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Abstract—A system that remains dependable when facing 
changes is called resilient. The fast evolution of systems, 
including safety critical systems, requires that fault tolerance 
mechanisms – FTM – remain consistent with their assumptions 
and the non-functional requirements of the application. A 
change event may impose the adaptation of an FTM to the 
current assumptions that can be made. Consequently, system 
resilience should rely on adaptive fault tolerant computing. 

In this paper, we report on an analysis of the link between 
applications and their attached FTM. We show how a set of 
FTMs or their composition can be a solution according to a 
change event occurring in the system. We propose a measure to 
estimate the resilience of a system. According to application 
characteristics and fault tolerance requirements, we show the 
impact of assumptions on FTM selection. We finally draw 
some lessons learnt for the development of resilient systems. 

Keywords – fault tolerance, resilience, evolution, analysis 

I. INTRODUCTION 
Systems have to evolve during their service life in order 

to cope with additional features requested by users. For 
dependable embedded systems, the challenge is greater, as 
evolution must not impair dependability attributes. The 
persistence of dependability when facing changes is called 
resilience [1]. Dependability relies at runtime on fault 
tolerance mechanisms (FTMs or Safety Mechanisms) 
attached to the application [2]. A challenge of resilient 
computing is to maintain the adequacy between any 
application and its attached FTMs during the operational life 
of the system despite change events. 

Definition: a resilient computing system is a system able to 
adapt its fault tolerance mechanisms at runtime to comply 
with its fault-tolerance requirements. 

Resilient computing1 adds a new dimension to fault 
tolerant computing by including evolution events, in 
particular unexpected changes related to application updates, 
new fault tolerance requirements, system configuration 
changes, etc. In this respect, ideal fault tolerance strategies 
installed at one time can be invalidated by a change later on.  

The word “Resilience” is often used in Cloud computing 
[3] and networking as a synonymous to fault tolerance that is 
not consistent with our definition. However, the metrics used 
in these fields (data losses, CPU efficiency…) are analog to 
Fault Tolerance measures. This work proposes an approach 

                                                
1 ReSIST NoE, Resilience for Survivability in IST, http://www.resist-noe.org/. 

to measure the impact of unexpected change events on the 
persistence of dependability. The proposed measures are 
complementary to standard fault tolerance measures. 

The need for Adaptive Fault Tolerance (AFT) was stated 
in [4] to address this challenge. AFT is gaining today more 
importance and on-line adaptation of FTMs has attracted 
research efforts for some time now. However, most of the 
solutions, as in [5], tackle adaptation in a preprogrammed 
manner: all FTMs necessary during the system lifetime are 
known and deployed from the beginning and adaptation 
consists in choosing the appropriate execution branch or 
tuning some parameters, e.g., number of replicas or interval 
between checkpoints. Clearly, predicting all events and 
threats a system may encounter throughout its service life 
and making provisions for them is impossible.  

An innovative approach was proposed in [4], taking 
advantage of component-based software engineering 
techniques to develop adaptive fault tolerance mechanisms. 
FTM are developed as a collection of lego-bricks that can be 
combined and manipulated dynamically at runtime under 
certain assumptions [6]. Whatever adaptive fault tolerance is 
implemented, the important question is the following: how to 
determine a suitable FTM after a change event in order to 
maintain system dependability to improve resilience? 

Answering this question is the challenge of the work 
reported in this paper. Our analysis takes as inputs the 
application characteristics that have an impact on the 
selection of an FTM with respect to a given set of faults. For 
any application, the result of the proposed analysis can be: i) 
an FTM or a combination of available FTMs exist to comply 
with both application characteristics and their fault-tolerance 
requirements, or ii) there is no solution with the set of 
available FTMs, and thus new FTMs or variants of available 
FTMs must be developed. 

We define a notion of Consistency Ratio (CR) to quantify 
the capacity of a set of FTM to comply with application 
characteristics and fault tolerance requirements. For a given 
set of FTM, a list of application characteristics and a set of 
faults to be tolerated, the CR corresponds to the proportion of 
the cases where a solution, i.e. a suitable FTM, is found. 
Each case can be seen as a cell of a table having application 
characteristics as rows and type of faults as columns. The 
content of the cell is one or several FTM or nothing. A 
change event for a given application corresponds to a jump 
from one cell in the table to another one. The system remains 
resilient if an FTM is found in the new cell for this 



 

 

application. The probability of finding a suitable FTM in the 
cell is directly related to the notion of CR. 

The CR is a static notion at a given point in time whereas 
the resilience is a dynamic notion during the lifetime of a 
system. During the operational life, the list of application 
characteristics and fault types may change and thus have an 
impact on the CR. The resilience of the system can be 
estimated by the combination of the CR for all applications 
in the system after a change event during the system lifetime. 

