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Abstract

This experimental work investigates buoyant flow in a differentially heated vertical channel lo-
cated inside a water cavity. The flow is found to be highly unsteady, and the key aspect of this
study is to consider this unsteady behavior as a succession of states that turn out to be driven
by the flow outside the channel. A conditional mean operator with respect to the average wall
temperature is used to disentangle the different states through which the flow passes. Most of
these states are characterized by a transition from laminar heat transfer in the bottom part of
the channel to turbulent heat transfer, with a transition point that moves toward the exit as the
average wall temperature increases. For the highest values of the average wall temperature, no
transition is observed, and the heat exchange is found to be similar to that along a single vertical
plate. For an intermediate range of wall temperature, a transition zone with turbulent heat trans-
fer is observed in the upper part of the channel, and the heat transfer is found to follow the same
laws as found for a symmetrically heated channel. For the lowest values of the wall temperature,
the beginning of the turbulent zone is observed near the entry. The analysis is extended to sev-
eral channel widths. The origin of the unsteady behavior is attributed to the flow in the whole
cavity, and the conditional mean operator allows characterization of the flow inside the channel
independently from the flow in the surroundings.

Keywords: Natural convection, Turbulent heat transfer, Unsteady flow, Vertical open channel,
Conditional mean operator
PACS: 44.25.+f, 44.15.+a, 47.27.te

1. Introduction

Natural convection has been widely studied for passive cooling of electronics components
and optimization of cooling fins, and its properties in these situations are now fairly well under-
stood. However, natural convection in larger structures such as double-skin façades on buildings
poses a much trickier problem, since the flow exhibits transitional or turbulent regimes that are
less well understood. A typical configuration for convection around vertical geometries is that of
natural convection in an open vertical channel with wall heating in infinite surroundings. In that
case, one may define a modified Rayleigh number to characterize the flow: Ra∗b = gβqwb5/λνκH,

∗Corresponding author
Email address: herve.pabiou@insa-lyon.fr (Hervé Pabiou)
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where g is the gravitational acceleration, qw the wall heat flux, b and H the width and height of
the channel, and β, ν, λ, and κ the volumetric thermal expansion coefficient, kinematic viscosity,
thermal conductivity, and thermal diffusivity of the fluid, respectively. The Rayleigh number
compares the buoyancy term that tends to lift the fluid with the viscous and thermal diffusive
terms that tend to slow it down. Natural convection flow in vertical channels has been intensively
investigated for many years for applications at low Rayleigh number (Ra∗b < 105) [1]. How-
ever, there has been little investigation of high-Rayleigh-number cases, which are appropriate for
applications such as photovoltaic double-skin façades (Ra∗b ∼ 1010).

For high-Rayleigh-number natural convection flow, transitions from laminar to turbulent flow
have been reported. Miyamoto et al. [2] studied a 5 m-high air channel heated on one wall with
an isoflux condition, the other wall being adiabatic. The wall temperature and velocity were
measured for several aspect ratios (H/b = 100, 50, and 25). The maximum wall temperature
was located between 1 and 2 m above the channel inlet for modified Rayleigh numbers between
2×104 and 2×107. The authors attributed this maximum to a transition from laminar to turbulent
flow. A few years later, Webb and Hill [3] studied natural convection flow in a vertical air
channel under an isoflux heating condition on one wall with adiabatic extensions and an adiabatic
condition on the other walls. Modified Rayleigh numbers ranging from 503 to 1.75 × 107 were
reached. The authors found no indication of transition to turbulent heat transfer in any of their
experiments. A correlation between the local Nusselt number and the local Grashof number for
modified Rayleigh numbers below 107 was found. More recently, a transition has been observed
by Daverat et al. [4] on the same experimental bench as used in the present study but with a
symmetrical heating configuration. A 611 mm-high and 45 mm-wide water channel was heated
with a uniform heat flux on both walls to reach Ra∗b = 1.7 × 106 – 4.3 × 107. A change in
flow behavior was observed at Ra∗b = 107. Detailed observations of the behavior on the same
experimental bench have been reported in a recent work by the same team [5]. The channel was
heated on its two walls with a uniform heat flux qw = 1150 W m−2; its width was b = 59 mm,
giving a modified Rayleigh number Ra∗b = 6.7× 107. Temperature and velocity measurements in
several sections of the channel showed that this change in behavior corresponded to a transition
from laminar heat transfer in the bottom part of the channel to turbulent heat transfer in the upper
part. More precisely, below x/H = 0.71, most of the heat was transported in the conductive
sublayer, whereas above x/H = 0.71, a significant part of the heat was transferred by fluctuations
to the center of the channel, leading to a sudden increase in the temperature of the bulk flow.
This transition is analyzed in detail by Li et al. [6] through a scaling analysis. Assuming a
two-dimensional mean flow, the half-channel is split into seven zones where the momentum and
energy equations are reduced to their leading terms. The heat transfer in the bottom part is shown
to be similar to that along a single heated vertical plate with a wall temperature that obeys the
following power law [7]:

〈∆Tw〉t (x) =
〈
∆Tw,T

〉
t

(
x
〈xT 〉t

)1/5

(x ≤ 〈xT 〉t) (1)

where x is the distance to the entry, xT (t) is the height of the transition, ∆Tw(x, t) = Tw(x, t) −
Tentry(t), Tw(x, t) is the local wall temperature, Tentry(t) is the temperature at the entry and 〈 〉t is
the time-average operator, ∆Tw,T = ∆Tw(xT , t). In the upper part, αqw denotes the horizontal heat
flux through the edge of the conductive sublayer toward the center of the channel. The decrease in
wall temperature above the transition is found to be well approximated by the following equation:
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〈∆Tw〉t (x) =
〈
∆Tw,T

〉
t

(
α + (1 − α)

x
〈xT 〉t

)1/5

(x ≥ 〈xT 〉t) (2)

with α = 2.6. This decrease in wall temperature is a consequence of a transition from laminar to
turbulent heat transfer. More precisely, Eq. (2) models a transition zone, and the fully turbulent
regime with an increasing wall temperature is not observed in this study. These works show that,
for a symmetrically heated channel, the transition is triggered by the meeting of the two shear
layers that develop in the left and right half-channels between the velocity peaks close to the
walls and the center of the channel. By comparison, Liu and Vliet [8] observed the beginning
of the transition zone in a vertical flat-plate configuration in a water flow at Rax = 1013, where
Rax is defined by Eq. (8a). In the study by Daverat et al. [5], the Rayleigh number at the exit
of the channel, RaH , is slightly less than 1013, indicating that in a symmetrically heated vertical
channel, the transition point is moved down with respect to the single-plate configuration.

