
HAL Id: hal-01708220
https://hal.science/hal-01708220

Submitted on 13 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How Resilient is your computer system?
William Excoffon, Jean-Charles Fabre, Michaël Lauer

To cite this version:
William Excoffon, Jean-Charles Fabre, Michaël Lauer. How Resilient is your computer system?. ERTS
2018,9th European Congress Embedded Real Time Software and systems, Jan 2018, Toulouse, France.
�hal-01708220�

https://hal.science/hal-01708220
https://hal.archives-ouvertes.fr

 1

How Resilient is your computer system?

W. Excoffon1, J.-C.Fabre1, M. Lauer2

CNRS-LAAS, Ave du Colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, 1INP, 2UPS, LAAS, F-31400 Toulouse, France

Abstract—A system that remains dependable when facing

changes (new threats, failures, updates) is called resilient. The
fast evolution of systems, including embedded systems, implies
modifications of applications and system configuration, in
particular at software level. Such changes may have an impact
on the dependability of the system. A system is resilient when
such changes do not invalidate its dependability mechanisms,
said in a different way, current dependability mechanisms
remain appropriate despite changes.

In this paper we introduce some measures to quantify the
capability of a system to remain dependable despite changes,
i.e. how resilient it is!

I. INTRODUCTION
Today systems evolve very fast during their service life

for several reasons, including additional features requested
by users. This is true for conventional systems offering
services to users like data servers, telephony, messaging,
banking, and numerous remote services accessible via the
Internet. Any user is today equipped with one or more
devices and customer of many services. Embedded systems
are not outside of this trend. They become open! This is true
for the automotive industry with the development of
connected cars. For dependable systems, the challenge is
greater, as evolution must not impair dependability attributes.

The persistence of system dependability when facing changes
is called resilience [1].

We use here the definition of resilience given above and
proposed by JC. Laprie and colleagues in the ReSIST1
Network Of Excellence. The difference between resilience
and dependability is very important. Resilient computing
adds a new dimension to fault tolerant computing by
including change events, in particular unexpected changes
related to application updates, new fault tolerance
requirements, system configuration changes, etc. In this
respect, fault tolerance strategies installed at one time can be
invalidated by a change later on. Although a system may be
developed with adequate dependability mechanisms at a
given point in time, some evolution may have unexpected
side effects. Evolutions encompasses, but are not limited to,
corrective maintenance, updates and upgrades.

The word “Resilience” is often used in Cloud computing
[2] and networking as a synonymous to fault tolerance that is
not consistent with our definition. However, the metrics used
in these fields (data losses, CPU efficiency…) are analog to
Fault Tolerance measures. This work proposes an approach
to measure the impact of unexpected change events on the

1 ReSIST NoE, Resilience for Survivability in IST, http://www.resist-noe.org/.

persistence of dependability. The proposed measures are
complementary to standard fault tolerance measures.

Dependability relies at runtime on fault tolerance
mechanisms attached to the application [3]. A challenge of
resilient computing is to maintain the adequacy between any
application and its attached FTMs (Fault Tolerance
Mechanism) during the operational life of the system despite
change events.

In this paper, we propose some measures to estimate the
resilience of a system. These measure do not compete with
conventional dependability measures, they are
complementary. We finally draw some lessons learnt for the
development of resilient systems.

II. RESILIENT COMPUTING & PROBLEM STATEMENT
Resilient computing raises several challenges in various

dimensions (evolvability, assessability, usability, diversity)
and call for resilience scaling technologies. Examples of
challenges up are the following, as identified in ReSIST:

- for evolvability, to be able to adapt to changing
environments and threats,

- for assessability, to move from off-line, pre-deployment
assessment to continuous automated and operational
assessment,

- for usability, to reconcile the conflicting roles of humans
as contributors to resilience and threats that resilience
must tolerate,

- for diversity, to take advantage of diversity in order to
prevent some vulnerabilities from becoming single
points of failure.

In the work reported in this paper we address the first of
these challenges: evolvability and its impact on
dependability. The aim is to find measures to assess the
resilience of a system when changes are performed. Such
changes refer to both application and dependability
components. They can be mandatory to maintain the system
consistent with the specifications, both functional and non-
functional. Such changes follow a random process as they
can occur when a bug is discovered. This type of change is
related corrective maintenance. Other changes can be
voluntary in the sense that they are performed to improve the
system, e.g. updates to improve for instance the
implementation of given application, or upgrades when some
additional features are added to the system, for commercial
reasons for instance. All these changes may have an impact
on the dependability of the system.

