
HAL Id: hal-01708205
https://hal.science/hal-01708205

Submitted on 13 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Adaptive Fault Tolerance for Resilient
Computing

William Excoffon, Jean-Charles Fabre, Michaël Lauer

To cite this version:
William Excoffon, Jean-Charles Fabre, Michaël Lauer. Analysis of Adaptive Fault Tolerance for
Resilient Computing. 13th European Dependable Computing Conference (EDCC 2017), Sep 2017,
Geneva, Switzerland. 9p., �10.1109/EDCC.2017.22�. �hal-01708205�

https://hal.science/hal-01708205
https://hal.archives-ouvertes.fr

Analysis of Adaptive Fault Tolerance for
Resilient Computing

William Excoffon1, Jean-Charles Fabre1, Michaël Lauer2

CNRS-LAAS, Ave du Colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, 1INP, 2UPS, LAAS, F-31400 Toulouse, France

e-mail: {william.excoffon, jean-charles.fabre, michael.lauer}@laas.fr

Abstract—A system that remains dependable when facing
changes is called resilient. The fast evolution of systems,
including safety critical systems, requires that fault tolerance
mechanisms – FTM – remain consistent with their assumptions
and the non-functional requirements of the application. A
change event may impose the adaptation of an FTM to the
current assumptions that can be made. Consequently, system
resilience should rely on adaptive fault tolerant computing.

In this paper, we report on an analysis of the link between
applications and their attached FTM. We show how a set of
FTMs or their composition can be a solution according to a
change event occurring in the system. We propose a measure to
estimate the resilience of a system. According to application
characteristics and fault tolerance requirements, we show the
impact of assumptions on FTM selection. We finally draw
some lessons learnt for the development of resilient systems.

Keywords – fault tolerance, resilience, evolution, analysis

I. INTRODUCTION
Systems have to evolve during their service life in order

to cope with additional features requested by users. For
dependable embedded systems, the challenge is greater, as
evolution must not impair dependability attributes. The
persistence of dependability when facing changes is called
resilience [1]. Dependability relies at runtime on fault
tolerance mechanisms (FTMs or Safety Mechanisms)
attached to the application [2]. A challenge of resilient
computing is to maintain the adequacy between any
application and its attached FTMs during the operational life
of the system despite change events.

Definition: a resilient computing system is a system able to
adapt its fault tolerance mechanisms at runtime to comply
with its fault-tolerance requirements.

Resilient computing1 adds a new dimension to fault
tolerant computing by including evolution events, in
particular unexpected changes related to application updates,
new fault tolerance requirements, system configuration
changes, etc. In this respect, ideal fault tolerance strategies
installed at one time can be invalidated by a change later on.

The word “Resilience” is often used in Cloud computing
[3] and networking as a synonymous to fault tolerance that is
not consistent with our definition. However, the metrics used
in these fields (data losses, CPU efficiency…) are analog to
Fault Tolerance measures. This work proposes an approach

1 ReSIST NoE, Resilience for Survivability in IST, http://www.resist-noe.org/.

to measure the impact of unexpected change events on the
persistence of dependability. The proposed measures are
complementary to standard fault tolerance measures.

The need for Adaptive Fault Tolerance (AFT) was stated
in [4] to address this challenge. AFT is gaining today more
importance and on-line adaptation of FTMs has attracted
research efforts for some time now. However, most of the
solutions, as in [5], tackle adaptation in a preprogrammed
manner: all FTMs necessary during the system lifetime are
known and deployed from the beginning and adaptation
consists in choosing the appropriate execution branch or
tuning some parameters, e.g., number of replicas or interval
between checkpoints. Clearly, predicting all events and
threats a system may encounter throughout its service life
and making provisions for them is impossible.

An innovative approach was proposed in [4], taking
advantage of component-based software engineering
techniques to develop adaptive fault tolerance mechanisms.
FTM are developed as a collection of lego-bricks that can be
combined and manipulated dynamically at runtime under
certain assumptions [6]. Whatever adaptive fault tolerance is
implemented, the important question is the following: how to
determine a suitable FTM after a change event in order to
maintain system dependability to improve resilience?

Answering this question is the challenge of the work
reported in this paper. Our analysis takes as inputs the
application characteristics that have an impact on the
selection of an FTM with respect to a given set of faults. For
any application, the result of the proposed analysis can be: i)
an FTM or a combination of available FTMs exist to comply
with both application characteristics and their fault-tolerance
requirements, or ii) there is no solution with the set of
available FTMs, and thus new FTMs or variants of available
FTMs must be developed.