This work provides a basic tool to estimate the resilience 
of a system. The sensitivity analysis with respect to the set of 
FTM, the application characteristics and the set of faults, 
shows the impact, positive or negative, of a change event on 
the CR, and so on the resilience of the system. 

After a brief summary of the context in Section II, we 
perform in Section III a manual analysis of the system 
resilience using a basic set of FTMs and application 
characteristics. In Section IV, we describe our analysis more 
formally and show how a solution can be identified by 
computation. A sensitivity analysis to both application and 
fault model changes is proposed in Section V. Lessons learnt 
are given in Section VI. 

II. CONTEXT AND PROBLEM STATEMENT 

A. Adaptation and Change Model 
An appropriate Fault Tolerance Mechanism (FTM) for a 

given application depends on several parameters grouped in 
three classes: 1) application characteristics (AC);� 2)  fault 
model to consider (FM); 3) available resources (AR).  

At any point in time, the FTM(s) attached to an 
application must be consistent with the current values of 
(AC, FM, AR). These parameters enable to discriminate 
FTMs. We denote (AC, FM, AR) the change model. 

Several application characteristics (AC) have an impact 
on the selection of an FTM. In this paper we first consider 
the following: i) behavioral determinism, ii) application 
statefulness, iii) state accessibility and iv) fail-silence.  

Regarding the fault model (FM), we consider well-
known fault types, e.g., crash, omission and transient faults.  

The available resources (AR) play also an important role. 
Firstly, in the FTM selection, since FTMs require resources 
to be implemented such as bandwidth, CPU, battery 
life/energy. This resource criterion may invalidate a solution.  

However, resources can be a trigger for FTM change. A 
lack of resources at a given point in time in the operational 
life of the system may invalidate an FTM. This implies that a 
new FTM must be installed according the available 
resources. This aspect has not been considered in this paper. 

Any parameter variation during the service life of the 
system may invalidate the initial FTMs selected, thus 
requiring a transition towards a new one. Transitions may be 
triggered by a new application version with different 
characteristics or new threats (i.e. fault model change).  

Definition: A configuration (A ◊ FTM) must remain 
consistent despite changes in the characteristics of the 
application and its related fault tolerance requirements. 

We assume that any application A is attached (denoted ◊) 
to an FTM that complies with its fault tolerance requirements 
F and that resources to run this FTM are available. This is 
called a configuration.  

B. FTM and Assumptions 
To illustrate our modeling approach, we consider some 

conventional fault tolerance mechanisms that will be used as 
a guiding thread through the remainder of the paper.  

Duplex protocols tolerate crash faults using passive (e.g. 
Primary-Backup Replication denoted PBR2), or semi-active 
replication strategies (e.g. Leader-Follower Replication 
denoted LFR3). Each replica is considered as a self-checking 
component in both cases. At least 2 independent processors 
(error confinement areas) are necessary to run these FTMs.  

 Time Redundancy (TR) tolerates transient faults leading 
to omission or value errors using repetition of the 
computation and comparison. This can also be perceived as a 
way to improve the self-checking nature of a replica.  

In this paper, our fault model includes permanent and 
transient hardware faults or random operating system faults. 
We do not consider common mode faults. 

The above Duplex strategies can be combined with TR to 
tolerate both transient and permanent physical faults.  

TABLE I.  ASSUMPTIONS AND FAULT TOLERANCE MECHANISM  

Assumptions / FTM PBR LFR TR 
Fault Model 

(FT) 
Crash ! !  

Omission   ! 
Transient   ! 

Application 
Characteristics 

(AC) 

Deterministic  ! ! 
State access !  ! 
Fail silent ! !  

The considered FTMs, in terms of fault model and 
application characteristics, are shown in TABLE I. For 
instance, PBR and LFR tolerate the same fault model 
(namely crash), but have different application behavioral 
assumptions. PBR allows non-determinism of applications 
because only the Primary computes client requests while 
LFR only works for deterministic applications as both 
replicas compute all requests. LFR could tackle non-
determinism if all non-deterministic actions can be captured. 
This is not what we consider in a first step. As mentioned 
previously, PBR requires state access (if any) for 
checkpointing application state, while LFR does not require 
state access when cloning replicas is not considered. TR also 
requires state access (if any) to restore the previous state of 
the computation before repetition of the processing. 

                                                
2 With PBR, only one replica is active, the Primary. The state of the computation 
is forwarded to the Backup in a checkpoint. The Backup replica handles 
checkpoints in normal operation and takes over when the Primary crashes. 
3 With LFR, both replicas are active, the Leader and the Follower. The Leader 
replies to client's request, while the Follower just executes the request to update 
its computational state. The Follower takes over when the Leader crashes. 



