
HAL Id: hal-01708332
https://hal.science/hal-01708332

Submitted on 15 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalise to automate: deployment of a safe and
cost-efficient process for avionics software

Abderrahmane Brahmi, David Delmas, Mohamed Habib Essoussi,
Famantanantsoa Randimbivololona, Abdellatif Atki, Thomas Marie

To cite this version:
Abderrahmane Brahmi, David Delmas, Mohamed Habib Essoussi, Famantanantsoa Randimbivololona,
Abdellatif Atki, et al.. Formalise to automate: deployment of a safe and cost-efficient process for
avionics software. 9th European Congress on Embedded Real Time Software and Systems (ERTS
2018), Jan 2018, Toulouse, France. �hal-01708332�

https://hal.science/hal-01708332
https://hal.archives-ouvertes.fr

Formalise to automate:
deployment of a safe and cost-efficient process

for avionics software

Abderrahmane Brahmi,
David Delmas,

and Mohamed Habib Essoussi
Airbus Operations S.A.S.
316 route de Bayonne

31060 Toulouse Cedex 9, France
First.Last@airbus.com

Famantanantsoa Randimbivololona
CEPRESY Informatics

La Nauzère
32500 Castelnau-d’Arbieu, France
First.Last@orange.fr

Abdellatif Atki
and Thomas Marie

Ausy
4 rue Pierre Vellas

31300 Toulouse, France
aatki@ausy-group.com
tmarie@ausy-group.com

Abstract—For over a decade, Airbus have been introducing
formal techniques into the verification processes of some of
their avionics software products, to cope with the steady
increase of the size and complexity of related avionics systems.
These techniques have come of age for large-scale industrial
deployment. All design and verification processes are currently
being revised to take maximum advantage from them, i.e.
improve industrial efficiency while maintaining the safety and
reliability of avionics systems.

To achieve this goal, all human-engineered design artefacts
are being formalised using languages with well-defined syntaxes
and semantics, in order to allow for the automatic generation of
all subsequent, computable design or verification artefacts, and
the preparation of the input data for non computable activities.

To this aim, several domain-specific languages and related
compilers have been developed internally, which cover all
design activities, and bridge the gaps to integrate external tools
into the overall development processes, e.g. sound, semantics-
based, static analysis tools. For instance, the formalisation of
detailed designs in the form of function contracts expressed in
a first-order logic-based language allows for a hybrid approach
to unit verification. Designs may be compiled down to ACSL [5]
contracts, allowing for program proof with Frama-C [22], or
they may be compiled down to test contracts, allowing for
semi-automatic unit tests.

Keywords—design, formalisation, domain-specific languages,
compilation, static analysis, formal methods, avionics software,
DO-178C, development process, industrial application

I. INTRODUCTION

Avionics software running on on-board computers are
critical components of the systems of civil aircraft. They
are thus subject to certification by Certification Authorities,
and developed according to stringent rules imposed by the
applicable DO-178/ED-12 [1] international standard.

Among the many processes described in DO-178, veri-
fication processes are responsible for more than half of the
overall costs of avionics software development. Considering
the steady increase in size and complexity of this kind
of software, classical V&V processes, based on massive
testing campaigns and complementary intellectual reviews
and analyses, no longer scale up within reasonable costs.

On the other hand, some formal verification techniques
have been shown to cope with real-world industrial soft-
ware, while improving automation. For a decade, Airbus
have therefore been introducing such techniques into the
verification processes of some internal avionics software
products [39], in order to replace or complement legacy
methods. Significant effort is currently being invested into
generalising this approach to most development and verifica-
tion processes. Nonetheless, the current state of the industrial
practice is that completely formal development methods are
still not quite tractable for most avionics software products.

Therefore, a hybrid approach has been developed to in-
tegrate design activities with static analysis, program proof,
and testing. The goal is to take maximum advantage from
formal methods, i.e., improve industrial cost-efficiency while
maintaining the safety and reliability of avionics systems.
In this approach, all human-engineered design artefacts are
being formalised using dedicated domain specific languages.
Internally-developed compilers automate many subsequent
development or verification activities, and generate all rel-
evant data for non computable ones, such as verification
of correctness. In particular, these compilers bridge the gap
from designs to formal verification tools. This approach is
made industrial reality thanks to the integration of a set
of tightly-coupled tools into a new development workshop
supporting advanced dependencies. This workshop, as well
as the development process it supports, is currently being
deployed on all new avionics software development projects.

This papers aims at describing this process, and sup-
porting workshop. Section II presents the current industrial
context, in particular legacy development processes. Sec-
tion III introduces the new process, with associate industrial
objectives. Section IV describes the languages, workshop
and tools supporting the new process. Section VI addresses
deployment and industrial results. Section V describes re-
lated work. Section VII describes future work and concludes.
An extended version of this paper, including a running
example based on a real-world avionics use case, can be
found at http://www.di.ens.fr/∼delmas/erts18/.

Fig. 1. Airbus avionics software (MB)

© AIRBUS Operations S.A.S. All rights reserved. Confidential and proprietary document.

New WoW-EYYW Presentation– 27th June 2016

Executable

Object code

Source

code

Software

Architecture
Low-level

Requirements

High-level

Requirements

System

Requirements

Development activity

Review or analysis

Integration Testing

Reading

Test activity

Reading

Reading

Reading

27/06/2016

Reading

Reading

Reading

Reading

Unit Testing

Reading

Reading

Reading

Page 1 Fig. 2. Legacy process for DAL A

II. INDUSTRIAL CONTEXT

The workshop presented in this paper is primarily de-
signed to improve the industrial efficiency of software devel-
opment processes for cockpit avionics systems, such as fly-
by-wire, warning, communication, and maintenance. Such
software is written in C and assembly, and encompass all
DO-178 Development Assurance Levels (DAL): fly-by-wire,
warning, or communication software are typically certified
according to DAL A to C, while maintenance software
usually enjoys DAL D or E.

Over the past four decades, most such aircraft functions
have been transferred from hardware to software, with
increasing requirements on process assurance. This trend,
together with the growing effort to optimise passenger com-
fort, as well as system configurability and interoperability,
has resulted in an exponential growth of the size and
complexity of this kind of avionics software, as depicted
on figure 1.

