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Abstract

This paper addresses an extension of the Capatiékicle Routing Problem where customer demand is
composed of two-dimensional weighted items (2L-CY.RFhe objective consists in designing a set gfstri
minimizing the total transportation cost with a reganous fleet of vehicles based on a depot nodmslin
each vehicle trip must satisfy the two-dimensiaréhogonal packing constrain&.GRASPx ELS algorithm is
proposed to compute solutions of a simpler problanwhich the loading constraints are transformetd in
Resource Constrained Project Scheduling ProblemP&®) constraints. We denote this relaxed problem
RCPSP-CVRP. The optimization framework deals witbPSP-CVRP and lastly RCPSP-CVRP solutions are
transformed into 2L-CVRP solutions by solving aidated packing problem. The effectiveness of ogragch
is demonstrated through computational experimamtbuding both classical CVRP and 2L-CVRP instances.
Numerical experiments show that the GRASRLS approach outperforms all previously publishexthads.

Keywords:Vehicle Routing; GRASP; Iterated Local Search; Iationary local search, VRP, 2L-CVRP

1 Introduction
1.1 Capacitated Vehicle Routing Problem

Keeping track of VRP development is strongly difficbecause node routing problems subject
matter transcends several academic disciplinegh&ksioglu, Vuran and Reisman in 2008 [1] have
provided a methodology to classify the literatufettte VRP, i.e. a taxonomic framework. Their
proposal extends the previous proposal of CurnedtMarsh in 1993 [2]. Additional VRP constraints
can be classified into three sets: scenario cheriast problem physical characteristics and
information characteristics. Scenario charactesstncompass, for instance, customer service demand
quantity (deterministic, stochastic), load spligticonstraints (splitting allowed or not), time waves
(soft time windows, strict time windows), time hawn (single period, multi period) or customer types
(linehaul, backhaul, transfer). Problem physicalrelateristics encompass the number of origin points
(single or multiple origins), the time window typégstrictions on customers, on roads), number of
vehicles (exactlyn vehicles, limited number of vehicle, and unlimitedimber of vehicles).
Information characteristics encompass the evolutifomformation (static or partially dynamic) oreth
quality of information (stochastic, deterministic).

The Capacitated Vehicle Routing Problem (CVRP) standard NP-hard node routing problem
which received a considerable amount of attentmndecades [3] [4] [5]. The CVRP consists in
optimizing the delivery of goods required by asfetustomers. It can be fully defined by considgrin
a depot and a set of customers which correspond to the nodes of a campkaphG = (V; E) where

V is a set oh+1 nodes, 0 being the depot and nodes being the customers. Each edgé E has a
finite costc, >0 and each nodeV —{0} has a demand, > .0A fleet of homogenous vehicles of
limited capacityQ is based at the depot. The objective is to desiget of trips of minimal total cost
to service all customers. A trip is a cycle perfedhby one vehicle, starting at the depot, endirthet
depot and visiting a subset of nodes. The total ko@ is upper bounded by the vehicle capacity

Since split deliveries are not allowed, each custois serviced by one vehicle only. Medium and
large scale CVRP instances resolution is limiteth&aheuristics as stressed in [6].
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1.2 Capacitated Vehicle Routing Problem with packing:QvRP

The 2L-CVRP is an extension of the CVRP which idelsi two-dimensional rectangle loading
constraints (the 2L constraints). This problemstfintroduced in [7][8][9], can be reduced to the
CVRP when dropping the size of the items or whamsitiering X 1 square items, thus dealing only
with their weight. This is strongly relevant to thilsution companies since it combines both vehicle
routing optimization and two-dimensional items gagk

More formally, each vehicle of the homogenous fisatow defined by a weight capaciy and
by a rectangular two-dimensional loading areaW x L, whereW is the vehicle width and. is the

vehicle length. The demand of each custoimef..n consists in a set afy items of total weighdl, :
each itemk =1..m has widthwy and length. Each customer must be serviced by only one wehicl
which is assigned to a single trip. A tripis a sequenceé= (to,tl,...,tn(t),tn(t)ﬂ) of customers where

ty =t,y +1 corresponds to the depot. It must be simultangoteight-feasible” and “packing-

feasible”. A tript is stated “weight-feasible” if the total weightedonot exceed the vehicle capacity,

i.e. Zdi <D and it is stated “packing-feasible” if the cusw@mnitems can be loaded without
i0t

overlapping into the vehicle and satisfying thessleal packing constraints. A set of “weight-feésib

and “packing-feasible” trips defines a solutiorttud 2L-CVRP.

According to Fuellerer et al. classification [9huf different cases can be distinguished with

respect to the loading configurations. To prevenbiguities between the notations of Gendreau gt al.
Zachariadis et al., and lately by Fuellerer et\ag, propose the notatioflyZL wherex represent the
dimension (two dimensional or three dimensionabgpresents the items order constraint (Sequential
or Unrestricted) and represents the items orientation (Oriented or tRdja Four two-dimensional
problems can be defined:
* 2|SO|L : two Dimensional Sequential Oriented Logdin
e 2|UOJL : two Dimensional Unrestricted Oriented Lioad
* 2|SRJL : two Dimensional Sequential Rotated Loading
¢ 2|UR|L : two Dimensional Unrestricted Rotated Loadi

In a “Sequential” problem items must be packed th®vehicle in such a way that unloading the
items for each customer in the trip can be achi¢emligh a sequence of straight movements (one per
item). This additional constraint ensures that temi required by a customer serviced afterwards
prevents an item of the current customer to be addd. “Unrestricted” means that there is no
restriction in the items packing problem i.e. otgan unload could required several costly movements
of items. In “Oriented” problems no rotation ofrite are possible while they are allowed in “Rotated”
problems.

The 2L-CVRP resolution has been first addressedobiyet al. [10] using an branch and cut
approach limited to small scale instances (lese #ta customers) dedicated to Sequential Oriented
Loading. Then Gendreau et al. [7] introduced a takarch algorithm for both sequential and
unrestricted large scale instances. To the bestioknowledge, the Ant Colony scheme introduced by
Fuelllerer et al. [9] is the most efficient apprbao solve the 2L-CVRP. Three dimensional loading
CVRP (3L-CVRP) have been recently addressed by f@ancet al. but only small scale instances are
tested since three dimensional packing problemsaich more difficult than two dimensional ones.

1.3 Cutting and Packing problems

Packing problems belong to the well-known familycofting and packing problems. Many packing
problems deal with the insertion of rectangulamiein rectangular bin. They mostly differ on the
objective function to minimize.
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« The Two-Dimensional Bin Packing Problem (2BPP) ¢sissn packing a set of rectangular items
into a minimum number of identical rectangular bins

« The Two-Dimensional Strip Packing Problem (2SP)ststs in packing a set of rectangular items
into a strip of known width and infinite height as to minimize the overall height of the packing.

« The Two-Dimensional Orthogonal Packing Problem (PDPEonsists in determining if a set of
rectangular items can be packed into one bin (ngte of fixed size.

Several extensions have been tackled over timeiémtific publications, including but not limited t
rotation of items, limitations on the total weigdmid/or item costs. The 2L-CVRP packing problem
falls into the last category since the objectiveddrip is to be sure that items can be packeul tim
vehicle.

A 20PP instance consist in a set{1....n} of items which have to be packed and of a Bia (L;W)
fully defined by its lengtt. and its widthW. An itemi has a length, and a widthw; (I, w OIN).

A solution of the problem consists in defining ghasition of each item (denoted by(xi;yi) and
corresponding to the coordinates of its bottomeitd corner) without overlapping.

Several exact methods are described in literatorehfe 20PP including, methods which pack
items one by one [11] [12], methods promoting c@ist programming techniques [13][14], methods
taking advantages of graph theory [15][16] and méshaddressing a relaxed problem. Exact
resolution schemes are time consuming and thetelino small and medium scale instances with less
than 20 items to pack. Large scale instances haen lefficiently addressed by heuristic and
metaheuristic schemes based on simulated anndagegor example [17]) or genetic algorithms (see
[18] and [19] for example). In fine, packing proimg resolution is one of the challenging problems to
solve when addressing 2L-CVRP: the difficulty mpstbmes from a great part, of the huge number of
constraints generated by the items geometry. A 2@R&mple is introduced below including a
graphical solution representation.

itemi length I width w Let us consider a 20PP instance with 6 items
g ;‘ é (table 1) which must be packed into a bin
c 3 1 B=(105). Table 1 gives one 20PP solution i.e.
E 2 3 the position (x,y,)of each item in the bin.
F__ 3 3 Figure 1 gives a graphical representation of the
Table 1: An instance of 20PP 20PP solution described in table 2.
yA
5
itemi Xi Yi 4
A 2 0 F
B 0 0 31
c 2 2 ,| B C
D 6 0 £
E 8 0 - A
F 5 2 | o b | N
i 2 i;’» j4 é 6 7 8 9‘ 10 ;
Table 2: One 20PP solution Figure 1: One 20PP graphical representation

solution

1.4 Resource-Constrained Project Scheduling ProblemP8E

The Resource-Constrained Project Scheduling ProffR@#SP) is composed of a setnafactivities
and a set ofn resources. The terminology is quite different fritva 20PP terminology since “item” is
replaced by activity to illustrate there is no getric consideration in activity definition. Eachtiaity
i is characterized by its duratiah and his requirement,, k = 1...m in resources. Activities are
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interrelated by precedence constraints which sateone activityj cannot start before its immediate

predecessors have been achieved. For the sakmpliciy, a unique source activityand a unique
sink activity u are usually included in the project. They correspto the “project start” and to the
“project end”, respectively. The aim of the RCPSPto schedule all activities satisfying both
precedence and resource constraints and minimihi@gotal project duration (the makespan). The
structure of the project is usually modeled by acalted activity-on-node (AON) network where the
nodes represent the activities and the arcs raprés=precedence constraints.

