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Abstract—A system that remains dependable when facing 

changes (new threats, failures, updates) is called resilient. The 
fast evolution of systems, including embedded systems, implies 
modifications of applications and system configuration, in 
particular at software level. Such changes may have an impact 
on the dependability of the system. A system is resilient when 
such changes do not invalidate its dependability mechanisms, 
said in a different way, current dependability mechanisms 
remain appropriate despite changes. 

In this paper we introduce some measures to quantify the 
capability of a system to remain dependable despite changes, 
i.e. how resilient it is! 

I. INTRODUCTION 
Today systems evolve very fast during their service life 

for several reasons, including additional features requested 
by users. This is true for conventional systems offering 
services to users like data servers, telephony, messaging, 
banking, and numerous remote services accessible via the 
Internet. Any user is today equipped with one or more 
devices and customer of many services. Embedded systems 
are not outside of this trend. They become open! This is true 
for the automotive industry with the development of 
connected cars. For dependable systems, the challenge is 
greater, as evolution must not impair dependability attributes.  

The persistence of system dependability when facing changes 
is called resilience [1]. 

We use here the definition of resilience given above and 
proposed by JC. Laprie and colleagues in the ReSIST1 
Network Of Excellence. The difference between resilience 
and dependability is very important. Resilient computing 
adds a new dimension to fault tolerant computing by 
including change events, in particular unexpected changes 
related to application updates, new fault tolerance 
requirements, system configuration changes, etc. In this 
respect, fault tolerance strategies installed at one time can be 
invalidated by a change later on. Although a system may be 
developed with adequate dependability mechanisms at a 
given point in time, some evolution may have unexpected 
side effects. Evolutions encompasses, but are not limited to, 
corrective maintenance, updates and upgrades. 

The word “Resilience” is often used in Cloud computing 
[2] and networking as a synonymous to fault tolerance that is 
not consistent with our definition. However, the metrics used 
in these fields (data losses, CPU efficiency…) are analog to 
Fault Tolerance measures. This work proposes an approach 
to measure the impact of unexpected change events on the 

                                                
1 ReSIST NoE, Resilience for Survivability in IST, http://www.resist-noe.org/. 

persistence of dependability. The proposed measures are 
complementary to standard fault tolerance measures. 

Dependability relies at runtime on fault tolerance 
mechanisms attached to the application [3]. A challenge of 
resilient computing is to maintain the adequacy between any 
application and its attached FTMs (Fault Tolerance 
Mechanism) during the operational life of the system despite 
change events. 

In this paper, we propose some measures to estimate the 
resilience of a system. These measure do not compete with 
conventional dependability measures, they are 
complementary. We finally draw some lessons learnt for the 
development of resilient systems. 

II. RESILIENT COMPUTING & PROBLEM STATEMENT 
Resilient computing raises several challenges in various 

dimensions (evolvability, assessability, usability, diversity) 
and call for resilience scaling technologies. Examples of 
challenges up are the following, as identified in ReSIST: 

-  for evolvability, to be able to adapt to changing 
environments and threats, 

-  for assessability, to move from off-line, pre-deployment 
assessment to continuous automated and operational 
assessment, 

-  for usability, to reconcile the conflicting roles of humans 
as contributors to resilience and threats that resilience 
must tolerate, 

-  for diversity, to take advantage of diversity in order to 
prevent some vulnerabilities from becoming single 
points of failure. 

In the work reported in this paper we address the first of 
these challenges: evolvability and its impact on 
dependability. The aim is to find measures to assess the 
resilience of a system when changes are performed. Such 
changes refer to both application and dependability 
components. They can be mandatory to maintain the system 
consistent with the specifications, both functional and non-
functional. Such changes follow a random process as they 
can occur when a bug is discovered. This type of change is 
related corrective maintenance. Other changes can be 
voluntary in the sense that they are performed to improve the 
system, e.g. updates to improve for instance the 
implementation of given application, or upgrades when some 
additional features are added to the system, for commercial 
reasons for instance. All these changes may have an impact 
on the dependability of the system.  

The key point here relates to the importance of the 
assumptions regarding dependability mechanisms, in 
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particular fault tolerance mechanisms. Such assumptions 
refer to the considered fault model, behavioral and structural 
characteristics of the application, resources of the system, 
etc. The coverage of these assumptions is a very important 
figure to estimate the real efficiency of a fault tolerance 
mechanism, provided the mechanism is correctly 
implemented. An FTM remains useful and efficient while 
changes do not affect its assumptions. When changes do not 
affect the FTM assumptions, then the system is considered 
resilient. When changes affect one of its assumptions, then 
the FT mechanism becomes invalid and by the way useless. 
It must be adapted i) to comply with the assumptions and ii) 
obviously to satisfy the fault tolerance requirements of the 
application attached to it. This work is complementary to 
former research work on the impact of assumption coverage 
on dependability measures [4]. 