The state of the industrial practice, on the other hand, has
evolved at a much slower rate during the same time frame.
Most avionics software processes are still based on informal
specifications and designs, pair reviews, and hand-written
test procedures based on equivalence class partitioning.

As shown on figure 2, all artefacts produced by devel-
opment processes, i.e., in DO-178 terminology, High-Level
Requirements (HLR), architecture, Low-Level Requirements
(LLR), source and executable code, are verified several
times. All of them are reviewed for compliance with artefacts
from which they are derived on one hand, and for accuracy,
consistency, hardware compatibility and conformance to
standards on the other hand. In addition, executable code
is verified against LLR and HLR by means of unit and
integration testing. Test cases and procedures are then also
subject to pair reviews.

LLR provide very detailed specifications for every indi-
vidual C function or assembly routine, down to the specifi-
cation of every single procedure call or volatile access. This
specifications are typically expressed in informal pseudo-
code. In this context, significant effort is invested into unit
testing, which roughly amounts to perform grey-box testing
of every individual C function or assembly routine on the
target hardware, to ensure that it implements the given algo-
rithm correctly. Indeed test scenarios and expected values of
outputs are derived completely by hand, from a intellectual
reinterpretation of the informal LLR. Then, the correctness
of this reinterpretation and the correct implementation of
associate scenarios are verified in additional pair reviews.

Despite the automatic compilation of test scripts into
target programs for part of the test procedures, the largest
part of these heavy design and verification processes is
essentially hand-crafted, and relies completely on human
expertise. Unfortunately, such legacy processes do not scale
up to current avionics software size and complexity within
reasonable costs, hence cost issues in both development and
maintenance phases. In particular, verification is liable for
a steadily growing share of the overall development costs.
The current status is about 70%.

To address this economical risk, Airbus have been in-
troducing formal techniques into the verification processes
of several internal avionics software products for a decade,
in order to replace or complement legacy methods. Such
techniques improve automation, while preserving safety. For
instance, Some program proof [19] and static analysis [38],
[15], [36], [17], [14] techniques have been introduced here
and there on some avionics projects. However, their impact
on industrial efficiency has been limited so far by a lack of
formalisation of design processes, by an incompatibility of
previous testing frameworks with formal methods, and by a
lack of interoperation between tools, resulting in significant
efforts dedicated to preparing inputs for formal verification
processes.

III. νWoW : OBJECTIVES AND ORIENTATIONS

Airbus is currently investing significant effort into an
internal initiative known as New Ways of Working (νWoW),
which aims at improving the industrial efficiency of avion-
ics software development processes, while maintaining the
highest standards for safety. The major industrial goal of
νWoW is to reduce the cost of design and unit verification
processes by 75%.

The way to achieve this ambitious target is to move from
hand-crafted legacy processes to an automated process. The
νWoW approach to automation is language-based. Domain-
specific languages with well-defined syntax and semantics

© AIRBUS Operations S.A.S. All rights reserved. Confidential and proprietary document.

New WoW-EYYW Presentation– 27th June 2016

Executable

Object code

C Source

code

Software

Architecture
Formal Low-level

Requirements

High-level

Requirements

System

Requirements

Development activity

Review or analysis

Integration Testing

Test activity

Reading

Reading

27/06/2016

Reading

Reading

Reading

Unit Testing

Reading

Reading

Reading

= Reduced activity

Page 9

Static Analysis

(almost) automatic analysis

Fig. 3. νWoW process with unit test

© AIRBUS Operations S.A.S. All rights reserved. Confidential and proprietary document.

New WoW-EYYW Presentation– 27th June 2016

Executable

Object code

C Source

code

Software

Architecture
Formal Low-level

Requirements

High-level

Requirements

System

Requirements

Integration Testing

Reading

Reading

27/06/2016

Reading

Reading

Reading

Reading

Unit Proof

Page 13

Static Analysis

Development activity

Review or analysis

Test activity

= Reduced activity

(almost) automatic analysis

Fig. 4. νWoW process with unit proof

have been created, to enable the formalisation of all design
artifacts. Dedicated compilers have been developed, so as to
allow automatic, safe comptuations on explicit, unambiguous
design data.

Figures 3 and 4 give an overview of the νWoW auto-
mated process. The design phase, presented in the central
box, is deeply revisited. In legacy processes, this phase
was mostly a preparation for the coding phase, producing
informal documentation expressing LLR in the form of
pseudo-code, and their traceability to HLR. In the νWoW
approach, the design phase is extended to prepare all unit
verification and static analysis activities, as well as part of
integration activities:

• the Software Architecture is described in a dedicated
domain-specific language, which will be presented in
section IV-B. The software is decomposed hierarchi-
cally into a set of logical modules featuring both
exported interfaces and hidden implementations. Rela-
tions between modules are expressed in terms of de-
composition and dependency. All programming objects
are then introduced and described in this language, and
mapped to modules: types, constants, variables, pro-
cedures, code and data sections, non-memory mapped
hardware registers, special processor instructions (e.g.
memory barriers and cache management). This is ex-

actly the set of objects to be constrained by LLR.
Therefore, the level of description is not only sufficient
to enable automatic extraction of source code skeletons
to be filled in at coding time or merged with existing
code, but also any data relevant to unit verification.
For instance, procedure parameters are annotated with
their direction (in, out, or both), their passing mode (by
value, address or reference), and their class (e.g. arrays
passed by reference are annotated with their actual
length). Specific instructions expecting an argument
(e.g. PowerPC mbar) are described with a function-like
interface.

• the LLR are expressed in a first-order logic based
language, which will be presented in section IV-C. They
describe the observable behaviours of unitary proce-
dures, to be implemented in C or assembly, knowing the
annotated interfaces of callees, but not their behaviours.
This language is reminiscent of standard Behavioural
Interface Description Languages (BISL). Functional
requirements on procedure behaviours are formalised
as first-order contracts, expressed in terms of pre-
and post-conditions over terms constructed on objects
defined as part of the software architecture. In addition,
non functional requirements are formalised to automate
verification. Indeed the LLR language supports formal
descriptions for sequences of calls and volatile accesses,
non-standard Application Binary Interfaces (ABI), de-
composition of machine words into named fields, (e.g.
to model accesses to register fields), and execution
of special processor instructions. Moreover, its scope
is not limited to DO-178 compliant processes, as it
allows for test-driven developments or re-engineering:
see IV-C1.