The RCPSP is a challenging problem of great intetet has been widely studied over the past
decades. Since it is an extension of the job-sliofs NP-hard (see [20] [21] for details on
complexity). Several surveys are available inclgdime survey of Herroelen et al. [28f Kolisch and
Padman [23], of Weglarz [24] and of Demeulemeeater Herroelen [25]. Kolisch and Padman [23]
also surveyed some heuristic methods for classgwaéct scheduling problems. Heuristic-based
approaches are completed by numerous iterativeowapnent schemes including Memetic Algorithm,
Tabu Search for instance. Note that an efficieseition technique has been proposed by Artigues et
al. [26]. Tseng and Chen provided detailed expemmeon methods taking into account the
computation time and other performance criterial.[2&¥ RCPSP solution is fully defined by the
starting time of each activity.

activity | duration d resource rj The RCPSP solution only guaranties that the
g ;‘ g total amount of resources satisfies the total
C 3 1 consumption of activities, at any time.
E ; g For the instance of table 3, we provide the
E 3 3 RCPSP solution of table 4 with the starting time

Table 3: An instance of RCPSP x of all activitiesi.
An example of RCPSP instance is provided in

table 3. The RCPSP instance is composed of 6
activities and 5 units of a single resource.

In RCPSP, the resource consumption over time depehthe starting time; of activity. Figure 2
gives the resource consumption linked to the smhubf table 4.

Resource‘
activity j Xj 3
A 2 4
B 0
C 2 3
D 6 ,
E 8
F 5 1 -
Table4: One RCPSP solution S >

1 2 3 4 5 6 7 8 9 10 Duration
Figure 2: One RCPSP graphical representation
of the resour ce consumption

15 RCPSP and two orthogonal packing problem

Table 5 sums up the similarities between the tvabl@ms for both objective and solutions required.
This table highlights that a 20PP solution condistdefining for each item a pair(xi Y ) while a
RCPSP solution consists in defining only a startinge x; for each activityi . Hartman [28] stressed
that packing and project scheduling problems arenptetely different with respect to their
applications but it is possible to compare the muat#tical properties of packing and project
scheduling problems. Extra details between 20PPREESP including algorithms are introduced in
[29].
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20PP RCPSP

Problem statement Pack items into one bin Schedule activities

Object 2 dimelnsional itemg defined by Activiti(_as defined by resources
ength and width requirement and duration
Items Activities
Length Duration
width Resource requirement
_ for each itemi , for each activityi ,
Solution position (xi VY ) starting time X,

Table5: RCPSP vs 20PP

One can note that a single resource RCPSP is aabpase of 20PP where items geometric
considerations (items cannot be cut) are replacedelource consumption. Most of the time,
depending on the data characteristics, it is ptessibcompute a 20PP solution respecting the RCPSP
activities starting time. Relaxation of items gedryen the 20PP results in a Resource-Constrained
Project Scheduling Problem (RCPSP) easier to daltke sense the problem is less constrained and
RCPSP solutions can be investigated in smaller ctatipn time than for packing problems using
heuristic and/or metaheuristics. Note that both R@Rd RCPSP are both NP-Hard to solve.

Since the RCPSP is less constrained than 20PPdygieeuristics and meta-heuristic are more
efficient to provide quality solutions in reasor@lsbmputational time. The 2L-CVRP framework we
promote, takes advantages of this feature andvés@ RCPSP-CVRP i.e. a CVRP with a RCPSP trip
check avoiding costly 20PP trip check. This apphnoaelongs to the GRASHELS framework fully
described in section 2.

2 GRASPxELSframework for the UO-2L-CVRP
21 Key-features

We propose to solve the 2L-CVRP with Unrestrictedef@ted Loading (2JUO|L CVRP) by
relaxing packing problem constraints into Reso@oestrained Project Scheduling Problem (RCPSP)
constraints. A Greedy Randomized Adaptive Seardtd®lure (GRASP) is used to compute high
quality RCPSP-CVRP solutions. At the end of therojaation process the RCPSP-CVRP solutions
are transformed into 2L-CVRP solutions. During timization, trips are checked to be “RCPSP-
feasible”: items can be loaded into the vehicldhwéspect to the RCPSP constraints, i.e. at eaah po
of the vehicle length the total width used doesexateed the vehicle width. Note the vehicle width i
related to the RCPSP resource availability.

The framework we introduce works in two steps (Bgare 3): in the first step, the bin-packing
constraints are relaxed into RCPSP constraintsr@$idting problem to be solved is denoted RCPSP-
CVRP since we consider only that a trip must coetplwith the RCPSP constraints and that no
packing constraints hold. Thus the resulting RCESRP problem becomes easier to solve. The
second step consists in converting a RCPSP-CVRRi@olinto a 2L-CVRP solution.

The first step is solved by a GRASELS metaheuristic. Solutions are only required o bdoth
“weight-feasible” and “RCPSP-feasible”. The loadeaich vehicle is limited by a coefficigmto limit
unsuccessful conversions into a 2L-CVRP solutioowEler, it is possible that high quality RCPSP-
CVRP solutions may not lead to feasible 2L-CVRPusoh. Thus, thenb best RCPSP-CVRP
solutions built during the GRASFELS process are kept. At the end of GRASRS, these solutions
are iteratively investigated and the best thatlmatransformed into a 2L-CVRP solution is kepthes t
best solution found during the process.
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2L-CVRP instance RCPSP-CVRP instance

) GRASPXELS
Routing: CVRP Routing: CVRP Framev’\‘mrk
Loading: 20PP ’ Loading: RCPSP >

2L-CVRP solution RCPSP-CVRP solution
-+ -————————
Routing: CVRP solution Transform Routing: CVRP solution
Loading: 20PP solution Loading: RCPSP solution

Figure 3: 2L-CVRP optimization flowchart

During the optimization, the number of trips carceed the number of allowed vehicles. These
solutions are considered but they are penalizddllasvs:
(S = (N(S) - N)xa + Z f(t) where :
tot(S)

- N(S)is the number of trips in solutidh

- Nis the number of vehicles

- @ isthe penalty

- 1(S)is the set of trips of solutidh

- f(t) is the cost of triph

2.2 GRASKELS Principle

The purpose of this section is to evoke the priesipf GRASPXELS where:

e GRASP (Greedy Randomized Adaptive Search Procedigepn multi-start local search
metaheuristic in which each initial solution is stmcted using a greedy randomized heuristic.

* ELS (Evolutionary Local Search) is an evolved wamsof ILS (lterated Local Search). The
purpose of ELS is to better investigate the curlecdl optimum neighborhood, before leaving it
whereas the purpose of the GRASP consists in magagersity in search space investigation.

Starting from an initial solution, each ILS ite@ticonsists in taking a copy of the incumbent smtut

S applying a perturbation similar to the mutatiqgreator of genetic algorithms, and improving the

perturbed solution using a local search. The rieguftolutionS' becomes the incumbent solution. The

evolutionary local search or ELS, introduced in][8% the routing problems, is similar but, at each
iterationnd "chidren"” instead of 1 are generated from S, usingation and local search, and the best
child replaces S. The framework we promote is atirstdrt ELS in which an ELS is applied to the
initial solutions generated by greedy randomizeurisécs. Such metaheuristic can also be viewed as
a GRASKELS in which the local search is replaced by an EGRASPxELS [30] [31] is a
hybridization of both GRASBNd ELS capturing the positive features of bothhoas (figure 4).
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np iterations o
> Random Heuristic
\ ELS

Best solution Set of trips: S
Giant tour: T

Y

Mutation on giant tour

Mutation on giant tour

Set of trips: S’ Set of trips: S’
Giant tour: T’ Giant tour: T’
A

— = == @rch on trips

L Set of nd giant tours and nd set of trips

Local Search on trips

Figure4: GRASP x ELSprinciple

2.3 Search space investigation strategy

The GRASPx ELS efficiency is based on a swap between solutpnesentations: solutions encoded
as giant tours (TSP tours on theustomers) and RCPSP-CVRP solutions encoded asetlaf trips
(figure 5). Such an approach allows GRASP to fanughe giant tour space (which is smaller than the
space of RCPSP-CVRP solutions) and a giant Toig converted into an RCPSP-CVRP solut®n
(with respect to the sequence) using a dedicatétrepprocedure $plit). Split has been successfully
applied to numerous routing problems including @@pacitated Arc Routing Problem (CARP [32]),
the Vehicle Routing Problem (VRP [33]), the LocatiRouting Problem (LRP [34][35]). The high
quality solutions obtained by Prins [33], alterngtibetween two search spaces (giant tour and VRP
solutions) is a first-rate indication of the approayuality. The GRASPXELS takes advantages in this
line of research, by investigating both the spacgiant tours and the space of complete 2L-CVRP
solutions.

N Split

T

£

Concat

GRASPXELS search space RCPSP-CVRP search space

Figure5: Combination of the two sear ch spaces
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During the GRASRELS process, a giant toiiris converted byplit into a RCPSP-CVRP soluticdh

with respect to the given sequence and to the RGR8Rraints. Th&€oncat procedure convertS

into a giant toul’ by concatenating its trips. The giant tdurcan be split again in order to get a new
RCPSP-CVRP solution. This process allows altergdtigtween the giant tours space and the RCPSP-
CVRP space.