In summary, a change may have no effect on 
dependability or require an adaptation of the FTM. In a 
sense, this is similar to fault injection analysis, an injected 
fault may have no effect (often called in No Observation case 
in fault injection experiments) or lead to a failure mode (see. 
[5]). A failure mode requires a corrective action after been 
diagnosed, an adaptation of the FTM in our case. 

Adaptation of FTMs [6] [7] [8] is an important feature for 
a resilient system as it enables its dependability mechanisms 
to be adjusted to a new operational context. The aim of 
Adaptive Fault Tolerance (AFT) is to modify the FTMs to 
comply with assumptions and dependability requirements. 

A resilient computing system is a system able to adapt its 
fault tolerance mechanisms at runtime to comply with its 
fault-tolerance requirements. 

The sources of changes can be multiple as already mentioned 
in introduction (corrective maintenance, updates and 
upgrades). The upcoming interest to Agile Development 
process may have an impact on system dependability, when 
the rushing implementation phases reduce the validation 
phase, leading to residual faults.  The need for delivering as 
fast as possible new system versions to the public, the need 
to perform remote update and upgrade to improve but also 
sell new features, are de facto economic stakes!  

The work reported in the paper addresses the following 
question: how to estimate the resilience of a system? 

III. CHANGE MODEL AND FTM ASSUMPTION 

A. Basic Assumptions 
We assume in this work that a system host applications 

that have dependability requirements. After a deep analysis 
of these dependability requirements, including a Failure 
Modes Effects Critical Analysis (FMECA) or any other risk 
analysis (e.g. Fault Tree Analysis – FTA), fault tolerance 
mechanisms are identified.  

The separation of concerns principle is a prerequisite for 
adaptive fault tolerance, not only a design time but also at 
runtime, as illustrated in [8]. An application component (A) 
is linked to a fault tolerance component (FTM). Many 
different fault tolerance strategies and corresponding FTMs 

can be implemented to comply with dependability 
requirements. All possible solutions with slightly different 
assumptions can be implemented and loaded into the system. 
The selection of the appropriate FTM for a given application 
components can be selected on-line according to monitored 
assumptions. In practice, according to our system model, an 
FTM is linked to an application component a priori when the 
system is put in operation. 

B. Adaptation and Change Model 
An appropriate Fault Tolerance Mechanism (FTM) for a 

given application depends on several assumptions grouped in 
three classes: 1) application characteristics (AC);� 2)  fault 
model to consider (FM); 3) available resources (AR).  

At any point in time, the FTM(s) attached to an 
application must be consistent with the current values of 
(AC, FM, AR). These assumptions enable to discriminate 
FTMs. We denote (AC, FM, AR) the change model. 

Several application characteristics (AC) have an impact 
on the selection of an FTM. In this paper we first consider 
the following: i) behavioral determinism, ii) application 
statefulness, iii) state accessibility and iv) fail-silence.  

The fault model (FM) considers well-known fault types, 
e.g., crash faults, omission and transient value faults.  

The available resources (AR) play also an important role. 
Firstly, in the FTM selection, since FTMs require resources 
to be implemented such as bandwidth, CPU, battery 
life/energy. This resource criterion may invalidate a solution.  

However, resources can be a trigger for FTM change. A 
lack of resources at a given point in time in the operational 
life of the system may invalidate an FTM. This implies that a 
new FTM must be installed according the available 
resources. This aspect has not been considered in this paper. 

Any assumption variation during the service life of the 
system may invalidate the initial FTMs selected, thus 
requiring a transition towards a new one. Transitions may be 
triggered by a new application version with different 
characteristics or new threats (i.e. fault model change).  

A configuration (A ◊ FTM) must remain consistent despite 
changes in the characteristics of the application and its 
related fault tolerance requirements. 

C. FTM and Assumptions 
To illustrate our modeling approach, we consider some 

conventional fault tolerance mechanisms that will be used as 
a guiding thread through the remainder of the paper.  