We define a notion of Consistency Ratio (CR) to quantify
the capacity of a set of FTM to comply with application
characteristics and fault tolerance requirements. For a given
set of FTM, a list of application characteristics and a set of
faults to be tolerated, the CR corresponds to the proportion of
the cases where a solution, i.e. a suitable FTM, is found.
Each case can be seen as a cell of a table having application
characteristics as rows and type of faults as columns. The
content of the cell is one or several FTM or nothing. A
change event for a given application corresponds to a jump
from one cell in the table to another one. The system remains
resilient if an FTM is found in the new cell for this

application. The probability of finding a suitable FTM in the
cell is directly related to the notion of CR.

The CR is a static notion at a given point in time whereas
the resilience is a dynamic notion during the lifetime of a
system. During the operational life, the list of application
characteristics and fault types may change and thus have an
impact on the CR. The resilience of the system can be
estimated by the combination of the CR for all applications
in the system after a change event during the system lifetime.

This work provides a basic tool to estimate the resilience
of a system. The sensitivity analysis with respect to the set of
FTM, the application characteristics and the set of faults,
shows the impact, positive or negative, of a change event on
the CR, and so on the resilience of the system.

After a brief summary of the context in Section II, we
perform in Section III a manual analysis of the system
resilience using a basic set of FTMs and application
characteristics. In Section IV, we describe our analysis more
formally and show how a solution can be identified by
computation. A sensitivity analysis to both application and
fault model changes is proposed in Section V. Lessons learnt
are given in Section VI.

II. CONTEXT AND PROBLEM STATEMENT

A. Adaptation and Change Model
An appropriate Fault Tolerance Mechanism (FTM) for a

given application depends on several parameters grouped in
three classes: 1) application characteristics (AC);� 2) fault
model to consider (FM); 3) available resources (AR).

At any point in time, the FTM(s) attached to an
application must be consistent with the current values of
(AC, FM, AR). These parameters enable to discriminate
FTMs. We denote (AC, FM, AR) the change model.

Several application characteristics (AC) have an impact
on the selection of an FTM. In this paper we first consider
the following: i) behavioral determinism, ii) application
statefulness, iii) state accessibility and iv) fail-silence.

Regarding the fault model (FM), we consider well-
known fault types, e.g., crash, omission and transient faults.

The available resources (AR) play also an important role.
Firstly, in the FTM selection, since FTMs require resources
to be implemented such as bandwidth, CPU, battery
life/energy. This resource criterion may invalidate a solution.

However, resources can be a trigger for FTM change. A
lack of resources at a given point in time in the operational
life of the system may invalidate an FTM. This implies that a
new FTM must be installed according the available
resources. This aspect has not been considered in this paper.

Any parameter variation during the service life of the
system may invalidate the initial FTMs selected, thus
requiring a transition towards a new one. Transitions may be
triggered by a new application version with different
characteristics or new threats (i.e. fault model change).

Definition: A configuration (A ◊ FTM) must remain
consistent despite changes in the characteristics of the
application and its related fault tolerance requirements.

We assume that any application A is attached (denoted ◊)
to an FTM that complies with its fault tolerance requirements
F and that resources to run this FTM are available. This is
called a configuration.

B. FTM and Assumptions
To illustrate our modeling approach, we consider some

conventional fault tolerance mechanisms that will be used as
a guiding thread through the remainder of the paper.

Duplex protocols tolerate crash faults using passive (e.g.
Primary-Backup Replication denoted PBR2), or semi-active
replication strategies (e.g. Leader-Follower Replication
denoted LFR3). Each replica is considered as a self-checking
component in both cases. At least 2 independent processors
(error confinement areas) are necessary to run these FTMs.

 Time Redundancy (TR) tolerates transient faults leading
to omission or value errors using repetition of the
computation and comparison. This can also be perceived as a
way to improve the self-checking nature of a replica.

In this paper, our fault model includes permanent and
transient hardware faults or random operating system faults.
We do not consider common mode faults.

The above Duplex strategies can be combined with TR to
tolerate both transient and permanent physical faults.

TABLE I. ASSUMPTIONS AND FAULT TOLERANCE MECHANISM

Assumptions / FTM PBR LFR TR
Fault Model

(FT)
Crash ! !

Omission !
Transient !

Application
Characteristics

(AC)

Deterministic ! !
State access ! !
Fail silent ! !

The considered FTMs, in terms of fault model and
application characteristics, are shown in TABLE I. For
instance, PBR and LFR tolerate the same fault model
(namely crash), but have different application behavioral
assumptions. PBR allows non-determinism of applications
because only the Primary computes client requests while
LFR only works for deterministic applications as both
replicas compute all requests. LFR could tackle non-
determinism if all non-deterministic actions can be captured.
This is not what we consider in a first step. As mentioned
previously, PBR requires state access (if any) for
checkpointing application state, while LFR does not require
state access when cloning replicas is not considered. TR also
requires state access (if any) to restore the previous state of
the computation before repetition of the processing.