Furthermore, flow reversals re-entering the channel from the outlet have been observed in
several studies with asymmetrical wall heating. Sparrow et al. [9] performed an experimental
study of flow reversals in a 14.5 cm-high water channel with an isothermal condition on one
wall. They observed a V-shaped flow reversal close to the unheated wall near the outlet of the
channel. For three different channel widths, a Nu–Ra correlation was established. It is interesting
to note that this correlation is similar to that found for a single vertical heated plate at uniform
temperature by Ostrach [10]. Sanvicente et al. [11] observed unsteady flow reversals in a 1.5 m-
high air channel with isoflux heating on one wall, the other wall being adiabatic. They suggested
that these structures originated from fluctuations in the surroundings. Flow reversals have also
been studied by Dupont et al. [12], who used a 600 mm-high air channel with asymmetrical
heating condition. They classified the flow into three states: no reversal, intermittent reversals,
and permanent reversal. Their results also showed that the width of the recirculation zone was
proportional to the width of the channel and independent of the Rayleigh number. Recently, Fu
et al. [13, 14] performed a numerical study of flow reversal in an asymmetrically heated channel
with constant temperature and adiabatic boundary conditions. They found that flow reversals
occur more frequently for large channel widths and that they are strongly linked with the pressure
distribution at the outlet. At present, it is not known whether or not these observations also hold
for isoflux conditions.

In addition to studies of flow reversal over long durations, transient development of reversal
at the beginning of heating has also been investigated. Polidori et al. [15] investigated transient
flow in a vertical water channel with the same configuration as in Webb and Hill’s study. They
observed flow structures during the first few minutes after the onset of heating. Flow visualization
showed that reversed flow was established after 5 minutes of heating, and velocity measurements
revealed its unsteady nature. This study highlighted the fact that the recirculation zone may
reach the entry of the heated zone. The same team [16] also visualized flow after 50 minutes of
heating and measured the length of the recirculation zone as a function of the Rayleigh number
and the aspect ratio H/b. A figure-of-eight shaped structure was used to describe the reversed
flow. These authors observed that the overall length of the structure decreased with increasing
Rayleigh number or aspect ratio.

In a numerical study by Garnier et al. [17], natural convection flow was shown to develop in
an open vertical channel with asymmetrical isoflux heating, within enclosures of different sizes.
At the onset of heating, the fluid flowed out of the channel like a plume that evolved in time and
space. These numerical results indicated that the direction of the plume jet and the enclosure
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size both had a strong influence on the global recirculation in the channel. Indeed, the hot fluid
that flows out of a heated channel can be viewed as a thermal plume. Atmane et al. [19] studied
the phenomenon of plume oscillation in a natural convection flow around a vertically confined
and horizontal heated cylinder. They conducted temperature and velocity measurements on an
experimental bench with water as the fluid. The plume was observed to move from one side
of the vertical axis of the cylinder to another. The authors suggested that the oscillations of the
plume could result from interactions between the two secondary vortices above the cylinder and
the free surface, since horizontal displacement of one of the vortices will induce movement of
the vertical plume to one side or another.

It is clear from this literature review that the transition to turbulence and of flow reversal in
natural convection in vertical channels are still not fully understood.

The objective of the present work is to study heat transfer in an asymmetrically heated chan-
nel with isoflux boundary conditions inside a finite cavity. As the flow turns out to be unsteady,
the aim is to provide a heat transfer model in an unsteady flow, to highlight the effect of the finite
size of the cavity and to understand the influence of the aspect ratio of the channel. The paper
is organized as follows. After a description of the experimental apparatus, the buoyant flow is
characterized and a global picture of the flow is given. The unsteady heat transfer is analyzed
using a conditional mean operator, and a heat transfer model is presented. The influence of the
flow that develops outside of the channel is then highlighted. Finally, different aspect ratios are
studied. The final part of the paper is devoted to a discussion of the origin of flow unsteadiness.

Nomenclature
b Channel width (m)
B(g) Fixed error of a quantity g (units are those of g)
g Acceleration due to gravity (m s−2)
H Channel height (m)
l Channel depth (m)
Nux Local Nusselt number, Eq. (8b)
Pe Mean pressure outside the channel (Pa)
P̂e Mean driving pressure outside the channel (see Appendix B) (Pa)
qw Mean wall heat flux (W m−2)
qc,sym Turbulent vertical heat flux outside the conductive thermal boundary

layer in the top part of the channel in a symmetrically heated channel
(see Eq. [42] in [6]) (W m−2)

Ra∗b Modified Rayleigh number, Ra∗b = gβqwb5/λνκH
Rax Local Rayleigh number, Eq. (8a)
S External stratification parameter, Eq. (11)
t Time (s)
T Temperature (K)
U,V Mean velocity component in the x, y directions, respectively (m s−1)
−→
Ue Mean velocity vector outside the channel (m s−1)
−→
u′e Velocity fluctuation vector outside the channel (m s−1)
UI Typical velocity of laminar flow along a vertical flat plate (m s−1)
u′, v′ Instantaneous velocity fluctuations in the x, y directions, respectively

(m s−1)
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x Distance from inlet in the ascending direction (m)
xT (t) Instantaneous height of the transition
y Distance from the left wall (m)
YU=0 Distance from the heated wall of the position of zero vertical velocity

at x/H = 0.75 (m)
Ycell y position of the plane separating contrarotating cells located imme-

diately above the channel (m)
z Distance from the front lateral wall (m)
αqw Horizontal heat flux through the conductive sublayer in the top part

of the channel (W m−2)
β Isobaric thermal expansion coefficient of water (K−1)
δV conductive thermal boundary-layer thickness in the bottom part (m)
θw(x) Reduced wall temperature, Eq. (4) (K)
Γ = H/b Aspect ratio
∆Tw(x) Mean wall temperature difference at the entry of the channel (K)
∆TI Typical temperature difference with respect to the inlet temperature

of laminar flow along a vertical flat plate (K)
E(g) Uncertainty of a quantity g (units are those of g)
κ Thermal diffusivity of water (m2 s−1)
λ Thermal conductivity of water (W m−1 K−1)
ν Kinematic viscosity of water (m2 s−1)
ρ Density of water at the reference temperature (kg m−3)
Operators
σg Root mean square of a quantity g (units are those of g)
〈· 〉ξ Averaging operator over a variable ξ
〈·|θw〉 Conditional mean operator, Eq. (5)
∇ Partial derivative operator
· Dot product of two vectors
⊗ Tensor product of two vectors
Subscripts
inlet Referring to channel inlet
e Referring to the surroundings of the channel
max Referring to the maximum
H Referring to the channel outlet
T Referring to the height of the transition
w Referring to the heated wall
x < xT Referring to the bottom part of the channel
x > xT Referring to the top part of the channel

2. Experimental apparatus

A natural convection flow is achieved in a vertical water channel heated on one wall, the other
wall being adiabatic. The experimental set-up is the same as the one used in Daverat et al. [4],
except that, in this study, the vertical heated plate is made of stainless steel and the adiabatic one
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(a) (b)

Figure 1: (a) Schematic illustration of the experimental apparatus. (b) Detailed view of the apparatus. The positions of
the thermocouples are indicated by the markers •. The insulation of the glass tank and the cooling system are not shown.

of polycarbonate. Another difference is that the flow velocity is measured using particle imaging
velocimetry (PIV) rather than laser Doppler velocimetry.

