
HAL Id: hal-01708170
https://hal.science/hal-01708170v1

Submitted on 8 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multi-start evolutionary local search for the
two-dimensional loading capacitated vehicle routing

problem
Hélène Toussaint, Christophe Duhamel, Philippe Lacomme, Alain Quilliot

To cite this version:
Hélène Toussaint, Christophe Duhamel, Philippe Lacomme, Alain Quilliot. A multi-start evolutionary
local search for the two-dimensional loading capacitated vehicle routing problem. Computers and
Operations Research, 2011, 38 (3), pp.617 - 640. �10.1016/j.cor.2010.08.017�. �hal-01708170�

https://hal.science/hal-01708170v1
https://hal.archives-ouvertes.fr

Submitted to Computers and Operations Research

 1

A multi-start evolutionary local search for the two-
dimensional loading capacitated vehicle routing problem

Christophe Duhamel, Philippe Lacomme

Alain Quilliot, Hélène Toussaint

Laboratoire d'Informatique (LIMOS, UMR CNRS 6158), Campus des Cézeaux,
63177 Aubière Cedex, France.

Abstract

This paper addresses an extension of the Capacitated Vehicle Routing Problem where customer demand is
composed of two-dimensional weighted items (2L-CVRP). The objective consists in designing a set of trips
minimizing the total transportation cost with a homogenous fleet of vehicles based on a depot node. Items in
each vehicle trip must satisfy the two-dimensional orthogonal packing constraints. A GRASP× ELS algorithm is
proposed to compute solutions of a simpler problem in which the loading constraints are transformed into
Resource Constrained Project Scheduling Problem (RCPSP) constraints. We denote this relaxed problem
RCPSP-CVRP. The optimization framework deals with RCPSP-CVRP and lastly RCPSP-CVRP solutions are
transformed into 2L-CVRP solutions by solving a dedicated packing problem. The effectiveness of our approach
is demonstrated through computational experiments including both classical CVRP and 2L-CVRP instances.
Numerical experiments show that the GRASP×ELS approach outperforms all previously published methods.

Keywords: Vehicle Routing; GRASP; Iterated Local Search; Evolutionary local search, VRP, 2L-CVRP

1 Introduction

1.1 Capacitated Vehicle Routing Problem

Keeping track of VRP development is strongly difficult because node routing problems subject
matter transcends several academic disciplines. Lately Eksioglu, Vuran and Reisman in 2008 [1] have
provided a methodology to classify the literature of the VRP, i.e. a taxonomic framework. Their
proposal extends the previous proposal of Current and Marsh in 1993 [2]. Additional VRP constraints
can be classified into three sets: scenario characterics, problem physical characteristics and
information characteristics. Scenario characteristics encompass, for instance, customer service demand
quantity (deterministic, stochastic), load splitting constraints (splitting allowed or not), time windows
(soft time windows, strict time windows), time horizon (single period, multi period) or customer types
(linehaul, backhaul, transfer). Problem physical characteristics encompass the number of origin points
(single or multiple origins), the time window types (restrictions on customers, on roads), number of
vehicles (exactly n vehicles, limited number of vehicle, and unlimited number of vehicles).
Information characteristics encompass the evolution of information (static or partially dynamic) or the
quality of information (stochastic, deterministic).

The Capacitated Vehicle Routing Problem (CVRP) is a standard NP-hard node routing problem
which received a considerable amount of attention for decades [3] [4] [5]. The CVRP consists in
optimizing the delivery of goods required by a set of customers. It can be fully defined by considering
a depot and a set of n customers which correspond to the nodes of a complete graph);(EVG = where
V is a set of n+1 nodes, 0 being the depot and nodes 1...n being the customers. Each edge Ee∈ has a
finite cost 0≥ec and each node { }0−∈Vv has a demand 0≥vd . A fleet of homogenous vehicles of
limited capacity Q is based at the depot. The objective is to design a set of trips of minimal total cost
to service all customers. A trip is a cycle performed by one vehicle, starting at the depot, ending at the
depot and visiting a subset of nodes. The total load trip is upper bounded by the vehicle capacity Q .
Since split deliveries are not allowed, each customer is serviced by one vehicle only. Medium and
large scale CVRP instances resolution is limited to metaheuristics as stressed in [6].

