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Abstract 

This paper addresses an extension of the Capacitated Vehicle Routing Problem where customer demand is 
composed of two-dimensional weighted items (2L-CVRP). The objective consists in designing a set of trips 
minimizing the total transportation cost with a homogenous fleet of vehicles based on a depot node. Items in 
each vehicle trip must satisfy the two-dimensional orthogonal packing constraints. A GRASP× ELS algorithm is 
proposed to compute solutions of a simpler problem in which the loading constraints are transformed into 
Resource Constrained Project Scheduling Problem (RCPSP) constraints. We denote this relaxed problem 
RCPSP-CVRP. The optimization framework deals with RCPSP-CVRP and lastly RCPSP-CVRP solutions are 
transformed into 2L-CVRP solutions by solving a dedicated packing problem. The effectiveness of our approach 
is demonstrated through computational experiments including both classical CVRP and 2L-CVRP instances. 
Numerical experiments show that the GRASP×ELS approach outperforms all previously published methods. 

Keywords: Vehicle Routing; GRASP; Iterated Local Search; Evolutionary local search, VRP, 2L-CVRP 

1 Introduction 

1.1 Capacitated Vehicle Routing Problem 

Keeping track of VRP development is strongly difficult because node routing problems subject 
matter transcends several academic disciplines. Lately Eksioglu, Vuran and Reisman in 2008 [1] have 
provided a methodology to classify the literature of the VRP, i.e. a taxonomic framework. Their 
proposal extends the previous proposal of Current and Marsh in 1993 [2]. Additional VRP constraints 
can be classified into three sets: scenario characterics, problem physical characteristics and 
information characteristics. Scenario characteristics encompass, for instance, customer service demand 
quantity (deterministic, stochastic), load splitting constraints (splitting allowed or not), time windows 
(soft time windows, strict time windows), time horizon (single period, multi period) or customer types 
(linehaul, backhaul, transfer). Problem physical characteristics encompass the number of origin points 
(single or multiple origins), the time window types (restrictions on customers, on roads), number of 
vehicles (exactly n vehicles, limited number of vehicle, and unlimited number of vehicles). 
Information characteristics encompass the evolution of information (static or partially dynamic) or the 
quality of information (stochastic, deterministic).  

The Capacitated Vehicle Routing Problem (CVRP) is a standard NP-hard node routing problem 
which received a considerable amount of attention for decades [3] [4] [5]. The CVRP consists in 
optimizing the delivery of goods required by a set of customers. It can be fully defined by considering 
a depot and a set of n  customers which correspond to the nodes of a complete graph );( EVG = where 
V is a set of n+1 nodes, 0 being the depot and nodes 1...n being the customers. Each edge Ee∈  has a 
finite cost 0≥ec  and each node { }0−∈Vv  has a demand 0≥vd . A fleet of homogenous vehicles of 
limited capacity Q  is based at the depot. The objective is to design a set of trips of minimal total cost 
to service all customers. A trip is a cycle performed by one vehicle, starting at the depot, ending at the 
depot and visiting a subset of nodes. The total load trip is upper bounded by the vehicle capacity Q . 
Since split deliveries are not allowed, each customer is serviced by one vehicle only. Medium and 
large scale CVRP instances resolution is limited to metaheuristics as stressed in [6].  
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1.2 Capacitated Vehicle Routing Problem with packing: 2L-CVRP  

The 2L-CVRP is an extension of the CVRP which includes two-dimensional rectangle loading 
constraints (the 2L constraints). This problem, first introduced in [7][8][9], can be reduced to the 
CVRP when dropping the size of the items or when considering 1× 1 square items, thus dealing only 
with their weight. This is strongly relevant to distribution companies since it combines both vehicle 
routing optimization and two-dimensional items packing.  

 
More formally, each vehicle of the homogenous fleet is now defined by a weight capacity D  and 

by a rectangular two-dimensional loading area ,LWA ×= where W  is the vehicle width and L  is the 
vehicle length. The demand of each customer ni ..1=  consists in a set of im  items of total weight id : 

each item imk ..1= has width wik and length l ik. Each customer must be serviced by only one vehicle, 

which is assigned to a single trip. A trip t  is a sequence ( )1)()(10 ,,...,, += tntn ttttt  of customers where 

1)(0 += tntt  corresponds to the depot. It must be simultaneously “weight-feasible” and “packing-

feasible”. A trip t  is stated “weight-feasible” if the total weight does not exceed the vehicle capacity, 

i.e. Dd
ti

i ≤∑
∈

  and it is stated “packing-feasible” if the customer items can be loaded without 

overlapping into the vehicle and satisfying the classical packing constraints. A set of “weight-feasible” 
and “packing-feasible” trips defines a solution of the 2L-CVRP. 

 
According to Fuellerer et al. classification [9], four different cases can be distinguished with 

respect to the loading configurations. To prevent ambiguities between the notations of Gendreau et al., 
Zachariadis et al., and lately by Fuellerer et al., we propose the notation x|yz|L where x represent the 
dimension (two dimensional or three dimensional), y represents the items order constraint (Sequential 
or Unrestricted) and z represents the items orientation (Oriented or Rotated). Four two-dimensional 
problems can be defined: 
• 2|SO|L : two Dimensional Sequential Oriented Loading 
• 2|UO|L : two Dimensional Unrestricted Oriented Loading 
• 2|SR|L : two Dimensional Sequential Rotated Loading 
• 2|UR|L : two Dimensional Unrestricted Rotated Loading 

 
In a “Sequential” problem items must be packed into the vehicle in such a way that unloading the 

items for each customer in the trip can be achieved through a sequence of straight movements (one per 
item). This additional constraint ensures that no item required by a customer serviced afterwards 
prevents an item of the current customer to be unloaded. “Unrestricted” means that there is no 
restriction in the items packing problem i.e. one item unload could required several costly movements 
of items. In “Oriented” problems no rotation of items are possible while they are allowed in “Rotated” 
problems.  

 
The 2L-CVRP resolution has been first addressed by Iori et al. [10] using an branch and cut 

approach limited to small scale instances (less than 25 customers) dedicated to Sequential Oriented 
Loading. Then Gendreau et al. [7] introduced a tabu search algorithm for both sequential and 
unrestricted large scale instances. To the best of our knowledge, the Ant Colony scheme introduced by 
Fuelllerer et al. [9] is the most efficient approach to solve the 2L-CVRP. Three dimensional loading 
CVRP (3L-CVRP) have been recently addressed by Gendreau et al. but only small scale instances are 
tested since three dimensional packing problems are much more difficult than two dimensional ones. 

 
1.3 Cutting and Packing problems 

Packing problems belong to the well-known family of cutting and packing problems. Many packing 
problems deal with the insertion of rectangular items in rectangular bin. They mostly differ on the 
objective function to minimize. 
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• The Two-Dimensional Bin Packing Problem (2BPP) consists in packing a set of rectangular items 
into a minimum number of identical rectangular bins.  
• The Two-Dimensional Strip Packing Problem (2SP) consists in packing a set of rectangular items 
into a strip of known width and infinite height so as to minimize the overall height of the packing. 
• The Two-Dimensional Orthogonal Packing Problem (2OPP) consists in determining if a set of 
rectangular items can be packed into one bin (rectangle) of fixed size.  
 

Several extensions have been tackled over time in scientific publications, including but not limited to 
rotation of items, limitations on the total weight and/or item costs. The 2L-CVRP packing problem 
falls into the last category since the objective for a trip is to be sure that items can be packed into the 
vehicle. 

A 2OPP instance consist in a set { }nI ,...,1=  of items which have to be packed and of a bin ( )WLB ;=  

fully defined by its length L and its width .W  An item i  has a length il  and a width iw  ( il , iw IN∈ ). 

A solution of the problem consists in defining the position of each item i  (denoted by ( )ii yx ;  and 
corresponding to the coordinates of its bottom left-hand corner) without overlapping. 

Several exact methods are described in literature for the 2OPP including, methods which pack 
items one by one [11] [12], methods promoting constraint programming techniques [13][14], methods 
taking advantages of graph theory [15][16] and methods addressing a relaxed problem. Exact 
resolution schemes are time consuming and then limited to small and medium scale instances with less 
than 20 items to pack. Large scale instances have been efficiently addressed by heuristic and 
metaheuristic schemes based on simulated annealing (see for example [17]) or genetic algorithms (see 
[18] and [19] for example). In fine, packing problems resolution is one of the challenging problems to 
solve when addressing 2L-CVRP: the difficulty mostly comes from a great part, of the huge number of 
constraints generated by the items geometry. A 2OPP example is introduced below including a 
graphical solution representation. 

 
item i length li width wi 

A 4 2 
B 2 5 
C 3 1 
D 1 2 
E 2 3 
F 3 3 

Table 1: An instance of 2OPP  

Let us consider a 2OPP instance with 6 items 
(table 1) which must be packed into a bin 

( )5;10=B . Table 1 gives one 2OPP solution i.e. 

the position ( )ii yx , of each item in the bin. 
Figure 1 gives a graphical representation of the 
2OPP solution described in table 2.  
 

 
 
 
 

 item i xi yi 
 A 2 0 
 B 0 0 
 C 2 2 
 D 6 0 
 E 8 0 
 F 5 2  

 
Table 2: One 2OPP solution 
 

Figure 1: One 2OPP graphical representation 
solution  

 
1.4 Resource-Constrained Project Scheduling Problem: RCPSP  

The Resource-Constrained Project Scheduling Problem (RCPSP) is composed of a set of na activities 
and a set of m resources. The terminology is quite different from the 2OPP terminology since “item” is 
replaced by activity to illustrate there is no geometric consideration in activity definition. Each activity 
i is characterized by its duration di and his requirement r ik, k = 1...m, in resources. Activities are 
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interrelated by precedence constraints which state that one activity j  cannot start before its immediate 
predecessors have been achieved. For the sake of simplicity, a unique source activity s and a unique 
sink activity u are usually included in the project. They correspond to the “project start” and to the 
“project end”, respectively. The aim of the RCPSP is to schedule all activities satisfying both 
precedence and resource constraints and minimizing the total project duration (the makespan). The 
structure of the project is usually modeled by a so-called activity-on-node (AON) network where the 
nodes represent the activities and the arcs represent the precedence constraints. 