The Local Search is a first improvement descent method using sévetassical VRP
neighborhoods to improve the initial RCPSP-CVRRisoh: 2-Opt within a trip, 2-Opt between two
trips, Swap within a trip and Swap between twaostrip

Connecting these components together leads to tRASBx ELS scheme presented in
Algorithm 1. T, S andf(S respectively denote a giant tour, a RCPSP-CVRRBtiea and its cost.
During the algorithm, the incumbent solution isreth thusS* denotes the incumbent solution drd
is its value. The lines 14-36 correspond to the GRAELS loop of figure 4. It generatep pairs
(ST) used as starting points by the embedded ELSn§lterations of ELS are performed in the loop
lines 20-35 and thexd parallel mutations are done in lines 22-28. To pot@ each pair3T),
randomized versions of the well-known Clarke andighits heuristic [36] and of Path Scanning
heuristic [37] are used. The initial soluti@is improved by a procedutsocal _Search introduced in
section 2.6 and it is converted into a giant tduusing theConcat procedure. Any giant tour is
scanned into trips tackling if a trips RCPSP-feasible.

During the GRASRELS process, thab best RCPSP-CVRP solutions are saved into an atdere
setO (sorted on increasing costs). At the end of GRAEPES, the solutions fron® are iteratively
inspected and tentatively transformed into a 2L-G®lution using dransform procedure (step 41
in algorithm 1).0 is scanned as long as the transformation failsisTthe scan stops with the best
solution that can be transformed into a 2L-CVRRuoh. If no solution ofO can be successfully
transformed, the GRASHELS fails and return$(S)=c. The Transform procedure is detailed in
section 2.9.

In order to be efficient, the GRASHELS process must include an intensification prooedo
favor convergence into promising search space fanreéarge scale instances. The initial heuristic
solutions are discarded if they are worse thanitikembent (9: this favors the neighborhoods
exploration around the best solution. The inteaatfon process is not useful for small and medium
scale instances and it is activated using a glGIBRASPx ELS parameter denotédtensification.

2.4 Random heuristics to generate initial solutions

Clarke and Wright's heuristic and Golden et al.&utistics are used in a wide range of routing
problems since they provide high quality solutioma rather short computational time and since they
are easy to randomize. Our heuristic proceduratitely applies the four considered heuristics:
randomized Clarke and Wright (RCW), Path Scanni?g)( randomized Path Scanning (RPS) and a
basic random generation (RS). Note that sevenrierisge used for the Path Scanning heuristic. All
heuristics compute a weight-feasible and load-Bassolution without considering the RCPSP
constraints but considering that the area of tHecle available is limited to p percent of the ialit
area. Solutions are “load-feasible” and “weightsie&” only and transform into a giant tour whish i
lately split into trip using the split proceduree¢sSection 2.8) which ensures the RCPSP constraints
hold for trips i.e. trips are “RCPSP-feasible”. Tr@cedure Generation_of Initial _Solutions detailed
in Algorithm 2 uses the two well-known powerful histics denoted Path-Scanning and Clarke and
Wright. Clarke and Wright's heuristic introduced1f64 [36] consists in first providing a number of
trips equal to the number of customers to senRegh-Scanning was initially designed for arc ragitin
problems but we have adapted it to the 2L-CVRP.
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1. procedure GRASP<ELS

2. global paraneters

3. np: number of GRASP iterations (initial solut ions)

4. ns: maximum number of iterations per ELS

5. nr: maximum number of iterations without impr ovement per ELS
6. nd: number of diversifications (mutations)

7. nb: number of high quality solutions saved

8. output paraneters

9. S* best 2L-CVRP solution found

10. begin

11. f*:= 0, 0:=0

12. forp:=1 tonp do

13. S:= cal | Generation_of_initial_solution ()

14. T:= cal | Concat (S)

15. if (f(S)<f) t hen f*:=f(S); S*:=S

16. el se

17. i f (intensification = true) t hen

18. S:=S*

19. endi f

20. endi f

21. i,r:=0

22. whi | e (i < ns) and (r <nr) do // ELS loop

23. =i+l = 00

24. for j:= tond do /'l mutation | oop

25. T := cal I Mutation (T)

26. S = cal | Split (T)

27. S = cal | Local_Search (S)

28. T:= cal | Concat (S

29. if (f(S8)<f) then " :=f(S); T":=T;S":= S endi f
30. endf or

31. if(f 2 f(S)) t hen /'l check if not inproved sol ution
32. r=r+1 /1 update the nunber iterations w thout inprovenent
33. endi f

34: if (f"<f t hen /1 if a new best solution

35. add (O, S) /] add this solution to list O
36. S*=g" /1 update S*

37. endi f

38. T:=T7" /1 best ELS solution becomes the new initial solution
39. endwhi | e

40. endf or

41. lterative check of solutions in O looking for a 2L-CVRP solution
42. end

Algorithm 1: GRASP x EL Sfor the2L-CVRP

Path-Scanning is a greedy heuristic assigning new customersips tccording to a function which
depends on five criteria (see [37]). Initially, theuristic uses a nearest neighbor technique bgildi
VRP trips one by one: different rules are used iteab ties. In the present implementation, the
minimal distance is not used and some non promisahgtions can be obtained without damage for
the global metaheuristic performance since thekdisos are used for the evolutionary local search
scheme which consists in generationndfchildren. This approach provides a great divergityhe
initial solutions generation. Five executions o teuristic over the five criteria permit to keép t
best solution. The five criteria first introduced [37] are the following: the customer with the
maximal distance to the depot (C1); the customéh wie minimal distance to the depot (C2); the
customer with the maximal ratio between the quanttdeliver and the distance (C3); the customer
with the minimal ratio between the quantity to detiand the distance (C4); the first criterion Lttt
vehicle is half-loaded and the second criteriorentiise (C5). Our procedure includes a randomized
version of Clarke and Wright, the deterministic @déion of path-scanning, a randomized adaptation
of path-scanning and also a full randomized geim@raOne run consists in calling one of these
procedures.

Seven criteria are used as input parameter fambedaptations of path-scanning:

e customer with the maximal distance to the depot)(C1
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» customer with the minimal distance to the depot),C2
» customer with the minimal weight to deliver (C3’);

e customer with the maximal weight to deliver (C4’);

* customer with the minimal area to deliver (C5’);

e customer with the maximal area to deliver (C6’);

» customer with the maximal distance to the depdhef vehicle area is half-loaded and customer
with the minimal distance if not (C7’).

Since there is no guarantee on the number of \eshided by each heuristic, the solution is cheaked
each iteration and stops as soon as the numbezhifles satisfies the number of available vehicles
with a number of iterations upper bounded ri®y If a non feasible solution is obtained (loop of
algorithm 2 stops becausene), a penalty is included according to the penaltyction defined in
section 2.1. At the end of the procedure, tripthefsolution are concatenated to get a giant s
giant tour is then submitted to Split to obtain FBEFfeasible trips. One call to
Generation_of _initial_solution (algorithm 2) leads to the execution of one hdigriswo times for
both RCW and RS, one time with the 7 criteria fdPS and RPS. Note thatcurrent is a global
parameter to provide a loop over the heuristics.

1. procedur e Generation_of_initial_solution
2. input paraneters

3. ne: maximal number of iterations

2. output paraneters

3. S:a RCPSP-CVRP solution

4. begin

5. current:=1; cpt:=0; i:==1

6. while ((i <ne) and (no solution found)) do
7. case current of

8. case 1:

9. S:= call RCW ()

10. cpt:=cpt+1

11. i f (cpt>2) t hen

12. cpt := 0; current := current + 1

13. endi f

14. case 2 :

15. S:= cal I PS (criterion)

16. criterion := criterion + 1

17. i f (criterion > 7) t hen
18. criterion := 1; current := current + 1
19. e ndi f

20. case 3 :

21. S:= cal I RPS (criterion)

22. cpt:=cpt+1

23. i f (cpt>2) t hen

24, cpt := 0; criterion := criterion + 1

25. i f (criterion > 7) t hen
26. criterion := 1; current ;= current +1
27. e ndi f

28. endi f

29. case 4 :

30. S:= call RS ()

31. cpt:=cpt+1

32. if (cpt>2) t hen

33. cpt:=0; current := 1

34, endi f

35. endcase

36. i=i+l

37. T:= cal I Concat (S); S := cal I Split (T);
37. endwhi |l e

38. return S

38. end

Algorithm 2: Generation of initial solutions

10
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The procedureGeneration_of initial_solution generates a lot of different solutions by taking
advantage of the four procedures and of the setitgria introduced in the two versions of Path-
Scanning.

2.5 Mutation

The mutation operator is defined on giant tolirs (TO,Tl,...,Tn(T)) (whereT; is thei™ trip and n(T ) is

the number of trips i) and based first on generation of new trip concaiemarder and second on
customer exchange to obtain a children giantTfip

During the first step, one cutting trifj is randomly selected i and the substring;,...,T , is
copied intoT",,...,T" 7)., - Finally T is swept from 1 tdf,_; to completeT" with the missing trips.
Second two customers are randomly choséen' iand exchanged im'.

2.6 Local search

The purpose of the local search is to improve a E&GRasible solution by investigating the RCPSP-
CVRP space. As mentioned before, the proceduresreln classical 2-Opt and Swap moves. These
moves exist in two versions: inside a single tni detween two trips. At each iteration the local
search uses the procedutes 20pt_Intra, LS 20pt_Inter, LS Swap Intra, LS Swap_Inter. These
procedures define an iterative search scheme vsspegectively the following neighborhood structures
2-Opt inside a trip, 2-Opt between two trips, Swagide a trip and Swap between two trips. The order
in which these procedures are called depends drapildy g as stressed in algorithm 3.