2 With PBR, only one replica is active, the Primary. The state of the computation
is forwarded to the Backup in a checkpoint. The Backup replica handles
checkpoints in normal operation and takes over when the Primary crashes.
3 With LFR, both replicas are active, the Leader and the Follower. The Leader
replies to client's request, while the Follower just executes the request to update
its computational state. The Follower takes over when the Leader crashes.

C. Evolution scenarii example and possible transitions
During the service life of the system, the characteristics

of the application or its fault tolerance requirements of
parameters can change.

An application can become non-deterministic when a
new version is developed. The fault model can also become
more complex, e.g., from crash-only it can become crash-
and-value. For instance, the PBR"LFR transition
(denoted ") is triggered by a change in application
characteristics (e.g. inability to access application state). A
transition can occur in both directions, w.r.t parameters
variation. A transition obviously implies an off-line
validation of the new configuration (A ◊ FTM).

The PBR"PBR+TR (FTMs composition denoted +)
transition is triggered by a change in the considered fault
model (e.g. crash-and-value). It worth noting that the
composition of FTMs is not straightforward and requires a
deep analysis of the impact of the first FTM on the second
one. This analysis is out of the scope of this work. The
composition of FTM must validated off-line before using it,
taking care of possible interferences between FTMs [7].

III. BASIC ANALYSIS OF AFT FOR RESILIENT COMPUTING
In this Section we perform a manual analysis of the

Consistency Ratio a given set of FTM can offer to an
application. This analysis will be automated is section IV.
For the example we assume that only PBR, LFR and TR
strategies are available. Also any duplex strategy (PBR or
LFR) can be combined with TR. The aim of this analysis is
to show that even slight changes in the basic assumptions we
use can drastically alter the Consistency Ratio.

In this analysis, the application characteristics that have
an impact on the selection of an FTM are the determinism,
statefullness, state accessibility, and fail-silence. These
characteristics are the main differentiators between the FTM
considered in the paper, as in [6]. To characterize the
application we use the following notation:

- DT for DeTerministic, !DT if not.
- ST for STateful, !ST if stateless.
- SA for State Access, !SA if not.
- FS for Fail Silent, !FS if not.

The fault-tolerance requirements notation is as follows:

- C for Crash faults, !C if not considered.
- O for Omission, !O if not.
- V for Value errors, !V if not.

All possible combinations of application characteristics
and fault tolerance requirements must be considered. With
the set of FTM defined in Section II.B, namely {PBR, LFR,
TR} (see also TABLE I.), our objective here is to check
whether a solution can be found for each combination (AC,
FM) that can occur during the lifetime of the system due to
change events.

In the following analysis, application and their fault-
tolerance requirements have the same probability of
occurrence. In practice, a real system may exhibit different

probabilities that must be included in the final evaluation of
the system resilience. This is part of our ongoing work.

A. Analysis with FTM strict definitions
In this basic analysis, we do consider strict definitions of

the FTM as follows:

a) Our duplex protocols PBR and LFR tolerate crash
faults leading to clear stop errors:

- both assume a fail-silent behavior of the application.
- PBR needs access to the state of the computation to

perform checkpointing.
- LFR is only valid for deterministic applications and does

not need access to the state of the computation.

b) TR tolerates transient faults leading to absence of result
(omission) or to erroneous results (value error):

- the behavior must be deterministic.
- the state of the computation must be accessible to be

restored to repeat the computation.
- The comparison among several results decides on a

valid value.
In TABLE II. we list in columns all possible

combinations of fault tolerance requirements an application
can specify. In rows, we have all possible combinations of
application characteristics. Green Boxes mean that at least
one FTM was found to comply with both application
characteristics and fault-tolerance requirements. We ignore
the case where no fault tolerance requirements are requested,
i.e. !C,!O,!V.

TABLE II. ANALYSIS WITH STRICT DEFINITIONS OF PBR, LFR AND TR.

FM #
AC$

C
!O
!V

!C
O
!V

!C
!O
V

C
O
!V

C
!O
V

!C
O
V

C
O
V

!DT,!ST,!SA,!FS
!DT,!ST,!SA,FS PBR
!DT,!ST,SA,!FS
!DT,!ST,SA,FS PBR
!DT,ST,!SA,!FS
!DT,ST,!SA,FS
!DT,ST,SA,!FS
!DT,ST,SA,FS PBR
DT,!ST,!SA,!FS TR TR TR
DT,!ST,!SA,FS LFR,

PBR
TR TR LFR

+TR
LFR
+TR

TR LFR
+TR

DT,!ST,SA,!FS TR TR TR
DT,!ST,SA,FS LFR,

PBR
TR TR LFR

+TR
LFR
+TR

TR LFR
+TR

DT,ST,!SA,!FS
DT,ST,!SA,FS LFR
DT,ST,SA,!FS TR TR TR
DT,ST,SA,FS LFR,

PBR
TR TR LFR

+TR
LFR
+TR

TR LFR
+TR

For non-deterministic applications, only PBR works
when the state is accessible to tolerate crash faults and the
application is fail-silent. Regarding transient faults, the
repetition of the computation may lead to correct but
different results and thus the comparison may lead to false
alarms (good different results may lead to error messages!).