Obviously, a first advantage to such design formalisation
is a significant reduction of reviews of design data for accu-
racy, consistency, or conformance to standards. Nonetheless,
the key interest is that it allows for a hybrid approach
to unit verification: either unit proof or unit test can be
used, as shown on figures 4 and 3. Unit proof is available
for C source code, and extremely cost-efficient provided
some minimal well-typedness and complexity constraints are
satisfied: in this case the proof is automatic. Unit test is
available for assembly or less standard C code. Key features
for industrial efficiency are:

• all procedures of a given module need not be verified
with the same technique;

• no change in design data (architecture or LLR) is
needed to switch from one technique to another;

• most unit verification support data are computed au-
tomatically from formalised designs. The only human-
engineered inputs are:
for unit test: scenarios providing values for input vari-

ables. The set of input variables is precomputed for
each behaviour from formal LLR. Also, test oracles
are first order predicates directly extracted for LLR
to be evaluated at run-time. This obviously decreases
the necessary effort both in test procedure develop-
ment and reviews, compared to legacy methods.

for unit proof, which will be presented in section IV-D:
1) loop invariants
2) proof tactics for verification conditions that un-

derlying SMT-solvers fail to prove automatically.

Besides, integration testing is alleviated, as some prop-
erties that could only be verified in integration tests with
legacy processes, e.g. volatile accesses, are verified at unit
level, either by proof or by test on virtualized hardware.

Moreover, additional process optimisations are obtained
in the case of C source code. Reviews for conformance
of source code to LLR are eliminated where unit proof is
applicable, thanks to the exhaustiveness of this verification
technique. Reviews for conformance with the software ar-
chitecture are automated using a mixture of syntax-based
and semantics-based static analysis techniques, such as data
flow analysis. Reviews for conformance to standards are
automated by syntax-based static analysis tools. Reviews
for accuracy and consistency are automated by semantics-
based static analysers by abstract interpretation. Note that
the traceability analysis between source and compiled code,
usually required for DAL A, is also avoided thanks to
the use of a formally verified optimising C compiler: see
section IV-G.

This process is the outcome of many years of industrial
practice. it is made efficient by the tight integration of a num-
ber of automated techniques. This integration is orchestrated
by a process management tool, which will be presented in
section IV-A. For instance:

• the software architecture compiler generates code and
documentation, and passes information on to the LLR
compiler;

• the LLR compiler generates unit proof or test contracts
and associate verification environments;

• the proof engine is used to check design completeness,
even when the implementation is tested;

• the LLR compiler generates expected variables ranges
and data-flow to be verified by static analysis tools;

• functional ranges guaranteed by static analysis enable
to focus the scope of unit verification to reachable input
ranges;

• some static analysers compute configuration files for
other static analysers, e.g. a points-to analysis on source
code resolves computed calls, which enables a stack
analysis on machine code;

• static analysis tools validate assumptions or eliminate
warnings from design or unit verification tools.

As a consequence, code and design reviews are mostly
limited to tool warning analyses.

In addition, this tight integration allows for significant
savings in tool qualification costs. Indeed, DO-178 compliant
qualification strategies typically require the definition of a
set of user contexts for which given tool is qualified. This
context includes many user-specific tool parameterisations,
but also requirements on the machine on which the tool
may be run, e.g. processor, operating system, libraries, etc.
In practice, this approach leads, in legacy processes, to a
combinatorial explosion of the number of contexts to be
documented and maintained. All qualification procedures,
many of which are at least partially hand-crafted, are to be
replayed in all candidate contexts. Strong requirement on
host machine environments limits the set of machines on
which tools may be run, and result either in the need to
maintain or virtualize obsolete systems for legacy projects,
or to invest in costly migrations. In the νWoW , tool

qualifications are also managed by the same process man-
agement tool as developement and verification artefacts. As
consequence, the νWoW process can be deployed over a
cloud of heterogeneous machines. Whenever an operational
process requires the use of qualified tool with a given set
of options on a given machine, the process manager detects
whether the tool is already qualified for this context, and
launches qualification tests automatically for this context if
it is not the case.

IV. νWoW : IMPLEMENTATION

Figure 5 provides a high-level data-flow view on how the
νWoW process is implemented on a given avionics project.
The νWoW process has three tool-supported processes:

1) the design process;
2) the coding and static analysis process;
3) the unit verification process.

Fig. 5. Optimases for process management

In the design process (cyan boxes of figure 5), developers
formalise the Software Architecture and associate LLR using
the IDE of the CoDDA tool – see IV-B3. The output is a set
of CoDDA files describing the Software Architecture, and a
set of DCSL files describing LLR.

The CoDDA IDE interacts with companion design com-
pilers coddac and dcslc through Optimases, the process
automation tool. In particular, coddac computes a database
from CoDDA files, aka dictionary, as depicted on figure 5.
This dictionary describes all design objects, as well as
relationships between them. This information is the primary
input for Optimases, the process automation tool. Indeed
the database contains all the dependency information that is
necessary to instantiate the process for the target project. As
a consequence, Optimases bootstraps itself to construct the
whole project dependency tree from the design dictionary.

As part of the design process, Optimases interoperates
coddac and dcslc to generate source code templates and head-
ers, check for design rules dependant on both architecture
and LLR, as well as to produce data flow specifications.

As part of the coding and static analysis process (blue
boxes of figure 5), auto-generated code templates are filled
in by programmers to produce C or assembly implementa-
tions, and compiled via a build process. Optimases trig-
gers verification processes for coding standard conformance
(CheckC), absence of run-time errors (ASTRÉE), correct-
ness of data flow with respect to specifications (Fan-C),
compliance with the Software Architecture (Cascada), and
absence of stack overflow (StackAnalyzer).

As part of the unit verification process (violet boxes of
figure 5), Optimases supports a hybrid approach to verifica-
tion of implementations against LLR, either by proof or by
test. Inputs of unit proofs are source files and hand-crafted
loop invariants. Inputs of unit tests are compiled sources
and test vectors. The coverage of verification is ensured by a
(yellow) “mixability” configuration file: for every source file,
every function or procedure is either proved correct, or tested
according to the applicable structural coverage criterion.

More details on sub-processes and supporting tools will
be provided in the next subsections.