Duplex protocols tolerate crash faults using passive (e.g. 
Primary-Backup Replication denoted PBR2), or semi-active 
replication strategies (e.g. Leader-Follower Replication 
denoted LFR3). Each replica is considered as a self-checking 

                                                
2 With PBR, only one replica is active, the Primary. The state of the computation 
is forwarded to the Backup in a checkpoint. The Backup replica handles 
checkpoints in normal operation and takes over when the Primary crashes. 
3 With LFR, both replicas are active, the Leader and the Follower. The Leader 
replies to client's request, while the Follower just executes the request to update 
its computational state. The Follower takes over when the Leader crashes. 
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component in both cases. At least 2 independent processors 
(error confinement areas) are necessary to run these FTMs.  

 Time Redundancy (TR) tolerates transient faults leading 
to omission or value errors using repetition of the 
computation and comparison. This can also be perceived as a 
way to improve the self-checking nature of a replica.  

In this paper, our fault model includes permanent and 
transient hardware faults or random operating system faults. 
We do not consider common mode faults. 

The above Duplex strategies can be combined with TR to 
tolerate both transient and permanent physical faults.  

Assumptions / FTM PBR LFR TR 
Fault Model 

(FT) 
Crash ! !  

Omission   ! 
Transient   ! 

Application 
Characteristics 

(AC) 

Deterministic  ! ! 
State access !  ! 
Fail silent ! !  

TABLE I.  ASSUMPTIONS AND FAULT TOLERANCE MECHANISM  

The considered FTMs, in terms of fault model and 
application characteristics, are given in TABLE I. The PBR 
and LFR techniques tolerate the same fault model (crash), 
but have different application behavioral assumptions. PBR 
allows non-determinism of applications because only the 
Primary computes client requests while LFR only works for 
deterministic applications as both replicas compute all 
requests. LFR could tackle non-determinism if all non-
deterministic actions can be captured. This is not what we 
consider in a first step. As mentioned previously, PBR 
requires state access (if any) for checkpointing application 
state, while LFR does not require state access. TR also 
requires state access (if any) to restore the previous state of 
the computation before repetition of the processing. 

D. Evolution scenarii example and possible transitions 
During the service life of the system, the characteristics 

of the application or its fault tolerance requirements of 
assumptions can change.  

An application can become non-deterministic when a 
new version is developed. The fault model can also become 
more complex, e.g., from crash-only it can become crash-
and-value. For instance, the PBR"LFR transition 
(denoted ") is triggered by a change in application 
characteristics (e.g. inability to access application state). A 
transition can occur in both directions, w.r.t assumptions 
variation. A transition obviously implies an off-line 
validation of the new configuration (A ◊ FTM). 

The PBR"PBR+TR (FTMs composition denoted +) 
transition is triggered by a change in the considered fault 
model (e.g. crash-and-value). However, the composition of 
FTMs is not straightforward and requires a deep analysis of 
the impact of the first FTM on the second one. This analysis 
is out of the scope of this work. The composition of FTM 
must be validated off-line before using it, taking care of 
possible interferences between FTMs as in [9]. 

IV. BASIC ANALYSIS OF RESILIENT COMPUTING 
In this Section we address the following questions: How 

to determine a suitable FTM after a change event in order to 
maintain system dependability? How to estimate system 
resilience and what insights can be gained? 

The dependability requirements of an application define 
the fault model to be considered. This fault model determines 
the suitable set of FTM for this application. Several FTM can 
be a solution to the problem, but each of them accepts 
specific characteristics of the application component. 
Application characteristics are de facto FTM assumptions. 

We define the notion of Consistency Ratio (CR) to 
quantify the capacity of a set of FTM to comply with 
application characteristics and fault tolerance requirements. 
For a given set of FTM, a list of application characteristics 
and a set of faults to be tolerated, the CR corresponds to the 
proportion of the cases where a solution, i.e. a suitable FTM, 
is found. Each case can be seen as a cell of a table having 
application characteristics as rows and type of faults as 
columns. The content of the cell is one or several FTM or 
nothing. A change event for a given application corresponds 
to a jump from one cell in the table to another one. The 
system remains resilient if an FTM is found in the new cell 
for this application. The probability of finding a suitable 
FTM in the cell is directly related to the notion of CR. 

The following table summarizes the result of our 
analysis. In TABLE II. we list in columns all possible 
combinations of fault tolerance requirements an application 
can specify. In rows, we have all possible combinations of 
application characteristics. A cell in the table is full when a 
solution is found. It is empty when no solution is found with 
the set of FTM and variants considered/available.  

The notation for application characteristics is: 

- DT for DeTerministic, !DT if not. 
- ST for STateful, !ST if stateless. 
- SA for State Access, !SA if not. 
- FS for Fail Silent, !FS if not. 