 

 

C. Evolution scenarii example and possible transitions 
During the service life of the system, the characteristics 

of the application or its fault tolerance requirements of 
parameters can change.  

An application can become non-deterministic when a 
new version is developed. The fault model can also become 
more complex, e.g., from crash-only it can become crash-
and-value. For instance, the PBR"LFR transition 
(denoted ") is triggered by a change in application 
characteristics (e.g. inability to access application state). A 
transition can occur in both directions, w.r.t parameters 
variation. A transition obviously implies an off-line 
validation of the new configuration (A ◊ FTM). 

The PBR"PBR+TR (FTMs composition denoted +) 
transition is triggered by a change in the considered fault 
model (e.g. crash-and-value). It worth noting that the 
composition of FTMs is not straightforward and requires a 
deep analysis of the impact of the first FTM on the second 
one. This analysis is out of the scope of this work. The 
composition of FTM must validated off-line before using it, 
taking care of possible interferences between FTMs [7]. 

III. BASIC ANALYSIS OF AFT FOR RESILIENT COMPUTING 
In this Section we perform a manual analysis of the 

Consistency Ratio a given set of FTM can offer to an 
application. This analysis will be automated is section IV. 
For the example we assume that only PBR, LFR and TR 
strategies are available. Also any duplex strategy (PBR or 
LFR) can be combined with TR. The aim of this analysis is 
to show that even slight changes in the basic assumptions we 
use can drastically alter the Consistency Ratio. 

In this analysis, the application characteristics that have 
an impact on the selection of an FTM are the determinism, 
statefullness, state accessibility, and fail-silence. These 
characteristics are the main differentiators between the FTM 
considered in the paper, as in [6]. To characterize the 
application we use the following notation: 

- DT for DeTerministic, !DT if not. 
- ST for STateful, !ST if stateless. 
- SA for State Access, !SA if not. 
- FS for Fail Silent, !FS if not. 

The fault-tolerance requirements notation is as follows: 

- C for Crash faults, !C if not considered. 
- O for Omission, !O if not. 
- V for Value errors, !V if not. 

All possible combinations of application characteristics 
and fault tolerance requirements must be considered. With 
the set of FTM defined in Section II.B, namely {PBR, LFR, 
TR} (see also TABLE I. ), our objective here is to check 
whether a solution can be found for each combination (AC, 
FM) that can occur during the lifetime of the system due to 
change events. 

In the following analysis, application and their fault-
tolerance requirements have the same probability of 
occurrence. In practice, a real system may exhibit different 

probabilities that must be included in the final evaluation of 
the system resilience. This is part of our ongoing work. 

A. Analysis with FTM strict definitions 
In this basic analysis, we do consider strict definitions of 

the FTM as follows: 

a) Our duplex protocols PBR and LFR tolerate crash 
faults leading to clear stop errors: 

- both assume a fail-silent behavior of the application. 
- PBR needs access to the state of the computation to 

perform checkpointing. 
- LFR is only valid for deterministic applications and does 

not need access to the state of the computation. 

b) TR tolerates transient faults leading to absence of result 
(omission) or to erroneous results (value error):  

- the behavior must be deterministic. 
- the state of the computation must be accessible to be 

restored to repeat the computation. 
- The comparison among several results decides on a 

valid value. 
In TABLE II. we list in columns all possible 

combinations of fault tolerance requirements an application 
can specify. In rows, we have all possible combinations of 
application characteristics. Green Boxes mean that at least 
one FTM was found to comply with both application 
characteristics and fault-tolerance requirements. We ignore 
the case where no fault tolerance requirements are requested, 
i.e. !C,!O,!V. 

TABLE II.  ANALYSIS WITH STRICT DEFINITIONS OF PBR, LFR AND TR. 

FM # 
AC$ 

C 
!O 
!V 

!C 
O 
!V 

!C 
!O 
V 

C 
O 
!V 

C 
!O 
V 

!C 
O 
V 

C 
O 
V 

!DT,!ST,!SA,!FS        
!DT,!ST,!SA,FS PBR       
!DT,!ST,SA,!FS        
!DT,!ST,SA,FS PBR       
!DT,ST,!SA,!FS        
!DT,ST,!SA,FS        
!DT,ST,SA,!FS        
!DT,ST,SA,FS PBR       
DT,!ST,!SA,!FS  TR TR   TR  
DT,!ST,!SA,FS LFR, 

PBR 
TR TR LFR 

+TR 
LFR 
+TR 

TR LFR 
+TR 

DT,!ST,SA,!FS  TR TR   TR  
DT,!ST,SA,FS LFR, 

PBR 
TR TR LFR 

+TR 
LFR 
+TR 

TR LFR 
+TR 

DT,ST,!SA,!FS        
DT,ST,!SA,FS LFR       
DT,ST,SA,!FS  TR TR   TR  
DT,ST,SA,FS LFR, 

PBR 
TR TR LFR 

+TR 
LFR 
+TR 

TR LFR 
+TR 

For non-deterministic applications, only PBR works 
when the state is accessible to tolerate crash faults and the 
application is fail-silent. Regarding transient faults, the 
repetition of the computation may lead to correct but 
different results and thus the comparison may lead to false 
alarms (good different results may lead to error messages!).  