A. Optimases

Optimases is both an process management tool and a
build system.

A process management tool: Optimases allows to
configure complex processes easily. A process is fully
defined in XML collections. It can be easily updated by
adding/removing tool(s), fixing issue, or inserting new col-
lection. Even if XML is not the most human readable
format it allows to ensure the well formatted collection
through XML scheme (xsd file) and offers the way to extract
automatically some smart information about process (Tool
dependency, collection’s process view, full avionic process
view...) using xslt sheet.
The Optimases configuration is based on:

• file’s type: File are all typed using pattern definition.
• tool definition: Allow to link inputs to outputs (based

on type definition).
• variables use: Variable are mainly required for gener-

icity goals. They allow to manage several level of
configuration (workshop, project).

• template definition: Templates provide the way to
program complex process (with several step between
user’s sources and result). The user has just to apply this
template with their inputs regardless the intermediate
state.

• variants definition: A variant allows to derivate main
process in an other context (debug, coverage).

A build system: Optimases is inspired by tup [40],
though constraints on the definition of build rules are less
strict:

• use of a database to manage its dependency tree.
• explicit dependencies specified by user.
• implicit dependencies detection using file access detec-

tion (libfuse [32]).

In addition, we have added some useful features:

• the dependency arrows go both up and down (make
uses down, tup uses up).

• File freshness detection based on SHA1. Decrease the
build action by stopping the process as soon as a built
action has no effect on this output.

• The Optimases build directory can be fully out-
sourced, so Optimases can be seen as distributed
process tool management.

Optimases in νWoW : Optimases (and this collec-
tions package) is the conductor of then νWoW . It makes
a complex process easy to use for developers. Once the
main process is defined, it allows to configure specific cases
without effort. For instance, the unit test of functions calling
inline functions requires automatic prototype adaptations.
Also, the automaticity of unit proofs of functions accessing
volatile locations is optimised dynamically, chosing the
most efficient instrumentation mode from design information
computed by the dcslc .

Optimases provides also an alternative debug variant
(derived from the main process). This variant is not relevant
to certification, but critical for productivity (decrease of in-
vestigation time). It is fully automatised. If one Optimases
step failed, the developer can replay it in debug mode and
investigate. Optimases provides for instance:

• Object/binary compiled with debug information.
• Automatic debug script (break point on error) for uni-

tary test.
• Launch debug GUI (Interactive Proof Editor or GDB

client for test on a virtual platform).

At user level, Optimases allows to have the whole LLR
process automatically computed and so already up to date,
following the project’s design upgrade.

B. Codda

1) Introduction: CoDDA (Compilable Design Descrip-
tion Assistant) is a framework implementing the method of
software static design by abstract machines. This method
is an adaptation of the HOOD [37] method to the avionics
development context.

CoDDA provides a domain-specific language with a
well-defined syntax and a set of functionalities, such as
automatic generation of code skeletons and design docu-
mentation, design consistency verification.

2) The CoDDA Language: The CoDDA language
(CoDDAL) enables designers to formalise the descriptions
of so-called machines (a.k.a modules) featuring exported in-
terfaces and hidden implementations. So-called non-terminal
machines describe in fact only interfaces for other machines
to use. Non-terminal machines are refined into children
machines, until so-called terminal implementable machines
are reached. Elementary design objects are named types,
constants, resources and services. CoDDAL is supported by
a dedicated, internally developed compiler.

3) CoDDA IDE: CoDDAL is supported by an IDE
providing indentation, syntax highlighting, cross navigation
between references and their declarations (CoDDA, DCSL
and C), graphical interface to CoDDA functionnalities (e.g.
code skeletons generation), snippets and a relevant auto-
completion. Auto-completion is implemented by using a
database (the dictionnary) in the back-end generated and
updated by the Optimases processes.

4) CoDDA Checker: The CoDDA Checker is integreted
into the development process to ensure that a set of rules is
met by the static design of the software.

For instance, the Checker warns if a machine declares a
service in its exported interface, but no other machine uses
this service.

5) CoDDA in the νWoW : Software Architecture: Based
on a well defined static design of a software, derived from
the HLR, CoDDA provides major activites (or features) part
of the νWoW process.

The CoDDA compiler ensures the correctness of the
static design w.r.t. the CoDDAL syntax, and computes the
Abstract Syntax Tree (AST). This latter is used by the
CoDDA compiler in order to:

• generate the dictionnary (a.k.a database) with all the
objects of the static design. This dictionnay has a very
important place in the whole νWoW process and its
activites. For example, Optimases uses the dictionnary
to manage the dependencies between services and their
implementing modules. Which is relevant in order to
enable DCSL contract compilation or unit proof.

• automatically generate header and include files used by
DCSL compiler, unit verification and code compilation.
For example, ranges of bitfields are defined in the static
design and used in the DCSL. Header files generated
by CoDDA make them visible to the DCSL compiler.
Skeletons of source code files imported and filled in
by the user at coding time are also generated and can
be automatically pre-filled with elements from DCSL
contracts. These skeletons can also be automatically
merged with exsiting code.

• generate the traceability report from the static design:
Specific keywords and rubric are used by the user in
order to link design elements to the HLR. The report
combined with the one extracted from DCSL conracts
is used by dedicated tools part of the νWoW process
to check if all the design elements and detailed design
behaviors are all traced and covered by the High Level
Requirements.

• verify the coherence of the code w.r.t. the design. Note
that, only elements of the code which represent objects
of the design are verified, such as resources, types,
services signatures, etc.

Fig. 6. Summary of CoDDA interface

6) CoDDA interface: The diagram in figure 6 gives an
overview of the CoDDA interface.

The main inputs are:

• CoDDA files: a CoDDA file can represent either the
main machine, a terminal machine, or a non termial
machine describred in CoDDAL.

• pre-code files: designers may provide coding hints for
a service, to be included into code skeletons.

• dcsl files: DCSL contracts for services;
• traceability keywords: the set of keywords (e.g.

#Link To) to be used to identify traceability informa-
tion in the design.

• checker rules: the list of rules to activate when calling
the CoDDA Checker. See IV-B4.