The RCPSP is a challenging problem of great interest that has been widely studied over the past 
decades. Since it is an extension of the job-shop, it is NP-hard (see [20] [21] for details on 
complexity). Several surveys are available including the survey of Herroelen et al. [22], of Kolisch and 
Padman [23], of Weglarz [24] and of Demeulemeester and Herroelen [25]. Kolisch and Padman [23] 
also surveyed some heuristic methods for classes of project scheduling problems. Heuristic-based 
approaches are completed by numerous iterative improvement schemes including Memetic Algorithm, 
Tabu Search for instance. Note that an efficient insertion technique has been proposed by Artigues et 
al. [26]. Tseng and Chen provided detailed experiments on methods taking into account the 
computation time and other performance criteria [27]. A RCPSP solution is fully defined by the 
starting time of each activity. 

 
activity j duration dj resource rj 

A 4 2 
B 2 5 
C 3 1 
D 1 2 
E 2 3 
F 3 3 

Table 3: An instance of RCPSP   

The RCPSP solution only guaranties that the 
total amount of resources satisfies the total 
consumption of activities, at any time.  

For the instance of table 3, we provide the 
RCPSP solution of table 4 with the starting time 
xi of all activities i.  

An example of RCPSP instance is provided in 
table 3. The RCPSP instance is composed of 6 
activities and 5 units of a single resource. 
 

 
In RCPSP, the resource consumption over time depends of the starting time xi of activity. Figure 2 
gives the resource consumption linked to the solution of table 4.  
 
 
 

activity j xj 
A 2 
B 0 
C 2 
D 6 
E 8 
F 5 

Table 4: One RCPSP solution  
 

 Figure 2: One RCPSP graphical representation 
of the resource consumption 

 
 

1.5 RCPSP and two orthogonal packing problem 

Table 5 sums up the similarities between the two problems for both objective and solutions required. 
This table highlights that a 2OPP solution consists in defining for each item i  a pair ( )ii yx , , while a 

RCPSP solution consists in defining only a starting time ix  for each activity i . Hartman [28] stressed 
that packing and project scheduling problems are completely different with respect to their 
applications but it is possible to compare the mathematical properties of packing and project 
scheduling problems. Extra details between 2OPP and RCPSP including algorithms are introduced in 
[29]. 
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 2OPP RCPSP 

Problem statement Pack items into one bin Schedule activities 

Object 
2 dimensional items defined by 

length and width 
Activities defined by resources 

requirement and duration  

 Items Activities 

 Length Duration 

 width Resource requirement 

Solution 
for each item i ,  

position ( )ii yx ,  

for each activity i ,  

starting time ix  

Table 5: RCPSP vs 2OPP 

One can note that a single resource RCPSP is a special case of 2OPP where items geometric 
considerations (items cannot be cut) are replaced by resource consumption. Most of the time, 
depending on the data characteristics, it is possible to compute a 2OPP solution respecting the RCPSP 
activities starting time. Relaxation of items geometry in the 2OPP results in a Resource-Constrained 
Project Scheduling Problem (RCPSP) easier to solve in the sense the problem is less constrained and 
RCPSP solutions can be investigated in smaller computation time than for packing problems using 
heuristic and/or metaheuristics. Note that both 2OPP and RCPSP are both NP-Hard to solve.  

 
Since the RCPSP is less constrained than 2OPP, greedy heuristics and meta-heuristic are more 
efficient to provide quality solutions in reasonable computational time. The 2L-CVRP framework we 
promote, takes advantages of this feature and it solves a RCPSP-CVRP i.e. a CVRP with a RCPSP trip 
check avoiding costly 2OPP trip check. This approach belongs to the GRASP× ELS framework fully 
described in section 2. 

 

2 GRASP× ELS framework for the UO-2L-CVRP 

2.1 Key-features 

We propose to solve the 2L-CVRP with Unrestricted Oriented Loading (2|UO|L CVRP) by 
relaxing packing problem constraints into Resource Constrained Project Scheduling Problem (RCPSP) 
constraints. A Greedy Randomized Adaptive Search Procedure (GRASP) is used to compute high 
quality RCPSP-CVRP solutions. At the end of the optimization process the RCPSP-CVRP solutions 
are transformed into 2L-CVRP solutions. During the optimization, trips are checked to be “RCPSP-
feasible”: items can be loaded into the vehicle with respect to the RCPSP constraints, i.e. at each point 
of the vehicle length the total width used does not exceed the vehicle width. Note the vehicle width is 
related to the RCPSP resource availability. 
 
The framework we introduce works in two steps (see figure 3): in the first step, the bin-packing 
constraints are relaxed into RCPSP constraints. The resulting problem to be solved is denoted RCPSP-
CVRP since we consider only that a trip must complied with the RCPSP constraints and that no 
packing constraints hold. Thus the resulting RCPSP-CVRP problem becomes easier to solve. The 
second step consists in converting a RCPSP-CVRP solution into a 2L-CVRP solution.  
The first step is solved by a GRASP× ELS metaheuristic. Solutions are only required to be both 
“weight-feasible” and “RCPSP-feasible”. The load of each vehicle is limited by a coefficient p to limit 
unsuccessful conversions into a 2L-CVRP solution. However, it is possible that high quality RCPSP-
CVRP solutions may not lead to feasible 2L-CVRP solution. Thus, the nb best RCPSP-CVRP 
solutions built during the GRASP× ELS process are kept. At the end of GRASP× ELS, these solutions 
are iteratively investigated and the best that can be transformed into a 2L-CVRP solution is kept as the 
best solution found during the process. 
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Figure 3: 2L-CVRP optimization flowchart 

 

During the optimization, the number of trips can exceed the number of allowed vehicles. These 
solutions are considered but they are penalized as follows:  
 f(S) = ∑

∈

+×−
)(

)())((
Stt

tfNSN α  where : 

- N(S) is the number of trips in solution S 
- N is the number of vehicles 
- α  is the penalty 
- t(S) is the set of trips of solution S 
- f(t) is the cost of trip t 

 

 

2.2 GRASP× ELS Principle 

The purpose of this section is to evoke the principles of GRASPxELS where: 
• GRASP (Greedy Randomized Adaptive Search Procedure) is a multi-start local search 

metaheuristic in which each initial solution is constructed using a greedy randomized heuristic. 
• ELS (Evolutionary Local Search) is an evolved version of ILS (Iterated Local Search). The 

purpose of ELS is to better investigate the current local optimum neighborhood, before leaving it 
whereas the purpose of the GRASP consists in managing diversity in search space investigation. 

Starting from an initial solution, each ILS iteration consists in taking a copy of the incumbent solution 
S, applying a perturbation similar to the mutation operator of genetic algorithms, and improving the 
perturbed solution using a local search. The resulting solution S' becomes the incumbent solution. The 
evolutionary local search or ELS, introduced in [30] for the routing problems, is similar but, at each 
iteration nd "chidren" instead of 1 are generated from S, using mutation and local search, and the best 
child replaces S. The framework we promote is a multi-start ELS in which an ELS is applied to the 
initial solutions generated by greedy randomized heuristics. Such metaheuristic can also be viewed as 
a GRASP× ELS in which the local search is replaced by an ELS. GRASP× ELS [30] [31] is a 
hybridization of both GRASP and ELS capturing the positive features of both methods (figure 4).  
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Figure 4: GRASP ×  ELS principle 

 
2.3 Search space investigation strategy 

The GRASP × ELS efficiency is based on a swap between solution representations: solutions encoded 
as giant tours (TSP tours on the n customers) and RCPSP-CVRP solutions encoded as the set of trips 
(figure 5). Such an approach allows GRASP to focus on the giant tour space (which is smaller than the 
space of RCPSP-CVRP solutions) and a giant tour T is converted into an RCPSP-CVRP solution S 
(with respect to the sequence) using a dedicated splitting procedure (Split). Split has been successfully 
applied to numerous routing problems including the Capacitated Arc Routing Problem (CARP [32]), 
the Vehicle Routing Problem (VRP [33]), the Location Routing Problem (LRP [34][35]). The high 
quality solutions obtained by Prins [33], alternating between two search spaces (giant tour and VRP 
solutions) is a first-rate indication of the approach quality. The GRASPxELS takes advantages in this 
line of research, by investigating both the space of giant tours and the space of complete 2L-CVRP 
solutions. 
 

Split

Concat

GRASPxELS search space RCPSP-CVRP search space
 

Figure 5: Combination of the two search spaces 
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During the GRASP× ELS process, a giant tour T is converted by Split into a RCPSP-CVRP solution S 
with respect to the given sequence and to the RCPSP constraints. The Concat procedure converts S 
into a giant tour T’ by concatenating its trips. The giant tour T’ can be split again in order to get a new 
RCPSP-CVRP solution. This process allows alternating between the giant tours space and the RCPSP-
CVRP space. 
 

The Local Search is a first improvement descent method using several classical VRP 
neighborhoods to improve the initial RCPSP-CVRP solution: 2-Opt within a trip, 2-Opt between two 
trips, Swap within a trip and Swap between two trips. 

  
Connecting these components together leads to the GRASP × ELS scheme presented in 

Algorithm 1. T, S and f(S) respectively denote a giant tour, a RCPSP-CVRP solution and its cost. 
During the algorithm, the incumbent solution is stored, thus S* denotes the incumbent solution and f *  
is its value. The lines 14-36 correspond to the GRASP× ELS loop of figure 4. It generates np pairs 
(S,T) used as starting points by the embedded ELS. The ns iterations of ELS are performed in the loop 
lines 20-35 and the nd parallel mutations are done in lines 22-28. To compute each pair (S,T), 
randomized versions of the well-known Clarke and Wright’s heuristic [36] and of Path Scanning 
heuristic [37] are used. The initial solution S is improved by a procedure Local_Search introduced in 
section 2.6 and it is converted into a giant tour T using the Concat procedure. Any giant tour is 
scanned into trips tackling if a trip t is RCPSP-feasible.  
 