For deterministic applications, LFR works whatever the 
state is accessible or not, and when the application is fail-
silent. 



 

 

The result is the following: 30% of the cases are solved. 
It is worth noting, that for deterministic applications 55% of 
the cases are solved with the limited set of mechanisms we 
consider. The bad news is that for non-deterministic 
applications only about 5% of the cases are solved. 

B. Analysis with a first extension of the FTM set 
In the previous step of our analysis, our definition of TR 

does not help solving omission errors in all cases. TR can 
solve omission errors when considered as value error 
(absence of result) in the previous table. 

A reduced version of TR with no comparison, just a 
repetition of the computation, enables omission error to be 
tolerated more largely. We can thus distinguish two variants 
of TR: i) repetition of the computation with comparison / 
voting for tolerating value errors (denoted TR), and ii) 
simple repetition to tolerate omissions (denoted TR0). In 
both cases, the access to the state of the computation (if any) 
is mandatory. 

We observe that simple repetition (TR0) can be used to 
tolerate omission errors when the state of the computation (if 
any) is accessible or when there is no state, whatever the 
application is deterministic or not. Combining a duplex 
strategy, e.g. PBR with TR0, enables both crash fault and 
transient faults leading to omission errors to be tolerated 
simultaneously in TABLE III.  (cf. Dark Green Boxes). 

TABLE III.  ANALYSIS WITH STRICT DEFINITIONS OF PBR, LFR AND TWO 
TR STRATEGIES. 

FM # 
AC$ 

C 
!O 
!V 

!C 
O 
!V 

!C 
!O 
V 

C 
O 
!V 

C 
!O 
V 

!C 
O 
V 

C 
O 
V 

!DT,!ST,!SA,!FS  TR0      
!DT,!ST,!SA,FS PBR TR0  PBR+ 

TR0 
   

!DT,!ST,SA,!FS  TR0      
!DT,!ST,SA,FS PBR TR0  PBR+ 

TR0 
   

!DT,ST,!SA,!FS        
!DT,ST,!SA,FS        
!DT,ST,SA,!FS  TR0      
!DT,ST,SA,FS PBR TR0  PBR+ 

TR0 
   

DT,!ST,!SA,!FS  TR, 
TR0 

TR   TR  

DT,!ST,!SA,FS LFR, 
PBR 

TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

DT,!ST,SA,!FS  TR, 
TR0 

TR   TR  

DT,!ST,SA,FS LFR, 
PBR 

TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

DT,ST,!SA,!FS        
DT,ST,!SA,FS LFR       
DT,ST,SA,!FS  TR, 

TR0 
TR   TR  

DT,ST,SA,FS LFR, 
PBR 

TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

The result is the following now: 38% of the cases are 
now solved. For deterministic applications, the percentage of 
cases solved remains 55%. What is more interesting is that 
for non-deterministic applications we have now about 21% 
of the cases are solved, compared to 5% previously. 

C. Analysis with a revision of the FTM definitions 
Examining cases that remain unsolved, we need to either 

extend again the set of mechanisms or just revise our 

definitions. We have shown in the previous section that 
adding variants of the FTMs improves the results. We show 
here that the revision of the strict definitions help solving 
more cases.  

We considered previously that duplex strategies cannot 
be applied when the application is not fail-silent. The notion 
of fail silence is probabilistic and depends on the coverage of 
the error detection mechanisms integrated within the 
application. The coverage cannot be 100%. The validation 
process and the measurements carried out in particular using 
fault injection enables the error detection coverage to be 
estimated. It is thus the responsibility of the developer to 
declare if its application is fail-silent or not according to the 
measurements obtained. However, in both cases, the 
application being fail-silent or not (FS and !FS), as 
determined by the developer, crash faults can be tolerated 
with duplex strategies. Even for non fail-silent applications, 
the developer may consider that crash fault must be tolerated 
despite some value errors can be observed. 

Interestingly, the combination of TR and a duplex 
strategy (PBR or LFR) improves the situation described 
above. The application of TR improves the error detection 
coverage for non fail-silent applications, i.e. tolerance to 
value errors, and thus improves the fail-silent assumption 
required by any duplex strategy. This is true for deterministic 
applications and when the state of the computation (if any) is 
accessible. 

