by Nienhuis et al. [31]. There is a probability, therefore, that a natural breach
could have been imminent close to the time frame of the 2003 artificial breach. A reason for advancing
this hypothesis is the increase in flooding (Figure 7), which suggests increasing impoundment of
flood waters over the lower delta plain and decreasing hydraulic efficiency of the mouth. Whereas
natural breaching has been a characteristic of the spit, spit instability since 2003 reflects, in part, the
consequences of hasty artificial breaching to solve an impending flooding problem facing St. Louis.
By protecting St. Louis and numerous smaller settlements and agricultural land within the delta plain
from waves and marine influence, the spit is a major feature of the dynamics and management of the
Senegal delta shoreline. Paradoxically, by impounding flood waters of the Senegal River, the spit also
contributes to a flood risk that has grown apace with the urban extension of St. Louis. The long phase
of absence of breaching between 1973 and 2003 coincided with a period of rapid tourism development
in the Senegal delta associated with the emplacement of tourist infrastructure on the rectilinear spit
that provided sandy grounds well above flood level. Although much of the lower delta is characterised
by a population density of only about ten inhabitants/km2, there are zones of very high population
concentrations, as in St. Louis and certain areas of the Langue de Barbarie such as Guet-Ndar (Figure 9)
where the 2013 census shows densities exceeding 80,000 inhabitants/km2 [6]. The artificial breach
annihilated the risk of flooding of St. Louis in 2003 and in the following years by enabling more rapid
seaward drainage of river water during the high-flow season [34].

As in the pre-2003 period, the sediment bypassing fraction, β [31], across the mouth of the Senegal
River has been quite high (0.8–0.9), although balancing spit morphometry against LST over the same
period suggests up to 40% of sand locked up in spit growth, a value lower, however, than that of the
pre-2003 breach. There have been marked fluctuations in spit growth, however, with even spit erosion
in 2005–2006, 2008–2010 and 2012–2013. Under conditions of spit growth, sand has been incorporated
in new recurves that mark the current form of elongation of the residual updrift spit sector, which is
also characterised by an enlarged distal tip (Figure 9). The reasons for alternations between spit growth
(including widening) and spit erosion are not clear. They may be related to variations in higher-energy
waves, and potentially varying LST, as shown by the drop in the number of days with high-energy
waves in 2012 (Figure 10) and the correlative drop in LST (Figure 4), but they could also be an outcome
of variability in river discharge and sediment bypassing.



Water 2017, 9, 357 12 of 17
Water 2017, 9, 357 12 of 17 

 

 
Figure 10. Significant heights (Hs) of high-energy waves (±1.6 standard deviations around mean Hs) 
from 1999 to 2015 (top); and number of days per year with high-energy waves along the Senegal 
River delta coast, derived from ERA hindcast data (bottom). Orange: swell waves (Hs ≥ 2.37 m), blue: 
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Figure 10. Significant heights (Hs) of high-energy waves (±1.6 standard deviations around mean Hs)
from 1999 to 2015 (top); and number of days per year with high-energy waves along the Senegal River
delta coast, derived from ERA hindcast data (bottom). Orange: swell waves (Hs ≥ 2.37 m), blue: wind
waves (Hs ≥ 1.36 m). Note the significant drop in high-energy swell waves in 2012 (see also Figure 4).