During the GRASP× ELS process, the nb best RCPSP-CVRP solutions are saved into an ordered 
set O (sorted on increasing costs). At the end of GRASP× ELS, the solutions from O are iteratively 
inspected and tentatively transformed into a 2L-CVRP solution using a Transform procedure (step 41 
in algorithm 1). O is scanned as long as the transformation fails. Thus the scan stops with the best 
solution that can be transformed into a 2L-CVRP solution. If no solution of O can be successfully 
transformed, the GRASP× ELS fails and returns f(S)=∞. The Transform procedure is detailed in 
section 2.9. 

 
In order to be efficient, the GRASP× ELS process must include an intensification procedure to 

favor convergence into promising search space area for large scale instances. The initial heuristic 
solutions are discarded if they are worse than the incumbent (S*): this favors the neighborhoods 
exploration around the best solution. The intensification process is not useful for small and medium 
scale instances and it is activated using a global GRASP× ELS parameter denoted intensification. 

 
 
 

2.4 Random heuristics to generate initial solutions 

Clarke and Wright’s heuristic and Golden et al.’s heuristics are used in a wide range of routing 
problems since they provide high quality solutions in a rather short computational time and since they 
are easy to randomize. Our heuristic procedure iteratively applies the four considered heuristics: 
randomized Clarke and Wright (RCW), Path Scanning (PS), randomized Path Scanning (RPS) and a 
basic random generation (RS). Note that seven criteria are used for the Path Scanning heuristic. All 
heuristics compute a weight-feasible and load-feasible solution without considering the RCPSP 
constraints but considering that the area of the vehicle available is limited to p percent of the initial 
area. Solutions are “load-feasible” and “weight-feasible” only and transform into a giant tour which is 
lately split into trip using the split procedure (see Section 2.8) which ensures the RCPSP constraints 
hold for trips i.e. trips are “RCPSP-feasible”. The procedure Generation_of_Initial_Solutions detailed 
in Algorithm 2 uses the two well-known powerful heuristics denoted Path-Scanning and Clarke and 
Wright. Clarke and Wright’s heuristic introduced in 1964 [36] consists in first providing a number of 
trips equal to the number of customers to service. Path-Scanning was initially designed for arc routing 
problems but we have adapted it to the 2L-CVRP.  
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1.  procedure GRASP× ELS 
2.  global parameters 
3.    np: number of GRASP iterations (initial solut ions) 
4.    ns: maximum number of iterations per ELS 
5.    nr: maximum number of iterations without impr ovement per ELS 
6.    nd: number of diversifications (mutations) 
7.    nb: number of high quality solutions saved 
8.  output parameters 
9.    S*: best 2L-CVRP solution found 
10. begin 

11.   f* := ∞; O := Ø 
12.   for p := 1 to np do 
13.     S := call Generation_of_initial_solution () 
14.     T := call Concat (S) 
15.     if (f(S) < f*) then f* := f(S); S* := S 
16.     else 
17.       if (intensification = true) then 
18.          S := S* 
19.       endif 
20.     endif 
21.     i, r := 0 
22.     while (i < ns) and (r < nr) do   // ELS loop 

23.       i := i + 1; f” := ∞ 
24.       for j := 1 to nd do            // mutation loop 
25.           T’ := call Mutation (T) 
26.           S’ := call Split (T’) 
27.           S’ := call Local_Search (S’) 
28.           T’ := call Concat (S’) 
29.           if (f(S’) < f”) then f” := f(S’); T” := T’; S” := S’; endif 
30.       endfor 
31.       if (f” ≥  f(S)) then      // check if not improved solution 
32.         r := r + 1             // update the number iterations without improvement 
33.       endif                       
34:       if (f” < f*) then        // if a new best solution   
35.         add (O, S)             // add this solution to list O       
36.         S*:= S”                // update S*       
37.       endif 
38.       T := T”;                 // best ELS solution becomes the new initial solution      
39.     endwhile 
40.   endfor 
41.   Iterative check of solutions in O looking for  a 2L-CVRP solution 
42. end 

Algorithm 1: GRASP × ELS for the 2L-CVRP 

Path-Scanning is a greedy heuristic assigning new customers in trips according to a function which 
depends on five criteria (see [37]). Initially, the heuristic uses a nearest neighbor technique building 
VRP trips one by one: different rules are used to break ties. In the present implementation, the 
minimal distance is not used and some non promising solutions can be obtained without damage for 
the global metaheuristic performance since these solutions are used for the evolutionary local search 
scheme which consists in generation of nd children. This approach provides a great diversity in the 
initial solutions generation. Five executions of the heuristic over the five criteria permit to keep the 
best solution. The five criteria first introduced in [37] are the following: the customer with the 
maximal distance to the depot (C1); the customer with the minimal distance to the depot (C2); the 
customer with the maximal ratio between the quantity to deliver and the distance (C3); the customer 
with the minimal ratio between the quantity to deliver and the distance (C4); the first criterion until the 
vehicle is half-loaded and the second criterion otherwise (C5). Our procedure includes a randomized 
version of Clarke and Wright, the deterministic adaptation of path-scanning, a randomized adaptation 
of path-scanning and also a full randomized generation. One run consists in calling one of these 
procedures.  

Seven criteria are used as input parameter for the two adaptations of path-scanning:  

• customer with the maximal distance to the depot (C1’), 
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• customer with the minimal distance to the depot (C2’); 

• customer with the minimal weight to deliver (C3’); 

• customer with the maximal weight to deliver (C4’); 

• customer with the minimal area to deliver (C5’); 

• customer with the maximal area to deliver (C6’); 

• customer with the maximal distance to the depot if the vehicle area is half-loaded and customer 
with the minimal distance if not (C7’). 

Since there is no guarantee on the number of vehicles used by each heuristic, the solution is checked at 
each iteration and stops as soon as the number of vehicles satisfies the number of available vehicles 
with a number of iterations upper bounded by ne. If a non feasible solution is obtained (loop of 
algorithm 2 stops because i>ne), a penalty is included according to the penalty function defined in 
section 2.1. At the end of the procedure, trips of the solution are concatenated to get a giant tour. This 
giant tour is then submitted to Split to obtain RCPSP-feasible trips. One call to 
Generation_of_initial_solution (algorithm 2) leads to the execution of one heuristic: two times for 
both RCW and RS, one time with the 7 criteria for PS and RPS. Note that current  is a global 
parameter to provide a loop over the heuristics. 

1.   procedure Generation_of_initial_solution 
2.  input parameters 
3.    ne: maximal number of iterations 
2.  output parameters 
3.    S: a RCPSP-CVRP solution 
4.  begin 
5.    current := 1;  cpt := 0;    i := 1  
6.    while ( (i ≤ ne) and (no solution found) ) do 
7.      case current of 
8.        case 1: 
9.          S := call RCW () 
10.         cpt := cpt + 1 
11.         i f (cpt > 2) then 
12.           cpt := 0; current := current + 1 
13.         endif 
14.       case 2 : 
15.         S := call PS (criterion) 
16.         criterion := criterion + 1 
17.         i f (criterion > 7) then 
18.           criterion := 1; current := current + 1 
19.         e ndif 
20.       case 3 : 
21.         S := call RPS (criterion) 
22.         cpt := cpt + 1 
23.         i f (cpt > 2) then 
24.           cpt := 0; criterion := criterion + 1 
25.           i f (criterion > 7) then 
26.             criterion := 1; current := current + 1 
27.           e ndif 
28.         endif 
29.       case 4 : 
30.         S := call RS () 
31.         cpt := cpt + 1 
32.         if (cpt > 2)  then 
33.           cpt := 0; current := 1 
34.         endif 
35.     endcase 
36.     i:=i+1 
37.     T := call Concat (S); S := call Split (T); 
37.   endwhile 
38.   return S 
38. end 

Algorithm 2: Generation of initial solutions 
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The procedure Generation_of_initial_solution generates a lot of different solutions by taking 
advantage of the four procedures and of the seven criteria introduced in the two versions of Path-
Scanning. 

 

2.5 Mutation 

The mutation operator is defined on giant tours ( ))(10 ,...,, TnTTTT =  (where iT  is the i th trip and )(Tn  is 

the number of trips in T) and based first on generation of new trip concatenation order and second on 
customer exchange to obtain a children giant trip 'T . 

During the first step, one cutting trip iT  is randomly selected in T  and the substring )(,..., Tni TT  is 

copied into 1)(1 ',...,' +−iTnTT . Finally T  is swept from 1 to 1−iT  to complete 'T  with the missing trips. 

Second two customers are randomly chosen in 'T  and exchanged in 'T . 

 

2.6 Local search 

The purpose of the local search is to improve a RCPSP-feasible solution by investigating the RCPSP-
CVRP space. As mentioned before, the procedure relies on classical 2-Opt and Swap moves. These 
moves exist in two versions: inside a single trip and between two trips. At each iteration the local 
search uses the procedures LS_2Opt_Intra, LS_2Opt_Inter, LS_Swap_Intra, LS_Swap_Inter. These 
procedures define an iterative search scheme using respectively the following neighborhood structures 
2-Opt inside a trip, 2-Opt between two trips, Swap inside a trip and Swap between two trips. The order 
in which these procedures are called depends on probability q as stressed in algorithm 3.  