TABLE IV.  ANALYSIS WITH REVISED DEFINITIONS. 

FM # 
AC$ 

C 
!O 
!V 

!C 
O 
!V 

!C 
!O 
V 

C 
O 
!V 

C 
!O 
V 

!C 
O 
V 

C 
O 
V 

!DT,!ST,!SA,!FS PBR TR0  PBR 
+TR0 

   

!DT,!ST,!SA,FS PBR TR0  PBR 
+TR0 

   

!DT,!ST,SA,!FS PBR TR0  PBR 
+TR0 

   

!DT,!ST,SA,FS PBR TR0  PBR 
+TR0 

   

!DT,ST,!SA,!FS        
!DT,ST,!SA,FS        
!DT,ST,SA,!FS PBR TR0  PBR 

+TR0 
   

!DT,ST,SA,FS PBR TR0  PBR 
+TR0 

   

DT,!ST,!SA,!FS LFR TR, 
TR0 

TR LFR 
+TR0 

LFR 
+TR 

TR LFR 
+TR 

DT,!ST,!SA,FS LFR, 
PBR 

TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

DT,!ST,SA,!FS LFR TR, 
TR0 

TR LFR 
+TR0 

LFR 
+TR 

TR LFR 
+TR 

DT,!ST,SA,FS LFR, 
PBR 

TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

DT,ST,!SA,!FS LFR       
DT,ST,!SA,FS LFR       
DT,ST,SA,!FS LFR TR, 

TR0 
TR LFR 

+TR0 
LFR 
+TR 

TR LFR 
+TR 

DT,ST,SA,FS LFR, 
PBR 

TR, 
TR0 

TR LFR 
+TR 

LFR 
+TR 

TR LFR 
+TR 

The Blue Boxes represent the additional solution with 
revised definitions (TABLE IV. ). The result is that 55% of 
the cases are now solved. For deterministic applications, the 
percentage of cases solved is now 89%. For non-
deterministic applications, the percentage remains low, only 
32% of the cases are solved. 



 

 

D. General comments about the analysis 
We have shown that with a very limited extension of the 

mechanisms and a revision of the assumptions required to 
apply a given FTM, we can impact drastically the number of 
cases solved, i.e. the FTM Consistency Ratio. However, 
some cases remain unsolved because of two problems that 
can be summarized as follows: i) non-deterministic 
application for which our current set of FTM cannot tolerate 
value error, or ii) non-deterministic or deterministic stateful 
application whose state is not accessible. 

Solving the first problem implies solving the non-
determinism issue. This means that all non-deterministic 
decisions must be identified in the implementation of the 
application and notified. A variant of LFR can be developed, 
a variant in which the Follower synchronizes its behavior 
thanks to the notifications sent by the Leader as soon as a 
non-deterministic decision is made. 

The second problem relates to the capture of the state of 
the computation. This is far more difficult to solve and thus 
required much more complex mechanisms. For instance, a 
transparent solution to this problem implies capturing all 
actions that modify the state of the computation and save 
them in a log (notion of journalization). The capture may 
involve a specific language or compiler facilities, virtual 
machine, hypervisor or even a specific hardware. Logs are 
used to restore the state of the computation by replaying the 
actions on a spare copy for instance. 

We observed that non-determinism has a strong impact 
on the capabilities to provide solution to value errors and all 
combinations including them. In other words, the number of 
cases not solved for deterministic applications remain limited 
even with a simple set of FTMs, which means that solving 
non-deterministic issues is clearly of high interest. 

Concerning the fail silence assumption required for any 
duplex strategy, non fail-silent applications can take 
advantage of TR to improve the coverage of built-in error 
detection mechanisms (e.g. autotest, defensive programming, 
exception handling, etc.). Then, the combination of TR with 
PBR or LFR in this order, i.e. TR first, makes sense to 
tolerate both crash and remaining value errors. 

Finally, the developer is responsible for the definition of 
the application characteristics and the fault tolerance 
requirements in its application domain and semantics, the 
dependability objectives, the system environment. In a 
certain sense, he has to fill a questionnaire any time a change 
occurs, proving an answer to two set of questions: 

- application characteristics: DT? ST? SA? FS? (yes/no). 
- fault tolerance requirements: C? O? V? (yes/no). 

The work reported in this section shows that change 
events occurring during the lifetime of the system may move 
applications from one “cell” to another. The fault tolerance 
requirements of the application are guaranteed as soon as a 
solution exists in the corresponding cell.  

The analysis was done "manually" in this section, but 
such manual analysis is not scalable with many more 
characteristics, fault models, and FTM.  