• DCSL compilation reports: for tasks as the genera-
tion of traceability report or for the CoDDA Checker,
CoDDA needs information from the detailed design (in
DCSL, see IV-C). This information is given as input to
CoDDA and is provided by the DCSL Compiler. The
consistency of the dependencies between the different
tools (CoDDA Compiler and DCSL Compiler in this
case) is ensured by Optimases.

• user code files: previous source code to be merged with
updated CoDDA generated skeletons.

The main outputs of CoDDA are:

• code skeletons
• design documentation (HTML or PDF)
• traceability report
• design database: persistence of all entities and elements

of the static design. This is the dictionnary mentionned
in different sections of this paper.

• checker report: used in the derogation phase (the user
can give justifications of warnings). After the verifica-
tion phase, Optimases gives a synthesis of all justified
and unjustified warnings.

• merged code: user code merged with freshly generated
skeletons.Whether or not merged source code files are
imported to replace previously developed code is left
for the user to decide.

7) The Application Binary Interface (ABI): In real-world
industrial software, performance and hardware constraints
may require developping software functions (a.k.a services)
which do not meet standard ABIs. For example, contexts of
callers may have to be managed in an environment which
does not handle call stacks nor memory accesses. Other
functions may require a change of privilege or specific
calling conventions. For these reasons, as part of CoDDA
specific ABIs can be defined in the satic design in order to
specify:

• registers used in the calling convention between the
caller and the callee: which registers are used for which
function parameters and how values are returned and
retrieved.

• how formal parameters are allocated.
• the calling sequence of the caller and the returns

sequence of the callee.

This allows the user to make abstraction of these par-
ticularities and homogenize the use of functions during the
design or test activities.

C. DCSL

1) The language: Design-Contract-Specification-
Language, DCSL, is the notation that has been coined to
formally support the detailed design of embedded-software
units. It is essentially a code-level behavioral interface
specification language [23] where the functional behaviors
are expressed in terms of precondition/postcondition in
the language of a many-sorted first-order logic. It is a
well-established [21], [27], [26], [35] approach shared by
all code-level BISL’s among whilst ACSL [6], JML [30],
CodeContracts [33] or SPARK2014 [3].

However, DCSL has native extensions, additions and
restricted language features so as to provide an orthogo-
nal support for the detailed design of diverse embedded-
software:

• the programmig language may be C or assembly,
• the software assurance levels (DAL) range from life-

critical (DO178 level A) downto weakly-safety-related
(DO178 level E),

• software types range from low-level software running
on bare-hardware to application software running on
top of a multi-application multi-threaded embedded-OS
platform,

• the unit verification may use formal proof, test, or a
mixed proof-and-test,

• the development may use the classical-V, specification-
driven process or may adopt the emerging test-driven
process,

• the engineering program may be a new development or
a νWoW rehosting of a mature (aka legacy) software.

A comprehensive presentation of the entire language is
out of the scope of this paper. Instead, a running exam-
ple available at http://www.di.ens.fr/∼delmas/erts18/ gives a
concrete illustration of the solutions that have been chosen
and implemented.

A DCSL specification program consists of two succes-
sive parts, the second of which is optional:

1) The design of the interfaces. The specification of
the interfaces (types, variables, functions) uses C99
as its core language. In addition, native DCSL con-
structs are provided and may be used, as required, for
the specification of specific hardware resources (e.g.
non-memory-mapped registers), for the specification
of specific attributes of hardware resources (read-to-
clear, address constraints, . . .), for the specification of
design-level attributes (mode and direction of a formal
parameter, noreturn function, range of values, . . .).

2) The design of the behaviors. The specification of
the dynamic behaviors uses native DCSL constructs.
It consists of two parts, none of which is mandatory.
a) Contracts. Contracts are made-up of precondition/-

postcondition properties. The properties are logical
formulas. The formulas are many-sorted first-order
logic whose sorts and base terms are – essentially
– the types and variables of the program. But some
properties of interest, data and control flows, hard-
ware resources handlings, are expressed as formulas
in a native DCSL construct for finite temporal se-
quences, whose events are the observable occurences

of program actions: calling a function, calling a func-
tion with specified values for parameters, reading a
(volatile) variable, writing a (volatile) variable with a
specified value. It is worth noting that formulas must
be run-time evaluable. The quantifiers are restricted
to finite integer intervals for the first-order formulas.
And the temporal operators are restricted to finite
event-counts (no “eventually”, or “always” operators)
for the finite temporal sequences formulas.

b) Tests. Tests are made-up of test cases. Test cases are
formally models (valuations of the free variables) of
the contracts formulas. The set of the test cases is
accepted as a “sufficient” characterisation of the pro-
gram unit (DAL-sensitive consensus approved by all
actors). In that sense, when both contracts and tests
are present, they are specifications of the program
unit.

2) Designing with DCSL and its compiler: In the context
of the νWoW , the very first input when designing with
DCSL is a CoDDA-pre-generated DCSL program which
contains the design of the interfaces. Additional higher level
specifications may be used by the designer to fully develop
the formulas of the contracts. The DCSL compiler front-
end parses and analyses the DCSL program. It detects any
compile-time semantic errors and warns about some possible
run-time semantic errors. If no semantic error is detected, the
back-end generators can be activated. No generation action
is run on an incorrect DCSL program.

Design input data

DCSL design (contracts)

DCSL compiler

The design of the tests requires two DCSL design steps.
The first step is the design of the contracts as formerly
described. From this correct input, the compiler is run in
a mode which will generate a DCSL program extended
with templated tests. The identification of the formulas and
the free variables that contribute to the tests is an intrinsic
part of the generation. It make use of a dedicated semantic
analysis guided by methodological rules. Thus the design of
tests is the design of the models of the formulas, that is the
design of the set of values to be substituted to the template
placeholders, thus yielding the DCSL design with tests.

Design input data

DCSL design (contracts{; tests})

DCSL design (contracts; test templates)

DCSL compiler

3) Compile for proof: The downstream unit proof pro-
cess expects a set of ACSL formal annotations for its inputs.
In legacy processes already including some proof techniques,
such annotations were completely hand-crafted. In the con-
text of the νWoW , they are produced automatically by the
DCSL compiler from a semantically correct DCSL program.
No further action of the designer is needed for the unit proof.