For deterministic applications, LFR works whatever the
state is accessible or not, and when the application is fail-
silent.

The result is the following: 30% of the cases are solved.
It is worth noting, that for deterministic applications 55% of
the cases are solved with the limited set of mechanisms we
consider. The bad news is that for non-deterministic
applications only about 5% of the cases are solved.

B. Analysis with a first extension of the FTM set
In the previous step of our analysis, our definition of TR

does not help solving omission errors in all cases. TR can
solve omission errors when considered as value error
(absence of result) in the previous table.

A reduced version of TR with no comparison, just a
repetition of the computation, enables omission error to be
tolerated more largely. We can thus distinguish two variants
of TR: i) repetition of the computation with comparison /
voting for tolerating value errors (denoted TR), and ii)
simple repetition to tolerate omissions (denoted TR0). In
both cases, the access to the state of the computation (if any)
is mandatory.

We observe that simple repetition (TR0) can be used to
tolerate omission errors when the state of the computation (if
any) is accessible or when there is no state, whatever the
application is deterministic or not. Combining a duplex
strategy, e.g. PBR with TR0, enables both crash fault and
transient faults leading to omission errors to be tolerated
simultaneously in TABLE III. (cf. Dark Green Boxes).

TABLE III. ANALYSIS WITH STRICT DEFINITIONS OF PBR, LFR AND TWO
TR STRATEGIES.

FM #
AC$

C
!O
!V

!C
O
!V

!C
!O
V

C
O
!V

C
!O
V

!C
O
V

C
O
V

!DT,!ST,!SA,!FS TR0
!DT,!ST,!SA,FS PBR TR0 PBR+

TR0

!DT,!ST,SA,!FS TR0
!DT,!ST,SA,FS PBR TR0 PBR+

TR0

!DT,ST,!SA,!FS
!DT,ST,!SA,FS
!DT,ST,SA,!FS TR0
!DT,ST,SA,FS PBR TR0 PBR+

TR0

DT,!ST,!SA,!FS TR,
TR0

TR TR

DT,!ST,!SA,FS LFR,
PBR

TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

DT,!ST,SA,!FS TR,
TR0

TR TR

DT,!ST,SA,FS LFR,
PBR

TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

DT,ST,!SA,!FS
DT,ST,!SA,FS LFR
DT,ST,SA,!FS TR,

TR0
TR TR

DT,ST,SA,FS LFR,
PBR

TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

The result is the following now: 38% of the cases are
now solved. For deterministic applications, the percentage of
cases solved remains 55%. What is more interesting is that
for non-deterministic applications we have now about 21%
of the cases are solved, compared to 5% previously.

C. Analysis with a revision of the FTM definitions
Examining cases that remain unsolved, we need to either

extend again the set of mechanisms or just revise our

definitions. We have shown in the previous section that
adding variants of the FTMs improves the results. We show
here that the revision of the strict definitions help solving
more cases.

We considered previously that duplex strategies cannot
be applied when the application is not fail-silent. The notion
of fail silence is probabilistic and depends on the coverage of
the error detection mechanisms integrated within the
application. The coverage cannot be 100%. The validation
process and the measurements carried out in particular using
fault injection enables the error detection coverage to be
estimated. It is thus the responsibility of the developer to
declare if its application is fail-silent or not according to the
measurements obtained. However, in both cases, the
application being fail-silent or not (FS and !FS), as
determined by the developer, crash faults can be tolerated
with duplex strategies. Even for non fail-silent applications,
the developer may consider that crash fault must be tolerated
despite some value errors can be observed.

Interestingly, the combination of TR and a duplex
strategy (PBR or LFR) improves the situation described
above. The application of TR improves the error detection
coverage for non fail-silent applications, i.e. tolerance to
value errors, and thus improves the fail-silent assumption
required by any duplex strategy. This is true for deterministic
applications and when the state of the computation (if any) is
accessible.

TABLE IV. ANALYSIS WITH REVISED DEFINITIONS.