The fault-tolerance requirements notation is as follows: 

- C for Crash faults, !C if not considered. 
- O for Omission, !O if not. 
- V for Value errors, !V if not. 

 
Light Green FTM means that at least one FTM with their 

strict definition given in TABLE I. was found to comply 
with both application characteristics and fault-tolerance 
requirements. We ignore the case where no fault tolerance 
requirements are requested, i.e. !C,!O,!V. 

Dark Green FTM corresponds to variants of the initial 
set of FTM. For instance, TR0 implements a repetition of the 
computation but with no comparison at the end. TR0 
tolerates omission faults and its combination with PBR 
tolerates more cases in the table. 

Last but not least, the Sky Blue FTM represents additional 
solutions with revised definitions, as explained hereafter. 
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We considered previously that duplex strategies cannot 
be applied when the application is not fail-silent. The notion 
of fail silence is probabilistic and depends on the coverage of 
the error detection mechanisms integrated within the 
application. The coverage cannot be 100%. The validation 
process and the measurements carried out in particular using 
fault injection enables the error detection coverage to be 
estimated. It is thus the responsibility of the developer to 
declare if its application is fail-silent or not according to the 
measurements obtained. However, in both cases, the 
application being fail-silent or not (FS and !FS), as 
determined by the developer, crash faults can be tolerated 
with duplex strategies. Even for non fail-silent applications, 
the developer may consider that crash fault must be tolerated 
despite some value errors can be observed. 

A quick look to the table shows that some characteristics 
have a strong impact on the Consistency Ratio. In particular, 
faults affecting non-deterministic applications are more 
difficult to tolerate.  

In addition, interestingly, the combination of TR and a 
duplex strategy (PBR or LFR) improves the situation 
described above. The application of TR improves the error 
detection coverage for non fail-silent applications, i.e. 
tolerance to value errors, and thus improves the fail-silent 
assumption required by any duplex strategy. This is true for 
deterministic applications and when the state of the 
computation (if any) is accessible. 

FM # 
AC$ 

C 
!O 
!V 

!C 
O 
!V 

!C 
!O 
V 

C 
O 
!V 

C 
!O 
V 

!C 
O 
V 

C 
O 
V 

!DT,!ST,!SA,!FS PBR TR0  PBR 
+TR0 

   

!DT,!ST,!SA,FS PBR TR0  PBR 
+TR0 

   

!DT,!ST,SA,!FS PBR TR0  PBR 
+TR0 

   

!DT,!ST,SA,FS PBR TR0  PBR 
+TR0 

   

!DT,ST,!SA,!FS        
!DT,ST,!SA,FS        
!DT,ST,SA,!FS PBR TR0  PBR 

+TR0 
   

!DT,ST,SA,FS PBR TR0  PBR 
+TR0 

   

DT,!ST,!SA,!FS LFR, 
PBR 

TR, 
TR0 

TR LFR 
+TR0 

LFR 
+TR 

TR LFR 
+TR 

DT,!ST,!SA,FS LFR TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

DT,!ST,SA,!FS LFR TR, 
TR0 

TR LFR 
+TR0 

LFR 
+TR 

TR LFR 
+TR 

DT,!ST,SA,FS LFR TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

DT,ST,!SA,!FS LFR       
DT,ST,!SA,FS LFR       
DT,ST,SA,!FS LFR, 

PBR 
TR, 
TR0 

TR LFR 
+TR0 

LFR 
+TR 

TR LFR 
+TR 

DT,ST,SA,FS PBR, 
LFR 

TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

TABLE II.  GLOBAL ANALYSIS OF FAULT TOLERANCE SOLUTIONS. 

FTM Global CR CR for DT CR for !DT 
Light Green 30% 55% 5% 
Dark Green 38% 55% 21% 
Sky Blue 55% 89% 32% 

TABLE III.  SUMMARY OF CR MEASUREMENTS. 

The TABLE III. summarizes the results. We have shown 
that with a very limited extension of the mechanisms and a 
revision of the assumptions required to apply a given FTM, 
we can impact drastically the number of cases solved. 
However, some cases remain unsolved because of two 
problems that can be summarized as follows: i) non-
deterministic application for which our current set of FTM 
cannot tolerate value error, or ii) non-deterministic or 
deterministic stateful application whose state is not 
accessible. 

The table can be computed using a simple algorithm and 
the CR measures is easy to obtain. A sensitivity analysis with 
respect to application characteristics shows that determinism 
has a strong side effect on the fault tolerance solutions. A full 
account of this analysis can be found in [10]. 