The key point here relates to the importance of the
assumptions regarding dependability mechanisms, in

 2

particular fault tolerance mechanisms. Such assumptions
refer to the considered fault model, behavioral and structural
characteristics of the application, resources of the system,
etc. The coverage of these assumptions is a very important
figure to estimate the real efficiency of a fault tolerance
mechanism, provided the mechanism is correctly
implemented. An FTM remains useful and efficient while
changes do not affect its assumptions. When changes do not
affect the FTM assumptions, then the system is considered
resilient. When changes affect one of its assumptions, then
the FT mechanism becomes invalid and by the way useless.
It must be adapted i) to comply with the assumptions and ii)
obviously to satisfy the fault tolerance requirements of the
application attached to it. This work is complementary to
former research work on the impact of assumption coverage
on dependability measures [4].

In summary, a change may have no effect on
dependability or require an adaptation of the FTM. In a
sense, this is similar to fault injection analysis, an injected
fault may have no effect (often called in No Observation case
in fault injection experiments) or lead to a failure mode (see.
[5]). A failure mode requires a corrective action after been
diagnosed, an adaptation of the FTM in our case.

Adaptation of FTMs [6] [7] [8] is an important feature for
a resilient system as it enables its dependability mechanisms
to be adjusted to a new operational context. The aim of
Adaptive Fault Tolerance (AFT) is to modify the FTMs to
comply with assumptions and dependability requirements.

A resilient computing system is a system able to adapt its
fault tolerance mechanisms at runtime to comply with its
fault-tolerance requirements.

The sources of changes can be multiple as already mentioned
in introduction (corrective maintenance, updates and
upgrades). The upcoming interest to Agile Development
process may have an impact on system dependability, when
the rushing implementation phases reduce the validation
phase, leading to residual faults. The need for delivering as
fast as possible new system versions to the public, the need
to perform remote update and upgrade to improve but also
sell new features, are de facto economic stakes!

The work reported in the paper addresses the following
question: how to estimate the resilience of a system?

III. CHANGE MODEL AND FTM ASSUMPTION

A. Basic Assumptions
We assume in this work that a system host applications

that have dependability requirements. After a deep analysis
of these dependability requirements, including a Failure
Modes Effects Critical Analysis (FMECA) or any other risk
analysis (e.g. Fault Tree Analysis – FTA), fault tolerance
mechanisms are identified.

The separation of concerns principle is a prerequisite for
adaptive fault tolerance, not only a design time but also at
runtime, as illustrated in [8]. An application component (A)
is linked to a fault tolerance component (FTM). Many
different fault tolerance strategies and corresponding FTMs

can be implemented to comply with dependability
requirements. All possible solutions with slightly different
assumptions can be implemented and loaded into the system.
The selection of the appropriate FTM for a given application
components can be selected on-line according to monitored
assumptions. In practice, according to our system model, an
FTM is linked to an application component a priori when the
system is put in operation.

B. Adaptation and Change Model
An appropriate Fault Tolerance Mechanism (FTM) for a

given application depends on several assumptions grouped in
three classes: 1) application characteristics (AC);� 2) fault
model to consider (FM); 3) available resources (AR).

At any point in time, the FTM(s) attached to an
application must be consistent with the current values of
(AC, FM, AR). These assumptions enable to discriminate
FTMs. We denote (AC, FM, AR) the change model.

Several application characteristics (AC) have an impact
on the selection of an FTM. In this paper we first consider
the following: i) behavioral determinism, ii) application
statefulness, iii) state accessibility and iv) fail-silence.

The fault model (FM) considers well-known fault types,
e.g., crash faults, omission and transient value faults.

The available resources (AR) play also an important role.
Firstly, in the FTM selection, since FTMs require resources
to be implemented such as bandwidth, CPU, battery
life/energy. This resource criterion may invalidate a solution.

However, resources can be a trigger for FTM change. A
lack of resources at a given point in time in the operational
life of the system may invalidate an FTM. This implies that a
new FTM must be installed according the available
resources. This aspect has not been considered in this paper.

Any assumption variation during the service life of the
system may invalidate the initial FTMs selected, thus
requiring a transition towards a new one. Transitions may be
triggered by a new application version with different
characteristics or new threats (i.e. fault model change).

A configuration (A ◊ FTM) must remain consistent despite
changes in the characteristics of the application and its
related fault tolerance requirements.

C. FTM and Assumptions
To illustrate our modeling approach, we consider some

conventional fault tolerance mechanisms that will be used as
a guiding thread through the remainder of the paper.