IV. AUTOMATED ANALYSIS AND MEASUREMENTS  

A. Formal notation 
Our objective is now to automate this analysis. Based on 

the previous analysis, we can now define a formal notation to 
represent an application A and its fault tolerance 
requirements, from which a suitable FTM can be determined. 
As a result, a configuration A ◊ FTM is consistent according 
to the definition given below. 

Definition: The design of a critical application is consistent 
if and only if the FTM assumptions and capabilities match 
Application characteristics and fault tolerance requirements. 

An application A has a set of non-functional 
characteristics, denoted (aci), k ∈ [1..N], N being the 
total number of characteristics considered in the model. The 
boolean application characteristics are those used 
previously: determinism, statefulness, state access, 
fail silence. This list can obviously be extended.  

The fault tolerance requirements of an application Ai 
correspond to the types of faults fmj the application Ai must 
tolerate. We use again a boolean notation to represent this 
set of faults, (fmj), j ∈ [1..P], P being the total number 
of possible fault types affecting an application component in 
the system. Examples of such fault types are those used 
previously: value fault, omission fault, crash fault. 
This list can also be extended with other fault types. � 

An application is thus represented by two vectors, one for 
application characteristics, one for the fault types that must 
be tolerated. The FTM attached to the application in a 
configuration must tolerate such types of faults and be valid 
for the application characteristics.  

𝐴 =  

𝑎𝑐!
𝑎𝑐!
…
𝑎𝑐!

,

𝑓𝑚!
𝑓𝑚!
…
𝑓𝑚!

 

The vector (𝑎𝑐!) 
represents application 
characteristics. The vector 
(𝑓𝑚!) represents the fault 
tolerance requirements. 

The objective now is to determine FTMs making the 
configuration A ◊ FTM consistent. As shown in the previous 
section, an FTM provides a solution to tolerate some types of 
faults, but its validity depends on application characteristics. 
Our final aim is to compute the tables automatically, from 
the application model given above and a formal definition of 
the validity of fault tolerance mechanisms. 

Let's examine the simple set of mechanisms we have 
considered previously {PBR, LFR, TR} with their strict 
definition. Any of these FTM relies on assumptions to 
tolerate a given type of fault. As an example, the 
assumptions for the use of PBR are state access if the 
application is stateful and fail silent behavior. 
When such assumptions are strictly true, then PBR tolerates 
the crash of the application. The same reasoning applies to 
other FTM and their combination. 

B. FTM assumptions and properties   
The assumptions for each mechanism in the set of FTM 

with respect to application characteristics can be defined by 



 

 

logical assertions. We first use assertions to test the 
compatibility of an FTM with the application characteristics. 
Assertions for the FTM considered are defined as follows: 

Assumption for PBR:  FS and !(ST and !SA) 

Assumption for LFR:  DT and FS 

Assumption for TR:  DT and !(ST and !SA) 

The assertion for the combination of several FTM can be 
deduced from the above logical expressions, such as: 

Assumptions for LFR+TR: FS and DT and !(ST and !SA) 

The above assertion is stronger than needed; if it is true 
we guaranty that the FTMs composition is valid. However, a 
composition may require reduced assumptions. For instance, 
applying TR implies that fail silence (FS) is no longer 
necessary since TR is a way to improve the fail silence. This 
is not considered in our algorithms, but reducing the 
assumption set could improve the CR. 

The Boolean expressions allow us to take in account the 
dependencies between some characteristics. For instance, the 
state characteristics has an impact on the CR only when the 
application is stateful. We use assertions to test the adequacy 
of an FTM with respect to fault tolerance requirements. 
Assertions for the FTM considered are defined as follows:  

Fault model for PBR:  !O and !V 

Fault model for LFR:  !O and !V 

Fault model for TR:  !C 

Now, we can define properties to check the consistency 
of any application configuration (A ◊ FTM).  

Definition of compatibility: FTM is compatible with A if and 
only if FTM assumptions comply with the application 
characteristics of A. 
Definition of adequacy: FTM is adequate with A if and only 
if FTM tolerates the fault model required by A. 
Definition of consistency: A configuration (A ◊ FTM) is 
consistent if and only if it complies with both the 
compatibility and adequacy properties. 

C. Notion of Consistency Ratio 
During its lifetime, the several versions of a given 

application developed and loaded into the system may have 
an impact on the application characteristics and thus 
invalidate the FTM that has been attached to the application 
A in a first place. To help quantify the resilience offered by a 
set of FTM, we define a notion of Consistency Ratio.  

Definition of Consistency Ratio: For all combinations of 
application characteristics and fault tolerance requirements, 
the CR is the ratio of consistent configurations (A ◊ FTM) 
we can obtain for a given set of FTM. 

This is exactly what we have done manually in 
Section III. The two questions we want to address now are: 

- Can we compute the configuration tables from the 
application model and the FTM logical expressions? 