V. AUTOMATED ANALYSIS AND MEASUREMENTS  

A. Formal notation 
Our objective was to automate this analysis. Based on the 

previous analysis, we can now define a formal notation to 
represent an application A and its fault tolerance 
requirements, from which a suitable FTM can be determined. 
As a result, a configuration A ◊ FTM is consistent according 
to the definition given below. 

Definition: The design of a critical application is consistent 
if and only if the FTM assumptions and capabilities match 
Application characteristics and fault tolerance requirements. 

An application A has a set of non-functional 
characteristics, denoted (aci), k ∈ [1..N], N being the 
total number of characteristics considered in the model. The 
boolean application characteristics are those used 
previously: determinism, statefulness, state access, 
fail silence. This list can obviously be extended.  

The fault tolerance requirements of an application Ai 
correspond to the types of faults fmj the application Ai must 
tolerate. We use again a boolean notation to represent this 
set of faults, (fmj), j ∈ [1..P], P being the total number 
of possible fault types affecting an application component in 
the system. Examples of such fault types are those used 
previously: value fault, omission fault, crash fault. 
This list can also be extended with other fault types. � 

Two vectors, thus represent an application one for 
application characteristics, one for the fault types that must 
be tolerated. The FTM attached to the application in a 
configuration must tolerate such types of faults and be valid 
for the application characteristics.  

𝐴 =  

𝑎𝑐!
𝑎𝑐!
…
𝑎𝑐!

,

𝑓𝑚!
𝑓𝑚!
…
𝑓𝑚!

 

The vector (𝑎𝑐!) 
represents application 
characteristics. The vector 
(𝑓𝑚!) represents the fault 
tolerance requirements. 

The objective now is to determine FTMs making the 
configuration A ◊ FTM consistent. As shown in the previous 
section, an FTM provides a solution to tolerate some types of 
faults, but its validity depends on application characteristics. 
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Our final aim is to compute the tables automatically, from 
the application model given above and a formal definition of 
the validity of fault tolerance mechanisms. 

Let's examine the simple set of mechanisms we have 
considered previously {PBR, LFR, TR} with their strict 
definition. Any of these FTM relies on assumptions to 
tolerate a given type of fault. As an example, the 
assumptions for the use of PBR are state access if the 
application is stateful and fail silent behavior. 
When such assumptions are strictly true, then PBR tolerates 
the crash of the application. The same reasoning applies to 
other FTM and their combination. 

B. FTM assumptions and properties   
The assumptions for each mechanism in the set of FTM 

with respect to application characteristics can be defined by 
logical assertions. We first use assertions to test the 
compatibility of an FTM with the application characteristics. 
Assertions for the FTM considered are defined as follows: 

Assumption for PBR:  FS and !(ST and !SA) 

Assumption for LFR:  DT and FS 

Assumption for TR:  DT and !(ST and !SA) 

The assertion for the combination of several FTM can be 
deduced from the above logical expressions, such as: 

Assumptions for LFR+TR: FS and DT and !(ST and !SA) 

The above assertion is stronger than needed; if it is true 
we guaranty that the FTMs composition is valid. However, a 
composition may require reduced assumptions. For instance, 
applying TR implies that fail silence (FS) is no longer 
necessary since TR is a way to improve the fail silence. This 
is not considered in our algorithms, but reducing the 
assumption set could improve the CR. 

The Boolean expressions allow us to take in account the 
dependencies between some characteristics. For instance, the 
state characteristics has an impact on the CR only when the 
application is stateful. We use assertions to test the adequacy 
of an FTM with respect to fault tolerance requirements. 
Assertions for the FTM considered are defined as follows:  

Fault model for PBR:  !O and !V 

Fault model for LFR:  !O and !V 

Fault model for TR:  !C 

Now, we can define properties to check the consistency 
of any application configuration (A ◊ FTM).  

Definition of compatibility: FTM is compatible with A if and 
only if FTM assumptions comply with the application 
characteristics of A. 
Definition of adequacy: FTM is adequate with A if and only 
if FTM tolerates the fault model required by A. 
Definition of consistency: A configuration (A ◊ FTM) is 
consistent if and only if it complies with both the 
compatibility and adequacy properties. 

C. Notion of Consistency Ratio 
During its lifetime, the several versions of a given 

application developed and loaded into the system may have 
an impact on the application characteristics and thus 
invalidate the FTM that has been attached to the application 
A in a first place. To help quantify the resilience offered by a 
set of FTM, we define a notion of Consistency Ratio.  