The apparatus is made of two waterproof boxes immersed in a water tank as shown in Fig. 1.
One side of each box, which is the heated or adiabatic wall of the channel, is stuck on a polycar-
bonate frame and the other side, made of thick polycarbonate, is screwed onto the frame. Twelve
electrical heaters are stuck onto the back of each channel wall (the heaters stuck onto the poly-
carbonate plate are disconnected in this study) and insulating material is added to the back of the
heaters to reduce heat loss (each heater is equipped with a heat flux meter to measure losses from
its back). The depth (z direction; see Fig. 1a) of each waterproof box (l = 230 mm) is equal to the
internal width of the tank, so the lateral walls of the channel are the glass walls of the tank. The
distance between the two waterproof boxes, which is the channel width b, is adjustable between
0 and 14 cm. The lateral walls of the tank are covered by a 5 cm-thick layer of insulating material
with a thermal conductivity of 0.033 W m−1 K−1, except for one lateral wall of the channel, which
is left uncovered to allow velocity measurements. The water outside the channel is cooled with
an external thermal regulation system that pumps hot water far from the channel and discharges
cold water near the exit of the channel (see “Water suction” and “Water discharge” in Fig. 1b).
The cooling loop consists of a bath and a pump with variable flow rate. The temperature of the
room in which the experimental set-up is located is controlled within ±2 K.

x is the ascending vertical, y is the distance to the heated plate, and z is the horizontal axis
parallel to the heated plate. The origin of the vertical axis x = 0 is defined as the beginning of
the heated zone. Heat losses through the lateral walls (the xOy planes) are estimated through a
specific experiment. The exit of the channel is closed by a foam block so that a significant part
of the injected power is dissipated through the lateral walls. A basic thermal model is built and
thermal resistance are identified by using measurements of several experiments. This method
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leads to an uncertainty around ±2% of the injected heat flux. Thus, an adiabatic boundary condi-
tion is assumed for the lateral walls of the channel. Thermocouples have been added to the bench
described in Daverat et al. [4]. Wall temperatures are measured at the center of each heater and
between every two heaters. More precisely, 25 thermocouples are embedded in each wall along
the central axis (z/l = 0.5) as shown in Fig. 2. Temperatures are also measured outside the chan-
nel by thermocouples located along the two stems behind each wall (Fig. 2). All thermocouples
are calibrated by using an in-house system that leads to an uncertainty of ±0.1 ◦C in the temper-
ature measurement. Velocity fields are obtained using a PIV system consisting of an Nd:YAG

Figure 2: Positions of the thermocouples. The left stainless-steel wall is heated with a constant heat flux. The right
polycarbonate wall is adiabatic.

double-cavity laser and a CCD camera. The seeding tracers are 20µm polyamide particles with
a mean density of 1.4 kg m−3. A laser sheet illuminated from the top of the water tank is obtained
in the central vertical plane of the channel (z/l = 0.5). The camera in front of the water tank
records images at the outlet level of the channel with an observation window of 281 × 281 mm2

(including the last 180 mm of the channel height and 100 mm above). A double-frame recording
with a time interval of 65 000µs is taken for a duration of 10 h at a frequency of 0.2 Hz. The
recorded film is post-processed and velocity fields are obtained using DaVis LaVision software.
The uncertainty on velocity comes from three sources: image calibration, sedimentation of trac-
ing particles, and uncertainties in particle positions due to lack of image resolution. Concerning
the calibration process, the identification of a known distance on the image of a test pattern leads
to an uncertainty of ±0.1 mm.s−1. The effect of sedimentation is estimated through the Stoke ve-
locity of a particle which induces an uncertainty of ±0.1 mm.s−1. The largest uncertainty comes
from the identification of the position of the particle in the 32 × 32 pixels2-correlation-windows
which leads to uncertainty of ±0.5 mm.s−1. Following Ref. [18], these independent uncertainties
are combined through the root-sum-square method and the overall uncertainty in the velocity is
estimated as ±0.5 mm s−1. All temperature and velocity measurements are made in the central
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plane xOy of the channel at z/l = 0.5. The acquisition rate for temperature and heat-flux mea-
surements is 0.17 Hz. The main uncertainties are ±2% in the injected heat flux, ±0.1 ◦C in the
temperature, and ±0.5 mm in the location of the thermocouples embedded in the heated walls.

The experiment presented in this study lasts more than 300 h, but we only consider the range
t = 190–240 h during which the flow rate of the cooling loop is fixed at 1.8 L min−1. As al-
ready mentioned, the average temperature of the cavity is controlled by a cooling system that
injects temperature-regulated water through diffusers near the exit of the channel (Fig. 1b). Sev-
eral flow rates of the cooling system have been tested over more than 300 h to check whether it
modifies the long-term behavior. As explained below, the wall temperature is always unsteady
over long times, and, as far as it is possible to compare such flows, no change in heat transfer
could be attributed to the cooling system. With regard to local disturbances created by the injec-
tion of cold water, it is important to note that we use a geared pump that is known to produce
weak disturbances. Incidentally, the typical timescale of the fluctuations of the cooling system is
much smaller than the typical timescale for measurement of the wall temperature and cannot be
responsible for the unsteady flow described below.

The results given in Sections 3.1–3.4 correspond to a configuration characterized by a channel
width b = 40.6 mm and a heat flux qw = 3677 W m−1 to reach a modified Rayleigh number
Ra∗b = 3.2 × 107, the thermophysical properties being taken at Tref = 34 ◦C. This reference
temperature corresponds to Tref = (

〈
Tentry

〉
t
+ 〈Tw〉t,max)/2, where 〈Tw〉t,max is the maximum of

the time-averaged temperature of the heated wall. The measurements analyzed in this study
correspond to a range where the temperature at the entry reaches a quasi-steady state. The 10 h-
long velocity measurement by PIV corresponds to the period t = 220.1–230.1 h. A comparison
with other experiments at different widths is presented in Section 3.5.

3. Results

3.1. Phenomenological description of the flow behavior
Fig. 3 shows the time evolution of 〈∆Tw〉x (t), where 〈 〉x is the x-average operator, ∆Tw(x, t)

being measured in the symmetry plane z/l = 0.5 (see Fig. 2 for the distribution of the thermo-
couples). At first glance, a particular behavior with small fluctuations around a high value can be
seen between t = 222.7 h and t = 223.4 h. For convenience, this particular behavior is hereinafter
referred to as the single-plate mode, the name being justified in the following sections. To get an
approximate quantification, a rough criterion, which is used only in this section, is given by

〈∆Tw〉x (t) ≥ 〈∆Tw〉x,t + σ〈∆Tw〉x (3)

where σ〈∆Tw〉x is the root mean square (rms) value of 〈∆Tw〉x. This criterion defines a threshold
for the average wall temperature above which the flow is considered to be in this particular state.
Using this criterion, the single-plate mode appears several times, with durations ranging from a
few minutes to almost one hour.