Duplex protocols tolerate crash faults using passive (e.g.
Primary-Backup Replication denoted PBR2), or semi-active
replication strategies (e.g. Leader-Follower Replication
denoted LFR3). Each replica is considered as a self-checking

2 With PBR, only one replica is active, the Primary. The state of the computation
is forwarded to the Backup in a checkpoint. The Backup replica handles
checkpoints in normal operation and takes over when the Primary crashes.
3 With LFR, both replicas are active, the Leader and the Follower. The Leader
replies to client's request, while the Follower just executes the request to update
its computational state. The Follower takes over when the Leader crashes.

 3

component in both cases. At least 2 independent processors
(error confinement areas) are necessary to run these FTMs.

 Time Redundancy (TR) tolerates transient faults leading
to omission or value errors using repetition of the
computation and comparison. This can also be perceived as a
way to improve the self-checking nature of a replica.

In this paper, our fault model includes permanent and
transient hardware faults or random operating system faults.
We do not consider common mode faults.

The above Duplex strategies can be combined with TR to
tolerate both transient and permanent physical faults.

Assumptions / FTM PBR LFR TR
Fault Model

(FT)
Crash ! !

Omission !
Transient !

Application
Characteristics

(AC)

Deterministic ! !
State access ! !
Fail silent ! !

TABLE I. ASSUMPTIONS AND FAULT TOLERANCE MECHANISM

The considered FTMs, in terms of fault model and
application characteristics, are given in TABLE I. The PBR
and LFR techniques tolerate the same fault model (crash),
but have different application behavioral assumptions. PBR
allows non-determinism of applications because only the
Primary computes client requests while LFR only works for
deterministic applications as both replicas compute all
requests. LFR could tackle non-determinism if all non-
deterministic actions can be captured. This is not what we
consider in a first step. As mentioned previously, PBR
requires state access (if any) for checkpointing application
state, while LFR does not require state access. TR also
requires state access (if any) to restore the previous state of
the computation before repetition of the processing.

D. Evolution scenarii example and possible transitions
During the service life of the system, the characteristics

of the application or its fault tolerance requirements of
assumptions can change.

An application can become non-deterministic when a
new version is developed. The fault model can also become
more complex, e.g., from crash-only it can become crash-
and-value. For instance, the PBR"LFR transition
(denoted ") is triggered by a change in application
characteristics (e.g. inability to access application state). A
transition can occur in both directions, w.r.t assumptions
variation. A transition obviously implies an off-line
validation of the new configuration (A ◊ FTM).

The PBR"PBR+TR (FTMs composition denoted +)
transition is triggered by a change in the considered fault
model (e.g. crash-and-value). However, the composition of
FTMs is not straightforward and requires a deep analysis of
the impact of the first FTM on the second one. This analysis
is out of the scope of this work. The composition of FTM
must be validated off-line before using it, taking care of
possible interferences between FTMs as in [9].

IV. BASIC ANALYSIS OF RESILIENT COMPUTING
In this Section we address the following questions: How

to determine a suitable FTM after a change event in order to
maintain system dependability? How to estimate system
resilience and what insights can be gained?

The dependability requirements of an application define
the fault model to be considered. This fault model determines
the suitable set of FTM for this application. Several FTM can
be a solution to the problem, but each of them accepts
specific characteristics of the application component.
Application characteristics are de facto FTM assumptions.

We define the notion of Consistency Ratio (CR) to
quantify the capacity of a set of FTM to comply with
application characteristics and fault tolerance requirements.
For a given set of FTM, a list of application characteristics
and a set of faults to be tolerated, the CR corresponds to the
proportion of the cases where a solution, i.e. a suitable FTM,
is found. Each case can be seen as a cell of a table having
application characteristics as rows and type of faults as
columns. The content of the cell is one or several FTM or
nothing. A change event for a given application corresponds
to a jump from one cell in the table to another one. The
system remains resilient if an FTM is found in the new cell
for this application. The probability of finding a suitable
FTM in the cell is directly related to the notion of CR.

The following table summarizes the result of our
analysis. In TABLE II. we list in columns all possible
combinations of fault tolerance requirements an application
can specify. In rows, we have all possible combinations of
application characteristics. A cell in the table is full when a
solution is found. It is empty when no solution is found with
the set of FTM and variants considered/available.

The notation for application characteristics is:

- DT for DeTerministic, !DT if not.
- ST for STateful, !ST if stateless.
- SA for State Access, !SA if not.
- FS for Fail Silent, !FS if not.

The fault-tolerance requirements notation is as follows:

- C for Crash faults, !C if not considered.
- O for Omission, !O if not.
- V for Value errors, !V if not.

Light Green FTM means that at least one FTM with their

strict definition given in TABLE I. was found to comply
with both application characteristics and fault-tolerance
requirements. We ignore the case where no fault tolerance
requirements are requested, i.e. !C,!O,!V.