This algorithm depends on a thresheldsed to guarantee a minimal improvement on thetisol
cost. The iterative search stops when the impromenselower thare (typically £ =1) or when the
maximal of iterations has been reached. The firgirovement criterion is used when exploring the
neighborhood and théheck RCPSP procedure is called on each move. An additionahierhood
(LS _Split) is used when the current solution has not begmwdwed by at least one of the first four
local searches. It consists in random trips comediens into giant tours and projecting it bacloitiie
RCPSP-CVRP solution space usi8glit. Its purpose is to check Bplit is able to find a better
solution with the modified sequence. AsS Split requires Split, its time complexity is high
nevertheless it provides an efficient local seadheme. Thus it is called only if the current Solut
has not been sufficiently improved.

Compared to more elaborate neighborhood structweshoose to restrict the local search to the 2-
Opt and to the Swap for two reasons: the time ceriyl remains low and the intrinsic structure of
the GRASPx ELS scheme handles well a restricted local search.

11
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1. procedure Local_Search

2. input paraneters

3. S RCPSP-feasible initial solution

4. gl obal paraneters

5. max_iter: maximum number of iterations
6. £ : threshold on the improvement
7. q : probability

8. output paraneters

9. S:incumbent RCPSP-feasible solution
10. begin

11. iter:=0

12. do

13. old_val :=f(S)

14. S cal | LS_20pt_lIntra (S)

15. S cal | LS_20pt_lInter (S)

16. i f (random < q) t hen // random : random number generation between 0..1

17. S:= call LS _Swap_Intra (S)

18. S:= call LS_Swap_Inter (S)

19. el se

20. S:= call LS_Swap_Inter (S)

21. S:= call LS _Swap_Intra (S)

22. endi f

23. i f (old_val-f(S) < ¢) thenS:= call LS_Split(S) endi f
24, iter:=iter+1

25. whi | e (f(S) + e <old_val) and (iter < max_iter)
26. returnsS

27. end

Algorithm 3: local search

2.7 A simple and effective RCPSP resolution (Check_REPS

During the GRASRELS, a RCPSP with a single resource and with negaence constraints is
addressed. The vehicle length gives an upper bofinde completion time of the last activity to
schedule. For each trip, we have to solve a RCR&Penactivity duration and requirement in resource
are given by item length and width respectivelytrifd is RCPSP-feasible if the makespan of the
corresponding RCPSP does not exceed the vehialghleBach time a trip is modified in the local
search or each time the Split propagates labebdding a new trip, a check RCPSP-feasibility must
be achieved. Thus the efficiency, in terms of dquadind in terms of speed, of the corresponding
algorithm is critical.

The Schedule Generation Schemes (SGS) [38] for RGRE based on priority-rule relying both the
precedence constraints and the limitation on tha&l @mount of resources. Initially, no activity is
scheduled. At each iteration, activity with thetragt priority is selected and scheduled. The pyiori
of each activity depends on both the precedencesti@nts and the resources consumption and
previously scheduled activities.

The efficiency of priority rules depends on the ti@mof resources and on the number of precedence
constraints to generate adequate activity list.ofding to Kolisch [38] WCS is one of the best
priority rules. It provides an average deviation30f1% to optimality on Patterson instances with a
short computational time. However, since thereagrecedence constraint and only one resource is
used, the priority rule computation is unattractwel it does not induce a profitable activity |Bince

our RCPSP handles few constraints, it leads toiied with identical (or similar) priorities. One
could use a randomized-WCS (random selection dfigcbetween the best activities) which required
time consuming priorities computation without amgfgiable result since WCS is not adequate for this
specific RCPSP (one resource only with no precesl@onstraint). Thus, we propose a randomized
activity selection which has been benchmarked amidlwseems to be highly efficient on this specific
RCPSP.

12
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Our SGS (Algorithm 4) performg iterations, one per activity. At an iteratignthe partial schedule
containsk activities. Several variables are associatecttationk:

et the schedule time (current time);

A the active set, i.e. the activities schedulednmttfinished at timé;

* R¢ the amount of resources available at tigpeR, = M - Z r, whereM is the total amount
i0A
of resource available (the vehicle width) and the requirement in resource of activitfthe
item width)
* Dy the decision set, i.e. the activities which candecheduled atii (one activityi can be
scheduled & if all its predecessors are finished and # R)).

1. procedur e Randomized_SGS

2. input paraneters

3. set: set of na activities j of duration d i
4. M : maximal project duration

5. output paraneters

6. ES : earliest starting time of activity j

7

. LS ! latest starting time of activity |
10. begin
11. t 0.= 0
12. D (:=set /I set of activities which can be scheduled at t «=0
13. A 0.= {}
14. for k=1 tona do
15. randomly choose an activity j in D K
16. schedulejatt KES =t
17. update A D ok
18. whi | e (D  is empty)
19. t k:=min{fEF ; /jinA Wt
20. update D A
21. endwhi | e
22. endf or

23. if max(ES ;+dj)<M then
24. compute LS i

25. endif

26. end

Algorithm 4: A randomized schedule generation schemefor the 2L-CVRP

Note the procedur&andomized SGS looks for a RCPSP solution less or equal than aima
project durationM . If the makespan (earliest finish time of the kastivity) is less or equal thai

the latest starting time of activities are compuaad the procedure return bo§, and LS, for each
activity j. To check the RCPSP-feasibility, the basic proceBasic Check RCPSP (Algorithm 5)

calls theRandomized_SGS procedure until a RCPSP solution is feasible (@ilvaies end before the
maximal project duration) or until the maximal nuenlof iterations is reached.

13
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pr ocedur e Basic_Check_RCPSP
i nput paraneters
set: set of activities j of duration d i
M : maximal project duration
nm : maximal number of attempts
out put paraneters
. res :result for the procedure (success/f ailure)
10. makespan: the makespan
10. begin
11. k=1
12. do
13. (ES.LS) := cal | Randomized_SGS (set, M)
14. k:=k+1
15. whi I e (max{ES ;+d;}>M) and (k <nm)
16. res:=(max{ES j+d;} = M); makespan := max{ES j+d;}
17. end

©oN,wWNE

Algorithm 5: Basic RCPSP check

The aim of the procedur@heck RCPSP is to check if the makespan of the RCPSP doegxused
the vehicle length.. Trying to speed up the Check RCPSP proceduregromose to iteratively use
the Basic_Check_RCPSP procedure with different decreasing total projéatation. The main idea
consists in considering that if the best solutionnfd over the first iterations is strongly gredtean
the vehicle length, then it is possible to statd gxtra investigation are useless for RCPSP reésolu

The procedur€heck RCPSP uses two arrays’ and A of lengthK whereK is the number of steps
investigated inCheck RCPSP. w keeps the successive value (in percent) ands an array of
iterations assigned to each percentvin For example let us consider40, w =(1.25;1.15;1.10;1.00)
and A=(10;100;300;1000). Thus, the first call tBasic Check RCPSP is achieved with
40%x 125=50 for the maximal project duration and 10 iteratiolisn 10 iterations the best solution
found is greater than 50, the algorithm stop assgrttie probability of finding a makepsan less than
L=40 is too low. Otherwise, starting from this s@uat 100 iterations are used to find a schedulé wit
a duration less than0x 115=46.

1. procedure Check RCPSP

2. input paraneters

3. set: set of activities j of duration d i

6. global paraneter

7. L :vehicle length

8. Y []: array of percent

9. A []: array of number of iterations

10. output paraneters

11. res: result for the procedure (success/failu re)
12.  begin

13. k:=1

14. do

15. (res, makespan) := cal | Basic_Check RCPSP (set, L* W K], AK])
16. k:=k+1

17. whi | e ((res =true) and (makespan>M) and (k<K))

18. end

Algorithm 6: RCPSP check

During the experiments, we noted tizlteck RCPSP usually works better with a larger amount of
resources than the duration. Thus, as the velgolgth is larger than its width, the two dimensiars
exchanged before entering the procedure.

2.8  Split procedure

As previously stressed, Split is a key-procedureaivert a giant tour into a RCPSP-CVRP solution
(with respect to the sequence). It is based oncthassical Split procedure [39][32][33], tuned to
address the specific RCPSP-CVRP constraints.

14
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The Split procedure first builds an auxiliary dignaHr = (X, Y, Z)whereX is a set oin+1 nodes
indexed fromD to n. NodeO is a dummy node, while the nodks.ncorrespond to the sequence of the
giant tourT = (vl...vn). An arc(i,j) belongs toY if a trip servicing customeng,, to v, (included) is
both weight-feasible and RCPSP-feasible. The weightthe arc (i; j)DY is the trip cost

Zj =Cy, + ZCVM +Co- Optimally splittingT (figure 6) corresponds to a min-cost path fromenod

k=i..j-1

0 to noden in H. An initial label is set at node 0. The labels prepagated from node to nodehn
using the arcs and the best label at notekept.

Split

Giant trip RCPSP-CVRP solution

Figure 6: Split transformation

Let L = (Nip,zip,k, j) be thep™ label assigned to node It corresponds to a feasible split of the
initial customerd;...t into trips. N is the number of vehicles remaining availal®g,is the cost of
the trips previously built ancﬁk, j) is the reference to its father label, eL@ thek™ label at nodg.

The initial label at node 0 is defined &% = (N ,O,—l—l) . It corresponds to the empty solution where

all the vehicles are available. Given the éirq')D A, label L generates Iabdl‘} = (qu z‘f,i, p) by
propagation as follows:

+ Nf=NP-1

. Z? = Zip +Z

Since large number of labels on node has signifisapacts the efficiency, dominance rules can be
defined considering that labéf dominatesL] if one of the following conditions holds:

NP > Niq)and (zip <z
z? < z%)and |N,” = N?

The critical path leading to the best final labefides the trips of the solution. The procedurat$pl
detailed inAlgorithm 7. For each nodé NBJi] gives the number of related labels. The procedure
Check_Domination_On_Node checks if the new labdl is dominated by another label at ngd&he
procedurd nsert inserts this label into the set of ngdebels and removes the dominated labels. The
number of labels is updates accordingly.