DCSL design (contracts)

DCSL compiler

ACSL annotations ACSL stubs ACSL stub inits

4) Compile for test: The downstream unit test process
expects a set of C programs and declarations for its inputs.
In legacy processes, such inputs were completely hand-
crafted. In the context of the νWoW , they will are produced
automatically by the DCSL compiler from a semantically
correct DCSL program. No further action of the designer is
needed for the unit test.

DCSL design (contracts; tests)

DCSL compiler

Test prog.c Test env.c Test stubs.c Test consts.h Test stubs.h

D. Unit proof

Since a decade, program proof techniques have been
successfully introduced to replace unit testing on some soft-
ware subsets, where the Caveat tool is used for certification
credit [19] This obsolete tool is currently being replaced by
the WP plugin of the Frama-C [22] platform.

Unit proof as part of the νWoW stands for the restriction
of program proof to the scope of an individual C function,
along with a dedicated environment featuring stubs for
callees and instrumentation of volatile accesses.

The implementation of a given C function is verified
against a formal ACSL [5] contract, computed from its
formal LLR by the DCSL compiler. The proof is con-
ducted semi-automatically within a deductive system based
on Hoare Logic [25] and Dijkistra’s Weakest Precondition
Calculus [18].

Throughout a proof campaign, bundles of proof obli-
gations are generated by Frama-C/WP, and submitted to
the Alt-Ergo [4] SMT-solver [12] (c.f Figure 7). In the
overwhelming majority of cases, proof is conducted fully
automatically. Targeted rate exceeds 95% of entirety of
goals. Nonetheless, proof engineers may terminate interac-
tively some proof obligations by means of the Interactive
Proof Editor. Complex goals generated by WP may then
be decomposed into smaller pieces by applying several
tactics available through the user interface. These tactics are
saved and put ot use automatically in the following proof
campaigns. Proof engineers provide also loop invariants.

In addition, the proof engine checks the completeness of
the LLR, in that it ensures every possible pre-state or the
function is captured by at least one ACSL (hence DCSL)
behaviour.

Fig. 7. Unit proof environment

The Figure 7 depicts, for a terminal machine M defining
a C function F, the two automatic consecutive steps which
are needed to carry out the unit proof of F:

• setup a proof environment conducted by Optimases
which isolates the terminal machine implementing this
function, by generating

F_asclstubs_contract.c: stubs for callees,
and instrumentation for volatile accesses, if any;
F_pre.acsl: initial values for instrumentation
variables, in the form of ACSL preconditions;
F_acslfunc_contract.acsl.c: the ACSL
contract, as translated from DCSL LLR.

This step is carryied out mainly by the Airbus internal
toolset. It also relies on Frama-C’s ACSL importer
plugin and GCC pre-processor.

• proof of generated ACSL postconditions by means of
Frama-C/WP and Alt-Ergo.

The reader may refer to a long version of this paper
at http://www.di.ens.fr/∼delmas/erts18/ for details on the
automatically generated proof environment, in particular
stubs for callees, and instrumentation of volatile accesses.
It contains also information on the semi-automatic manage-
ment of loop invariants.

E. Unit test

1) Tests design vs implementation: The use of tools-
supported formal methods all along with the automatization
of the processes has enabled to separate the design of the
tests from the implementation of the tests. The implementa-
tion of the tests with the tricky and error-prone activities is
now totally tools-supported. The tester is focused solely on
the design of the tests: design data sets which are models
of the logical formulas at the prestate of the unit-under-
test. He has no longer to develop test programs, simulated
environments, test oracles, specific interfaces for assembly
programs nor to manage test runs on specific-hardware test-
platforms. All of these error-prone, full of tricky technical
details activities are now totally handled by tools (DCSL
compiler, Optimases, SIMUGENE).

2) Process: Figure 8 introduces the unit test process sup-
ported by Optimases. Testers fill in test templates computed
by the DCSL compiler with input vectors. the rest of the
process is automatic.

Fig. 8. Unit Test environment

3) Practical implementation: To reach this abstraction
level for types of applications, in particular low-level appli-
cations, unit tests are run on the SIMUGENE representative
virtual platform. The DCSL compiler generates calls to a
dedicated run-time library, which cooperates with SIMU-
GENE’s fault injection module [11], which handles:

volatile variables The injection module is configured to both
1) collect all information on write accesses to volatiles,

e.g. written values, access numbers, etc.;
2) inject user-defined values on read accesses to

volatiles.
Hardware registers to prevent side-effects during the initial-

isation or capture of hardware registers, the injection
module is used ton ensure that registers may be safely
used in the prologue of the procedure under test, and
captured at epilogue, even in case of abrupt exit.

Management of non EABI routines In this case, a specific,
non standard ABI is formalised to describe the call
protocol of the routine – at entry and exit, the registers
allocated to formal parameters and return codes, the
volatile or non volatile nature of each register. The
DCSL compiler generates calls to the fault injection
module, so the tester does not need to do it. From the
designer and test point of view, such non EABI routines
are thus handled like simple C functions, with typed
formal parameters and return value.

Special microprocessor instructions Some DCSL contracts
described sequences of special processor instructions.
The injection module allows the user to view them as
standard functions, for which calls, inputs and outputs
are to be monitored.

All theses commandes and interactions are run without
altering or instrumenting the software under test.

To improve the efficiency of the error detection and fix,
a GDB script containing a breakpoint on every erroneous
precondition and postcondition is generated automatically.
Thus, a simple Optimases command lets the user relaunch
a test scenario in debug mode. The test then stops on every
error, and the GUI display the falsified predicate. the debug
session may then continue either at DCSL contract level, or
at the level of the C source files generated by the DCSL
compiler, or at the level of the embedded software under
test.

F. Static analysis

The formal verification of non-functional properties re-
quires semantics-based automatic analyses that scale up to
very large programs. As a consequence, static analysis based
on abstract interpretation [13] is currently used industrially
for certification credit on many avionics software products
developed at Airbus, to compute safe upper-bounds of stack
consumption with AbsInt StackAnalyzer, or worst-case ex-
ecution time [38], with AbsInt aiT WCET, or to verify data
and control flows at unit level with the Fan-C [14] tool.

Moreover, the ASTRÉE [9] abstract interpretation based
static analyser is being used industrially at Airbus, prior
to certification, to prove the absence of run-time errors on
safety-critical synchronous control/command programs [15]
written in C. It has also be been shown to be mature for use

on a large set of asynchronous, multithread avionics appli-
cations [36]. The FLUCTUAT static analyser has also been
shown to be industrially usable to evaluate the numerical
accuracy of floating-point libraries of control programs [17],
and is in the process of being transferred to operational
developers.