Dark Green FTM corresponds to variants of the initial
set of FTM. For instance, TR0 implements a repetition of the
computation but with no comparison at the end. TR0
tolerates omission faults and its combination with PBR
tolerates more cases in the table.

Last but not least, the Sky Blue FTM represents additional
solutions with revised definitions, as explained hereafter.

 4

We considered previously that duplex strategies cannot
be applied when the application is not fail-silent. The notion
of fail silence is probabilistic and depends on the coverage of
the error detection mechanisms integrated within the
application. The coverage cannot be 100%. The validation
process and the measurements carried out in particular using
fault injection enables the error detection coverage to be
estimated. It is thus the responsibility of the developer to
declare if its application is fail-silent or not according to the
measurements obtained. However, in both cases, the
application being fail-silent or not (FS and !FS), as
determined by the developer, crash faults can be tolerated
with duplex strategies. Even for non fail-silent applications,
the developer may consider that crash fault must be tolerated
despite some value errors can be observed.

A quick look to the table shows that some characteristics
have a strong impact on the Consistency Ratio. In particular,
faults affecting non-deterministic applications are more
difficult to tolerate.

In addition, interestingly, the combination of TR and a
duplex strategy (PBR or LFR) improves the situation
described above. The application of TR improves the error
detection coverage for non fail-silent applications, i.e.
tolerance to value errors, and thus improves the fail-silent
assumption required by any duplex strategy. This is true for
deterministic applications and when the state of the
computation (if any) is accessible.

FM #
AC$

C
!O
!V

!C
O
!V

!C
!O
V

C
O
!V

C
!O
V

!C
O
V

C
O
V

!DT,!ST,!SA,!FS PBR TR0 PBR
+TR0

!DT,!ST,!SA,FS PBR TR0 PBR
+TR0

!DT,!ST,SA,!FS PBR TR0 PBR
+TR0

!DT,!ST,SA,FS PBR TR0 PBR
+TR0

!DT,ST,!SA,!FS
!DT,ST,!SA,FS
!DT,ST,SA,!FS PBR TR0 PBR

+TR0

!DT,ST,SA,FS PBR TR0 PBR
+TR0

DT,!ST,!SA,!FS LFR,
PBR

TR,
TR0

TR LFR
+TR0

LFR
+TR

TR LFR
+TR

DT,!ST,!SA,FS LFR TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

DT,!ST,SA,!FS LFR TR,
TR0

TR LFR
+TR0

LFR
+TR

TR LFR
+TR

DT,!ST,SA,FS LFR TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

DT,ST,!SA,!FS LFR
DT,ST,!SA,FS LFR
DT,ST,SA,!FS LFR,

PBR
TR,
TR0

TR LFR
+TR0

LFR
+TR

TR LFR
+TR

DT,ST,SA,FS PBR,
LFR

TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

TABLE II. GLOBAL ANALYSIS OF FAULT TOLERANCE SOLUTIONS.

FTM Global CR CR for DT CR for !DT
Light Green 30% 55% 5%
Dark Green 38% 55% 21%
Sky Blue 55% 89% 32%

TABLE III. SUMMARY OF CR MEASUREMENTS.

The TABLE III. summarizes the results. We have shown
that with a very limited extension of the mechanisms and a
revision of the assumptions required to apply a given FTM,
we can impact drastically the number of cases solved.
However, some cases remain unsolved because of two
problems that can be summarized as follows: i) non-
deterministic application for which our current set of FTM
cannot tolerate value error, or ii) non-deterministic or
deterministic stateful application whose state is not
accessible.

The table can be computed using a simple algorithm and
the CR measures is easy to obtain. A sensitivity analysis with
respect to application characteristics shows that determinism
has a strong side effect on the fault tolerance solutions. A full
account of this analysis can be found in [10].

V. AUTOMATED ANALYSIS AND MEASUREMENTS

A. Formal notation
Our objective was to automate this analysis. Based on the

previous analysis, we can now define a formal notation to
represent an application A and its fault tolerance
requirements, from which a suitable FTM can be determined.
As a result, a configuration A ◊ FTM is consistent according
to the definition given below.

Definition: The design of a critical application is consistent
if and only if the FTM assumptions and capabilities match
Application characteristics and fault tolerance requirements.

An application A has a set of non-functional
characteristics, denoted (aci), k ∈ [1..N], N being the
total number of characteristics considered in the model. The
boolean application characteristics are those used
previously: determinism, statefulness, state access,
fail silence. This list can obviously be extended.