FM #
AC$

C
!O
!V

!C
O
!V

!C
!O
V

C
O
!V

C
!O
V

!C
O
V

C
O
V

!DT,!ST,!SA,!FS PBR TR0 PBR
+TR0

!DT,!ST,!SA,FS PBR TR0 PBR
+TR0

!DT,!ST,SA,!FS PBR TR0 PBR
+TR0

!DT,!ST,SA,FS PBR TR0 PBR
+TR0

!DT,ST,!SA,!FS
!DT,ST,!SA,FS
!DT,ST,SA,!FS PBR TR0 PBR

+TR0

!DT,ST,SA,FS PBR TR0 PBR
+TR0

DT,!ST,!SA,!FS LFR TR,
TR0

TR LFR
+TR0

LFR
+TR

TR LFR
+TR

DT,!ST,!SA,FS LFR,
PBR

TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

DT,!ST,SA,!FS LFR TR,
TR0

TR LFR
+TR0

LFR
+TR

TR LFR
+TR

DT,!ST,SA,FS LFR,
PBR

TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

DT,ST,!SA,!FS LFR
DT,ST,!SA,FS LFR
DT,ST,SA,!FS LFR TR,

TR0
TR LFR

+TR0
LFR
+TR

TR LFR
+TR

DT,ST,SA,FS LFR,
PBR

TR,
TR0

TR LFR
+TR

LFR
+TR

TR LFR
+TR

The Blue Boxes represent the additional solution with
revised definitions (TABLE IV.). The result is that 55% of
the cases are now solved. For deterministic applications, the
percentage of cases solved is now 89%. For non-
deterministic applications, the percentage remains low, only
32% of the cases are solved.

D. General comments about the analysis
We have shown that with a very limited extension of the

mechanisms and a revision of the assumptions required to
apply a given FTM, we can impact drastically the number of
cases solved, i.e. the FTM Consistency Ratio. However,
some cases remain unsolved because of two problems that
can be summarized as follows: i) non-deterministic
application for which our current set of FTM cannot tolerate
value error, or ii) non-deterministic or deterministic stateful
application whose state is not accessible.

Solving the first problem implies solving the non-
determinism issue. This means that all non-deterministic
decisions must be identified in the implementation of the
application and notified. A variant of LFR can be developed,
a variant in which the Follower synchronizes its behavior
thanks to the notifications sent by the Leader as soon as a
non-deterministic decision is made.

The second problem relates to the capture of the state of
the computation. This is far more difficult to solve and thus
required much more complex mechanisms. For instance, a
transparent solution to this problem implies capturing all
actions that modify the state of the computation and save
them in a log (notion of journalization). The capture may
involve a specific language or compiler facilities, virtual
machine, hypervisor or even a specific hardware. Logs are
used to restore the state of the computation by replaying the
actions on a spare copy for instance.

We observed that non-determinism has a strong impact
on the capabilities to provide solution to value errors and all
combinations including them. In other words, the number of
cases not solved for deterministic applications remain limited
even with a simple set of FTMs, which means that solving
non-deterministic issues is clearly of high interest.

Concerning the fail silence assumption required for any
duplex strategy, non fail-silent applications can take
advantage of TR to improve the coverage of built-in error
detection mechanisms (e.g. autotest, defensive programming,
exception handling, etc.). Then, the combination of TR with
PBR or LFR in this order, i.e. TR first, makes sense to
tolerate both crash and remaining value errors.

Finally, the developer is responsible for the definition of
the application characteristics and the fault tolerance
requirements in its application domain and semantics, the
dependability objectives, the system environment. In a
certain sense, he has to fill a questionnaire any time a change
occurs, proving an answer to two set of questions:

- application characteristics: DT? ST? SA? FS? (yes/no).
- fault tolerance requirements: C? O? V? (yes/no).

The work reported in this section shows that change
events occurring during the lifetime of the system may move
applications from one “cell” to another. The fault tolerance
requirements of the application are guaranteed as soon as a
solution exists in the corresponding cell.

The analysis was done "manually" in this section, but
such manual analysis is not scalable with many more
characteristics, fault models, and FTM.

IV. AUTOMATED ANALYSIS AND MEASUREMENTS

A. Formal notation
Our objective is now to automate this analysis. Based on

the previous analysis, we can now define a formal notation to
represent an application A and its fault tolerance
requirements, from which a suitable FTM can be determined.
As a result, a configuration A ◊ FTM is consistent according
to the definition given below.

Definition: The design of a critical application is consistent
if and only if the FTM assumptions and capabilities match
Application characteristics and fault tolerance requirements.

An application A has a set of non-functional
characteristics, denoted (aci), k ∈ [1..N], N being the
total number of characteristics considered in the model. The
boolean application characteristics are those used
previously: determinism, statefulness, state access,
fail silence. This list can obviously be extended.

The fault tolerance requirements of an application Ai
correspond to the types of faults fmj the application Ai must
tolerate. We use again a boolean notation to represent this
set of faults, (fmj), j ∈ [1..P], P being the total number
of possible fault types affecting an application component in
the system. Examples of such fault types are those used
previously: value fault, omission fault, crash fault.
This list can also be extended with other fault types. �

An application is thus represented by two vectors, one for
application characteristics, one for the fault types that must
be tolerated. The FTM attached to the application in a
configuration must tolerate such types of faults and be valid
for the application characteristics.