In order to link this thermal behavior with the velocity fields, the evolution of the vertical
velocity measured by PIV near the outlet of the channel is compared with the evolution of the
wall temperature at the same time (t = 220.1–230.1 h). Fig. 4 shows the evolution of the wall
temperature and of the instantaneous velocity profile at x/H = 0.75. The most obvious appear-
ance of the single-plate mode observed on the temperature (see Fig. 4a between t = 222.7h and
t = 223.4h) seems to be associated with negative velocities reaching −5 mm s−1 in a zone that
occupies more than half of the channel width. In terms of the penetration depth of this reversed
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Figure 4: (a) Evolution of the wall temperature at x/H = 0.75 for the time period t = 220.1–230.1 h during which
velocities are measured. (b) Temporal evolution of the instantaneous vertical velocity profile averaged over 0.73 ≤
x/H ≤ 0.77 for t = 220.1–230.1h.
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time. Red squares correspond to the single-plate mode according to Eq. (3).

flow, PIV velocity images provide a visualization only of the upper part of the channel above
x/H = 0.7. However, the velocity fields show that the large-scale reversed flow that occurs
during the single-plate mode reaches at least to x/H = 0.7.

The longest appearance of the single-plate mode around t = 222.7–223.4 h is accompanied
by a flow reversal persisting for this entire duration. For other shorter appearances, Fig. 5 shows
the vertical velocity averaged over 0.73 ≤ x/H ≤ 0.77 and over the section 0 ≤ y/b ≤ 1 as a
function of time as well as the moments corresponding to the appearance of the single-plate mode
according to Eq. (3). The appearance of the single-plate mode corresponds to the lowest values
of the bulk velocity. However, it is worth noting that there are several negative velocities without
the presence of the single-plate mode (e.g., t ≈ 220.3 h). More generally, negative instantaneous
bulk velocities are, most of the time, observed during the single-plate mode in Fig. 5, and similar
observations are made at other positions x/H. Indeed, the flow rate seems to vary in time, with
observations of negative bulk velocity during very short times and of persistent negative velocity
sequences that are identifiable as the single-plate mode. Therefore, one can see the flow behavior
as continuously evolving but sometimes locked in the single-plate mode. This description is
explored in detail in Section 3.2.

3.2. Global picture of the flow
To obtain a more detailed description of the unsteadiness, a conditional mean operator, based

on the average wall temperature, is defined as the mean value of a quantity over a subset of times
for which a given condition is fulfilled. Let θw denote the reduced wall temperature:

θw(t)=̇
〈∆Tw〉x − 〈∆Tw〉x,t

σ〈∆Tw〉x

(4)

The conditional mean 〈g|θw〉 of a given quantity g with respect to θw is defined as follows (see
Chapter 12 in [20] for a rigorous definition):

〈g|θw = θ〉 =̇ 〈g(t) such that |θw(t) − θ| < dθ/2〉 (5)

where 〈 〉 is the arithmetic mean operator and dθ is a small step chosen to be consistent with the
resolution of the temperature measurement, which is around 0.2 ◦C in this study. In the same
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Figure 6: Conditional mean: (a) wall temperature and (b) vertical velocity component averaged over 0.73 ≤ x/H ≤ 0.77.

way, one can define the conditional rms value of a quantity by replacing the arithmetic mean
operator in Eq. (5) by the standard deviation operator. To retrieve the time-average value from
the conditional mean, one needs to know the probability density function (pdf) of θw:

〈g〉t =

∫
θw

〈g|θw〉 pdf(θw) dθw (6)

This conditional mean allows one to split the unsteady signal with respect to the average wall
temperature, and therefore one expects to find the single-plate mode identified in the previous
section for θw ≥ 1 (see Eq. (3)). The relevancy of this parameter will be shown in the following
sections. Fig. 6 shows the conditional mean profiles of wall temperature and of vertical velocity
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Figure 7: Conditional mean of the velocity field for (a) θw = −0.8 and (b) θw = 1.5. The background color represents the
vertical component U. The heated plate is on the left.

across the section, the velocity being averaged within 0.73 ≤ x/H ≤ 0.77. Fig. 6a clearly shows
that for the highest values of θw (θw & 1), the wall temperature increases monotonically, whereas
it exhibits a maximum value below the outlet for θw . 1. The inset shows the experimental wall
temperature for θw = 1.8, which is well fitted by the following one-fifth power law:

〈∆Tw|θw = 1.8〉 = 14.7
( x

H

)1/5
, Temperature in K (7)

This power law is identical to that obtained in the case of natural convection along a single
vertical plate with isoflux boundary conditions [7], justifying the name of single-plate mode. For
lower values of θw, the wall temperature profile exhibits a maximum that moves toward the entry
as θw decreases. Similarly, the vertical bulk velocity is a decreasing function of θw (Fig. 6b), and
one observes a large flow reversal for θw & 1.

In order to give a picture of the flow, the conditional means of the velocity fields for θw = −0.8
and θw = 1.5 are plotted in Fig. 7, where the background color shows the vertical velocity
component. For conditional means corresponding to θw ≥ 1.2, the velocity fields show significant
flow reversal along the adiabatic plate, whereas for lower values of θw, the velocity fields look
like that shown in Fig. 7a. In both figures, a pair of counter-rotating cells is observed above the
channel outlet. The main difference between the fields above the channel shown in Figs. 7a and
7b is the location of the plane separating the two cells. For low values of θw (as in Fig. 7a), the
ascending hot fluid that flows out of the channel near the heated wall rises vertically above the
channel between the two cells. For high values of θw (as in Fig. 7b), flow reversal can clearly
be seen, with the two cells being moved to the left, which interferes with the hot fluid that flows
out of the channel. Therefore, the bulk velocity fluctuations observed in Fig. 5 could be related
to the uncontrolled movement of the cells above the channel as their shifting modifies the outlet
conditions. In this way, the large-scale flow reversal during long periods could be seen as a
particular situation where the right cell obstructs the entire exit section of the channel. Indeed,
as the right cell has clockwise circulation, a left shift tends to favor the appearance of downward
flow in the channel. In the case of a heated channel with a large flow reversal that extends to
the entry, the fluid flows downward along the adiabatic wall before flowing upward. Therefore,
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in a vertical plane far from the heated plate, the tangents to the streamlines (i.e., the velocity
directions) are horizontal, which creates the conditions for the existence of the single plate-type
solution. This solution seems to be stable enough to be observed for long times. This point is
discussed in Section 3.4.

3.3. Heat transfer modeling

As recalled in Section 1, a vertical channel with symmetrical heating exhibits a single-plate-
like heat transfer to a transition point above which turbulent heat transfer occurs and the wall
temperature decreases. Fig. 6a indicates that similar behavior occurs for an asymmetrical heating
configuration, with a transition point that moves toward the exit as the average wall temperature
increases. To test this hypothesis, Eqs. (1) and (2) are first converted into dimensionless form by
defining local Nusselt and Rayleigh numbers as follows:

Rax =
gβqwx4

λνκ
(8a)

Nux =
qwx

λ 〈∆Tw〉t
(8b)

Let RaT and NuT denote the Rayleigh and Nusselt numbers at the transition, which are defined
as the values of Rax and Nux at the transition point x = 〈xT 〉t. Then, the wall temperature
correlations given in Eqs. (1) and (2) become

Nux<xT = NuT

(
Rax

RaT

)1/5

(x ≤ xT ) (9a)

Nux>xT = NuT


(

Rax

RaT

)5/4

α + (1 − α)
(

Rax

RaT

)1/4


1/5

(x ≥ xT ) (9b)

In the symmetrical configuration studied in [6], heat transfer is modeled by Eqs. (9) and depends
on three parameters: (〈xT 〉t,

〈
∆Tw,T

〉
t, α) or alternatively (RaT , NuT , α). x = 〈xT 〉t denotes the

mean position of the transition from laminar to turbulent heat transfer and it is defined as the
location of the maximum wall temperature.