This algorithm depends on a threshold ε used to guarantee a minimal improvement on the solution 
cost. The iterative search stops when the improvement is lower than ε (typically 1=ε ) or when the 
maximal of iterations has been reached. The first improvement criterion is used when exploring the 
neighborhood and the Check_RCPSP procedure is called on each move. An additional neighborhood 
(LS_Split) is used when the current solution has not been improved by at least one of the first four 
local searches. It consists in random trips concatenations into giant tours and projecting it back into the 
RCPSP-CVRP solution space using Split. Its purpose is to check if Split is able to find a better 
solution with the modified sequence. As LS_Split requires Split, its time complexity is high 
nevertheless it provides an efficient local search scheme. Thus it is called only if the current solution 
has not been sufficiently improved.  

Compared to more elaborate neighborhood structures, we choose to restrict the local search to the 2-
Opt and to the Swap for two reasons: the time complexity remains low and the intrinsic structure of 
the GRASP × ELS scheme handles well a restricted local search.  
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1.   procedure Local_Search  
2.   input parameters 
3.    S:        RCPSP-feasible initial solution 
4.   global parameters 
5.    max_iter: maximum number of iterations 
6.    ε       : threshold on the improvement 
7.    q       : probability  
8.   output parameters 
9.    S: incumbent RCPSP-feasible solution 
10.  begin 
11.   iter := 0 
12.   do 
13.     old_val := f(S) 
14.     S := call LS_2Opt_Intra (S) 
15.     S := call LS_2Opt_Inter (S) 
16.     if (random < q) then      // random : random number generation between 0..1  
17.        S := call LS_Swap_Intra (S) 
18.        S := call LS_Swap_Inter (S) 
19.     else 
20.        S := call LS_Swap_Inter (S) 
21.        S := call LS_Swap_Intra (S) 
22.     endif  
23.     if (old_val- f(S) ≤  ε) then S := call LS_Split (S) endif 
24.     iter := iter + 1 
25.   while (f(S) + ε < old_val) and (iter < max_iter) 
26.   return S 
27. end 

Algorithm 3: local search 

 

2.7 A simple and effective RCPSP resolution (Check_RCPSP) 

 
During the GRASP× ELS, a RCPSP with a single resource and with no precedence constraints is 
addressed. The vehicle length gives an upper bound of the completion time of the last activity to 
schedule. For each trip, we have to solve a RCPSP where activity duration and requirement in resource 
are given by item length and width respectively. A trip is RCPSP-feasible if the makespan of the 
corresponding RCPSP does not exceed the vehicle length. Each time a trip is modified in the local 
search or each time the Split propagates labels by adding a new trip, a check RCPSP-feasibility must 
be achieved. Thus the efficiency, in terms of quality and in terms of speed, of the corresponding 
algorithm is critical.  
 
The Schedule Generation Schemes (SGS) [38] for RCPSP are based on priority-rule relying both the 
precedence constraints and the limitation on the total amount of resources. Initially, no activity is 
scheduled. At each iteration, activity with the highest priority is selected and scheduled. The priority 
of each activity depends on both the precedence constraints and the resources consumption and 
previously scheduled activities.  
The efficiency of priority rules depends on the number of resources and on the number of precedence 
constraints to generate adequate activity list. According to Kolisch [38] WCS is one of the best 
priority rules. It provides an average deviation of 3.71% to optimality on Patterson instances with a 
short computational time. However, since there is no precedence constraint and only one resource is 
used, the priority rule computation is unattractive and it does not induce a profitable activity list. Since 
our RCPSP handles few constraints, it leads to activities with identical (or similar) priorities. One 
could use a randomized-WCS (random selection of activity between the best activities) which required 
time consuming priorities computation without any profitable result since WCS is not adequate for this 
specific RCPSP (one resource only with no precedence constraint). Thus, we propose a randomized 
activity selection which has been benchmarked and which seems to be highly efficient on this specific 
RCPSP. 
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Our SGS (Algorithm 4) performs n iterations, one per activity. At an iteration k, the partial schedule 
contains k activities. Several variables are associated to iteration k: 

• tk: the schedule time (current time);  
• Ak: the active set, i.e. the activities scheduled but not finished at time tk; 
• Rk: the amount of resources available at time tk, ∑

∈

−=
kAi

ik rMR where M is the total amount 

of resource available (the vehicle width) and r i is the requirement in resource of activity i (the 
item width) 

• Dk: the decision set, i.e. the activities which can be scheduled at tk (one activity i can be 
scheduled at tk if all its predecessors are finished and if r i ≤ Rk). 

 
1.  procedure Randomized_SGS 
2.  input parameters 
3.   set: set of na activities j of duration d j  
4.   M  : maximal project duration 
5.  output parameters 
6.   ES j : earliest starting time of activity j 
7.   LS j : latest starting time of activity j 
10. begin 
11.  t 0 := 0 
12.  D 0 := set          // set of activities which can be scheduled at t k = 0  
13.  A 0 := {} 
14.  for k := 1 to na do 
15.     randomly choose an activity j in D k 
16.     schedule j at t k: ES j  := t k 
17.     update A k, D k 
18.     while (D k is empty) 
19.       t k := min{EF j  / j in A k} 
20.       update D k, A k 
21.     endwhile 
22.   endfor 
23.  if max(ES j +d j )<M then 
24.    compute LS j  
25.  endif   
26. end 

Algorithm 4: A randomized schedule generation scheme for the 2L-CVRP 

Note the procedure Randomized_SGS looks for a RCPSP solution less or equal than a maximal 
project duration M . If the makespan (earliest finish time of the last activity) is less or equal than M  
the latest starting time of activities are computed and the procedure return both jES  and jLS  for each 

activity j . To check the RCPSP-feasibility, the basic procedure Basic_Check_RCPSP (Algorithm 5) 
calls the Randomized_SGS procedure until a RCPSP solution is feasible (all activities end before the 
maximal project duration) or until the maximal number of iterations is reached. 
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1.   procedure Basic_Check_RCPSP  
2.   input parameters 
3.    set: set of activities j of duration d j  
4.    M  : maximal project duration 
7.    nm : maximal number of attempts 
8.   output parameters 
9.    res     : result for the procedure (success/f ailure) 
10.   makespan: the makespan 
10. begin 
11.   k := 1 
12.   do 
13.     (ES,LS) := call Randomized_SGS (set, M) 
14.     k := k + 1 
15.   while (max{ES j +d j } > M) and (k ≤ nm) 

16.   res := (max{ES j +d j } ≤  M) ; makespan := max{ES j +d j } 
17. end 

Algorithm 5: Basic RCPSP check 

The aim of the procedure Check_RCPSP is to check if the makespan of the RCPSP does not exceed 
the vehicle length L. Trying to speed up the Check_RCPSP procedure, we propose to iteratively use 
the Basic_Check_RCPSP procedure with different decreasing total project duration. The main idea 
consists in considering that if the best solution found over the first iterations is strongly greater than 
the vehicle length, then it is possible to state that extra investigation are useless for RCPSP resolution.  

The procedure Check_RCPSP uses two arrays Ψ  and ∆  of length K where K is the number of steps 
investigated in Check_RCPSP. Ψ  keeps the successive value (in percent) and ∆  is an array of 
iterations assigned to each percent in Ψ . For example let us consider L=40, Ψ =(1.25;1.15;1.10;1.00) 
and ∆ =(10;100;300;1000). Thus, the first call to Basic_Check_RCPSP is achieved with 

5025.140 =×  for the maximal project duration and 10 iterations. If in 10 iterations the best solution 
found is greater than 50, the algorithm stop assuming the probability of finding a makepsan less than 
L=40 is too low. Otherwise, starting from this solution, 100 iterations are used to find a schedule with 
a duration less than 4615.140 =× . 

1.   procedure Check_RCPSP  
2.   input parameters 
3.    set: set of activities j of duration d j  
6.  global parameter 
7.     L  : vehicle length 
8.    Ψ []: array of percent 
9.    ∆ []: array of number of iterations 
10.   output parameters 
11.    res: result for the procedure (success/failu re) 
12.  begin 
13.   k := 1 
14.   do 
15.     (res, makespan) := call Basic_Check_RCPSP (set, L* Ψ [k], ∆ [k]) 
16.      k := k + 1 
17.   while ( (res = true) and (makespan>M) and (k<K)) 
18. end 

Algorithm 6: RCPSP check 

During the experiments, we noted that Check_RCPSP usually works better with a larger amount of 
resources than the duration. Thus, as the vehicle length is larger than its width, the two dimensions are 
exchanged before entering the procedure. 

2.8 Split procedure 

As previously stressed, Split is a key-procedure to convert a giant tour into a RCPSP-CVRP solution 
(with respect to the sequence). It is based on the classical Split procedure [39][32][33], tuned to 
address the specific RCPSP-CVRP constraints.  
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The Split procedure first builds an auxiliary digraph HT = (X, Y, Z) where X is a set of n+1 nodes 
indexed from 0 to n. Node 0 is a dummy node, while the nodes 1…n correspond to the sequence of the 
giant tour ( )nvvT ...1= . An arc (i,j) belongs to Y if a trip servicing customers vi+1 to vj (included) is 

both weight-feasible and RCPSP-feasible. The weight of the arc ( ) Yji ∈;  is the trip cost 

∑
−=

++=
+

1..
00 1

jik
vvvvij jkki

cccz . Optimally splitting T (figure 6) corresponds to a min-cost path from node 

0 to node n in H. An initial label is set at node 0. The labels are propagated from node to node in H 
using the arcs and the best label at node n is kept. 