In addition to these semantics-based static analysers, an
internal syntax-based rule checker [16] named CheckC is
used to check C code for conformace with coding standards.

All these static analysers are integrated as part of the
νWoW , where they play a critical role.

Indeed

1) data flow specifications to be verified by Fan-C are
computed by the DCSL compiler on formal LLR;

2) CoDDA, DCSL and Optimases generate inputs for the
run-time error analysis, such as the ABI configuration,
the set of inputs with their ranges, and expected ranges
on outputs;

3) ASTRÉE validates strong assumptions used by Frama-
C/WP to optimise proof automation (validity and sep-
aration of external pointers, absence of overflows in
arithmetics or conversion), or similar implicit assump-
tions of unit tests;

4) ASTRÉE computes the set of functions reachable by
any computed call, and generates the associate config-
uration file for StackAnalyzer;

5) FLUCTUAT proves round-off errors are small enough
to rely on a real-valued semantics when proving C
functions performing floating-point computations;

6) the coding rule checker limitates the subset of C that the
programmer can use, which increases the automation of
both semantics-based static analysis and unit proof.

G. Certified compilation

After extensive experiments [8], [7], the CompCert [31],
[10] formally verified compiler is currently being transferred
to operational projects, to allow optimising compilation of
DAL A software, while guaranteeing semantic preservation
between source and compiled code. This guarantee enlarges
the scope of sound source code analysers to also achieve
verification objectives that traditionally require testing, or
machine code analysis [2].

V. RELATED WORK

Our approach to design by contracts is inspired by
JML [29], and Microsoft research’s CodeContracts [34].
However, we target C and assembly. Our hybrid approach to
verification, combining testing, static analysis and program
proof is similar to that of the Hi-Lite project [28], supported
by AdaCore and CEA. We did not look into using SPARK,
as Ada is not used on the avionics software products we
develop. We could have considered e-ACSL, but we had
already developed the internal TCSL solution on previous
projects, so that it meets our needs exactly. Our use of
domain-specific languages to improve productivity is related
to Galois’s endeavour [24], though we focus on automating
the production of design and verification artefacts, rather the
final product itself. Like in DARPA’s HACMS project [20],
we rely on domain-specific languages, formal verification,
and certified compilation, though our main focus is correct-
ness and safety rather than security.

VI. DEPLOYMENT AND RESULTS

the νWoW process and supporting development and
verification workshop is currently deployed on two medium-
sized development projects. No definite productivity mea-
sures have been established as of today, but there are strong
indications of a significant improvement for the subprocess
concerned with design and unit verification. Indeed, as
demonstrated on a small (but real-life) running example
available at http://www.di.ens.fr/∼delmas/erts18/, about 80%
of the design, code, and unit verification data is generated
generated completely automatically by the design work-
shop. In addition, about 90% of the implementation can
be verified by means of unit proof, and about 90% of
the proofs are automatic (after loop invariant definition).
In the case of unit testing, the level of automation is also
tremendously improved versus legacy processes. Finally, for
both verification techniques, the integration of advanced
debug facilities to the development workshop yields key
productivity enhancements.

Therefore, wer are very confident to reach a productivity
gain of 50% on the design and unit verification phases for
these projects.

VII. CONCLUSION AND FUTURE WORK

In this paper, we describe a development process inte-
grating tightly formalised designs, static analysis, program
proof, and testing. This process is supported by a workshop
based on an internal process management tool maintaining
dependency information between all development and ver-
ification artefacts, and allowing for contextual, automatic,
dynamic adaptation of the verification process, and assisted
transitions between development phases. This process, and
supporting methods, tools and workshop, are intended to be
deployed in all new projects. The next step is the deployment
of the νWoW on two large-size redesign projects: that of
the Airbus Single-Aisle Flight Warning Computer, and that
of ATR Multi-Function Computer. Some legacy projects are
also considering migrating.

This hybrid process allows for the efficient cooperation
of heterogeneous but complementary approaches to avionics
software engineering. Up to now, it seems to keep its
promise: allow for large improvements in cost-efficiency,
while preserving the quality of avionics software.

However, the initial industrial target, which is to reduce
the cost of design and unit verification processes by 75%,
is not meat yet. Extensions of the νWoW are necessary
to address residual shortcomings, and reach this target. For
instance, unit tesing methods could be reduced to functional
ranges, provided sound static analysis guarantees no value
is reachable outside these ranges. Limited extensions of
the contents of design data could enable for the automatic
generation of link scripts, and the automatic verification of
memory mappings. Template loop invariants could be pre-
generated to save time in the unit proof phase. Specific
proof tactics could be integrated to further improve unit
proof automation in a given context. Some preconditions on
procedures still need to be validated in reviews. They could
be validated by static analysis. Finally, static analysis could
be used to check the consistency of test scenarios.

REFERENCES

[1] DO-178C: Software considerations in airborne systems and equip-
ment certification, 2011.

[2] DO-333 formal methods supplement to do-178c and do-278a. Tech-
nical report, December 2011.

[3] AdaCore. SPARK 2014 Reference Manual. http://docs.adacore.com/
spark2014-docs/html/lrm/, 2013.

[4] The alt-ergo smt solver. https://alt-ergo.ocamlpro.com/.
[5] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude

Marché, Benjamin Monate, Yannick Moy, and Virgile Prevosto.
ACSL: ANSI/ISO C Specification Language. CEA List, INRIA.

[6] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude
Marché, Benjamin Monate, Yannick Moy, and Virgile Prevosto.
ACSL: ANSI/ISO C Specification Language - Version 1.7. CEA/LIST
& INRIA, 2013.

[7] Ricardo Bedin Franca, Sandrine Blazy, Denis Favre-Felix, Xavier
Leroy, Marc Pantel, and Jean Souyris. Formally verified optimizing
compilation in ACG-based flight control software. In Embedded Real
Time Software and Systems (ERTS 2012), 2012.

[8] Ricardo Bedin Franca, Denis Favre-Felix, Xavier Leroy, Marc Pantel,
and Jean Souyris. Towards formally verified optimizing compilation
in flight control software. In PPES 2011, volume 18 of OASIcs,
pages 59–68, 2011.