The fault tolerance requirements of an application Ai
correspond to the types of faults fmj the application Ai must
tolerate. We use again a boolean notation to represent this
set of faults, (fmj), j ∈ [1..P], P being the total number
of possible fault types affecting an application component in
the system. Examples of such fault types are those used
previously: value fault, omission fault, crash fault.
This list can also be extended with other fault types. �

Two vectors, thus represent an application one for
application characteristics, one for the fault types that must
be tolerated. The FTM attached to the application in a
configuration must tolerate such types of faults and be valid
for the application characteristics.

𝐴 =

𝑎𝑐!
𝑎𝑐!
…
𝑎𝑐!

,

𝑓𝑚!
𝑓𝑚!
…
𝑓𝑚!

The vector (𝑎𝑐!)
represents application
characteristics. The vector
(𝑓𝑚!) represents the fault
tolerance requirements.

The objective now is to determine FTMs making the
configuration A ◊ FTM consistent. As shown in the previous
section, an FTM provides a solution to tolerate some types of
faults, but its validity depends on application characteristics.

 5

Our final aim is to compute the tables automatically, from
the application model given above and a formal definition of
the validity of fault tolerance mechanisms.

Let's examine the simple set of mechanisms we have
considered previously {PBR, LFR, TR} with their strict
definition. Any of these FTM relies on assumptions to
tolerate a given type of fault. As an example, the
assumptions for the use of PBR are state access if the
application is stateful and fail silent behavior.
When such assumptions are strictly true, then PBR tolerates
the crash of the application. The same reasoning applies to
other FTM and their combination.

B. FTM assumptions and properties
The assumptions for each mechanism in the set of FTM

with respect to application characteristics can be defined by
logical assertions. We first use assertions to test the
compatibility of an FTM with the application characteristics.
Assertions for the FTM considered are defined as follows:

Assumption for PBR: FS and !(ST and !SA)

Assumption for LFR: DT and FS

Assumption for TR: DT and !(ST and !SA)

The assertion for the combination of several FTM can be
deduced from the above logical expressions, such as:

Assumptions for LFR+TR: FS and DT and !(ST and !SA)

The above assertion is stronger than needed; if it is true
we guaranty that the FTMs composition is valid. However, a
composition may require reduced assumptions. For instance,
applying TR implies that fail silence (FS) is no longer
necessary since TR is a way to improve the fail silence. This
is not considered in our algorithms, but reducing the
assumption set could improve the CR.

The Boolean expressions allow us to take in account the
dependencies between some characteristics. For instance, the
state characteristics has an impact on the CR only when the
application is stateful. We use assertions to test the adequacy
of an FTM with respect to fault tolerance requirements.
Assertions for the FTM considered are defined as follows:

Fault model for PBR: !O and !V

Fault model for LFR: !O and !V

Fault model for TR: !C

Now, we can define properties to check the consistency
of any application configuration (A ◊ FTM).

Definition of compatibility: FTM is compatible with A if and
only if FTM assumptions comply with the application
characteristics of A.
Definition of adequacy: FTM is adequate with A if and only
if FTM tolerates the fault model required by A.
Definition of consistency: A configuration (A ◊ FTM) is
consistent if and only if it complies with both the
compatibility and adequacy properties.

C. Notion of Consistency Ratio
During its lifetime, the several versions of a given

application developed and loaded into the system may have
an impact on the application characteristics and thus
invalidate the FTM that has been attached to the application
A in a first place. To help quantify the resilience offered by a
set of FTM, we define a notion of Consistency Ratio.

More formal definition of Consistency Ratio: For all
combinations of application characteristics and fault
tolerance requirements, the CR is the ratio of consistent
configurations (A ◊ FTM) we can obtain for a given set of
FTM.

This is exactly what we have done manually in
Section IV. The two questions we want to address now are:

- Can we compute the configuration tables from the
application model and the FTM logical expressions?

- How to compute the CR for such configuration tables
and FTM definitions?

D. Computing configuration tables and Consistency Ratio
The proposed algorithm creates the tables from the

application characteristics and fault tolerance requirements
using the logical assertions established for each FTM in the
set of FTMs. From the tables obtained, it computes the CR.

All application characteristics and fault tolerance
requirements are encoded with boolean values. The
application is represented by two boolean vectors. For
instance, a deterministic (DT), stateful (ST), with accessible
state (SA), fail silent (FS) application requiring tolerance to
crash faults is represented like this:

𝐴 =

1
1
1
1

,
1
0
0

Each FTM assertion is implemented as a function
returning a boolean value. The output is 1 if the application
A matches the FTM assumptions and fault model, 0
otherwise. The assertion for the PBR mechanism is:

FS and !(ST and !SA)) and (!O and !V)

INPUT: Application model, FTMs set
FOR each application characteristics SA

 FOR each fault model FM
 FOR each FTM

 IF (AC,FM) ◊ FTM is consistent THEN
 Store FTM in the cell (AC,FM)
 END IF

END FOR
IF the cell (AC,FM) is not empty
 Increment NbrOfConsCells

END IF
 END FOR
END FOR
RETURN: CR=NbrOfConsCells/TotNbrOfCells

Fig. 1. Algorithm for CR computation

 6

Fig. 1 gives the pseudo-code our simple algorithm to
automate the computation of the table and the CR. This
algorithm was validated using TABLE II. as an oracle. Using
the same application characteristics, fault tolerance
requirements and FTMs we are able to compute the CR
values given in TABLE III. The approach can easily be
extended to new characteristics, fault model, and set of FTM.