𝐴 =

𝑎𝑐!
𝑎𝑐!
…
𝑎𝑐!

,

𝑓𝑚!
𝑓𝑚!
…
𝑓𝑚!

The vector (𝑎𝑐!)
represents application
characteristics. The vector
(𝑓𝑚!) represents the fault
tolerance requirements.

The objective now is to determine FTMs making the
configuration A ◊ FTM consistent. As shown in the previous
section, an FTM provides a solution to tolerate some types of
faults, but its validity depends on application characteristics.
Our final aim is to compute the tables automatically, from
the application model given above and a formal definition of
the validity of fault tolerance mechanisms.

Let's examine the simple set of mechanisms we have
considered previously {PBR, LFR, TR} with their strict
definition. Any of these FTM relies on assumptions to
tolerate a given type of fault. As an example, the
assumptions for the use of PBR are state access if the
application is stateful and fail silent behavior.
When such assumptions are strictly true, then PBR tolerates
the crash of the application. The same reasoning applies to
other FTM and their combination.

B. FTM assumptions and properties
The assumptions for each mechanism in the set of FTM

with respect to application characteristics can be defined by

logical assertions. We first use assertions to test the
compatibility of an FTM with the application characteristics.
Assertions for the FTM considered are defined as follows:

Assumption for PBR: FS and !(ST and !SA)

Assumption for LFR: DT and FS

Assumption for TR: DT and !(ST and !SA)

The assertion for the combination of several FTM can be
deduced from the above logical expressions, such as:

Assumptions for LFR+TR: FS and DT and !(ST and !SA)

The above assertion is stronger than needed; if it is true
we guaranty that the FTMs composition is valid. However, a
composition may require reduced assumptions. For instance,
applying TR implies that fail silence (FS) is no longer
necessary since TR is a way to improve the fail silence. This
is not considered in our algorithms, but reducing the
assumption set could improve the CR.

The Boolean expressions allow us to take in account the
dependencies between some characteristics. For instance, the
state characteristics has an impact on the CR only when the
application is stateful. We use assertions to test the adequacy
of an FTM with respect to fault tolerance requirements.
Assertions for the FTM considered are defined as follows:

Fault model for PBR: !O and !V

Fault model for LFR: !O and !V

Fault model for TR: !C

Now, we can define properties to check the consistency
of any application configuration (A ◊ FTM).

Definition of compatibility: FTM is compatible with A if and
only if FTM assumptions comply with the application
characteristics of A.
Definition of adequacy: FTM is adequate with A if and only
if FTM tolerates the fault model required by A.
Definition of consistency: A configuration (A ◊ FTM) is
consistent if and only if it complies with both the
compatibility and adequacy properties.

C. Notion of Consistency Ratio
During its lifetime, the several versions of a given

application developed and loaded into the system may have
an impact on the application characteristics and thus
invalidate the FTM that has been attached to the application
A in a first place. To help quantify the resilience offered by a
set of FTM, we define a notion of Consistency Ratio.

Definition of Consistency Ratio: For all combinations of
application characteristics and fault tolerance requirements,
the CR is the ratio of consistent configurations (A ◊ FTM)
we can obtain for a given set of FTM.

This is exactly what we have done manually in
Section III. The two questions we want to address now are:

- Can we compute the configuration tables from the
application model and the FTM logical expressions?

- How to compute the CR for such configuration tables
and FTM definitions?

D. Computing configuration tables and Consistency Ratio
The proposed algorithm creates the tables from the

application characteristics and fault tolerance requirements
using the logical assertions established for each FTM in the
set of FTMs. From the tables obtained, it computes the CR.
Using the same application characteristics, fault tolerance
requirements and FTMs with strict definitions we should be
able to reproduce the TABLE II. and the corresponding CR.

All application characteristics and fault tolerance
requirements are encoded with boolean values. The
application is represented by two boolean vectors. For
instance, a deterministic (DT), stateful (ST), with accessible
state (SA), fail silent (FS) application requiring tolerance to
crash faults is represented like this:

𝐴 =

1
1
1
1

,
1
0
0

Each FTM assertion is implemented as a function
returning a boolean value. The output is 1 if the application
A matches the FTM assumptions and fault model, 0
otherwise. The assertion for the PBR mechanism is:

FS and !(ST and !SA)) and (!O and !V)

Here is in pseudo-code our simple algorithm to automate
the computation of the table and the CR. The implementation
of the algorithm was validated using TABLE II. as an oracle
using the same characteristics, fault tolerance requirements
and FTMs with strict definitions.