15
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pr ocedur e Split

i nput paraneters
T: giant tour

out put paraneters
S: RCPSP-CVRP solution

gl obal paraneter

D : maximal vehicle weight capacity
d ; :total items weight of customer i
c j :costfrom customerito j

n  :number of customers

begin
1L:=(N0-1-1),S:= O

13. fori:=1 ton doL;:= 0O endfor
14. fori:=0 ton-1 do
15. j=i+1l
16. trip:= d; client := ad
17. r epeat
18. prev := client
19. client:=T i
20. trip := trip + client

©CoNoO~LONE

e
= o

H
N

21. if (=i+1) t hen

22. trip_load :=d client

23. trip_cost :=c depot,client * C  client,depot

24, el se

25. trip_load := trip_load + d client

26. tl’ip_COSt = trip_COSt +C prev,client +C client,depot -C prev,depot
27. endi f

28. check := (trip_load < D) and (Check_RCPSP(trip) = true)
29. i f (check =true) t hen

30. forp:=1 toNB; do

31. let P = (Nip, z° k, J) be the current label

32. propagate on j: L= (Nip -1,z° + z; J, p)

33. i f (Check_Domination_On_Node( L,j,NB ;)=false) t hen
34. cal | Insert(L, j, NB i)

35. endi f

36. endf or

37. endi f

38. j=j+1

39. until (check =false) or (j>n)

40. endf or

41, if (NB,>0) then

42. S:= cal | extract_trips ()

43. endi f

44, end

Algorithm 7: Split

2.9 Transformation of a RCPSP-CVRP solution into a 2LRP solution

Several authors, including lori et al. [1@Rve previously noticed that greedy algorithmdadead to
efficient frameworks by carefully managing the slaal envelope (or contour) as defined in Martello
et al. [40] and addressing only normal fillings.aek methods based on linear formulations cannot be
used due to excessive computational time. As aetuences of the framework we introduce, the
transformation of a RCPSP-CVRP solution into a 2LRP solution is only done at the end of
GRASP ELS. In order to be efficient, the transformaticastio take advantage of the output of the
RCPSP check. In a RCPSP-CVRP solution, items a@ceded to an abscissa. Note that only one bin
is available (the vehicle) and that the x-positiprof an itemi can be given either by its earliest
starting time ES) or by its latest starting tim&§) computed by the procedu@heck RCPSP. A 2L-
CVRP solution is first investigated with the eastistarting timeKES) and then (if required) using the
latest starting timelS).
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The Algorithm RCPSP_To_Packing (seeAlgorithm 8) investigates iteratively all the y-positions
starting from O until all items are packed or utitie remaining items cannot be packed (we have
reached the vehicle width), is defined as the set of itema/hich can be scheduled at positieny).

The envelope of items already packed is given lyftimctionFront(x), which returns the smallegt
available at abscissa At each iterationmin_front isthe smallest value of the front where remaining
items can be scheduled, is considered. Then a marsidection is done iDmin fone The item is
scheduled and the envelope is updated. The owpr(kieps 11-24) tries to pack the maximal number
of items. WherD, is empty, the next-position is investigated with respect to the miairftont value
where items can be scheduled.

pr ocedur e RCPSP_To_Packing
i nput paraneters
set: set of items of length | j and of width w i
X i - abscissa of item i
out put paraneters
res: result of the procedure (success/failure )
y i:ordinate of itemi
gl obal paraneters
L: vehicle length
W: vehicle width
begin
A = set
y:=0
10. for x:=0 toL dofront[x]:=0 endf or
11. r epeat

12. D y .= {items which can be scheduled at y according to X i}
13. if (Dy=@) then

14. prec_y =y

15. y := min {front(x) | front(x) > y}

©CONNoTrOOAWNE

16. el se

17. randomly choose i in D

18. A=A \ {i}

19. schedule i at (x LY)hY =y
20. for x:=x ; tox;+Il ;-1 do
21. front(x) = front(x) + w i
22. endf or

23. endi f

24, until (A=0) or (y =2W)
25. res:=(A=0Q)
26. end

Algorithm 8: RCPCP_To_Packing

The following example illustrates the algorithmblea6 contains the items to be packed into a vehicl
of size 35x 20.

Width Length Xx=ES

a 6 18 0
b 12 5 0
c 8 5 5
d 10 10 10
e 5 7 18
f 5 15 20

Table 6: Itemsto be packed
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At the beginning, no items are scheduled as 6 a ‘
shown infigure 7 Initially, all the items can be 12 18
H 1

scheduled ay=0, thusD=A. ltemb is randomly
chosen and scheduled. The front abd are

. d
updated: D={c,d,e,f} as item a cannot be 5 9 > f
scheduled aty=0 anymore. The next item is 10 @ 15

randomly chosen, say
The front andD are updatedD={d,e,f}, see

figure 8 Suppose the next item & D={f} as 20 i ! Lo
item e cannot be scheduled yt0 anymore. The i | i i
item f is scheduled (sefigure 8.b). So, the ! i o
minimal value of the front where a remaining : ! .
item can be scheduledys10 andD={e}. lteme O+ —7520 35
is scheduled,y=12 and D={a}. Item a is ﬁ ﬁ
scheduledD={} and a packing solution has been
found. sl ¢ 5@7
5
Figure7 : Initial state
6 a ‘
18 .
10 d '
15 6‘ a
el I
20— 1 1 I S
' l Lo | l Lo
' b ]
bl ¢ Lo bl ¢ d!
L 0 | f
00 5 10 1ﬁ20 35 0 5 10 ﬁZO 35
5| e | 5 _e |
7 7
(a) after scheduling andc (b) after scheduling, c, d, f

Figure 8: Packing theitems

Note that computing a feasible packing solutionetgls on the date assigned to the items. The
procedureTransform performs several successive calls to the procedGRSP_To_Packing until a
feasible packing is found. At each iteration, a neshedule is generated. A transformation is
experienced first using the earliest starting tilB§sasx; then using the latest starting times.
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1. procedure Transform

2. input paraneters

3. S: solution (set of trips, where S i isthei " trip)

4. gl obal paraneters

5. iter_max: maximal number of iterations per tr ip

6. output paraneters

7. x j:starting time of activity j

8. y j:y-position for activity j

9. res: result of the procedure (success/failure )

10. begin

11. i:=1,res:=true

12. while (i < number of tripsin S) and (res = true) do
13. k:=1; res_trip :=false

14. whi | e (res_trip = false) and (k < iter_max) do

15. cal | Randomized_WCS (S ;)

16. forl:=1 tone do

17. (res_trip, y) = cal | RCPSP_To_Packing (S ;,ES)
18. i f (res_trip =true) thenx; =ES j;break endif
19. endf or

20. i f (res_trip = false) t hen

21. forl:=1 tone do

22. (res_trip, y):= call RCPSP_To_Packing (S ;,LS)
23. i f (res_trip =true) thenx; =LS j;break endif
24, endf or

25. endi f

26. ki=k+1

27. endwhi | e

28. res:=res_trip

29. i=i+1l

30. endwhi | e

31. end

Algorithm 9: Transform
2.10 Hash function for RCPSP

Since a huge number trips are evaluated duringdGtlRASPx ELS and because each trip required a
RCPSP-feasibility check the process (which chebksRCPSP feasiblity) must be time efficient. It
can take advantages of both a map to store thét isthe RCPSP-feasibility for trips previously
evaluated and of a hash function to address thdtsewithin the map. The hash functidm(t)

associated to a trip is defined as follows:
h(t) =1 | primgi]modK
]

where primef ] is thei™ prime number anK is a constant. We consider a table of orderederim

numbers (2, 3, 5, 7...). The value Kfimpacts the size of the map and the probabilitgatiision (so

K must be as large as possible considering the nyeavailable). Two different tripg andt' leading

to the same hash value are stated to be in calliSibis hash function has interesting properties on
RCPSP-equivalent trips.

Definition: two tripst andt which visit the same set of customers are RCPSR-agut.

As the set of customers is the same tffoand t |, t is RCPSP-feasible if and only if i§ RCPSP-
feasible. Thus the following property holds:

Property: RCPSP-equivalent trips andt ' have the same hash val(igt) = h(t"))

This property is interesting as it means that arng RCPSP-feasibility check has to be done for all
the trips having the same set of customers. Theevstiored in the map, along with the trip, is dedin
as follows:
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0 if RCPSP- feasibility hasnot yetbeendone
F(h)=1 1 if tis RCPSP- feasible
-1 if tisnot RCPSP- feasible

The improved version dZheck_RCPCP (see Algorithmi0) takes into account the hash function and
the map. The structureap stores the trips already checked and the strutsteres the result of the
RCPCP check. To further improve the speed of tbequture, only trips requiring more than a given
number of iterations i€heck_RCPSP are considered for insertion in the map. Suchegyaaims at
limiting collisions by giving priority, in the stage, to the RCPSP solution whose check has been tim
consuming.