Over this post-2003 period, fluctuations of the width of the river mouth (Figure 6) are presumably
a function of the balance between the river’s hydraulic efficiency, including the tidal discharge, and
incident wave energy and sediment bypassing [11]. The width of the “fluvial” mouth of the river is
very likely in the range of ~0.5–1 km, which is the “usual” mouth width (Figure 6) and the stabilised
width attained shortly after the artificial breach. The rapid widening between October 2012 and June
2013 occurred following wave overwash and erosion of the remaining spit downdrift of the mouth.
This rapid erosion would appear to result from a combination of the most significant drop in LST
recorded (2010–2012) over the period 1984–2015 (Figure 4), with a lag effect in time, and possible
sequestering of sand in the river mouth. Lower bypassing (due to higher river discharge?) and a sharp
increase in LST from 2012 to 2013 (an increase of about ~45% relative to the 2010–2012 LST (Figure 4))
could explain the ensuing exceptionally rapid elongation of the Langue de Barbarie spit between
June 2013 and May 2015 (~2 km) (Figure 9). A review of conceptual advances in wave-river-mouth
interactions [11] and modelling of alongshore sediment bypassing at river mouths [31] have shown
that waves refracting over the river-mouth bar create a zone of low alongshore sediment transport
updrift which reduces sediment bypassing. These observations imply that the LST potential south
of the new mouth is being assured by a degree of “cannibalisation” of the rest of the spit, as sand
transported from the north has been increasingly trapped updrift of the wider mouth, presumably
leading to lower bypassing. Except for 2007–2009, and 2010–2011, this sector has been in erosion.
This demise of the spit downdrift of the new mouth has led to the destruction of villages, campsites
and other tourist structures. The delta plain in this eroding sector is now directly exposed to ocean
waves and erosion that are threatening numerous villages.

Much of the lower delta plain and the main river channel are now situated over 20 km upstream
of the former mouth, between the new mouth and the anti-salt intrusion Diama dam that confines
the tidal prism to the lower delta plain. In consequence, the much wider mouth appears to have
become favourable to a larger tidal prism, manifested by an increase in the tidal range in St. Louis, and
confirmed by recent studies [33,34]. Durand et al. [34] showed that the maximum semi-diurnal tidal
range downstream of the Diama dam has increased three-fold, from a mean of 0.30 m in 2001–2002 to
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0.93 m in 2004–2005, whereas the mean maximum spring tide range attained 1.18 m, for a predicted
value of 1.29 m, along the Langue de Barbarie spit. These authors have also noted that the semi-diurnal
tidal effects are now more clearly expressed even during the high river flood waters. The impacts
of these changes are still to be studied, but it may be expected that they are leading to increasing
soil salinization in the lower delta plain, to the extension of bare saline flats, and to modifications
in biodiversity.

The extent to which accelerated subsidence, one of the two major causes of delta vulnerability
(together with rapid and chronic erosion), affects the delta is not known, although it may be inferred
that a decreasing sediment load and damming may be contributing to more exacerbated flooding in
the delta plain. However, the problem seems to have more to do with accelerated urbanisation of St.
Louis over the last few decades, bringing new populations to encroach on areas of the delta that are
susceptible to flooding during exceptionally wet years. Durand et al. [34] have highlighted the potential
vulnerability of the city and the surrounding low delta plain to sea-level rise. Their model simulating
flood propagation in the city, and based on various sea-level scenarios, shows the susceptibility of
St. Louis to flooding during the highest annual water levels in the course of the 21st century.

5. Materials and Methods

5.1. Waves and Wave-Induced Longshore Transport

In order to estimate the wave-induced alongshore transport on the Langue de Barbarie,
we extracted bulk wave parameters (significant height Hs, peak period Tp and direction of both
swell and wind waves) from hindcast data in the Atlantic Ocean between 1984 and 2015, generated by
the ECMWF Wave Atmospheric Model (WAM) model [38]. The wave data are part of the ERA-Interim
dataset, which involves a reanalysis of global meteorological variables [39,40]. Wave data were
extracted from the ECMWF data server on a 0.5◦ × 0.5◦ grid, with a 6-h temporal resolution and
covering the sector 16.5◦ N/17◦ W. The ERA-40 and the following ERA-Interim reanalysis are the first
in which an ocean wind–wave model is coupled to the atmosphere, and the quality of the wave data has
been extensively validated against buoy and altimeter data. Sterl and Caires (2005) [40] demonstrated
a very good correlation between the ERA-40 data and these sources, except for high waves (Hs > 5 m)
and low waves (Hs < 1 m), which tend, respectively, to be under- and over-estimated [41]. These critical
wave conditions are not typical of the relatively constant wave regime affecting the Senegal delta coast,
and extreme wave condition issues reported for ERA-40 are partially resolved for higher resolution
ERA-Interim. However, the Senegal coast has scarce observations, and this affects the hindcast quality.
ERA-40 and -Interim results in this region should be taken with caution.