INPUT: Application model, FTMs set
FOR each application characteristics SA
 FOR each fault model FM

 FOR each FTM

 IF (AC,FM) ◊ FTM is consistent THEN
 Store FTM in the cell (AC,FM)
 END IF
END FOR

IF the cell (AC,FM) is not empty
 Increment NbrOfConsCells
END IF

 END FOR
END FOR
RETURN: CR=NbrOfConsCells/TotNbrOfCells

Fig. 1. Algorithm for CR computation

Clearly, CR values for the other scenario used in the
manual analysis (see TABLE III. and TABLE IV.) can also
be obtained with the algorithm. The approach can be
extended to any characteristic, fault model, and set of FTM.

V. SENSITIVITY ANALYSIS
This section proposes a sensitivity analysis of the CR

offered by a given set of FTM. The aim is to identify
application characteristics and types of faults that have the
most impact on the CR. We use the algorithm presented in
the previous Section to measure the CR when fixing some of
the parameters. First, we will address the sensitivity
regarding application characteristics (Section V.A) and then,
we will discuss the sensitivity to fault types (Section. V.B).

This analysis will help us to find the most efficient way
to improve the Consistency Ratio.
A. Sensitivity to application characteristics

In this Section, we analyse the impact of application
characteristics on the CR. For each application characteristic,
we measure the CR when the characteristic is set to a
particular value, and the other one can vary. In Fig. 2 each
bar corresponds to a CR. The X-axis represents each specific
characteristic and its assigned value (1 or 0). When a given
characteristic is set to 1, it means that it is true for the
application. For example, the bar “DT=1” represents the CR
offered to an application which will always be deterministic
regardless of future updates.

Fig. 2. Sensitivity to application characteristics

For this analysis, the set of FTMs is the one used in
Section III.A, i.e. {PBR, LFR, TR}, with their strict
definitions. The CR for this set of FTM was about 30% when
no characteristic is imposed (see. TABLE II.) This CR value
is our Reference value in our sensitivity analysis. The
question now is: what is the impact on this reference value
when fixing one application characteristic for this FTMs set?

The CR obtained when fixing a characteristic to 1 is
higher that the reference CR value. For instance, when the
application is guaranteed to be always deterministic (DT=1)
the CR value is improved from 30% to 55%. As a
consequence, we can anticipate that when the component is
not deterministic, the CR value is lower. All this is
confirmed by the results obtained in Fig. 2 where we show
the impact of each characteristic. In our analysis, with the set
of FTM we consider, we observed that determinism has the
most important impact on the CR value. Other characteristics
have also an impact, but it is less significant.

The conclusion is that improving the CR implies
focussing on this characteristic first. Two solutions are

possible to improve it: Either we force the component to be
deterministic or we need to include new FTM compliant with
non-deterministic applications.

B. Sensitivity to fault types
In this Section, we analyse the impact of the fault types to

the CR. The following analysis is done with the extended set
of FTMs considered in Section III.B – TABLE IV. The
reference is 55% in this case. We use the same method as
previously: when a fault type is set to 1, it is part of the fault
tolerance requirements of the application. When it is set to 0,
the fault type is not part of the faults considered.

The results are given in Fig. 3. This figure shows the CR
variation when a type of fault is removed (i.e. set to 0). As
shown, the CR can increase or decrease. This enlightens the
strong impact of the fault model, positive or negative, on the
CR for a given set of FTM.

Fig. 3. Sensitivity to fault types

We observe that the CR is increased when we remove a
fault type (e.g. value faults removed) from the set of fault
types; the reason for this is that this type of fault is not
efficiently tolerated with the current set of FTMs, whereas
other faults are better tolerated.

Conversely, when the CR is decreased (e.g. crash faults
removed) we can infer that these types of faults (namely
crash faults here) are better tolerated than other types of
faults (value and omission). It is indeed the case as shown
previously with the simple set of FTM we consider in this
analysis. A first solution to improve the CR could be to
extend our set of FTM to include mechanisms dedicated to
value faults. Another solution is to work on the application
development itself to prevent by construction this kind of
faults, e.g. implementing a self-checking version of the
application.

In conclusion, this analysis is a mean to identify the fault
types which are badly covered and finding a solution to
improve the resilience. Two options are possible: i)
extending the FTMs set or ii) removing these faults by
design. The conclusion regarding the impact of application
characteristics is similar: i) extending the FTMs set with
mechanisms handling more efficiently some application
characteristics or ii) removing by design those characteristics
that have a bad impact on the Consistency Ratio.