 

 
Figure 6: Split transformation 
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defined considering that label piL  dominates q

iL  if one of the following conditions holds: 

( ) ( )
( ) ( )



≥<
≤>

q
i

p
i

q
i

p
i

q
i

p
i

q
i

p
i

NNandzz

zzandNN
 

 
The critical path leading to the best final label defines the trips of the solution. The procedure Split is 
detailed in Algorithm 7. For each node i, NB[i]  gives the number of related labels. The procedure 
Check_Domination_On_Node checks if the new label L  is dominated by another label at node j. The 
procedure Insert inserts this label into the set of node j labels and removes the dominated labels. The 
number of labels is updates accordingly. 
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1.   procedure Split 
2.  input parameters 
3.    T: giant tour 
4.  output parameters 
5.    S: RCPSP-CVRP solution 
6.  global parameter 
7.    D      : maximal vehicle weight capacity 
8.    d i    : total items weight of customer i 
9.    c ij : cost from customer i to j 
10.   n      : number of customers 
11.   begin 

12.    ( )1,1,0,:1
0 −−= NL , S := ∅ 

13.    for i := 1 to n do L i  := ∅ endfor 
14.    for i := 0 to n - 1 do 
15.     j := i + 1 
16.     trip := ∅; client := ∅ 
17.     repeat 
18.       prev := client 
19.       client := T j  
20.       trip := trip + client 
21.       if (j = i + 1) then 
22.         trip_load := d client  
23.         trip_cost := c depot,client  + c client,depot  
24.       else 
25.         trip_load := trip_load + d client  
26.         trip_cost := trip_cost +c prev,client  +c client,depot  -c prev,depot  
27.       endif 
28.       check := (trip_load < D) and (Check_RCPSP(trip) = true) 
29.       if (check = true) then 
30.         for p := 1 to NB i  do  

31.           let ( )jkzNL p
i

p
i

P
i ,,,:=  be the current label 

32.           propagate on j:  ( )pizzNL ij
p
i

p
i ,,,1: +−=  

33.           if (Check_Domination_On_Node( L , j, NB j ) = false) then 
34.             call Insert(L, j, NB j ) 
35.           endif 
36.         endfor 
37.       endif   
38.       j := j + 1 
39.     until (check = false) or (j > n) 
40.   endfor 
41.   if (NB n > 0) then 
42.     S := call extract_trips () 
43.   endif 
44. end 

Algorithm 7: Split 

 
2.9 Transformation of a RCPSP-CVRP solution into a 2L-CVRP solution 

Several authors, including Iori et al. [10], have previously noticed that greedy algorithms could lead to 
efficient frameworks by carefully managing the classical envelope (or contour) as defined in Martello 
et al. [40] and addressing only normal fillings. Exact methods based on linear formulations cannot be 
used due to excessive computational time. As a consequences of the framework we introduce, the 
transformation of a RCPSP-CVRP solution into a 2L-CVRP solution is only done at the end of 
GRASP× ELS. In order to be efficient, the transformation has to take advantage of the output of the 
RCPSP check. In a RCPSP-CVRP solution, items are associated to an abscissa. Note that only one bin 
is available (the vehicle) and that the x-position xi of an item i can be given either by its earliest 
starting time (ESi) or by its latest starting time (LSi) computed by the procedure Check_RCPSP. A 2L-
CVRP solution is first investigated with the earliest starting time (ESi) and then (if required) using the 
latest starting time (LSi). 



Submitted to Computers and Operations Research 

 17 

The Algorithm RCPSP_To_Packing (see Algorithm 8) investigates iteratively all the y-positions 
starting from 0 until all items are packed or until the remaining items cannot be packed (we have 
reached the vehicle width). Dy is defined as the set of items i which can be scheduled at position (xi,y). 
The envelope of items already packed is given by the function Front(x), which returns the smallest y 
available at abscissa x. At each iteration, min_front is the smallest value of the front where remaining 
items can be scheduled, is considered. Then a random selection is done in Dmin_front. The item is 
scheduled and the envelope is updated. The outer loop (steps 11-24) tries to pack the maximal number 
of items. When Dy is empty, the next y-position is investigated with respect to the minimal front value 
where items can be scheduled. 

1.   procedure RCPSP_To_Packing 
2.   input parameters 
3.    set: set of items of length l j  and of width w j   
4.    x i : abscissa of item i 
5.   output parameters 
6.    res: result of the procedure (success/failure ) 
4.    y i : ordinate of item i 
5.   global parameters 
6.    L: vehicle length 
7.    W: vehicle width 
7.  begin 
8.    A := set 
9.    y := 0 
10.   for x := 0 to L do front[x] := 0 endfor 
11.   repeat   

12.     D y := {items which can be scheduled at y according to  x i } 

13.     if (D y = Ø) then 
14.       prec_y := y 
15.       y := min {front(x) | front(x) > y} 
16.     else 
17.       randomly choose i in D  

18.       A := A  \ {i} 
19.       schedule i at (x i , y); y i := y 
20.       for x := x i  to x i  + l i  -1  do 
21.         front(x) = front(x) + w i  
22.       endfor 
23.     endif 
24.   until (A = Ø) or (y ≥ W) 
25.   res := (A = Ø) 
26. end 

Algorithm 8: RCPCP_To_Packing 

The following example illustrates the algorithm. Table 6 contains the items to be packed into a vehicle 
of size 2035× . 

 Width Length xi = ESi 
a 6 18 0 
b 12 5 0 
c 8 5 5 
d 10 10 10 
e 5 7 18 
f 5 15 20 

Table 6: Items to be packed 
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At the beginning, no items are scheduled as 
shown in figure 7. Initially, all the items can be 
scheduled at y=0, thus D=A. Item b is randomly 
chosen and scheduled. The front and D are 
updated: D={c,d,e,f} as item a cannot be 
scheduled at y=0 anymore. The next item is 
randomly chosen, say c.  
The front and D are updated: D={d,e,f}, see 
figure 8. Suppose the next item is d. D={f}  as 
item e cannot be scheduled at y=0 anymore. The 
item f  is scheduled (see figure 8.b). So, the 
minimal value of the front where a remaining 
item can be scheduled is y=10 and D={e} . Item e 
is scheduled, y=12 and D={a} . Item a is 
scheduled, D={}  and a packing solution has been 
found. 
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Figure 7 : Initial state 
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(a) after scheduling b and c (b) after scheduling b, c, d, f 

Figure 8: Packing the items 

Note that computing a feasible packing solution depends on the date xi assigned to the items. The 
procedure Transform performs several successive calls to the procedure RCPSP_To_Packing until a 
feasible packing is found. At each iteration, a new schedule is generated. A transformation is 
experienced first using the earliest starting times ESi as xi then using the latest starting times LSi. 
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1.   procedure Transform 
2.   input parameters 
3.    S: solution (set of trips, where S i  is the i th  trip) 
4.  global parameters 
5.    iter_max: maximal number of iterations per tr ip 
6.   output parameters 
7.    x j : starting time of activity j 
8.    y j : y-position for activity j 
9.    res: result of the procedure (success/failure ) 
10. begin 
11.   i := 1, res := true 
12.   while (i ≤  number of trips in S) and (res = true) do 
13.     k := 1; res_trip := false 
14.     while (res_trip = false) and (k ≤ iter_max) do 
15.       call Randomized_WCS (S i ) 
16.       for l := 1 to ne do 
17.         (res_trip, y) := call RCPSP_To_Packing (S i ,ES) 
18.         if (res_trip = true) then x j  = ES j ; break endif 
19.       endfor 
20.       if (res_trip = false) then 
21.         for l := 1 to ne do 
22.           (res_trip, y):= call RCPSP_To_Packing (S i ,LS) 
23.           if (res_trip = true) then x j  = LS j ; break endif 
24.         endfor 
25.       endif 
26.       k := k + 1 
27.     endwhile 
28.     res := res_trip 
29.     i := i + 1 
30.   endwhile 
31. end 

Algorithm 9: Transform 

2.10 Hash function for RCPSP 

Since a huge number trips are evaluated during the GRASP× ELS and because each trip required a 
RCPSP-feasibility check the process (which checks the RCPSP feasiblity) must be time efficient. It 
can take advantages of both a map to store the result of the RCPSP-feasibility for trips previously 
evaluated and of a hash function to address the results within the map. The hash function )(th  
associated to a trip t  is defined as follows: 

∏
∈

=
ti

Kiprimeth mod][)(  

where ][iprime  is the thi  prime number and K  is a constant. We consider a table of ordered prime 
numbers (2, 3, 5, 7…). The value of K impacts the size of the map and the probability of collision (so 
K must be as large as possible considering the memory available). Two different trips t  and 't  leading 
to the same hash value are stated to be in collision. This hash function has interesting properties on 
RCPSP-equivalent trips. 

Definition: two trips t  and 't which visit the same set of customers are RCPSP-equivalent. 

As the set of customers is the same for t  and 't , t  is RCPSP-feasible if and only if 't  is RCPSP-
feasible. Thus the following property holds: 

Property: RCPSP-equivalent trips t  and 't  have the same hash value ( ))'()( thth =  

This property is interesting as it means that only one RCPSP-feasibility check has to be done for all 
the trips having the same set of customers. The value stored in the map, along with the trip, is defined 
as follows: 
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The improved version of Check_RCPCP (see Algorithm 10) takes into account the hash function and 
the map. The structure map stores the trips already checked and the structure F stores the result of the 
RCPCP check. To further improve the speed of the procedure, only trips requiring more than a given 
number of iterations in Check_RCPSP are considered for insertion in the map. Such strategy aims at 
limiting collisions by giving priority, in the storage, to the RCPSP solution whose check has been time 
consuming. 