- How to compute the CR for such configuration tables 
and FTM definitions? 

D. Computing configuration tables and Consistency Ratio 
The proposed algorithm creates the tables from the 

application characteristics and fault tolerance requirements 
using the logical assertions established for each FTM in the 
set of FTMs. From the tables obtained, it computes the CR. 
Using the same application characteristics, fault tolerance 
requirements and FTMs with strict definitions we should be 
able to reproduce the TABLE II.  and the corresponding CR. 

All application characteristics and fault tolerance 
requirements are encoded with boolean values. The 
application is represented by two boolean vectors. For 
instance, a deterministic (DT), stateful (ST), with accessible 
state (SA), fail silent (FS) application requiring tolerance to 
crash faults is represented like this: 

𝐴 =  

1
1
1
1

,
1
0
0

 

Each FTM assertion is implemented as a function 
returning a boolean value. The output is 1 if the application 
A matches the FTM assumptions and fault model, 0 
otherwise. The assertion for the PBR mechanism is:  

FS and !(ST and !SA) ) and (!O and !V) 

Here is in pseudo-code our simple algorithm to automate 
the computation of the table and the CR. The implementation 
of the algorithm was validated using TABLE II.  as an oracle 
using the same characteristics, fault tolerance requirements 
and FTMs with strict definitions. 

INPUT: Application model, FTMs set 
FOR each application characteristics SA 
 FOR each fault model FM 

  FOR each FTM 

 IF (AC,FM) ◊ FTM is consistent THEN 
  Store FTM in the cell (AC,FM) 
 END IF 
END FOR 

IF the cell (AC,FM) is not empty 
 Increment NbrOfConsCells 
END IF 

 END FOR 
END FOR 
RETURN: CR=NbrOfConsCells/TotNbrOfCells 

Fig. 1. Algorithm for CR computation 

Clearly, CR values for the other scenario used in the 
manual analysis (see TABLE III. and TABLE IV. ) can also 
be obtained with the algorithm. The approach can be 
extended to any characteristic, fault model, and set of FTM.  



 

 

V. SENSITIVITY ANALYSIS 
This section proposes a sensitivity analysis of the CR 

offered by a given set of FTM. The aim is to identify 
application characteristics and types of faults that have the 
most impact on the CR. We use the algorithm presented in 
the previous Section to measure the CR when fixing some of 
the parameters. First, we will address the sensitivity 
regarding application characteristics (Section V.A) and then, 
we will discuss the sensitivity to fault types (Section. V.B). 

This analysis will help us to find the most efficient way 
to improve the Consistency Ratio. 
A. Sensitivity to application characteristics 

In this Section, we analyse the impact of application 
characteristics on the CR. For each application characteristic, 
we measure the CR when the characteristic is set to a 
particular value, and the other one can vary. In Fig. 2 each 
bar corresponds to a CR. The X-axis represents each specific 
characteristic and its assigned value (1 or 0). When a given 
characteristic is set to 1, it means that it is true for the 
application. For example, the bar “DT=1” represents the CR 
offered to an application which will always be deterministic 
regardless of future updates.  

 
Fig. 2. Sensitivity to application characteristics  

For this analysis, the set of FTMs is the one used in 
Section III.A, i.e. {PBR, LFR, TR}, with their strict 
definitions. The CR for this set of FTM was about 30% when 
no characteristic is imposed (see. TABLE II. ) This CR value 
is our Reference value in our sensitivity analysis. The 
question now is: what is the impact on this reference value 
when fixing one application characteristic for this FTMs set?  

The CR obtained when fixing a characteristic to 1 is 
higher that the reference CR value. For instance, when the 
application is guaranteed to be always deterministic (DT=1) 
the CR value is improved from 30% to 55%. As a 
consequence, we can anticipate that when the component is 
not deterministic, the CR value is lower. All this is 
confirmed by the results obtained in Fig. 2 where we show 
the impact of each characteristic. In our analysis, with the set 
of FTM we consider, we observed that determinism has the 
most important impact on the CR value. Other characteristics 
have also an impact, but it is less significant. 

The conclusion is that improving the CR implies 
focussing on this characteristic first. Two solutions are 

possible to improve it: Either we force the component to be 
deterministic or we need to include new FTM compliant with 
non-deterministic applications. 

B. Sensitivity to fault types 
In this Section, we analyse the impact of the fault types to 

the CR. The following analysis is done with the extended set 
of FTMs considered in Section III.B – TABLE IV. The 
reference is 55% in this case. We use the same method as 
previously: when a fault type is set to 1, it is part of the fault 
tolerance requirements of the application. When it is set to 0, 
the fault type is not part of the faults considered.  