More formal definition of Consistency Ratio: For all 
combinations of application characteristics and fault 
tolerance requirements, the CR is the ratio of consistent 
configurations (A ◊ FTM) we can obtain for a given set of 
FTM. 

This is exactly what we have done manually in 
Section IV. The two questions we want to address now are: 

- Can we compute the configuration tables from the 
application model and the FTM logical expressions? 

- How to compute the CR for such configuration tables 
and FTM definitions? 

D. Computing configuration tables and Consistency Ratio 
The proposed algorithm creates the tables from the 

application characteristics and fault tolerance requirements 
using the logical assertions established for each FTM in the 
set of FTMs. From the tables obtained, it computes the CR.  

All application characteristics and fault tolerance 
requirements are encoded with boolean values. The 
application is represented by two boolean vectors. For 
instance, a deterministic (DT), stateful (ST), with accessible 
state (SA), fail silent (FS) application requiring tolerance to 
crash faults is represented like this: 

𝐴 =  

1
1
1
1

,
1
0
0

 

Each FTM assertion is implemented as a function 
returning a boolean value. The output is 1 if the application 
A matches the FTM assumptions and fault model, 0 
otherwise. The assertion for the PBR mechanism is:  

FS and !(ST and !SA)) and (!O and !V) 

INPUT: Application model, FTMs set 
FOR each application characteristics SA 

 FOR each fault model FM 
  FOR each FTM 

 IF (AC,FM) ◊ FTM is consistent THEN 
  Store FTM in the cell (AC,FM) 
 END IF 

END FOR 
IF the cell (AC,FM) is not empty 
 Increment NbrOfConsCells 

END IF 
 END FOR 
END FOR 
RETURN: CR=NbrOfConsCells/TotNbrOfCells 

Fig. 1. Algorithm for CR computation 
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Fig. 1 gives the pseudo-code our simple algorithm to 
automate the computation of the table and the CR. This 
algorithm was validated using TABLE II. as an oracle. Using 
the same application characteristics, fault tolerance 
requirements and FTMs we are able to compute the CR 
values given in TABLE III. The approach can easily be 
extended to new characteristics, fault model, and set of FTM.  

VI. SENSITIVITY ANALYSIS 
This section proposes a sensitivity analysis of the CR 

offered by a given set of FTM. The aim is to identify 
application characteristics and types of faults that have the 
most impact on the CR. We use the algorithm presented in 
the previous Section to measure the CR when fixing some of 
the parameters. First, we will address the sensitivity 
regarding application characteristics (Section A) and then, 
we will discuss the sensitivity to fault types (Section. B). 

This analysis will help us to find the most efficient way 
to improve the Consistency Ratio. 
A. Sensitivity to application characteristics 

In this Section, we analyse the impact of application 
characteristics on the CR. For each application characteristic, 
we measure the CR when the characteristic is set to a 
particular value, and the other one can vary. In Fig. 2 each 
bar corresponds to a CR. The X-axis represents each specific 
characteristic and its assigned value (1 or 0). When a given 
characteristic is set to 1, it means that it is true for the 
application. For example, the bar “DT=1” represents the CR 
offered to an application which will always be deterministic 
regardless of future updates.  

 
Fig. 2. Sensitivity to application characteristics  

For this analysis, the set of FTMs is {PBR, LFR, TR}, 
with their strict definitions. The CR for this set of FTM was 
about 30% when no characteristic is imposed (see TABLE 
III. ) This CR value is our Reference value in our sensitivity 
analysis. The question now is: what is the impact on this 
reference value when fixing one application characteristic 
for this FTMs set?  

The CR obtained when fixing a characteristic to 1 is 
higher that the reference CR value. For instance, when the 
application is guaranteed to be always deterministic (DT=1) 
the CR value is improved from 30% to 55%. As a 
consequence, we can anticipate that when the component is 
not deterministic, the CR value is lower. All this is 

confirmed by the results obtained in Fig. 2 where we show 
the impact of each characteristic. In our analysis, with the set 
of FTM we consider, we observed that determinism has the 
most important impact on the CR value. Other characteristics 
have also an impact, but it is less significant. 

The conclusion is that improving the CR implies 
focussing on this characteristic first. Two solutions are 
possible to improve it: Either we force the component to be 
deterministic or we need to include new FTM compliant with 
non-deterministic applications. 

B. Sensitivity to fault types 
In this Section, we analyse the impact of the fault types to 

the CR. The following analysis is done with the extended set 
of FTMs considered in TABLE II. The reference is 55% in 
this case (see TABLE III. ). We use the same method as 
previously: when a fault type is set to 1, it is part of the fault 
tolerance requirements of the application. When it is set to 0, 
the fault type is not part of the faults considered.  