1.  procedure improved_check_RCPSP 
2.  input parameters 
3.    t  : trip 
4.    set: set of activities of trip t 
5.  output parameters 
6.    res: result of the procedure (success/failure ) 
7.  begin 
8.    if (F(h(t)) = 0) then          // set was never checked 
9.      res := call check_RCPSP(set) 
10.      if (the number of iterations used in Check_RCPSP is l arge enough) then 
11.        map(h(t)) := t 
12.       if (res = true) then 
13.         F(h(t)) := 1 
14.       else 
15.         F(h(t)) := -1 
16.       endif 
17.      endif    
18.    else                            // set has already been checked  
19.     if (t = map(h(t))) then       // RCPSP-equivalent  
20.       res := (F(h(set)) = 1) 
21.     else                          // not RCPSP-equivalent  
22.       res := call check_RCPSP(set) 
23.     endif 
24.   endif 
25. end 

Algorithm 10: improved RCPCP check 

3 Computational evaluation  
3.1 Implementation and benchmarks used 

We report results on the set of instances used in previous publications [7][8][9]. Each instance is 
divided into 5 classes: class 1 defines a single 1x1 item for each customer corresponding to basic 
CVRP instances (there is no 2OPP to solve). Classes 2-5 contain instances with non-unit item sizes. 
The item size has been randomly generated to define “vertical” instances (width greater than length), 
“homogenous” instances and “horizontal” instances. The number of items for each customer for class i 
has been generated according to an uniform distribution in the interval [1;i] (see [7] for more details 
about the instances characteristics). These instances can be downloaded at 
http://www.or.deis.unibo.it/research.html. As mentioned at the beginning the best results published so 
far for those instances use Ant Colony [9]. The details of the solutions are available at 
http://prolog.univie.ac.at/research/VRPandBPP/. We also report the results from [7] and [8]. The 
solutions produced by GRASP × ELS are available at 
http://www.isima.fr/~lacomme/2lcvrp/2lcvrp.html. All procedures in our framework are implemented 
in C++ using the g++ compiler. Numerical experiments were carried out on a 2.1 GHz computer 
running Linux. Since the GRASP × ELS is a random search algorithm, each instance was solved ten 
times and the best found solution over the runs is kept with the CPU time required to reach this value. 
The set of parameters used, for small scale (from 01 to 15), medium scale (from 16 to 19) and large 
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scale (20 to 36) instances, is given in table 7 and table 8. For all instances, Ψ =(1.25;1.15;1.10;1.00) 
and ∆ =(10;100;300;1000). 

 
  small scale  medium scale large scale 

np 20+[n/10] * 2 20+[n/10] * 20 infinite 
α  100 000 100 000 100 000 
ne  5 5 5 
ns 20 20 20 
nr 15 15 15 
nd 10 15 15 
nb 20 000 20 000 20 000 

max_iter 50+[n/10] 50+[n/10] 50+[n/10] *7 
p 1 1 1 
ε 1 1 1 

intensification no no yes 

Table 7: parameter settings for class 1 

 
  small scale  medium scale large scale 

np 20+[n/10] 20+[n/10] 20+[n/10] 
α  100 000 100 000 100 000 
ne 5 5 5 
ns 20 20 20 
nr 15 15 15 
nd 10 15 15 
nb 20 000 20 000 20 000 

max_iter 50+[n/10] 50+[n/10] 50+[n/10]  
p 0.95 0.95 0.95 
ε 1 1 1 
K 1 000 000 1 000 000 1 000 000 

intensification no no yes 

Table 8: parameter settings for classes 2 to 5 

 

To provide a fair comparative study, the computational time of each method has been scaled by the 
speed factor presented in table 9. This coefficient takes into account the MIPS performance of each 
processor. 

 (Gendreau, 2008) (Zachariadis, 2009) (Fuellerer, 2009) GRASP × ELS 
Computer PIV 1.7 GHz PIV 2.4 GHz PIV 3.2 GHz Opteron 2.1 GHz 
OS ? Windows XP Linux Linux 
Language C Visual C++ C++ C++ 
Speed factor   1 0.66 
Time limit 1h 1h 1h 1h30 
Nb of runs 1 200 10 10 

Table 9: comparative performance of processors 

All previously published methods were benchmarked over 1 hour of computational time i.e. 1 hour of 
computation is assigned for one run of the method. Since the reference results [9] have been obtained 
on a computer 1.5 times faster, the GRASP × ELS time limit is set to 1h30. As stated in table 9 the 
number of runs used in methods varies from 1 to 200 which does not favor fair comparative study. 
Note also that all authors report the best found solution using the total number of runs reported in 
table 8. 
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3.2 Performance of the procedure RCPSP_To_Packing 

To solve the packing problem, our heuristic uses the RCPSP solution. In order to assess its 
performance, we compare it with two efficient exact methods. The first one is a MIP formulation 
proposed by Pisinger and Sigurd [14] solved with Cplex 11. The second one is a branch & bound 
developed by Martello et al. [41]. It is initially dedicated to the 3D bin packing problem and looks for 
the minimal number of bins. Several trips coming from several instances are evaluated using the three 
packing methods. The area of the vehicle is set to 800. In table 10, the first two columns refer to the 
number of items and to the total area required by the items. Then, the results from the MIP formulation 
(column CPLEX), the branch & bound and our method are presented. For each method, the answer 
(packable or not packable) along with the CPU time in seconds is reported. A time limit of 3h has been 
set. As solutions are already RCPSP-feasible, few answers might be ‘false’. Only one such situation 
happens and it requires much more time, comparatively to problems of equivalent size. For the ‘true’ 
answers, the time depends on the number of items and on the area required by the items. The approach 
using MIP formulation seems to be slightly better than the branch & bound. However, both are 
dominated by our approach in terms of CPU time on these instances. Note that our approach is 
heuristic: there is no guaranty on the answer, even though no erroneous answer has been reported in 
our experiments. 

 

  CPLEX branch & bound RCPSP_To_Packing 
nb items area answer CPU(s) answer CPU(s) answer CPU(s) 

10 692 true 0.58 true 0.14 true <0.01 
11 673 true 0.23 true 0.39 true 0.11 
11 736 false 1362.66 false 78.11 false 2.86 
12 702 true 1.06 true 2.22 true <0.01 
12 737 true 264.11 true 11.23 true <0.01 
12 737 true 37.20 true 2500.66 true 0.02 
13 664 true 0.30 true 0.23 true 0.02 
13 759 - 10800.00 - 10800.00 true 0.40 
15 715 true 3.59 true 215.88 true <0.01 
15 727 true 8.88 true 1244.66 true <0.01 
16 726 true 67.28 true 3357.28 true 0.02 
17 488 true 0.50 true 1.34 true 0.02 
17 746 true 313.97 - 10800.00 true 0.28 
18 639 true 0.92 true 2.01 true 0.34 
18 670 true 1.50 true 2.80 true <0.01 
18 770 true 65.30 - 10800.00 true 0.67 
19 739 true 1315.73 true 40.63 true 0.02 
21 715 - 10800.00 - 10800.00 true <0.01 
21 723 - 10800.00 true 0.45 true 0.02 
25 773 - 10800.00 - 10800.00 true 1.56 

Table 10: packing algorithms on several packing problems 

 

3.3 Average results on CVRP instances 

Class 1 instances are pure CVRP instances as all items are 1x1 squares. On those 36 instances, the 
method competes with the best published methods of [7][8][9] (see table 11). GRASP × ELS gets the 
best result 34 times and provides 10 new best solutions. Details on the results for each instance can be 
found in table A1. Row “nb best” gives the number of times a method provides the best result and “nb 
of record” gives the number of times the method gives a solution strictly better than all others methods. 

 Gendreau Zachariadis Fuellerer GRASP × ELS 
nb best 18 21 23 34 
nb of record  0 0 2 10 
avg value 792.31 777.75 776.04 770.77 

Table 11: results for class 1 instances 
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3.4 Average results for 2L-CVRP instances 

Average results for classes 2 to 5 are presented in table 12. The same information is reported as before. 
Note that only aggregated values are available for the approach of Gendreau et al. [7]. GRASP × ELS 
outperforms the other methods on all the classes, especially in classes 3 and 4. Details on the results 
for each instance can be found in table A2, table A3, table A4, table A5 and table A6. 

  Gendreau Zachariadis Fuellerer GRASP × ELS 
class 2 nb best - 3 15 32 
 nb of record - 0 4 21 
 avg value - 1205.45 1150.68 1140.44 
class 3 nb best - 3 7 36 
 nb of record - 0 0 29 
 avg value - 1217.40 1174.98 1149.14 
class 4 nb best - 3 8 36 
 nb of record - 0 0 28 
 avg value  - 1223.45 1191.59 1168.25 
class 5 nb best - 8 15 32 
 nb record - 0 4 21 
 avg value - 1078.24 1059.55 1052.29 
Average  nb best 0 0 3 36 
class 2-5 nb of record 0 0 0 33 
 avg value 1216.08 1181.13 1144.20 1127.53 

Table 12: results on class 2-5 instances 

 

3.5 Example of a 2L-CVRP solution 

Let us consider the instance 01 from class 3 (referred as 0103 in table A3). The solution of value 284.52 
corresponds to the best ever published solution with 3 trips (see figure 9). Sub-figures (9.b) (9.c) (9.d) provide a 
graphical representation of the three packing solutions for the three trips involved in the solution. 

  

(a ) solution (b) vehicle load for trip 1 

  

(c) vehicle load trip 2 (d) vehicle load for trip 3 

Figure 9: solution for instance 01 class 3 
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4 Concluding remarks  
This article considers an extension of the well-known CVRP in which two dimensional packing 

constraints must be addressed in each trip servicing customers. This problem deals with two 
combinatorial optimization problems: vehicle routing and two-dimensional bin packing. The initial 
2L-CVRP is first relaxed into the easier RCPSP-CVRP. The relaxation problem is solved using the 
GRASP × ELS framework. At the end of GRASP × ELS, the solution is transformed back into a 2L-
CVRP solution by packing the items into the vehicles. To our knowledge, this is an innovative 
approach. The results show that our method is highly efficient and outperforms the best previous 
published methods on the topic. We are currently investigating the 3L-CVRP, the sequence-dependant 
2L-CVRP and the non-orientated cases. 
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5 Notations  
Problem definition 
G=(V;E) a complete undirected graph 
V set of  n+1 nodes with 0 the depot node 
cij cost from node i to j 
n number of nodes (a node is a customer) 
N number of vehicles 
D weight capacity of vehicles 
W vehicle width 
L vehicle length 
A=W×L vehicle area 
mi number of items to deliver at customer  i 
di total weight of items to service at customer i 
wik item width of item k at customer i 
l ik item length of item k at customer i 
 