VI. SENSITIVITY ANALYSIS
This section proposes a sensitivity analysis of the CR

offered by a given set of FTM. The aim is to identify
application characteristics and types of faults that have the
most impact on the CR. We use the algorithm presented in
the previous Section to measure the CR when fixing some of
the parameters. First, we will address the sensitivity
regarding application characteristics (Section A) and then,
we will discuss the sensitivity to fault types (Section. B).

This analysis will help us to find the most efficient way
to improve the Consistency Ratio.
A. Sensitivity to application characteristics

In this Section, we analyse the impact of application
characteristics on the CR. For each application characteristic,
we measure the CR when the characteristic is set to a
particular value, and the other one can vary. In Fig. 2 each
bar corresponds to a CR. The X-axis represents each specific
characteristic and its assigned value (1 or 0). When a given
characteristic is set to 1, it means that it is true for the
application. For example, the bar “DT=1” represents the CR
offered to an application which will always be deterministic
regardless of future updates.

Fig. 2. Sensitivity to application characteristics

For this analysis, the set of FTMs is {PBR, LFR, TR},
with their strict definitions. The CR for this set of FTM was
about 30% when no characteristic is imposed (see TABLE
III.) This CR value is our Reference value in our sensitivity
analysis. The question now is: what is the impact on this
reference value when fixing one application characteristic
for this FTMs set?

The CR obtained when fixing a characteristic to 1 is
higher that the reference CR value. For instance, when the
application is guaranteed to be always deterministic (DT=1)
the CR value is improved from 30% to 55%. As a
consequence, we can anticipate that when the component is
not deterministic, the CR value is lower. All this is

confirmed by the results obtained in Fig. 2 where we show
the impact of each characteristic. In our analysis, with the set
of FTM we consider, we observed that determinism has the
most important impact on the CR value. Other characteristics
have also an impact, but it is less significant.

The conclusion is that improving the CR implies
focussing on this characteristic first. Two solutions are
possible to improve it: Either we force the component to be
deterministic or we need to include new FTM compliant with
non-deterministic applications.

B. Sensitivity to fault types
In this Section, we analyse the impact of the fault types to

the CR. The following analysis is done with the extended set
of FTMs considered in TABLE II. The reference is 55% in
this case (see TABLE III.). We use the same method as
previously: when a fault type is set to 1, it is part of the fault
tolerance requirements of the application. When it is set to 0,
the fault type is not part of the faults considered.

The results are given in Fig. 3. This figure shows the CR
variation when a type of fault is removed (i.e. set to 0). As
shown, the CR can increase or decrease. This enlightens the
strong impact of the fault model, positive or negative, on the
CR for a given set of FTM.

Fig. 3. Sensitivity to fault types

We observe that the CR is increased when we remove a
fault type (e.g. value faults removed) from the set of fault
types; the reason for this is that this type of fault is not
efficiently tolerated with the current set of FTMs, whereas
other faults are better tolerated.

Conversely, when the CR is decreased (e.g. crash faults
removed) we can infer that these types of faults (namely
crash faults here) are better tolerated than other types of
faults (value and omission). It is indeed the case as shown
previously with the simple set of FTM we consider in this
analysis. A first solution to improve the CR could be to
extend our set of FTM to include mechanisms dedicated to
value faults. Another solution is to work on the application
development itself to prevent by construction this kind of
faults, e.g. implementing a self-checking applications.

In conclusion, this analysis is a mean to identify the fault
types which are badly covered and to find a solution to
improve the resilience. Two options are possible: i)
extending the FTMs set or ii) removing these faults by

 7

design. The conclusion regarding the impact of application
characteristics is similar: i) extending the FTMs set with
mechanisms handling more efficiently some application
characteristics or ii) removing by design those characteristics
that have a bad impact on the Consistency Ratio.