〈
∆Tw,T

〉
t is the wall temperature at the transition,

which is defined as the maximum wall temperature. α is the portion of the heat transported
from the near-wall region to the center of the channel defined in [6] for the symmetrically heated
channel. Indeed, below the transition, all of the heat is transported inside the thermal boundary
sublayer (TBsL), the thickness of which is defined by δV = λ 〈∆Tw〉t /qw. Above the transition,
αqw is the rate of heat transfer from the TBsL to the center of the channel by fluctuations, which
defines α. Let us suppose that the same scenario applies in the case of an asymmetrically heated
channel. More precisely, for a given average wall temperature, the flow exhibits a transition from
a laminar heat flux in the bottom part to a turbulent one in the top part at a certain location xT .
In the bottom part, heat is transported inside the TBsL, while in the top part, a significant part
of the heat is transferred from the TBsL toward the center of the channel at a rate αqw. Hence,
using the conditional means of the maximum temperature location, 〈xT |θw〉, and of the local and
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maximum wall temperatures, 〈∆Tw|θw〉 and
〈
∆Tw,T |θw

〉
, one can define dimensionless numbers

for each value of θw. The conditional means of the Nusselt and Rayleigh numbers are plotted
in Fig. 8, with α = 1.9 being chosen to fit the experimental data. The calculation of the error
bars is detailed in Appendix A. Below the transition, the Nusselt number is compensated by the
following equation, where the exponent differs slightly from that used in Eq. (9a):

Nu∗x<xT
= NuT

(
Rax

RaT

)0.208

(x ≤ xT ) (10)

Fig. 8a shows that heat exchange is close to following a one-fifth power law below the transition,
which is similar to what was found in [6] for a symmetrically heated channel. Indeed, at the
entry of the channel, the flow along the heated plate is not influenced by the presence of the
adiabatic plate and behaves like a flow along a single vertical plate. However, in Fig. 8a, the
leftmost points highest above the error bar correspond to temperature measurements at the entry
(x/H = 0.04), where heat losses are greater. Moreover, below the transition, for the lowest
values of the average wall temperature (θw . −0.4), the data depart significantly from Eq. (10)
as θw decreases (Fig. 8a). More precisely, the data deviate further from Eq. (10) as the maximum
wall temperature moves toward the entry, which reduces the length below the transition. As the
one-fifth power law is the analytical solution for an infinite vertical plate, it no longer applies
when this length becomes too short. Indeed, the deviation is observed for θw . −0.4, which
corresponds to 〈xT |θw〉 /H . 0.5 (this can be seen on Fig. 6). In the symmetrical case, this
deviation was not observed, since the transition was located higher in the channel, at 〈xT |θw〉 /H =

0.7.
Above the transition, Fig. 8b shows that the Nu–Ra relationship above the transition is mod-

eled by Eq. (9b), which is in line with the results in the symmetrical case. However, a deviation
is also observed for the lowest values of the average wall temperature θw . −0.4, which show
weaker heat transfer than that given by Eq. (9b). To explain this fact, we recall that the heat
transfer model (9b), which comes from the symmetrical case, describes the drop in wall temper-
ature observed just above the maximum. In the symmetrical case studied in [6], the channel is
too short to allow observation of the expected increase in temperature characterizing a turbulent
regime that follows the transition zone of decreasing temperature. Fig. 8b clearly shows that
for the lowest values of θw, the position of the maximum temperature is low enough to reveal
the emergence of the turbulent regime characterized by an increase in wall temperature after an
initial decrease.

3.4. Influence of the surroundings

As already mentioned in Section 3.2, the flow in the cavity probably has an effect on the flow
inside the channel. To explore this hypothesis, Fig. 9 shows the conditional means of several
quantities as functions of θw. The lengths of the vertical bars are the corresponding conditional
rms values. Fig. 9a shows the conditional mean of the position of the transition, 〈xT |θw〉, which
is the height corresponding to the maximum wall temperature and moves toward the exit as θw

increases. Fig. 9b shows the conditional mean of the wall temperature at the transition point,〈
∆Tw,T |θw

〉
, which is defined as the maximum wall temperature. This quantity increases with θw,

which can also be seen in Fig. 6a. The conditional mean of the vertical bulk velocity at x/H =

0.75, 〈〈U〉y |θw〉, shown in Fig. 9c, is a decreasing function of the average wall temperature,
with a negative bulk velocity being seen for the highest values of θw. The velocity is made
dimensionless with a typical velocity UI = (κ/H)Ra2/5

H , which is the order of magnitude of the
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Figure 8: Nusselt–Rayleigh number diagrams conditioned by the value of the average wall temperature. The origin of the
horizontal axis corresponds to x = 〈xT |θw〉. The Nusselt number is compensated by the conditional means of (a) Nu∗x<xT
(Eq. (10)) and (b) Nux>xT (Eq. (9b))
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Figure 9: Conditional means of several quantities as functions of the reduced wall temperature θw. The lengths of the
vertical bars are the corresponding conditional rms values. (a) Position of the maximum wall temperature. (b) Maximum
wall temperature. (c) Dimensionless y-average vertical velocity at x/H = 0.75. (d) Spanwise position corresponding
to U = 0. (e) Spanwise position of the plane separating the counter-rotating cells above the channel. (f) External
stratification parameter S , Eq. (11). See the text for details.
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velocity at the top of a single vertical heated plate obtained from the laminar solution given by
Sparrow and Gregg [7] (UI is also the velocity scale given in Eq. (4b) in [6]). 〈YU=0|θw〉 /b
(Fig. 9d) is the distance from the heated wall of the zero-vertical-velocity point measured at
x/H = 0.75 divided by the channel width b. Thus, b − 〈YU=0|θw〉 is a typical width of the flow
reversal. 〈Ycell|θw〉 /b (Fig. 9e) is the y position of the plane separating the counter-rotating cells
above the outlet of the channel divided by b. It is defined as the location of the maximum of
the conditional mean of the vertical velocity at x/H = 1.08. 〈S |θw〉 (Fig. 9f) is the conditional
mean of an external stratification parameter S representing the pressure variation due to thermal
stratification. More precisely, the integral term ρgβ

∫ H
0 ∆Te dx is the pressure variation over the

height of the channel behind the heated plate due to thermal stratification (see Appendix B for
details). In order to gauge the magnitude of this term, it is compared with the pressure difference
that would result from a linear temperature gradient ∆TI/H, where ∆TI = (qwH/λ)Ra−1/5

H is the
order of magnitude of the temperature at the top of a single vertical heated plate obtained from
the laminar solution given by Sparrow and Gregg [7] (∆TI is also the temperature scale given by
Eq. (4c) in [6]). Thus, the stratification parameter is defined as

S =
2

H∆TI

∫ H

0
∆Te dx (11)

Due to the temperature uncertainty, the values of S in the range −1.7 ≤ θw ≤ 1.2 are not signif-
icant. Fig. 9f shows that a small increase in the stratification is detected for the highest value of
θw.