Framework parameters 
p percent of vehicle volume used during heuristics runs 
nb number of solutions kept during the grasp process 
np number of GRASP iterations (number of initial solutions investigated) 
ns number of ILS iterations 
nd number of parallel mutation/local search 
nr maximum number of iterations without improvement per ELS 
ne number of attempts to generated a initial feasible solution 
ε a small real number representing the threshold required to continue the RL 
 
 
Solution 
T a giant tour 
T=(v1, ..., vn) sequence customer in the giant tour T 
t a trip 
n(t) number of customers in trip t 
t = (t0, t1, ..., tn(t), tn(t)+1) sequence customers in trip t 
S a RCPSP-CVRP solution (set of trips) 
f(S) cost of S 
N(S)  number of trips in solution S 
α  penalty 
t(S) set of trips of solution S 
f(t) cost of the trip t 
S* best RCPSP-CVRP solution found 
f* cost of S* 
O cost ordered set of RCPSP-CVRP solutions 
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RCPSP 
na number of activities to schedule 
m number of resources 
i / j activity to schedule 
di duration of activity i 
r ik requirement of activity i for resource k 
u sink activity 
s source activity 
ESi earliest starting time of activity i 
LSi latest starting time of activity i 
 
Split 
HT = (X, Y, Z) auxiliary digraph linked to the giant trip T 
X set of n+1 nodes 
Y set of arcs in H where arc (i,j) represent a trip servicing customers vi+1  to vj 
Zij trip cost link to the arc (i,j) 
 
Bin packing 
W×L bin size 
wi ×l i item size 
ni number of items 
Dy set of items i which can be scheduled at position (xi,y) 
xi x-position of item i (either ESi or LSi) 
 
Hash function / map 
K a huge number used by the hash function 
h(t) hash value for trip t 
F(h(t)) function giving in O(1) the RCPSP feasibility of trip t with hash function h(t) 
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Appendix  

 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS 

 s t s t s t s t 
0101 278.73 2.0 278.73 2.9 278.73 0.09 278.73 0.0 
0201 334.96 0.0 334.96 1.4 334.96 0.05 334.96 0.0 
0301 359.77 3.5 358.40 3.8 358.4 0.23 358.4 0.0 
0401 430.88 0.1 430.88 1.0 430.88 0.27 430.88 0.0 
0501 375.28 1.4 375.28 1.3 375.28 0.32 375.28 0.0 
0601 495.85 0.3 495.85 1.9 495.85 0.30 495.85 0.0 
0701 568.56 0.5 568.56 0.8 568.56 0.24 568.56 0.0 
0801 568.56 0.5 568.56 0.4 568.56 0.24 568.56 0.0 
0901 607.65 0.4 607.65 1.2 607.65 0.57 607.65 0.0 
1001 538.79 6.1 535.80 5.9 535.8 2.27 535.80 0.0 
1101 505.01 2.5 505.01 3.8 505.01 0.81 505.01 0.0 
1201 610.57 28.5 610.00 6.3 610.00 1.54 610.00 0.2 
1301 2006.34 29.9 2006.34 5.8 2006.34 1.26 2006.34 0.0 
1401 837.67 22.2 837.67 17.1 837.67 4.10 837.67 0.2 
1501 837.67 1.7 837.67 7.9 837.67 2.83 837.67 0.0 
1601 698.61 2.7 698.61 13.0 698.61 1.97 698.61 0.0 
1701 862.62 59.0 863.27 32.9 861.79 3.28 861.79 0.0 
1801 723.54 81.9 730.85 47.1 723.54 9.51 723.54 8.3 
1901 524.61 128.8 524.61 100.2 524.61 7.94 524.61 0.3 
2001 241.97 253.6 244.54 198.3 241.97 56.06 241.97 4.5 
2101 688.18 325.0 687.6 221.5 690.2 26.45 687.60 1.4 
2201 740.66 2070.7 740.66 662.9 742.91 57.43 740.66 2.1 
2301 860.47 2210.1 839.07 1531.4 845.34 55.94 835.26 339 1.3 
2401 1048.91 866.9 1035.33 1012.7 1030.25 49.77 1026.6 5 3.3 
2501 830.26 2371.0 829.45 953.8 830.82 167.14 827.39 2.4  
2601 819.56 3597.6 819.56 1031.7 819.56 175.69 819.56 0. 4 
2701 1099.95 355.9 1097.63 871.2 1100.22 190.52 1082.65 486.5 
2801 1078.27 985.2 1042.12 781.4 1062.23 252.48 1042.12 129.8 
2901 1179.01 3080.0 1188.15 1641.9 1168.13 769.14 1162.9 6 549.6 
3001 1061.55 1834.4 1037.05 873.3 1041.05 310.25 1033.42  2165.9 
3101 1464.04 288.8 1421.2 631.4 1341.89 521.84 1306.07 5 096.1 
3201 1352.61 1780.8 1328.68 905.5 1334.26 517.68 1303.52  4492.4 
3301 1361.51 2531.7 1328.19 1708.6 1331.69 476.63 1301.0 6 4842.1 
3401 858.94 1941.9 719.91 834.1 712.32 614.53 713.51 300 7.4 
3501 992.86 766.7 877.04 907.2 868.12 1452.58 870.63 261 6.5 
3601 678.87 1530.9 594.10 1492.6 616.69 1588.25 592.87 5 264.7 

Table A1: class 1 instances 
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 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS 

 s t s t s t s t 
0102 / / 305.92 / 284.52 1.18 284.42 0.2 
0202 / / 334.96 / 334.96 0.14 334.96 0.0 
0302 / / 401.81 / 387.70 1.29 387.70 0.8 
0402 / / 440.94 / 430.88 0.98 430.88 0.3 
0502 / / 381.85 / 375.28 7.27 375.28 0.1 
0602 / / 498.16 / 495.85 1.77 495.85 0.4 
0702 / / 741.91 / 725.46 3.99 725.46 0.3 
0802 / / 718.18 / 709.39 8.45 674.55 0.2 
0902 / / 607.65 / 607.65 2.39 607.65 0.2 
1002 / / 708.63 / 689.68 30.29 689.68 6.1 
1102 / / 719.56 / 711.08 22.63 693.45 25.9 
1202 / / 628.86 / 610.57 4.26 610.57 5.4 
1302 / / 2705.05 / 2588.81 39.22 2585.72 105.3 
1402 / / 1117.24 / 1038.68 92.42 1038.09 177.5 
1502 / / 1099.75 / 1021.00 73.43 1013.29 482.8 
1602 / / 702.70 / 698.61 6.30 698.61 0.9 
1702 / / 870.86 / 870.86 4.68 870.86 53.1 
1802 / / 1065.3 / 1030.64 176.61 1004.99 885.9 
1902 / / 796.87 / 767.41 58.94 754.53 440.6 
2002 / / 569.20 / 534.95 726.15 537.88 2904.5 
2102 / / 1076.24 / 1013.49 589.8 992.83 942.9 
2202 / / 1088.33 / 1052.85 400.88 1036.11 1741.9 
2302 / / 1124.60 / 1043.99 1191.5 1041.04 1226.9 
2402 / / 1234.03 / 1188.09 238.22 1190.70 515.6 
2502 / / 1500.07 / 1430.31 834.92 1419.42 3154.8 
2602 / / 1387.3 / 1298.02 1025.08 1285.01 2314.6 
2702 / / 1402.42 / 1336.67 924.97 1327.06 4162.1 
2802 / / 2856.93 / 2650.06 3600.00 2587.23 4473.9 
2902 / / 2362.75 / 2260.47 3600.00 2212.22 3025.5 
3002 / / 1929.93 / 1840.56 3600.00 1816.05 4969.2 
3102 / / 2456.28 / 2325.98 3600.00 2311.11 5207.1 
3202 / / 2465.17 / 2319.31 3600.00 2322.17 5083.2 
3302 / / 2508.68 / 2326.13 3600.00 2285.94 5000.4 
3402 / / 1268.93 / 1220.53 3600.00 1212.04 5020.6 
3502 / / 1464.93 / 1416.88 3600.00 1419.37 5315.5 
3602 / / 1854.06 / 1787.01 3600.00 1782.99 4608.7 

Table A2: class 2 instances 
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 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS 

 s t s t s t s t 
0103 / / 299.70 / 296.87 8.93 284.52 0.9 
0203 / / 355.65 / 352.16 0.44 352.16 0.1 
0303 / / 409.17 / 394.72 2.08 394.72 0.4 
0403 / / 446.61 / 445.49 1.37 430.88 0.3 
0503 / / 387.89 / 381.69 10.34 381.69 0.2 
0603 / / 499.08 / 499.08 3.42 498.16 0.6 
0703 / / 706.99 / 701.08 4.10 678.75 0.2 
0803 / / 749.70 / 740.85 6.88 738.43 0.6 
0903 / / 622.16 / 607.65 2.00 607.65 0.3 
1003 / / 655.70 / 624.62 35.89 615.68 0.8 
1103 / / 746.12 / 723.00 23.49 706.73 4.5 
1203 / / 610.00 / 610.00 2.08 610.00 54.1 
1303 / / 2542.86 / 2470.42 33.32 2454.37 20.2 
1403 / / 1092.10 / 1018.75 104.56 996.25 28.1 
1503 / / 1186.61 / 1171.35 73.10 1154.66 248.9 
1603 / / 698.61 / 698.61 5.26 698.61 2.9 
1703 / / 861.79 / 861.79 3.41 861.79 2.3 
1803 / / 1124.54 / 1091.89 135.52 1069.45 110.4 
1903 / / 816.77 / 786.43 53.55 771.74 155.3 
2003 / / 557.72 / 544.12 375.47 524.81 1824.2 
2103 / / 1191.07 / 1148.02 250.91 1121.84 759.1 
2203 / / 1110.73 / 1075.55 305.15 1052.98 1189.9 
2303 / / 1141.51 / 1098.70 298.37 1081.48 1288.2 
2403 / / 1136.1 / 1116.98 155.45 1083.14 796.3 
2503 / / 1476.14 / 1409.5 777.12 1374.68 2539.3 
2603 / / 1436.55 / 1384.75 759.12 1344.66 2170.3 
2703 / / 1476.73 / 1398.52 560.96 1378.01 1343.6 
2803 / / 2867.46 / 2740.68 3600.00 2629.38 5289.0 
2903 / / 2249.8 / 2184.45 3600.00 2107.87 3895.1 
3003 / / 2038.55 / 1894.16 3600.00 1850.78 5126.6 
3103 / / 2478.94 / 2366.77 3600.00 2305.51 5107.4 
3203 / / 2422.98 / 2327.25 3600.00 2267.82 5255.0 
3303 / / 2595.41 / 2470.07 3600.00 2390.58 4853.6 
3403 / / 1298.48 / 1259.88 3600.00 1237.27 5168.7 
3503 / / 1570.67 / 1511.42 3600.00 1477.05 5165.8 
3603 / / 1965.46 / 1891.90 3600.00 1834.97 5069.6 