Several alongshore sediment transport formulae exist and are widely applied by coastal engineers
and dynamicists. However, there is still an important research effort on the improvement of alongshore
sediment transport parameters and no large consensus on the choice of a formulation, as dispersion
between predictors is often substantial [42], and validation dataset at the regional scale scarce. Here,
we chose the formula of Kaczmarek et al. [23] because of its straightforward implementation for remote
sites such as the Langue de Barbarie where only limited observations exist and because it has been
applied to similar environments [43,44]. The amount of sediment drifting alongshore was computed
as follows:

Q = 0.023
(

H2
b V
)

i f
(

d2
bV
)
< 0.15 (1)

Q = 0.00225 + 0.008
(
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)
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(
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)
> 0.15 (2)

where Hb is the breaking wave height and V an estimation of the alongshore current within the surf
zone derived from the commonly used formula of Longuet-Higgins [45]:

V = 0.25kv
√

γgdb sin2αb (3)
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where αb is the local breaking wave angle, γ = Hb/db = 0.78 is the breaker parameter constant [46], g the
gravitational acceleration (m/s2), Hb the breaking wave height, db the local water depth and kv an
empirical constant. Here, we used kv = 2.9 based on the values of Bertin et al. [43] for wave-dominated
environments with similar grain-size characteristics. A separate computation for sediment transport
induced, respectively, by wind waves and swell waves was conducted.

Alongshore sediment transport formulae necessitate breaking wave parameters as inputs, but
global wave hindcast only provide deepwater characteristics. While a nested model (e.g., SWAN or
WW3) to propagate waves from deepwater to the breakpoint would be ideal for a short-term study,
the present analysis focuses on seasonal to inter-annual wave variations covering a long period of 32
years. We chose therefore to use the direct breaking wave predictor proposed by Larson et al. [47].
This formula provides breaking wave height Hb and angle αb from deepwater wave height Ho, period
T and incidence angle α0:

Hb = λC2/g (4)

αb = asin
(

sin(α0)
√

λ
)

(5)

with a correction factor λ computed as:
λ = ∆λa (6)

considering
∆ = 1 + 0.1649 ξ + 0.5948 ξ2 − 1.6787ξ3 + 2.8573 ξ4 (7)

ξ = λasinθ0
2, λa = [cos(α0)/θ]2/5, θ =

(
C√
gH

)4(
C
Cg

)
γ2 (8)

where deep water phase celerity is given by C = 1.56T, wavelength L = 1.56T2, and group celerity
Cg = C/2.

5.2. Shoreline Change and Spit and River-Mouth Dynamics

In order to highlight recent deltaic shoreline changes, we resorted to available aerial photographs
(1954), a CORONA satellite image (1968) and LANDSAT (1984–1988, 1992, 1999–2004, 2006–2011,
2013, 2015–2016) and SPOT satellite images (2005) with moderate pixel size resolution (30 to 60 m)
made available by the USGS and the French IGN. The main items analysed were spit length and
corresponding migration rates, spit width, and river-mouth width and the underlying dynamics.
The spatial data were chosen to cover the entire “delta-influenced” shoreline for each year of analysis
and with a cloud cover not exceeding 10%. We limited our choice to images taken at low tide and
systematically in January of every year to minimise seasonal and tidal distortions (tides induce very
little variability in the microtidal context of the Senegal River delta). The results on shoreline change
were completed by a literature review on the past dynamics of the Langue de Barbarie and by field
observations of this spit conducted in 2005, 2007 and 2016.

Based on data from the satellite images and aerial photographs on spit and river-mouth
characteristics, the fraction of sediment bypassing the mouth, β, assuming conservation of mass,
was inferred from the following relationship [31]:

ν = Qs(1 − β)/Ab (9)

where ν is the migration rate of the mouth (m·s−1), Qs is the volumetric alongshore sediment transport
rate (m3·s−1), and Ab = Ws·Ds which is the cross-sectional area of the river mouth spit (m2) composed
of blocked littoral sediment from the updrift coast, Ws the width of the spit, and Ds spit updrift
sediment depth.
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