The conditional means plotted in Fig. 9 show that for the highest values of θw, the wall
temperature is greatest, with a maximum at the outlet of the channel, the bulk velocity is negative,
the flow reversal zone is widest and corresponds to the leftmost position of the counter-rotating
cells above the outlet, and the external stratification exhibits a significant increase. It is worth
noting that for each value of θw, the conditional rms (represented by the length of the vertical bars)
is not very large, indicating a relatively small scattering of each conditional distribution. These
figures show that the flow experiences multiple states. Most of these states are not observed
for long durations, except for the highest value of θw, which can clearly be seen for 40 min
between t = 222.7 h and 223.4 h in Fig. 3. The fact that this state remains observable for a long
time can be attributed to external thermal stratification. Indeed, the occurrence of a large flow
reversal reduces the flow rate in the channel, favoring the occurrence of thermal stratification
outside the channel, which also counteracts the effect of buoyancy. Therefore, the unsteady flow
is sometimes locked into the single-plate mode.

With regard to the choice of the average wall temperature as the parameter defining the condi-
tional mean operator, Fig. 9 shows that the conditional means of the maximum wall temperature,
the bulk velocity, and the width of the recirculation zone all vary monotonically with θw. There-
fore, any of these quantities could be used instead of θw. In contrast, if an inappropriate parameter
was chosen to define the conditional mean operator, then the resulting global parameters would
show no variation with the average wall temperature. Whatever unstable phenomenon is driving
the highly unsteady flow is not known, but it is likely that external conditions are somehow re-
sponsible. Indeed, one can suppose that the hot fluid at the outlet behaves as a thermal plume
in isothermal surroundings. A study by Atmane et al. [19] of natural convection flow around a
heated cylinder has shown that interactions between secondary flows and the free surface lead to
plume oscillations. Furthermore, a numerical study by Garnier et al. [17] of an asymmetrically
heated channel inside a cavity has shown that the direction of the flow at the outlet and the size
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Experiment b (mm) qw (W m−2 K−1) Duration (h)
1 30.5 3684 150
2 40.6 3678 50
3 49.4 3698 65

Table 1: Data from experiments with several channel widths b.

of the enclosure both have a strong influence on global recirculation in the channel. Therefore,
we suggest that the lateral movement of the recirculating cells at the outlet of the channel is re-
sponsible for the unsteady behavior observed in this study. Indeed, such movement results in an
unsteady pressure profile at the exit of the channel, which will have an effect on global quantities
such as the rate and structure of the flow by favoring flow reversal. This is clearly a topic that
deserves further investigation.

3.5. Dependence of heat transfer on channel width

Experiments (see Table 1) have also been performed with three different channel widths b
(Experiment 2 was performed previously).

The correlations given in Eqs. (9) show that the dependence on the channel width lies in one
of the parameters α, RaT , or NuT . Fig. 10 shows the conditional Nusselt number compensated
by Eqs. (9) versus the conditional Rayleigh number for the experiments listed in Table 1. For the
three aspect ratios, most of the points follow the scaling given by Eqs. (9) with α = 1.9, with the
error bars being the same as those in Fig. 8 (see Appendix A for details). Below the transition
(Fig. 10a), the data corresponding to the entry of the channel x/H = 0.04 (full symbols) are
outside the error bars owing to additional heat losses at the entry. In the bottom part of the
channel (0.04H < x ≤ 〈xT |θw〉), the data that fall outside the error bars correspond to the lowest
values of θw, as shown for b = 40.6 mm in Fig. 8a. Indeed, in that case below the transition,
the transition point is close to the entry (〈xT |θw〉 ∼ 0.5H), so the solution for an infinite vertical
flat plate, Eq. (9a), does not apply. The same observation can be made with regard to the top
part of the channel, x ≥ 〈xT |θw〉 (Fig. 10b), where the data corresponding to the lowest values of
θw depart from Eq. (9b). For these values of θw, the transition zone described by Eq. (9b)) ends
below the outlet, and the flow enters the turbulent regime at the top of the channel.

With regard to the dependence on the aspect ratio, Fig. 10 shows that α is independent of b.
Owing to the compensation in this figure, the influence of the channel width has to be sought in
〈RaT |θw〉 or 〈NuT |θw〉, that is, in the location of the transition 〈xT |θw〉 or in the wall temperature
at the transition point

〈
∆Tw,T |θw

〉
. The conditional means of the Rayleigh and Nusselt numbers,

〈RaT |θw〉 and 〈NuT |θw〉, at the transition point are plotted in Fig. 11 as functions of the average
wall temperature 〈∆Tw〉x for different widths. The insets show the same quantities as functions
of the reduced wall temperature θw. The error bars are calculated in Appendix A. The Rayleigh
number at the transition, 〈RaT |θw〉, increases from 1012 to 1.5 × 1013. For 〈∆Tw〉x ≥ 12.3 ◦C,
〈RaT |θw〉 becomes constant because the maximum wall temperature reaches 〈xT |θw〉 = 0.88,
which is the highest attainable since there is a decrease in temperature above this position owing
to the proximity of the outlet. In this range, the maximum wall temperature

〈
∆Tw,T |θw

〉
increases

with 〈∆Tw〉x (see Fig. 9b for Experiment 2), whereas 〈xT |θw〉 has reached its maximum, and the
Nusselt number decreases for 〈∆Tw〉x ≥ 12.3 ◦C. Fig. 11a shows that the critical Rayleigh number
is strongly dependent on the average wall temperature, which is driven by the flow outside the
channel, as shown in Section 3.4. This point is discussed in Section 4. The conditional means
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Figure 10: Nusselt–Rayleigh number diagram conditioned by the value of the average wall temperature for the three
experiments listed in Table 1. For each value of θw, the Nusselt number is compensated by (a) Nu∗x<xT

(Eq. (10)) and
(b) Nu∗x>xT

(Eq. (9b) with α = 1.9). Full symbols correspond to the entry of the channel x/H = 0.04. Owing to
compensation, the origin of the horizontal axis is x = 〈xT |θw〉.
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Figure 12: Probability density function (pdf) of the average wall temperature 〈∆Tw〉x for the three channel widths. Only
points that correspond to more than 100 measurements are shown.

of these dimensionless numbers can clearly be seen to be independent of the aspect ratio when
they are plotted against 〈∆Tw〉x. As the curves do not merge when they are plotted against θw,
which is constructed from the first and second moments of 〈∆Tw〉x (t), it can be concluded that
the aspect ratio has an effect on the distribution of 〈∆Tw〉x (t).