[9] Julien Bertrane, Patrick Cousot, Radhia Cousot, Jerôme Feret, Lau-
rent Mauborgne, Antoine Miné, and Xavier Rival. Static Analysis
and Verification of Aerospace Software by Abstract Interpretation.
Foundations and Trends in Programming Languages, 2(2-3):171–
291, 2015.

[10] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. Verified compilation of floating-point computations.
Journal of Automated Reasoning, 54(2):135–163, 2015.

[11] Abderrahmane Brahmi, Thomas Marie, Romain Beseme, and Faman-
tanantsoa Randimbivololona. Final integration test of avionic soft-
ware in full virtual platform. 2014.

[12] Sylvain Conchon, Évelyne Contejean, Johannes Kanig, and Stéphane
Lescuyer. CC(X): Semantical combination of congruence closure
with solvable theories. In Post-proceedings of the 5th International
Workshop on Satisfiability Modulo Theories (SMT 2007), volume
198(2) of Electronic Notes in Computer Science, pages 51–69.
Elsevier Science Publishers, 2008.

[13] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In POPL’77, pages 238–252. ACM, Jan. 1977.

[14] Pascal Cuoq, David Delmas, Stéphane Duprat, and Victoria Moya
Lamiel. Fan-C, a Frama-C plug-in for data flow verification. In
ERTS’12. SIA, 2012.

[15] D. Delmas and J. Souyris. Astrée: from research to industry. In
SAS’07, volume 4634 of LNCS, pages 437–451. Springer, Aug. 2007.

[16] David Delmas, Stéphane Duprat, Victoria Moya Lamiel, and Julien
Signoles. Taster, a frama-c plug-in to enforce coding standards. In
ERTSS 2010: Proceedings of Embedded Real Time Software and
Systems. SIA, 2010.

[17] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim
Tekkal, and Franck Védrine. Towards an industrial use of fluctuat
on safety-critical avionics software. In Marı́a Alpuente, Byron Cook,
and Christophe Joubert, editors, FMICS, volume 5825 of Lecture
Notes in Computer Science, pages 53–69. Springer, 2009.

[18] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[19] Stéphane Duprat, Denis Favre-Félix, and Jean Souyris. Formal
verification workbench for airbus avionics software. In ERTS 2008:
Proceedings of Embedded Real Time Software. SIA, 2006.

[20] Kathleen Fisher. Using formal methods to enable more secure
vehicles: Darpa’s hacms program. In Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming,
ICFP ’14, pages 1–1, New York, NY, USA, 2014. ACM.

[21] Robert W. Floyd. Assigning Meaning to Programs. In Proceedings
of the Symposium on Applied Maths, volume 19, pages 19–32. AMS,
1967.

[22] The Frama-C framework for analysis of C code. http://frama-c.com/.

[23] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Muller,
and Matthew Parkinson. Behavioral Interface Specification Lan-
guages. ACM Computing surveys, 44(03):16:2–16:58, 2012.

[24] Patrick C. Hickey, Lee Pike, Trevor Elliott, James Bielman, and John
Launchbury. Building embedded systems with embedded dsls. In
Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’14, pages 3–9, New York, NY,
USA, 2014. ACM.

[25] C. A. R. Hoare. Viewpoint - retrospective: an axiomatic basis for
computer programming. Commun. ACM, 52(10):30–32, 2009.

[26] Charles A. R. Hoare. Proof of correctness of data representations.
Acta Informatica, 1(4):271–281, 1972.

[27] Charles A.R. Hoare. An Axiomatic Basis for Computer Program-
ming. CACM, 12(10):576–583, 1969.

[28] Johannes Kanig, Edmond Schonberg, and Claire Dross. Hi-lite: the
convergence of compiler technology and program verification. In
Ben Brosgol, Jeff Boleng, and S. Tucker Taft, editors, Proceedings
of the 2012 ACM Conference on High Integrity Language Technology,
HILT ’12, December 2-6, 2012, Boston, Massachusetts, USA, pages
27–34. ACM, 2012.

[29] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary
design of jml: A behavioral interface specification language for java.
SIGSOFT Softw. Eng. Notes, 31(3):1–38, May 2006.

[30] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David Cok, Peter Muller, Joseph Kiniry, Patrice Chalin,
Daniel M. Zimmerman, and Werner Dietl. JML Reference Man-
ual. http://www.eecs.ucf.edu/∼leavens/JML/jmlrefman/jmlrefman.
html#SEC Top, 2013.

[31] Xavier Leroy. Formal verification of a realistic compiler. Communi-
cations of the ACM, 52(7):107–115, 2009.

[32] libfuse. https://github.com/libfuse.
[33] Francesco Logozzo. Code Contract User Manual.

https://github.com/Microsoft/CodeContracts/blob/master/
Documentation/User%20Documentation/userdoc.pdf, 2013.

[34] Francesco Logozzo. Practical specification and verification with code
contracts. In Jeff Boleng and S. Tucker Taft, editors, Proceedings of
the 2013 ACM SIGAda annual conference on High integrity language
technology, HILT 2013, Pittsburgh, Pennsylvania, USA, November
10-14, 2013, pages 7–8. ACM, 2013.

[35] Bertrand Meyer. Applying ”Design by Contract”. Computer,
25(10):40–51, 1992.

[36] A. Miné and D. Delmas. Towards an industrial use of
sound static analysis for the verification of concurrent embed-
ded avionics software. In Proc. of the 15th International
Conference on Embedded Software (EMSOFT’15), pages 65–74.
IEEE CS Press, Oct. 2015. http://www-apr.lip6.fr/∼mine/publi/
article-mine-delmas-emsoft15.pdf.

[37] J.P. Rosen. HOOD: An Industrial Approach for Software Design.
HOOD User’s Group, 1997.

[38] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu, and
Guillaume Borios. Computing the worst case execution time of an
avionics program by abstract interpretation. In In Proceedings of the
5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis,
pages 21–24, 2005.

[39] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny.
Formal verification of avionics software products. In Ana Cavalcanti
and Dennis Dams, editors, FM, volume 5850 of Lecture Notes in
Computer Science, pages 532–546. Springer, 2009.

[40] Tup. http://gittup.org/tup.