1. procedure improved_check RCPSP

2. input paraneters

3. t:trip

4. set: set of activities of trip t

5. output paraneters

6. res: result of the procedure (success/failure )

7. begin

8. i f (F(h(t)=0) t hen /I set was never checked
9. res:= cal I check RCPSP(set)

10. i f (the number of iterations used in Check_RCPSP is | arge enough) t hen
11. map(h(t)) ==t

12. i f (res =true) t hen

13. F(h(t) =1

14. el se

15. F(h(t) =-1

16. endi f

17. endi f

18. el se /I set has already been checked
19. i f (t=map(h(t))) t hen /I RCPSP-equivalent
20. res := (F(h(set)) = 1)

21. el se /I not RCPSP-equivalent
22. res .= cal I check RCPSP(set)

23. endi f

24, endi f

25. end

Algorithm 10: improved RCPCP check

3 Computational evaluation
3.1 Implementation and benchmarks used

We report results on the set of instances usedariqus publications [7][8][9]. Each instance is
divided into 5 classes: class 1 defines a singlk ifem for each customer corresponding to basic
CVRP instances (there is no 20PP to solve). Claggesontain instances with non-unit item sizes.
The item size has been randomly generated to déferéical” instances (width greater than length),
“homogenous” instances and “horizontal” instandds number of items for each customer for class
has been generated according to an uniform disibiibun the interval 1;i] (see [7] for more details
about the instances characteristics). These imstanccan be downloaded at
http://www.or.deis.unibo.it/research.htrls mentioned at the beginning the best resulbdighed so
far for those instances use Ant Colony .[9lhe details of the solutions are available at
http://prolog.univie.ac.at/research/VRPandBPW/e also report the results from [7] and [8]. The
solutions produced by GRASPELS are available at
http://www.isima.fr/~lacomme/2Icvrp/2lcvrp.htmAll procedures in our framework are implemented
in C++ using the g++ compiler. Numerical experinsemtere carried out on a 2.1 GHz computer
running Linux. Since the GRASPELS is a random search algorithm, each instansesebred ten
times and the best found solution over the rukejg with the CPU time required to reach this value
The set of parameters used, for small scale (frérntoQLl5), medium scale (from 16 to 19) and large
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scale (20 to 36) instances, is given in table 7 tabtk 8. For all instances; =(1.25;1.15;1.10;1.00)
and A=(10;100;300;1000).

small scale

medium scale large scale

np 20+[n/10] * 2 20+[n/10] * 20 infinite

a 100 000 100 000 100 000

ne 5 5 5

ns 20 20 20

nr 15 15 15

nd 10 15 15

nb 20 000 20 000 20 000

max_iter 50+[n/10] 50+[n/10] 50+[n/10] *7

p 1 1 1

€ 1 1 1
intensification no no yes

Table 7. parameter settingsfor class1
small scale medium scale large scale

np 20+[n/10] 20+[n/10] 20+[n/10]

a 100 000 100 000 100 000

ne 5 5 5

ns 20 20 20

nr 15 15 15

nd 10 15 15

nb 20 000 20 000 20 000

max_iter 50+[n/10] 50+[n/10] 50+[n/10]

p 0.95 0.95 0.95

€ 1 1 1

K 1 000 000 1 000 000 1 000 000
intensification no no yes

Table 8: parameter settingsfor classes2to5

To provide a fair comparative study, the computetidime of each method has been scaled by the
speed factor presented in table 9. This coefficiakes into account the MIPS performance of each
processor.

(Gendreau, 2008) (Zachariadis, 2009) (Fuellere092 GRASPx ELS
Computer PIV 1.7 GHz PIV 2.4 GHz PIV 3.2 GHz Optetbl GHz
(0N ? Windows XP Linux Linux
Language C Visual C++ C++ C++
Speed factor 1 0.66
Time limit 1h 1h 1h 1h30
Nb of runs 1 200 10 10

Table 9: compar ative performance of processors

All previously published methods were benchmarkeer d hour of computational time i.e. 1 hour of
computation is assigned for one run of the metlSiace the reference results [9] have been obtained
on a computer 1.5 times faster, the GRASELS time limit is set to 1h30. As stated in taBl¢he
number of runs used in methods varies from 1 to&Bi@h does not favor fair comparative study.

Note also that all authors report the best fouridtiem using the total number of runs reported in
table 8.
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3.2 Performance of the procedure RCPSP_To_Packing

To solve the packing problem, our heuristic uses BRCPSP solution. In order to assess its
performance, we compare it with two efficient exawthods. The first one is a MIP formulation
proposed by Pisinger and Sigurd [14] solved witHe€dl1l. The second one is a branch & bound
developed by Martello et al. [41]. It is initialjedicated to the 3D bin packing problem and loaks f
the minimal number of bins. Several trips comirgrirseveral instances are evaluated using the three
packing methods. The area of the vehicle is s€0t In table 10, the first two columns refer te th
number of items and to the total area requirechbyitems. Then, the results from the MIP formulatio
(column CPLEX), the branch & bound and our methoel @esented. For each method, the answer
(packable or not packable) along with the CPU timgeconds is reported. A time limit of 3h has been
set. As solutions are already RCPSP-feasible, feswars might be ‘false’. Only one such situation
happens and it requires much more time, compahatiseproblems of equivalent size. For the ‘true’
answers, the time depends on the number of itech®@ithe area required by the items. The approach
using MIP formulation seems to be slightly betteart the branch & bound. However, both are
dominated by our approach in terms of CPU time loeseé instances. Note that our approach is
heuristic: there is no guaranty on the answer, g¢llengh no erroneous answer has been reported in
our experiments.

CPLEX branch & bound RCPSP_To_Packing
nbitems area answer CPU(s) answer CPU(s) answer U(sEP
10 692 true 0.58 true 0.14 true <0.01
11 673 true 0.23 true 0.39 true 0.11
11 736 false 1362.66 false 78.11 false 2.86
12 702 true 1.06 true 2.22 true <0.01
12 737 true 264.11 true 11.23 true <0.01
12 737 true 37.20 true 2500.66 true 0.02
13 664 true 0.30 true 0.23 true 0.02
13 759 - 10800.00 - 10800.00 true 0.40
15 715 true 3.59 true 215.88 true <0.01
15 727 true 8.88 true 1244.66 true <0.01
16 726 true 67.28 true 3357.28 true 0.02
17 488 true 0.50 true 1.34 true 0.02
17 746 true 313.97 - 10800.00 true 0.28
18 639 true 0.92 true 2.01 true 0.34
18 670 true 1.50 true 2.80 true <0.01
18 770 true 65.30 - 10800.00 true 0.67
19 739 true 1315.73 true 40.63 true 0.02
21 715 - 10800.00 - 10800.00 true <0.01
21 723 - 10800.00 true 0.45 true 0.02
25 773 - 10800.00 - 10800.00 true 1.56

Table 10: packing algorithms on sever al packing problems

3.3 Average results on CVRP instances

Class 1 instances are pure CVRP instances ass iare 1x1 squares. On those 36 instances, the
method competes with the best published methofig][][9] (seetable 1}. GRASPx ELS gets the
best result 34 times and provides 10 new bestisnkitDetails on the results for each instancebean
found in table A1. Row “nb best” gives the numbktimes a method provides the best result arnd “

of record gives the number of times the method gives atgmiwstrictly better than all others methods.

Gendreau Zachariadis Fuellerer GRASPx ELS
nb best 18 21 23 34
nb of record 0 0 2 10
avg value 792.31 777.75 776.04 770.77

Table 11: resultsfor class 1 instances
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3.4 Average results for 2L-CVRP instances

Average results for classes 2 to 5 are presentwbia 12. The same information is reported asrbefo
Note that only aggregated values are availabl¢h@@approach of Gendreau et al. [7]. GRASELS
outperforms the other methods on all the classaeadtally in classes 3 and 4. Details on the result
for each instance can be found in table A2, talietable A4, table A5 and table A6.

Gendreau Zachariadis Fuellerer GRASPx ELS

class 2 nb best - 3 15 32
nb of record - 0 4 21

avg value - 1205.45 1150.68 1140.44

class 3 nb best - 3 7 36
nb of record - 0 0 29

avg value - 1217.40 1174.98 1149.14

class 4 nb best - 3 8 36
nb of record - 0 0 28

avg value - 1223.45 1191.59 1168.25

class 5 nb best - 8 15 32
nb record - 0 4 21

avg value - 1078.24 1059.55 1052.29

Average nb best 0 0 3 36
class 2-5 nb of record 0 0 0 33
avg value 1216.08 1181.13 1144.20 1127.53

Table 12: results on class 2-5 instances

3.5 Example of a 2L-CVRP solution

Let us consider the instance 01 from class 3 (redeas 0103 in table A3). The solution of value .324
corresponds to the best ever published solutioh vitrips (see figure 9). Sub-figures (9.b) (9%H] provide a
graphical representation of the three packing swiatfor the three trips involved in the solution.

s i)

\\\\\\\\\\\\\\\

o e e

(b) vehicle load for trip 1

=

3 2
e
e

(c) vehicle load trip 2 (d) vehicle load for trip 3
Figure9: solution for instance 01 class 3
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4 Concluding remarks

This article considers an extension of the wellwnaCVRP in which two dimensional packing
constraints must be addressed in each trip segvicuiistomers. This problem deals with two
combinatorial optimization problems: vehicle rogtiand two-dimensional bin packing. The initial
2L-CVRP is first relaxed into the easier RCPSP-CVRie relaxation problem is solved using the
GRASPx ELS framework. At the end of GRASFELS, the solution is transformed back into a 2L-
CVRP solution by packing the items into the velscl&o our knowledge, this is an innovative
approach. The results show that our method is Yigfficient and outperforms the best previous
published methods on the topic. We are currenthgstigating the 3L-CVRP, the sequence-dependant
2L-CVRP and the non-orientated cases.
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5 Notations

Problem definition
G=(V;E)