VI. LESSONS LEARNT AND DESIGN PROCESS
The resilient computing interpretation of the CR value

refers to the probability of having a compliant FTM after an
update of the application. The higher this ratio is, the higher
the probability to comply with new application
characteristics or fault tolerance requirements. Developing a
resilient system requires first the selection of an FTM
compliant with fault tolerance requirements and the
characteristics of the application. However, as we have
shown, a single FTM may not offer much in terms of
resilience. Thus, following the principles of Adaptive Fault
Tolerance, some additional FTMs need to be included to
future-proof the system. A question then arises: How to
select these FTMs?

The design process could be the following: first the
system designer needs to list all the FTM that could be
implemented and for each one of them, construct all
consistency assertions (see Section IV.B), respecting the
critical assumptions for FTMs [8]. With these elements and
thanks to the proposed automated analysis, it is possible to
compute the CR value for each subset of these FTM. This
exhaustive analysis4 is illustrated in Fig. 4. We compute the
CR value for each of the 26 subsets we can construct from
the 6 FTM used in TABLE III. Each bar represents the CR
value for a given subset and for readability reasons we have
sorted the results in increasing order (i.e. the X-axis
correspond to the list of 26 subsets ranked according to their
corresponding CR value).

Then the designer can find all the subsets of FTM that
satisfy some CR requirement. Finally, among all these
subsets of FTM, the designer must use other criteria, such as
required resources or development cost, to select the right set
of FTM to implement. It is noteworthy that deciding the right
CR requirement is obviously a complex problem in itself and
it should at least take into consideration the criticality of the
application, its envisioned frequency of updates, and the
confidence in the initial fault model.

Fig. 4. Exhaustive CR analysis

If no subset of FTM is acceptable with respect to the
desired CR, for example because implementation is too

4 Although this approach is exhaustive, we avoid scalability issues because our
approach is solely focused on the critical assumptions and requirements for
AFT.

expensive, the sensitivity analysis can guide the designer
towards other solutions as shown in section V. By way of
example, Fig. 4 shows the CR values for all subsets of FTMs
when the application is deterministic (in red). We clearly see
that making this assumption offers the designer more
choices. Such insights have an impact on the development of
an application in a resilient system. Forcing determinism
implies a development discipline, the identification of non-
deterministic decisions, and also a non-concurrent
implementation of the application. Lastly, FTMs must be
adapted to synchronize with remaining non-deterministic
decisions, if any, or new FTMs must be developed.

VII. CONCLUSION
The work reported in this paper aimed at proposing an

approach for the analysis of Adaptive Fault Tolerance for
resilient computing. We have shown that the analysis
requires a deep understanding of the application
charateristics, the fault model and the core assumptions of
fault tolerance mechanims. We introduced the notion of
Consistency Ratio as an estimator of the system resilience,
i.e. a measure of the system capability to remain dependable
when facing changes. The CR can be computed with a
simple algorithm. This approach is generic in the sense that it
can be extended to any application characteristic, fault
model, or FTM. The proposed sensitivity analysis is a mean
to manage the development of resilient computing systems
and is envisoned as a tool to help system designers to take
appropriate decisions regarding resilience.

REFERENCES
[1] J.-C. Laprie, “From Dependability to Resilience", in 38th IEEE/IFIP

International Conf. on Dependable Systems and Networks (DSN),
suplemental volume, 2008.

[2] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso
"Understanding replication in databases and distributed systems",
Distributed Computing Systems, 2000. Proceedings. 20th
International Conference on, 2000; pp. 464–474.

[3] M. Albanese, S. Jajodia, R. Jhawa and V. Piuri, "Dependable and
Resilient Cloud Computing", 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE), Oxford, 2016, pp. 3-3.

[4] K. H. K. Kim and T. F. Lawrence, “Adaptive Fault Tolerance: Issues
and Approaches”, in Procs of the Second IEEE Workshop on Future
Trends of Distributed Computing Systems. IEEE, 1990, pp. 38–46.

[5] C. Krishna and I. Koren, “Adaptive Fault-Tolerance for Cyber-
Physical Systems”, in IEEE International Conference on Computing,
Networking and Communications (ICNC), 2013, pp. 310–314.

[6] M. Stoicescu, J.-C. Fabre, M. Roy, "Architecting Resilient
Computing Systems: A Component-Based Approach For Adaptive
Fault Tolerance", Journal Of Systems Architecture, Elsevier Eds, Ref.
Jsa-D-16-00131R1, Nov. 2016

[7] J. Lauret, J.-C.Fabre, H.Waeselynck,, “Fine-Grained Implementation
of Fault-Tolerance Mechanisms with AOP: To what Extent”,
SAFECOMP 2013, Toulouse (F), Sept.2013.

[8] W. Excoffon, J.-C. Fabre, M. Lauer, "Towards Modelling Adaptive
Fault Tolerance for Resilient Computing Analysis", in SAFECOMP
2016: 15

[9] D. Powell, "Failure mode assumptions and assumption CR". Fault-
Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-
Second International Symposium on, 1992; pp. 386–395

.