Fig. 12 shows the probability density function (pdf) of the average wall temperature for the
three experiments listed in Table 1. For large widths, the configuration tends to behave as a
single plate, which implies that states with high wall temperature are the most frequent. This
trend is also found for the smallest width, which can be explained by the fact that a decrease in
width favors laminar flow, so the transition is delayed and the transition point is moved toward
the exit. For b = 40.6 mm, the pdf corresponds to a quasi-bimodal distribution, with one mode
corresponding to a flow with transition to a turbulent heat flux at mid-height and the other to
laminar single-plate flow. These observations show that a transition in an asymmetrically heated
channel is observed for all three widths investigated in this study, but its frequency of occurrence
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depends strongly on the aspect ratio H/b. The transition is most frequently observed at inter-
mediate aspect ratios. For low aspect ratios (large b), the configuration moves towards a single
heated plate. The fact that the influence of the width can be seen in the distribution of the average
wall temperature, which has been shown to be driven by external flows, tends to indicate that the
change in the channel width has an impact mainly on the flow outside the channel, as was pointed
out in the study by Garnier et al. [17].

4. Discussion

This study has shown heat transfer in an asymmetrically heated water channel inside a cavity
to be highly unsteady. By using a conditional mean, the average wall temperature is used as a
relevant parameter to analyze the flow. This analysis allows a decomposition of the flow into
several states that can be analyzed separately. It is important to note that none of these states
is sufficiently stable to be observed directly on an experimental bench. Indeed, each average
wall temperature value corresponds to a specific wall temperature (Fig. 6a) and a specific vertical
velocity profile (Fig. 6b), and most of the quantities shown in Fig. 9 exhibit a monotonic variation
with this parameter. Therefore, one may associate a particular flow structure and heat transfer in
the channel with a given average wall temperature.

With regard to finding the phenomena that determine a given average wall temperature, the
answer is to be sought in the flow outside the channel. In previous work [4, 5, 6] dealing with a
symmetrically heated channel, the flow was found to be statistically steady, with no flow reversal
being observed. Therefore, the temperature of the fluid at the inlet was the main parameter char-
acterizing the external flow (providing a sufficiently small thermal stratification in the cavity).
With an asymmetrically heated channel, these conclusions do not hold. Considering the glass
tank as a thermal system, the thermal boundary conditions that apply to the fluid inside the tank
(Fig. 1) are a constant heat flux on the heated plate, constant temperatures along the two diffusers
where cold water is discharged, adiabatic conditions on the walls of the glass tank and additional
cooling at the free surface that is in contact with ambient air (due to evaporation). Observations
show that the temperature of the fluid and the velocity fluctuations at the channel inlet are well
controlled, but this is not the case for the flow surrounding the channel. Hence, the motion of the
fluid above the channel may favor flow reversals that modify the heat transfer in the channel. As a
consequence, the flow in the whole cavity may influence the flow inside the channel, which goes
through several states. Thus, the unsteadiness of the flow inside the channel can be attributed to
the fluctuations of the flow in the whole cavity, such as the motion of the counter-rotating cell
above the channel identified in Section 3.4. Therefore, the average wall temperature can be taken
as a parameter that corresponds to a unique flow pattern in the whole tank leading to a unique
state of the flow inside the channel.

For each value of the wall temperature, Fig. 11 shows the critical values of the dimensionless
numbers corresponding to each state through which the flow passes, the appearances of which
are driven by the flow outside the channel. Given that any laboratory experiment on buoyant
flow in a vertical channel is inside an enclosure (a cavity or room), it is interesting to note that
the threshold defining the transition may be dependent on the surroundings. More generally,
the main results depend on the average wall temperature, which becomes a new parameter for
studying buoyant flow in vertical channels in unsteady surroundings.

Finally, the results obtained here address the problem of studying the behavior of real sys-
tems in uncontrolled surroundings through laboratory experiments. This work has attempted to
characterize the buoyant flow inside a vertical channel under various conditions by determining
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the conditional mean of each relevant quantity. If one can obtain the pdf of the average wall tem-
perature that would be obtained under real conditions, then Eq. (6) will give the mean values that
would be obtained in real surroundings. Therefore, the next step is to find the distribution or a set
of typical distributions of the average wall temperature of a vertical channel in real surroundings.

5. Conclusions

This experimental study of natural convection in an asymmetrically heated vertical chan-
nel shows that the instantaneous state of the flow depends on the circulations that are observed
outside the channel in the entire cavity. However, the conditional mean operator with respect
to the average wall temperature allows analysis of each state through which the flow passes.
Therefore, the average wall temperature becomes a new parameter for studying buoyant flow in
vertical channels in unsteady surroundings. In particular, the distribution of this parameter is key
for retrieving meaningful statistical quantities from conditional means. Finally, buoyant flow in
a vertical channel in infinite unsteady surroundings may be studied by analyzing a channel in
a finite cavity, as long as the external conditions allow a representative range of average wall
temperature.
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Appendix A. Uncertainties calculations

The aim of this section is to calculate the uncertainties related to the dimensionless numbers
which leads to the errorbars plotted on Figs. 8, 10 and 11. Following the method described in
Ref. [18], uncertainties of the mean values are first calculated and then the method of propagation
of error is used to obtain the uncertainty interval. In this section, uncertainties are calculated for
a given parameter θw and for clarity the conditional mean operator 〈· |θw〉 is not written.

Let F and G denote the functions used in Figures 8 and 10.

F =
Nu

NuT

(
RaT

Rax

)1/5

(A.1a)

G =
Nu

NuT

α + (1 − α)
(

Rax
RaT

)1/4(
Rax
RaT

)5/4


1/5

(A.1b)

Using the variables with dimensions, one can write:

F =
∆Tw,T

∆Tw

(
x

xT

)1/5

(A.2a)

G =
∆Tw,T

∆Tw

(
α + (1 − α)

x
xT

)1/5

(A.2b)

Appendix A.1. Uncertainties in basic variables

The uncertainty of the mean wall heat flux is described in Section 2:
E(qw)

qw
= 1.5%

x is the location of the thermocouple embedded in the heated plate therefore, the uncertainty
related to this variable is a fixed error. As the 0.5 mm thermocouples are glued in a 1 mm wide
groove, the bias limit of x is estimated to B(x) = 0.5 mm meaning that the real location is within
the uncertainty interval x ± B(x).

The fixed error of Tw is attributed to the calibration which leads to the limit bias B1(Tw) =

0.1 K, and to the technical solution used to stuck the sensor on the plate B2(Tw). The latter bias
leads to differences in measurements (mainly due to thermal contact between the sensor and the
plate) at two different x. B2(Tw) is difficult to measure and in this study it is estimated from
the temperature profile along the plate (Fig. 6a) which exhibits non-physical variation between
two consecutive thermocouples: B2(Tw) = 0.25 K. Using the root-sum-square (rss) method, one
obtains the overall bias limit:

B(Tw) =
(
B1(Tw)2 + B2(Tw)2

)1/2
= 0.27 K.

At the entry, the overall bias is the one due to the calibration: B(Tinlet) = 0.1 K. Using the
propagation of error method (see Eq.16 in Ref. [18]), one can find the bias on ∆Tw = Tw − Tinlet.