=23 :|t|>l—§oz=»:o<
s
X
RS

=

Iik

Framework parameters

a complete undirected graph

set of n+1 nodes with 0 the depot node
cost from node i to j

number of nodes (a node is a customer)
number of vehicles

weight capacity of vehicles

vehicle width

vehicle length

vehicle area

number of items to deliver at customer i
total weight of items to service at customer i
item width of item k at customer i

item length of item k at customer i

p percent of vehicle volume used during heuristicsru

nb number of solutions kept during the grasp process

np number of GRASP iterations (number of initial saos investigated)
ns number of ILS iterations

nd number of parallel mutation/local search

nr maximum number of iterations without improvement geS

ne number of attempts to generated a initial feasblation

e a small real number representing the thresholdiredjto continue the RL
Solution

T a giant tour

T=(vq, ..., W) sequence customer in the giant tdur

t a trip

n(t) number of customers in trip

t= (to, tn, .., by, tagy+1)
S

sequence customers in ttip
a RCPSP-CVRP solution (set of trips)

f(S) cost ofS

N(S) number of trips in solutio

a penalty

t(S) set of trips of solutioi®

f(t) cost of the trigt

S* best RCPSP-CVRP solution found

f* cost ofS*

(0] cost ordered set of RCPSP-CVRP solutions
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RCPSP

na number of activities to schedule

m number of resources

i/j activity to schedule

d; duration of activityi

lik requirement of activity for resourcek

u sink activity

S source activity

ES earliest starting time of activity i

LS latest starting time of activity i

Split

Hr=(X,Y,3 auxiliary digraph linked to the giant trip
X set ofn+1 nodes

Y set of arcs iH where arci(j) represent a trip servicing customes to v,
Z; trip cost link to the ardf)

Bin packing

WXL bin size

w; X item size

ni number of items

Dy set of items i which can be scheduled at positigy) (
X; x-position of itemi (eitherES orLS)

Hash function / map

K
h(t)

a huge number used by the hash function
hash value for trip

F(h(t)) function giving in O(1) the RCPSP feasibility ofptt with hash functiorn(t)
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Appendix
(Gendreau et al., 2008) (zahariadiset al., 2009) (Fuellerer et al., 2009) GRASPXELS
S t S t S t t

0101 278.73 2.0 278.73 29 278.73 0.09 278.73 0.0

0201 334.96 0.0 334.96 1.4 334.96 0.05 334.96 0.0

0301 359.77 35 358.40 3.8 3584 0.23 358.4 0.0

0401 430.88 0.1 430.88 1.0 430.88 0.27 430.88 0.0

0501 375.28 1.4 375.28 1.3 375.28 0.32 375.28 0.0

0601 495.85 0.3 495.85 1.9 495.85 0.30 495.85 0.0

0701 568.56 0.5 568.56 0.8 568.56 0.24 568.56 0.0

0801 568.56 0.5 568.56 0.4 568.56 0.24 568.56 0.0

0901 607.65 0.4 607.65 1.2 607.65 0.57 607.65 0.0

1001 538.79 6.1 535.80 5.9 535.8 2.27 535.80 0.0

1101 505.01 2.5 505.01 3.8 505.01 0.81 505.01 0.0

1201 610.57 28.5 610.00 6.3 610.00 1.54 610.00 0.2

1301 2006.34 29.9 2006.34 5.8 2006.34 1.26 2006.34 0.0

1401 837.67 22.2 837.67 17.1 837.67 4.10 837.67 0.2

1501 837.67 1.7 837.67 7.9 837.67 2.83 837.67 0.0

1601 698.61 2.7 698.61 13.0 698.61 1.97 698.61 0.0

1701 862.62 59.0 863.27 32.9 861.79 3.28 861.79 0.0

1801 723.54 81.9 730.85 47.1 723.54 9.51 723.54 8.3

1901 524.61 128.8 524.61 100.2 524.61 7.94 524.61 0.3

2001 241.97 253.6 244.54 198.3 241.97 56.06 241.97 4.5

2101 688.18 325.0 687.6 2215 690.2 26.45 687.60 1.4

2201 740.66 2070.7 740.66 662.9 742.91 57.43 740.66 21

2301 860.47 22101 839.07 1531.4 845.34 55.94 835.26 339 1.3
2401 1048.91 866.9 1035.33 1012.7 1030.25 49.77 1026.6 5 3.3
2501 830.26 2371.0 829.45 953.8 830.82 167.14 827.39 2.4

2601 819.56 3597.6 819.56 1031.7 819.56 175.69 819.56 0. 4
2701 1099.95 355.9 1097.63 871.2 1100.22 190.52 1082.65 486.5
2801 1078.27 985.2 1042.12 781.4 1062.23 252.48 1042.12 129.8
2901 1179.01 3080.0 1188.15 1641.9 1168.13 769.14 1162.9 6 549.6
3001 1061.55 1834.4 1037.05 873.3 1041.05 310.25 1033.42 2165.9
3101 1464.04 288.8 1421.2 631.4 1341.89 521.84 1306.07 5 096.1
3201 1352.61 1780.8 1328.68 905.5 1334.26 517.68 1303.52 4492.4
3301 1361.51 2531.7 1328.19 1708.6 1331.69 476.63 1301.0 6 4842.1
3401 858.94 1941.9 719.91 834.1 712.32 614.53 713.51 300 7.4
3501 992.86 766.7 877.04 907.2 868.12 1452.58 870.63 261 6.5
3601 678.87 1530.9 594.10 1492.6 616.69 1588.25 592.87 5 264.7

Table Al: class 1 instances
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(Gendreau et al., 2008) (zahariadiset al., 2009) (Fuellerer et al., 2009) GRASPXELS
S t S t S t
0102 / / 305.92 / 284.52 1.18 284.42 0.2
0202 / / 334.96 / 334.96 0.14 334.96 0.0
0302 / / 401.81 / 387.70 1.29 387.70 0.8
0402 / / 440.94 / 430.88 0.98 430.88 0.3
0502 / / 381.85 / 375.28 7.27 375.28 0.1
0602 / / 498.16 / 495.85 1.77 495.85 0.4
0702 / / 741.91 / 725.46 3.99 725.46 0.3
0802 / / 718.18 / 709.39 8.45 674.55 0.2
0902 / / 607.65 / 607.65 2.39 607.65 0.2
1002 / / 708.63 / 689.68 30.29 689.68 6.1
1102 / / 719.56 / 711.08 22.63 693.45 25.9
1202 / / 628.86 / 610.57 4.26 610.57 5.4
1302 / / 2705.05 / 2588.81 39.22 2585.72 105.3
1402 / / 1117.24 / 1038.68 92.42 1038.09 177.5
1502 / / 1099.75 / 1021.00 73.43 1013.29 482.8
1602 / / 702.70 / 698.61 6.30 698.61 0.9
1702 / / 870.86 / 870.86 4.68 870.86 53.1
1802 / / 1065.3 / 1030.64 176.61 1004.99 885.9
1902 / / 796.87 / 767.41 58.94 754.53 440.6
2002 / / 569.20 / 534.95 726.15 537.88 2904.5
2102 / / 1076.24 / 1013.49 589.8 992.83 942.9
2202 / / 1088.33 / 1052.85 400.88 1036.11 1741.9
2302 / / 1124.60 / 1043.99 1191.5 1041.04 1226.9
2402 / / 1234.03 / 1188.09 238.22 1190.70 515.6
2502 / / 1500.07 / 1430.31 834.92 1419.42 3154.8
2602 / / 1387.3 / 1298.02 1025.08 1285.01 2314.6
2702 / / 1402.42 / 1336.67 924.97 1327.06 4162.1
2802 / / 2856.93 / 2650.06 3600.00 2587.23 4473.9
2902 / / 2362.75 / 2260.47 3600.00 2212.22 3025.5
3002 / / 1929.93 / 1840.56 3600.00 1816.05 4969.2
3102 / / 2456.28 / 2325.98 3600.00 2311.11 5207.1
3202 / / 2465.17 / 2319.31 3600.00 2322.17 5083.2
3302 / / 2508.68 / 2326.13 3600.00 2285.94 5000.4
3402 / / 1268.93 / 1220.53 3600.00 1212.04 5020.6
3502 / / 1464.93 / 1416.88 3600.00 1419.37 5315.5
3602 / / 1854.06 / 1787.01 3600.00 1782.99 4608.7

Table A2: class 2 instances
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(Gendreau et al., 2008) (zahariadiset al., 2009) (Fuellerer et al., 2009) GRASPXELS
S t S t S t
0103 / / 299.70 / 296.87 8.93 284.52 0.9
0203 / / 355.65 / 352.16 0.44 352.16 0.1
0303 / / 409.17 / 394.72 2.08 394.72 0.4
0403 / / 446.61 / 445.49 1.37 430.88 0.3
0503 / / 387.89 / 381.69 10.34 381.69 0.2
0603 / / 499.08 / 499.08 3.42 498.16 0.6
0703 / / 706.99 / 701.08 4.10 678.75 0.2
0803 / / 749.70 / 740.85 6.88 738.43 0.6
0903 / / 622.16 / 607.65 2.00 607.65 0.3
1003 / / 655.70 / 624.62 35.89 615.68 0.8
1103 / / 746.12 / 723.00 23.49 706.73 4.5
1203 / / 610.00 / 610.00 2.08 610.00 541
1303 / / 2542.86 / 2470.42 33.32 2454.37 20.2
1403 / / 1092.10 / 1018.75 104.56 996.25 28.1
1503 / / 1186.61 / 1171.35 73.10 1154.66 248.9
1603 / / 698.61 / 698.61 5.26 698.61 29
1703 / / 861.79 / 861.79 341 861.79 2.3
1803 / / 1124.54 / 1091.89 135.52 1069.45 110.4
1903 / / 816.77 / 786.43 53.55 771.74 155.3
2003 / / 557.72 / 544.12 375.47 524.81 1824.2
2103 / / 1191.07 / 1148.02 250.91 1121.84 759.1
2203 / / 1110.73 / 1075.55 305.15 1052.98 1189.9
2303 / / 1141.51 / 1098.70 298.37 1081.48 1288.2
2403 / / 1136.1 / 1116.98 155.45 1083.14 796.3
2503 / / 1476.14 / 1409.5 777.12 1374.68 2539.3
2603 / / 1436.55 / 1384.75 759.12 1344.66 2170.3
2703 / / 1476.73 / 1398.52 560.96 1378.01 1343.6
2803 / / 2867.46 / 2740.68 3600.00 2629.38 5289.0
2903 / / 2249.8 / 2184.45 3600.00 2107.87 3895.1
3003 / / 2038.55 / 1894.16 3600.00 1850.78 5126.6
3103 / / 2478.94 / 2366.77 3600.00 2305.51 5107.4
3203 / / 2422.98 / 2327.25 3600.00 2267.82 5255.0
3303 / / 2595.41 / 2470.07 3600.00 2390.58 4853.6
3403 / / 1298.48 / 1259.88 3600.00 1237.27 5168.7
3503 / / 1570.67 / 1511.42 3600.00 1477.05 5165.8
3603 / / 1965.46 / 1891.90 3600.00 1834.97 5069.6