The results are given in Fig. 3. This figure shows the CR 
variation when a type of fault is removed (i.e. set to 0). As 
shown, the CR can increase or decrease. This enlightens the 
strong impact of the fault model, positive or negative, on the 
CR for a given set of FTM. 

 
Fig. 3. Sensitivity to fault types  

We observe that the CR is increased when we remove a 
fault type (e.g. value faults removed) from the set of fault 
types; the reason for this is that this type of fault is not 
efficiently tolerated with the current set of FTMs, whereas 
other faults are better tolerated.  

Conversely, when the CR is decreased (e.g. crash faults 
removed) we can infer that these types of faults (namely 
crash faults here) are better tolerated than other types of 
faults (value and omission). It is indeed the case as shown 
previously with the simple set of FTM we consider in this 
analysis. A first solution to improve the CR could be to 
extend our set of FTM to include mechanisms dedicated to 
value faults. Another solution is to work on the application 
development itself to prevent by construction this kind of 
faults, e.g. implementing a self-checking applications. 

In conclusion, this analysis is a mean to identify the fault 
types which are badly covered and to find a solution to 
improve the resilience. Two options are possible: i) 
extending the FTMs set or ii) removing these faults by 
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design. The conclusion regarding the impact of application 
characteristics is similar: i) extending the FTMs set with 
mechanisms handling more efficiently some application 
characteristics or ii) removing by design those characteristics 
that have a bad impact on the Consistency Ratio. 

VII. OTHER RESILIENT COMPUTING MEASURES 
Several other measures can provide interesting insights 

about the resilience of a system, focusing on its robustness 
during a given period of time. It is work noting that a lack of 
mechanism after a change is not a failure. The target 
application is fragile in the sense that the activation of a fault 
may lead to a failure since no valid mechanism is active to 
tolerate that fault. These measures take into account the 
frequency of changes, the delay to update the affected FTMs, 
in other words the occurrence rate and the repair rate. In that 
respect, they are similar to conventional dependability 
measures, but with a major distinction since we do not speak 
of failures but fragility! 

MTBI – Mean Time Between Inconsistency 

A sequence of change events during the system lifetime 
may have no effect, the system remains dependable, or put 
an application at risk since one or several FTM do not 
comply anymore with their fundamental assumptions. This 
measure is similar to the MTBF conventional dependability 
measure. The main difference is that we do not consider 
failures, but inconsistencies, so potential risk. 

The insights we can gain with this measure is the 
following: a large MTBI indicates that the various changes in 
the system do not invalidate FTMs and this is good news. 
For a given frequency of changes, the larger the MTBI, the 
better the resilience is. 

MTRI – Mean Time to Repair Inconsistency 

The meaning of repair here refers to the ability to find a 
solution after a change event, when the current FTM 
becomes invalid. Either a valid mechanism exists and is 
loaded into the system, and so the time to repair the 
inconsistency can be considered null, or it needs to be 
defined, developed and uploaded at the other end of the 
spectrum. This measure is similar to the MTTR conventional 
dependability measure.  

The insights we can gain with this measure is the 
following: a small MTBI indicates that system do not remain 
fragile during a large period of time in average. In 
conventional dependable systems, the fault rate (λ) for 
hardware faults is largely smaller that the repair rate (µ). The 
change rate (similar to λ) depends very much on the type of 
systems, so the influence of the update rate (similar to µ) is 
much higher for a high frequency of changes. Having FTM 
building block ready that can be combined quickly to solve 
the problem is of course a way to improve the repair rate.  

RE(t) – Resilient behavior Estimator 

This last estimator corresponds to the proportions of 
change events at time t that do not lead to an inconsistency. 
A 100% value would indicate that, despite a sequence of 

change events since time 0 up to time t, no change event led 
to an inconsistency. The system is perfectly resilient! 

VIII. SIMULATION TOOL  
As stated before, our approach can be automated, for 

instance the computation if the Consistency Ratio (CR) can 
be done with a simple algorithm (see Fig. 1). However, we 
can go a step further. We have developed a simulator, which 
combines two aspects of our analysis. The first one is the 
exhaustive analysis of the Consistency Ratio. The second 
aspect uses specific scenarios to measure the resilience of 
the system. A scenario corresponds to a sequence of change 
events impacting the application profile during a period of 
time. In our context, an application profile is the core 
assumptions of application relevant to dependability, i.e. the 
application characteristics and fault model elements. 