The results are given in Fig. 3. This figure shows the CR 
variation when a type of fault is removed (i.e. set to 0). As 
shown, the CR can increase or decrease. This enlightens the 
strong impact of the fault model, positive or negative, on the 
CR for a given set of FTM. 

 
Fig. 3. Sensitivity to fault types  

We observe that the CR is increased when we remove a 
fault type (e.g. value faults removed) from the set of fault 
types; the reason for this is that this type of fault is not 
efficiently tolerated with the current set of FTMs, whereas 
other faults are better tolerated.  

Conversely, when the CR is decreased (e.g. crash faults 
removed) we can infer that these types of faults (namely 
crash faults here) are better tolerated than other types of 
faults (value and omission). It is indeed the case as shown 
previously with the simple set of FTM we consider in this 
analysis. A first solution to improve the CR could be to 
extend our set of FTM to include mechanisms dedicated to 
value faults. Another solution is to work on the application 
development itself to prevent by construction this kind of 
faults, e.g. implementing a self-checking version of the 
application. 

In conclusion, this analysis is a mean to identify the fault 
types which are badly covered and finding a solution to 
improve the resilience. Two options are possible: i) 
extending the FTMs set or ii) removing these faults by 
design. The conclusion regarding the impact of application 
characteristics is similar: i) extending the FTMs set with 
mechanisms handling more efficiently some application 
characteristics or ii) removing by design those characteristics 
that have a bad impact on the Consistency Ratio. 



 

 

VI. LESSONS LEARNT AND DESIGN PROCESS 
The resilient computing interpretation of the CR value 

refers to the probability of having a compliant FTM after an 
update of the application. The higher this ratio is, the higher 
the probability to comply with new application 
characteristics or fault tolerance requirements. Developing a 
resilient system requires first the selection of an FTM 
compliant with fault tolerance requirements and the 
characteristics of the application. However, as we have 
shown, a single FTM may not offer much in terms of 
resilience. Thus, following the principles of Adaptive Fault 
Tolerance, some additional FTMs need to be included to 
future-proof the system. A question then arises: How to 
select these FTMs? 

The design process could be the following: first the 
system designer needs to list all the FTM that could be 
implemented and for each one of them, construct all 
consistency assertions (see Section IV.B), respecting the 
critical assumptions for FTMs [8]. With these elements and 
thanks to the proposed automated analysis, it is possible to 
compute the CR value for each subset of these FTM. This 
exhaustive analysis4 is illustrated in Fig. 4. We compute the 
CR value for each of the 26 subsets we can construct from 
the 6 FTM used in TABLE III. Each bar represents the CR 
value for a given subset and for readability reasons we have 
sorted the results in increasing order (i.e. the X-axis 
correspond to the list of 26 subsets ranked according to their 
corresponding CR value). 

Then the designer can find all the subsets of FTM that 
satisfy some CR requirement. Finally, among all these 
subsets of FTM, the designer must use other criteria, such as 
required resources or development cost, to select the right set 
of FTM to implement. It is noteworthy that deciding the right 
CR requirement is obviously a complex problem in itself and 
it should at least take into consideration the criticality of the 
application, its envisioned frequency of updates, and the 
confidence in the initial fault model. 

 
Fig. 4. Exhaustive CR analysis 

If no subset of FTM is acceptable with respect to the 
desired CR, for example because implementation is too 

                                                
4 Although this approach is exhaustive, we avoid scalability issues because our 
approach is solely focused on the critical assumptions and requirements for 
AFT. 

expensive, the sensitivity analysis can guide the designer 
towards other solutions as shown in section V. By way of 
example, Fig. 4 shows the CR values for all subsets of FTMs 
when the application is deterministic (in red). We clearly see 
that making this assumption offers the designer more 
choices. Such insights have an impact on the development of 
an application in a resilient system. Forcing determinism 
implies a development discipline, the identification of non-
deterministic decisions, and also a non-concurrent 
implementation of the application. Lastly, FTMs must be 
adapted to synchronize with remaining non-deterministic 
decisions, if any, or new FTMs must be developed.  

VII. CONCLUSION 
The work reported in this paper aimed at proposing an 

approach for the analysis of Adaptive Fault Tolerance for 
resilient computing. We have shown that the analysis 
requires a deep understanding of the application 
charateristics, the fault model and the core assumptions of 
fault tolerance mechanims. We introduced the notion of 
Consistency Ratio as an estimator of the system resilience, 
i.e. a measure of the system capability to remain dependable 
when facing changes. The CR can be computed with a 
simple algorithm. This approach is generic in the sense that it 
can be extended to any application characteristic, fault 
model, or FTM. The proposed sensitivity analysis is a mean 
to manage the development of resilient computing systems 
and is envisoned as a tool to help system designers to take 
appropriate decisions regarding resilience.  
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