Table A3: class 3 instances
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(Gendreau et al.. 2008) (zahariadiset al.. 2009) (Fuellerer et al.. 2009) GRASPXELS
S t S t S t
0104 / / 296.75 282.95 0.96 282.95 0.0
0204 / / 342.00 342.00 0.13 334.96 0.1
0304 / / 368.56 364.45 0.96 364.45 0.2
0404 / / 447.37 447.37 2.64 447.37 0.1
0504 / / 383.87 383.88 6.74 383.87 0.2
0604 / / 504.78 498.32 2.38 498.32 0.5
0704 / / 703.85 702.45 4.79 702.45 2.0
0804 / / 711.07 692.47 6.01 692.47 1.6
0904 / / 625.13 625.13 3.02 625.1 1.7
1004 / / 792.30 724.77 27.76 711.01 17.8
1104 / / 843.52 816.45 24.75 786.85 10.7
1204 / / 618.23 614.24 5.43 614.23 1.6
1304 / / 2714.69 2607.66 41.65 2587.63 15.5
1404 / / 994.66 985.01 84.86 981.90 55
1504 / / 1258.49 1246.54 72.61 1234.14 55.7
1604 / / 709.27 703.35 10.22 703.35 12.00
1704 / / 861.79 861.79 4.08 861.79 29.7
1804 / / 1171.51 1124.37 138.46 1118.71 235
1904 / / 819.79 798.33 58.19 778.35 350.2
2004 / / 576.92 553.03 271.42 547.95 720.4
2104 / / 1019.74 1001.14 365.03 978.82 1544.9
2204 / / 1119.34 1093.16 221.98 1045.91 673.5
2304 / / 1123.17 1089.66 281.65 1080.02 1523.1
2404 / / 1160.92 1133.98 174.27 1111.27 178.4
2504 / / 1486.54 1441.11 669.36 1405.65 2246.1
2604 / / 1491.00 1451.71 1490.06 1405.57 2913.8
2704 / / 1397.75 1362.87 585.99 1326.16 2643.8
2804 / / 2770.05 2716.94 3600.00 2654.75 5258
2904 / / 2427.95 2350.62 3600.00 2270.44 4406.9
3004 / / 1965.45 1902.68 3600.00 1856.54 3936.3
3104 / / 2585.67 2495.39 3600.00 2436.42 4538.8
3204 / / 2432.49 2362.22 3600.00 2308.4 3908.2
3304 / / 2601.34 2504.63 3600.00 2416.77 5388
3404 / / 1279.65 1251.87 3600.00 1235.58 5402.9
3504 / / 1634.63 1593.25 3600.00 1538.30 5291.0
3604 / / 1803.86 1771.31 3600.00 1728.69 4785.5

Table A4: class 4 instances
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S t S t S t

0105 / / 280.60 278.73 0.41 278.73 25
0205 / / 334.96 334.96 0.04 334.96 0
0305 / / 358.40 358.40 0.40 358.40 0.4
0405 / / 430.88 430.88 0.74 430.88 0.2
0505 / / 375.28 375.28 1.36 375.28 0.1
0605 / / 495.85 495.85 0.56 495.85 0.0
0705 / / 661.22 658.64 6.41 657.77 3.0
0805 / / 643.43 621.85 18.79 609.9 0.7
0905 / / 607.65 607.65 1.10 607.65 0.2
1005 / / 695.37 691.04 26.46 686.78 35.9
1105 / / 652.42 636.77 23.67 636.77 4.2
1205 / / 610.23 610.23 3.27 610.23 6.4
1305 / / 2434.99 2416.04 42.31 2334.78 171
1405 / / 943.08 922.58 104.25 921.45 108.5
1505 / / 1246.46 1230.22 56.51 1176.68 243.4
1605 / / 698.61 698.61 2.89 698.61 8.4
1705 / / 862.62 861.79 3.79 861.79 1.3
1805 / / 945.88 926.34 200.06 925.72 422.5
1905 / / 674.20 656.03 71.2 652.15 128
2005 / / 503.01 480.59 420.29 480.1 1184.2
2105 / / 914.68 897.55 414.62 884.84 2556.2
2205 / / 986.02 956.42 396.93 950.79 254.9
2305 / / 975.42 956.55 300.97 950.09 1456.3
2405 / / 1065.41 1049.76 88.83 1046.63 430.8
2505 / / 1212.73 1182.14 1175.34 1180.57 3930.6
2605 / / 1267.68 1250.41 859.96 1234.39 1798.1
2705 / / 1309.5 1271.08 780.39 1262.93 2717
2805 / / 2453.59 2412.8 3600.00 2368.88 5241
2905 / / 2220.32 2191.56 3600.00 2175.31 5187.1
3005 / / 1625.42 1570.75 3600.00 1578.41 4982.5
3105 / / 2132.92 2080.25 3600.00 2076.07 5099.3
3205 / / 2086.13 2039.14 3600.00 2034.68 5356
3305 / / 2117.72 2050.72 3600.00 2046.00 4713.7
3405 / / 1086.79 1070.28 3600.00 1079.61 5385.9
3505 / / 1324.89 1301.27 3600.00 1306.19 4289.7
3605 / / 1582.25 1570.81 3600.00 1572.49 5032.1

Table A5: class 5 instances
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01 291.60 4.2 295.74 2.2 285.77 2.87 282.65 0.9
02 341.02 0.1 341.89 1.3 341.02 0.1875 339.26 0.1
03 377.35 1.6 384.49 0.7 376.32 1.1825 376.32 0.5
04 437.45 0.5 441.45 2.2 438.65 1.4325 435.01 0.2
05 380.20 5.0 382.22 4.7 379.03 6.4275 379.03 0.1
06 501.02 7.2 499.47 4.4 497.27 2.0325 497.04 0.4
07 700.34 6.3 703.49 4.5 696.91 4.8225 691.11 14
08 694.99 11.2 705.60 6.4 691.14 10.0325 678.84 0.8
09 619.69 3.6 615.65 5.1 612.02 2.1275 612.01 0.6
10 700.39 36.0 713.00 9.5 682.53 30.10 675.79 15.1
11 739.04 55.7 740.04 18.1 721.82 23.635 705.95 11.3
12 620.62 49.0 616.83 61.9 611.26 3.76 611.26 16.9
13 2598.2 57.5 2599.40 44.4 2520.73 39.125 2490.62 78. 0
14 1047.72 375.8 1036.77 167.4 991.26 96.5225 984.42 7 9.9
15 1201.38 156.7 1197.83 86.1 1167.28 68.9125 1144.69 257.7
16 702.03 20.5 702.30 78.3 699.80 6.1675 699.79 6.0
17 866.37 64.9 864.26 26.4 864.06 3.99 864.05 21.6
18 1085.84 589.3 1076.81 250.7 1043.31 162.6625 1029.7 1 413.5
19 772.25 633.7 776.91 376.5 752.05 60.47 739.19 268.5
20 564.67 954.5 551.71 518.7 528.17 448.3325 522.68 16 58.3
21 1066.21 460.1 1050.43 129.0 1015.05 405.09 994.58 1 450.8
22 1087.46 1191.2 1076.11 941.1 1044.49 331.235 1021.4 5 965.0
23 1104.72 2032.4 1091.17 1000.8 1047.23 518.1225 1038 .16 1373.6
24 1187.62 1454.1 1149.12 553.5 1122.2 164.1925 1107.9 3 480.3
25 1436.09 1205.8 1418.87 635.9 1365.77 864.185 1345.0 8 2967.7
26 1404.49 1173.9 1395.63 875.3 1346.22 1033.555 1317. 41 2299.2
27 1450.18 521.3 1396.60 492.5 1342.28 713.0775 1323.5 4 2716.6
28 2738.31 2051.2 2737.01 1079.1 2630.12 3600.00 2560. 06 5065.5
29 2474.33 1406.5 2315.20 1059.0 2246.78 3600.00 2191. 46 4128.6
30 1948.72 1185.4 1889.84 1711.2 1802.04 3600.00 1775. 44 4753.7
31 2506.99 2375.8 2413.45 2500.7 2317.10 3600.00 2282. 28 4988.2
32 2486.43 1664.8 2351.69 2240.1 2261.98 3600.00 2233. 27 4900.6
33 2504.00 1843.2 2455.79 2074.1 2337.89 3600.00 2284. 82 4988.9
34 1466.06 1359.1 1233.46 2549.7 1200.64 3600.00 1191. 13 52445
35 1765.30 2061.7 1498.78 2964.5 1455.70 3600.00 1435. 22 5015.5
36 1909.88 2265.8 1801.41 2680.3 1755.26 3600.00 1729. 79 4874

Table A6: class 2-5 instance
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