The simulator provides the system designer / manager 
with a tool to analyze configuration choices vs possible 
evolution scenarios thanks to various measures of resilience. 
The first objective is to obtain the Consistency Ratio for a 
set of FTMs and a set of parameters (determinism, state 
access…). As said in part IV, to compute the CR we need to 
check for each application profile if there is at least one 
FTM consistent in our FTMs set. 

In this tool we chose to model the consistency property 
using Boolean expressions as shown in section V.B. We will 
then evaluate these expressions with the values of FS, 
SA... of each profile.  

 
Fig 5. Simulation Tool framework 

As you can see on this figure representing the simulation 
tool, not only the analyzer takes as inputs a set of FTMs and 
a set of parameters but we can also input some parameters 
restrictions. These restrictions on the parameters are used to 
conduct sensitivity analysis to applications characteristics 
and/or to the faults model. Scenarios and strategies are 
inputs needed by the simulation tools to measure MTBI, 
MTRI and RE as described in section VII. 

IX. LESSONS LEARNT AND DESIGN PROCESS 
The resilient computing interpretation of the CR value 

refers to the probability of having a compliant FTM after an 
update of the application. The higher this ratio is, the higher 
the probability to comply with new application 
characteristics or fault tolerance requirements. Developing a 
resilient system requires first the selection of an FTM 
compliant with fault tolerance requirements and the 
characteristics of the application. However, as we have 
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shown, a single FTM may not offer much in terms of 
resilience. Thus, following the principles of Adaptive Fault 
Tolerance, some additional FTMs need to be included to 
future-proof the system. A question then arises: How to 
select these FTMs? 

The design process could be the following: first the 
system designer needs to list all the FTM that could be 
implemented and for each one construct all consistency 
assertions (see Section V.B), respecting the critical 
assumptions for FTMs. With these elements and thanks to 
the proposed automated analysis, it is possible to compute 
the CR value for each subset of these FTM. This exhaustive 
analysis4 is illustrated in Fig. 4. We compute the CR value 
for each of the 26 subsets we can construct from the 6 FTM 
considered previously {PBR, LFR, TR, TR0, PBR+TR, 
LFR+TR}. Each bar represents the CR value for a given 
subset and for readability reasons we have sorted the results 
in increasing order (i.e. the X-axis correspond to the list of 26 
subsets ranked according to their corresponding CR value). 

Then the designer can find all the subsets of FTM that 
satisfy some CR requirement. Finally, among all these 
subsets of FTM, the designer must use other criteria, such as 
required resources or development cost, to select the right set 
of FTM to implement. It is noteworthy that deciding the right 
CR requirement is obviously a complex problem in itself and 
it should at least take into consideration the criticality of the 
application, its envisioned frequency of updates, and the 
confidence in the initial fault model.  

If no subset of FTM is acceptable with respect to the 
desired CR, for example because implementation is too 
expensive, the sensitivity analysis can guide the designer 
towards other solutions as shown in section VI.  

 
Fig. 4. Exhaustive CR analysis 

Fig. 4 shows the CR values for all subsets of FTMs in 
blue and when the application is deterministic in red. When 
all mechanisms are used, i.e., the last bar to the right of the 
bar chart, we reach a CR of 38% without any restriction on 
the characteristics of the application while we obtain 55% 
when the application is deterministic. This is consistent with 

                                                
4 Although this approach is exhaustive, we avoid scalability issues because our 
approach is solely focused on the critical assumptions and requirements for 
AFT. 

the figures obtain previously. What is more interesting is that 
with only 3 FTMs in the set we can reach a CR of 53,5 % as 
you can see in the middle of the bar chart. 

We clearly see then that making such an assumption 
offers the designer more choices. Such insights have an 
impact on the development of an application in a resilient 
system. Forcing determinism implies a development 
discipline, the identification of non-deterministic decisions, 
and also a non-concurrent implementation of the application. 
Lastly, new complementary FTMs are needed to cope with 
non-deterministic decisions, if any.  

X. CONCLUSION 
In this paper, we proposed an approach for the analysis of 

resilient computing that requires a deep understanding of the 
application charateristics, the fault model and the core 
assumptions of fault tolerance mechanims. We introduced 
the notion of Consistency Ratio as an estimator of the system 
resilience, i.e. a measure of the system capability to remain 
dependable when facing changes, but also other measures. 
This approach is generic in the sense that it can be extended 
to any application characteristic, fault model, or FTM. The 
proposed sensitivity analysis and simulator are a mean to 
manage the development of resilient computing systems and 
are envisoned as tools to help system designers to take 
appropriate decisions regarding resilience.  
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