VII. OTHER RESILIENT COMPUTING MEASURES
Several other measures can provide interesting insights

about the resilience of a system, focusing on its robustness
during a given period of time. It is work noting that a lack of
mechanism after a change is not a failure. The target
application is fragile in the sense that the activation of a fault
may lead to a failure since no valid mechanism is active to
tolerate that fault. These measures take into account the
frequency of changes, the delay to update the affected FTMs,
in other words the occurrence rate and the repair rate. In that
respect, they are similar to conventional dependability
measures, but with a major distinction since we do not speak
of failures but fragility!

MTBI – Mean Time Between Inconsistency

A sequence of change events during the system lifetime
may have no effect, the system remains dependable, or put
an application at risk since one or several FTM do not
comply anymore with their fundamental assumptions. This
measure is similar to the MTBF conventional dependability
measure. The main difference is that we do not consider
failures, but inconsistencies, so potential risk.

The insights we can gain with this measure is the
following: a large MTBI indicates that the various changes in
the system do not invalidate FTMs and this is good news.
For a given frequency of changes, the larger the MTBI, the
better the resilience is.

MTRI – Mean Time to Repair Inconsistency

The meaning of repair here refers to the ability to find a
solution after a change event, when the current FTM
becomes invalid. Either a valid mechanism exists and is
loaded into the system, and so the time to repair the
inconsistency can be considered null, or it needs to be
defined, developed and uploaded at the other end of the
spectrum. This measure is similar to the MTTR conventional
dependability measure.

The insights we can gain with this measure is the
following: a small MTBI indicates that system do not remain
fragile during a large period of time in average. In
conventional dependable systems, the fault rate (λ) for
hardware faults is largely smaller that the repair rate (µ). The
change rate (similar to λ) depends very much on the type of
systems, so the influence of the update rate (similar to µ) is
much higher for a high frequency of changes. Having FTM
building block ready that can be combined quickly to solve
the problem is of course a way to improve the repair rate.

RE(t) – Resilient behavior Estimator

This last estimator corresponds to the proportions of
change events at time t that do not lead to an inconsistency.
A 100% value would indicate that, despite a sequence of

change events since time 0 up to time t, no change event led
to an inconsistency. The system is perfectly resilient!

VIII. SIMULATION TOOL
As stated before, our approach can be automated, for

instance the computation if the Consistency Ratio (CR) can
be done with a simple algorithm (see Fig. 1). However, we
can go a step further. We have developed a simulator, which
combines two aspects of our analysis. The first one is the
exhaustive analysis of the Consistency Ratio. The second
aspect uses specific scenarios to measure the resilience of
the system. A scenario corresponds to a sequence of change
events impacting the application profile during a period of
time. In our context, an application profile is the core
assumptions of application relevant to dependability, i.e. the
application characteristics and fault model elements.

The simulator provides the system designer / manager
with a tool to analyze configuration choices vs possible
evolution scenarios thanks to various measures of resilience.
The first objective is to obtain the Consistency Ratio for a
set of FTMs and a set of parameters (determinism, state
access…). As said in part IV, to compute the CR we need to
check for each application profile if there is at least one
FTM consistent in our FTMs set.

In this tool we chose to model the consistency property
using Boolean expressions as shown in section V.B. We will
then evaluate these expressions with the values of FS,
SA... of each profile.

Fig 5. Simulation Tool framework

As you can see on this figure representing the simulation
tool, not only the analyzer takes as inputs a set of FTMs and
a set of parameters but we can also input some parameters
restrictions. These restrictions on the parameters are used to
conduct sensitivity analysis to applications characteristics
and/or to the faults model. Scenarios and strategies are
inputs needed by the simulation tools to measure MTBI,
MTRI and RE as described in section VII.

IX. LESSONS LEARNT AND DESIGN PROCESS
The resilient computing interpretation of the CR value

refers to the probability of having a compliant FTM after an
update of the application. The higher this ratio is, the higher
the probability to comply with new application
characteristics or fault tolerance requirements. Developing a
resilient system requires first the selection of an FTM
compliant with fault tolerance requirements and the
characteristics of the application. However, as we have

 8

shown, a single FTM may not offer much in terms of
resilience. Thus, following the principles of Adaptive Fault
Tolerance, some additional FTMs need to be included to
future-proof the system. A question then arises: How to
select these FTMs?

The design process could be the following: first the
system designer needs to list all the FTM that could be
implemented and for each one construct all consistency
assertions (see Section V.B), respecting the critical
assumptions for FTMs. With these elements and thanks to
the proposed automated analysis, it is possible to compute
the CR value for each subset of these FTM. This exhaustive
analysis4 is illustrated in Fig. 4. We compute the CR value
for each of the 26 subsets we can construct from the 6 FTM
considered previously {PBR, LFR, TR, TR0, PBR+TR,
LFR+TR}. Each bar represents the CR value for a given
subset and for readability reasons we have sorted the results
in increasing order (i.e. the X-axis correspond to the list of 26
subsets ranked according to their corresponding CR value).