B(∆Tw) =
(
B(Tw)2 + B(Tinlet)2

)1/2
= 0.29 K.

Concerning the random error of ∆Tw which is a mean value over the time, it is estimated from the
standard deviation σ∆Tw . Let N denote the number of values used to estimated ∆Tw, the precision
index is

S (∆Tw) =
σ∆Tw
√

N
.
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Using the Student’s multiplier for 95% confidence η, one can calculate the uncertainty on ∆Tw:

E(∆Tw) =
[
B(∆Tw)2 + (ηS (∆Tw))2

]1/2
.

For all θw and x, the random error is found to be negligible with respect to the fixed error.
The uncertainty of the height of the transition xT is E(xT ) = 12.5 mm owing to the spatial

resolution of the wall-temperature measurements.
Concerning the wall-temperature at the transition, the sources of uncertainties are the same

as those of ∆Tw as well as the uncertainty due to the resolution of the wall-temperature measure-
ments. Let d∆Tw,T and dxT denote variations in ∆Tw,T and xT , respectively. One may write:

d∆Tw,T =
∂∆Tw

∂x

∣∣∣∣∣
x=xT

dxT

=
1
5

∆Tw,T

xT
dxT

where the second equation is obtained from the temperature profile in the bottom part (Eq. (9a)).
Replacing dxT by E(xT ) leads to the uncertainty in ∆Tw,T :

E(∆Tw,T )
∆Tw,T

=

(B(∆Tw,T )
∆Tw,T

)2

+

(
η

S (∆Tw,T )
∆Tw,T

)2

+

(
1
5
E(xT )

xT

)21/2

.

E(∆Tw,T )
∆Tw,T

is found to be close to E(∆Tw)
∆Tw

.

Appendix A.2. Propagation of error

Following the propagation of error method given in Ref. [18], the uncertainties on F and G
are: (

E(F)
F

)2

=

(
E(∆Tw,T )

∆Tw,T

)2

+

(
E(∆Tw)

∆Tw

)2

+
1

25

(E(x)
x

)2

+

(
E(xT )

xT

)2(
E(G)

G

)2

=

(
E(∆Tw,T )

∆Tw,T

)2

+

(
E(∆Tw)

∆Tw

)2

+
1

25
(
1 + α

1−α
xT
x

)2

(E(x)
x

)2

+

(
E(xT )

xT

)2
In order to simplify the expression of G, the factor involving α is taken as a constant: 1+αxT /(1−
α)x ' −0.5 which is obtain by considering the value of α = 1.9 and the mean value xT /x ' 0.7.
The uncertainties E(F) and E(G) are calculated for each value of (θw, x). For a given height x, the
uncertainties are defined as the maximum over θw: Ê(F)=̇ maxθw [E(F)] and Ê(G)=̇ maxθw [E(G)].
They are found to be almost independent on x.

Ê(F)
F

= 4.3%

Ê(G)
G

= 4.6%
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The uncertainty intervals plotted in Figs. 8a and 10a are ± Ê(F)
F whereas those in Figs. 8b and 10b

are ± Ê(G)
G .

In the same way, the uncertainty of RaT and NuT are:(
E(RaT )

RaT

)2

=

(
E(∆Tw,T )

∆Tw,T

)2

+

(
4
E(xT )

xT

)2

(
E(NuT )

NuT

)2

=

(
E(qw)

qw

)2

+

(
E(∆Tw,T )

∆Tw,T

)2

+

(
E(xT )

xT

)2

These relative uncertainties are found to be almost independent on b and to decrease as θw in-
creases. For the lowest values of θw,

E(RaT )
RaT

' 16%
E(NuT )

NuT
' 5.1%,

and for the highest vales of θw, one obtains:

E(RaT )
RaT

' 9.5%
E(NuT )

NuT
' 3.4%,

The uncertainty intervals plotted in Figs. 11 are ±E(RaT )
RaT

and ±E(NuT )
NuT

Appendix B. Pressure variation induced by external thermal stratification

Thermal stratification of the surroundings has been mentioned as a possible driving parameter
for the transition in a symmetrically heated channel (see Section 5 in [6]), and so the conditional
means of the temperature profiles measured outside the channel behind the heated plate (the
locations of the thermocouples are shown in Fig. 2) are plotted in Fig. B.13. Owing to the
uncertainty in temperature measurement, the profiles corresponding to −1.7 ≤ θw ≤ 1.2 are
within the error bar, whereas the difference in temperature measured at the exit and entry heights
for the greatest values of |θw| are significant. These temperature differences are significant despite
their small values, since their impact on the pressure difference cannot be ignored. Indeed, for the
symmetrical configuration studied with the same apparatus in [6], just a few tenths of a degree
of external thermal stratification leads to an external pressure difference that is equivalent to
that estimated inside the channel. To quantify this effect, it is useful to characterize the thermal
stratification in terms of pressure difference instead of temperature difference. Let

−→
Ue,
−→
u′e, Te, and

Pe denote the mean velocity vector, the velocity fluctuation, the mean temperature, and the mean
pressure outside the channel. Using the Oberbeck–Boussinesq approximation, the density of the
fluid at a temperature T is written as ρ[1 − β(T − Tref)], where ρ is the density at the reference
temperature Tref . We define also P̂e = Pe + ρgβ(Tinlet − Tref). Assuming statistically stationary
flow, the scalar product of

−→
Ue with the momentum equation of the mean flow leads to

−→
Ue ·
−→
∇

[
1
2
−→
Ue

2
+

P̂e

ρ
+ gx

]
= ν
−→
Ue · ∆

−→
Ue −

−→
Ue ·

(
∇

〈
−→
u′e ⊗

−→
u′e

〉
t

)
+ gβ∆Te

−→
Ue · ~x (B.1)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the gradient operator, ∆Te = Te − Tinlet is the temperature
difference with respect to the inlet temperature, and · and ⊗ are the dot and tensor products. The
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Figure B.13: Conditional mean of the temperature profile outside the channel behind the heated plate. x = 0 is the height
of the entry. The locations of the sensors are shown in Fig. 2.

left-hand side is the directional derivative of the term inside the square brackets. The terms of
the right-hand side represent the dissipation of momentum by molecular viscosity, the interaction
between the mean flow and the fluctuations, and the power of the buoyancy force. For strictly
steady and isothermal flow of an inviscid fluid, the right-hand side is equal to zero and one finds
the classical form of Bernoulli’s equation along a streamline. To go further, let us suppose that
the external temperature depends only on the height: ∆Te = f (x). Then Eq. (B.1) can be written
as

−→
Ue ·
−→
∇

[
1
2
−→
Ue

2 +
P̂e

ρ
+ gx − gβ

∫ x

0
∆Te dx

]
= ν
−→
Ue · ∆

−→
Ue −

−→
Ue ·

(
∇

〈
−→
u′e ⊗

−→
u′e

〉
t

)
(B.2)

Therefore, the integral term ρgβ
∫ H

0 ∆Te dx is the pressure variation over the height of the channel
behind the heated plate due to thermal stratification.
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