Table A3: class 3 instances 
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 (Gendreau et al.. 2008) (Zahariadis et al.. 2009) (Fuellerer et al.. 2009) GRASPxELS 

 s t s t s t s t 
0104 / / 296.75  282.95 0.96 282.95 0.0 
0204 / / 342.00  342.00 0.13 334.96 0.1 
0304 / / 368.56  364.45 0.96 364.45 0.2 
0404 / / 447.37  447.37 2.64 447.37 0.1 
0504 / / 383.87  383.88 6.74 383.87 0.2 
0604 / / 504.78  498.32 2.38 498.32 0.5 
0704 / / 703.85  702.45 4.79 702.45 2.0 
0804 / / 711.07  692.47 6.01 692.47 1.6 
0904 / / 625.13  625.13 3.02 625.1 1.7 
1004 / / 792.30  724.77 27.76 711.01 17.8 
1104 / / 843.52  816.45 24.75 786.85 10.7 
1204 / / 618.23  614.24 5.43 614.23 1.6 
1304 / / 2714.69  2607.66 41.65 2587.63 15.5 
1404 / / 994.66  985.01 84.86 981.90 5.5 
1504 / / 1258.49  1246.54 72.61 1234.14 55.7 
1604 / / 709.27  703.35 10.22 703.35 12.00 
1704 / / 861.79  861.79 4.08 861.79 29.7 
1804 / / 1171.51  1124.37 138.46 1118.71 235 
1904 / / 819.79  798.33 58.19 778.35 350.2 
2004 / / 576.92  553.03 271.42 547.95 720.4 
2104 / / 1019.74  1001.14 365.03 978.82 1544.9 
2204 / / 1119.34  1093.16 221.98 1045.91 673.5 
2304 / / 1123.17  1089.66 281.65 1080.02 1523.1 
2404 / / 1160.92  1133.98 174.27 1111.27 178.4 
2504 / / 1486.54  1441.11 669.36 1405.65 2246.1 
2604 / / 1491.00  1451.71 1490.06 1405.57 2913.8 
2704 / / 1397.75  1362.87 585.99 1326.16 2643.8 
2804 / / 2770.05  2716.94 3600.00 2654.75 5258 
2904 / / 2427.95  2350.62 3600.00 2270.44 4406.9 
3004 / / 1965.45  1902.68 3600.00 1856.54 3936.3 
3104 / / 2585.67  2495.39 3600.00 2436.42 4538.8 
3204 / / 2432.49  2362.22 3600.00 2308.4 3908.2 
3304 / / 2601.34  2504.63 3600.00 2416.77 5388 
3404 / / 1279.65  1251.87 3600.00 1235.58 5402.9 
3504 / / 1634.63  1593.25 3600.00 1538.30 5291.0 
3604 / / 1803.86  1771.31 3600.00 1728.69 4785.5 

Table A4: class 4 instances 
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 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS 

 s t s t s t s t 
0105 / / 280.60  278.73 0.41 278.73 2.5 
0205 / / 334.96  334.96 0.04 334.96 0 
0305 / / 358.40  358.40 0.40 358.40 0.4 
0405 / / 430.88  430.88 0.74 430.88 0.2 
0505 / / 375.28  375.28 1.36 375.28 0.1 
0605 / / 495.85  495.85 0.56 495.85 0.0 
0705 / / 661.22  658.64 6.41 657.77 3.0 
0805 / / 643.43  621.85 18.79 609.9 0.7 
0905 / / 607.65  607.65 1.10 607.65 0.2 
1005 / / 695.37  691.04 26.46 686.78 35.9 
1105 / / 652.42  636.77 23.67 636.77 4.2 
1205 / / 610.23  610.23 3.27 610.23 6.4 
1305 / / 2434.99  2416.04 42.31 2334.78 171 
1405 / / 943.08  922.58 104.25 921.45 108.5 
1505 / / 1246.46  1230.22 56.51 1176.68 243.4 
1605 / / 698.61  698.61 2.89 698.61 8.4 
1705 / / 862.62  861.79 3.79 861.79 1.3 
1805 / / 945.88  926.34 200.06 925.72 422.5 
1905 / / 674.20  656.03 71.2 652.15 128 
2005 / / 503.01  480.59 420.29 480.1 1184.2 
2105 / / 914.68  897.55 414.62 884.84 2556.2 
2205 / / 986.02  956.42 396.93 950.79 254.9 
2305 / / 975.42  956.55 300.97 950.09 1456.3 
2405 / / 1065.41  1049.76 88.83 1046.63 430.8 
2505 / / 1212.73  1182.14 1175.34 1180.57 3930.6 
2605 / / 1267.68  1250.41 859.96 1234.39 1798.1 
2705 / / 1309.5  1271.08 780.39 1262.93 2717 
2805 / / 2453.59  2412.8 3600.00 2368.88 5241 
2905 / / 2220.32  2191.56 3600.00 2175.31 5187.1 
3005 / / 1625.42  1570.75 3600.00 1578.41 4982.5 
3105 / / 2132.92  2080.25 3600.00 2076.07 5099.3 
3205 / / 2086.13  2039.14 3600.00 2034.68 5356 
3305 / / 2117.72  2050.72 3600.00 2046.00 4713.7 
3405 / / 1086.79  1070.28 3600.00 1079.61 5385.9 
3505 / / 1324.89  1301.27 3600.00 1306.19 4289.7 
3605 / / 1582.25  1570.81 3600.00 1572.49 5032.1 

Table A5: class 5 instances 
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 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS 

 s t s t s t s t 
01 291.60 4.2 295.74 2.2 285.77 2.87 282.65 0.9 
02 341.02 0.1 341.89 1.3 341.02 0.1875 339.26 0.1 
03 377.35 1.6 384.49 0.7 376.32 1.1825 376.32 0.5 
04 437.45 0.5 441.45 2.2 438.65 1.4325 435.01 0.2 
05 380.20 5.0 382.22 4.7 379.03 6.4275 379.03 0.1 
06 501.02 7.2 499.47 4.4 497.27 2.0325 497.04 0.4 
07 700.34 6.3 703.49 4.5 696.91 4.8225 691.11 1.4 
08 694.99 11.2 705.60 6.4 691.14 10.0325 678.84 0.8 
09 619.69 3.6 615.65 5.1 612.02 2.1275 612.01 0.6 
10 700.39 36.0 713.00 9.5 682.53 30.10 675.79 15.1 
11 739.04 55.7 740.04 18.1 721.82 23.635 705.95 11.3 
12 620.62 49.0 616.83 61.9 611.26 3.76 611.26 16.9 
13 2598.2 57.5 2599.40 44.4 2520.73 39.125 2490.62 78. 0 
14 1047.72 375.8 1036.77 167.4 991.26 96.5225 984.42 7 9.9 
15 1201.38 156.7 1197.83 86.1 1167.28 68.9125 1144.69 257.7 
16 702.03 20.5 702.30 78.3 699.80 6.1675 699.79 6.0 
17 866.37 64.9 864.26 26.4 864.06 3.99 864.05 21.6 
18 1085.84 589.3 1076.81 250.7 1043.31 162.6625 1029.7 1 413.5 
19 772.25 633.7 776.91 376.5 752.05 60.47 739.19 268.5  
20 564.67 954.5 551.71 518.7 528.17 448.3325 522.68 16 58.3 
21 1066.21 460.1 1050.43 129.0 1015.05 405.09 994.58 1 450.8 
22 1087.46 1191.2 1076.11 941.1 1044.49 331.235 1021.4 5 965.0 
23 1104.72 2032.4 1091.17 1000.8 1047.23 518.1225 1038 .16 1373.6 
24 1187.62 1454.1 1149.12 553.5 1122.2 164.1925 1107.9 3 480.3 
25 1436.09 1205.8 1418.87 635.9 1365.77 864.185 1345.0 8 2967.7 
26 1404.49 1173.9 1395.63 875.3 1346.22 1033.555 1317. 41 2299.2 
27 1450.18 521.3 1396.60 492.5 1342.28 713.0775 1323.5 4 2716.6 
28 2738.31 2051.2 2737.01 1079.1 2630.12 3600.00 2560. 06 5065.5 
29 2474.33 1406.5 2315.20 1059.0 2246.78 3600.00 2191. 46 4128.6 
30 1948.72 1185.4 1889.84 1711.2 1802.04 3600.00 1775. 44 4753.7 
31 2506.99 2375.8 2413.45 2500.7 2317.10 3600.00 2282. 28 4988.2 
32 2486.43 1664.8 2351.69 2240.1 2261.98 3600.00 2233. 27 4900.6 
33 2504.00 1843.2 2455.79 2074.1 2337.89 3600.00 2284. 82 4988.9 
34 1466.06 1359.1 1233.46 2549.7 1200.64 3600.00 1191. 13 5244.5 
35 1765.30 2061.7 1498.78 2964.5 1455.70 3600.00 1435. 22 5015.5 
36 1909.88 2265.8 1801.41 2680.3 1755.26 3600.00 1729. 79 4874 

Table A6: class 2-5 instance
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