Then the designer can find all the subsets of FTM that
satisfy some CR requirement. Finally, among all these
subsets of FTM, the designer must use other criteria, such as
required resources or development cost, to select the right set
of FTM to implement. It is noteworthy that deciding the right
CR requirement is obviously a complex problem in itself and
it should at least take into consideration the criticality of the
application, its envisioned frequency of updates, and the
confidence in the initial fault model.

If no subset of FTM is acceptable with respect to the
desired CR, for example because implementation is too
expensive, the sensitivity analysis can guide the designer
towards other solutions as shown in section VI.

Fig. 4. Exhaustive CR analysis

Fig. 4 shows the CR values for all subsets of FTMs in
blue and when the application is deterministic in red. When
all mechanisms are used, i.e., the last bar to the right of the
bar chart, we reach a CR of 38% without any restriction on
the characteristics of the application while we obtain 55%
when the application is deterministic. This is consistent with

4 Although this approach is exhaustive, we avoid scalability issues because our
approach is solely focused on the critical assumptions and requirements for
AFT.

the figures obtain previously. What is more interesting is that
with only 3 FTMs in the set we can reach a CR of 53,5 % as
you can see in the middle of the bar chart.

We clearly see then that making such an assumption
offers the designer more choices. Such insights have an
impact on the development of an application in a resilient
system. Forcing determinism implies a development
discipline, the identification of non-deterministic decisions,
and also a non-concurrent implementation of the application.
Lastly, new complementary FTMs are needed to cope with
non-deterministic decisions, if any.

X. CONCLUSION
In this paper, we proposed an approach for the analysis of

resilient computing that requires a deep understanding of the
application charateristics, the fault model and the core
assumptions of fault tolerance mechanims. We introduced
the notion of Consistency Ratio as an estimator of the system
resilience, i.e. a measure of the system capability to remain
dependable when facing changes, but also other measures.
This approach is generic in the sense that it can be extended
to any application characteristic, fault model, or FTM. The
proposed sensitivity analysis and simulator are a mean to
manage the development of resilient computing systems and
are envisoned as tools to help system designers to take
appropriate decisions regarding resilience.

REFERENCES
[1] J.-C. Laprie, “From Dependability to Resilience,” in Proc. of the 38th

IEEE/IFIP International Conf. on Dependable Systems and Networks
(DSN), suplemental volume, 2008.

[2] M. Albanese, S. Jajodia, R. Jhawa and V. Piuri, "Dependable and
Resilient Cloud Computing," in Proc. of 2016 IEEE Symposium on
Service-Oriented System Engineering (SOSE), Oxford, 2016, pp. 3-3.

[3] Wiesmann M, Pedone F, Schiper A, Kemme B, Alonso G.
Understanding replication in databases and distributed systems., 2000.
in Proc. of. 20th International Conference on Distributed Computing
Systems, 2000; pp. 464–474.

[4] Powell D. "Failure mode assumptions and assumption coverage".
Fault-Tolerant Computing, 1992. in Proc. of FTCS-22, Twenty-
Second International Symposium on Fault Tolerant Computing, 1992;
pp. 386–395

[5] Mei-Chen Hsueh ,T.K. Tsai, R.K. Iyer, "Fault injection techniques
and tools", Computer, Vol. 30, issue 4, 1997.

[6] K. H. K. Kim and T. F. Lawrence, “Adaptive Fault Tolerance: Issues
and Approaches,” in Proc. of the Second IEEE Workshop on Future
Trends of Distributed Computing Systems. IEEE, 1990, pp. 38–46.

[7] C. Krishna and I. Koren, “Adaptive Fault-Tolerance for Cyber-
Physical Systems,” in IEEE International Conference on Computing,
Networking and Communications (ICNC), 2013, pp. 310–314.

[8] M. Stoicescu, J.-C. Fabre, M. Roy, "Architecting Resilient
Computing Systems: A Component-Based Approach For Adaptive
Fault Tolerance", Journal Of Systems Architecture, Elsevier Eds, Ref.
Jsa-D-16-00131R1, Nov. 2016

[9] J. Lauret, JC.Fabre, H.Waeselynck,, “Fine-Grained Implementation of
Fault-Tolerance Mechanisms with AOP: To what Extent”,
SAFECOMP 2013, Toulouse (F), Sept.2013.

[10] W.Excoffon, J.C.Fabre, M. Lauer, "Analysis of Adaptive Fault
Tolerance for Resilienc Computing", in Proc. of the European
Dependable Computing Conference (EDCC2017), Geneva, CH,
sept.2017.

55%	53,5%	