Submitted to Computers and Operations Research

 2

1.2 Capacitated Vehicle Routing Problem with packing: 2L-CVRP

The 2L-CVRP is an extension of the CVRP which includes two-dimensional rectangle loading
constraints (the 2L constraints). This problem, first introduced in [7][8][9], can be reduced to the
CVRP when dropping the size of the items or when considering 1× 1 square items, thus dealing only
with their weight. This is strongly relevant to distribution companies since it combines both vehicle
routing optimization and two-dimensional items packing.

More formally, each vehicle of the homogenous fleet is now defined by a weight capacity D and

by a rectangular two-dimensional loading area ,LWA ×= where W is the vehicle width and L is the
vehicle length. The demand of each customer ni ..1= consists in a set of im items of total weight id :

each item imk ..1= has width wik and length l ik. Each customer must be serviced by only one vehicle,

which is assigned to a single trip. A trip t is a sequence ()1)()(10 ,,...,, += tntn ttttt of customers where

1)(0 += tntt corresponds to the depot. It must be simultaneously “weight-feasible” and “packing-

feasible”. A trip t is stated “weight-feasible” if the total weight does not exceed the vehicle capacity,

i.e. Dd
ti

i ≤∑
∈

 and it is stated “packing-feasible” if the customer items can be loaded without

overlapping into the vehicle and satisfying the classical packing constraints. A set of “weight-feasible”
and “packing-feasible” trips defines a solution of the 2L-CVRP.

According to Fuellerer et al. classification [9], four different cases can be distinguished with

respect to the loading configurations. To prevent ambiguities between the notations of Gendreau et al.,
Zachariadis et al., and lately by Fuellerer et al., we propose the notation x|yz|L where x represent the
dimension (two dimensional or three dimensional), y represents the items order constraint (Sequential
or Unrestricted) and z represents the items orientation (Oriented or Rotated). Four two-dimensional
problems can be defined:
• 2|SO|L : two Dimensional Sequential Oriented Loading
• 2|UO|L : two Dimensional Unrestricted Oriented Loading
• 2|SR|L : two Dimensional Sequential Rotated Loading
• 2|UR|L : two Dimensional Unrestricted Rotated Loading

In a “Sequential” problem items must be packed into the vehicle in such a way that unloading the

items for each customer in the trip can be achieved through a sequence of straight movements (one per
item). This additional constraint ensures that no item required by a customer serviced afterwards
prevents an item of the current customer to be unloaded. “Unrestricted” means that there is no
restriction in the items packing problem i.e. one item unload could required several costly movements
of items. In “Oriented” problems no rotation of items are possible while they are allowed in “Rotated”
problems.

The 2L-CVRP resolution has been first addressed by Iori et al. [10] using an branch and cut

approach limited to small scale instances (less than 25 customers) dedicated to Sequential Oriented
Loading. Then Gendreau et al. [7] introduced a tabu search algorithm for both sequential and
unrestricted large scale instances. To the best of our knowledge, the Ant Colony scheme introduced by
Fuelllerer et al. [9] is the most efficient approach to solve the 2L-CVRP. Three dimensional loading
CVRP (3L-CVRP) have been recently addressed by Gendreau et al. but only small scale instances are
tested since three dimensional packing problems are much more difficult than two dimensional ones.

1.3 Cutting and Packing problems

Packing problems belong to the well-known family of cutting and packing problems. Many packing
problems deal with the insertion of rectangular items in rectangular bin. They mostly differ on the
objective function to minimize.

Submitted to Computers and Operations Research

 3

• The Two-Dimensional Bin Packing Problem (2BPP) consists in packing a set of rectangular items
into a minimum number of identical rectangular bins.
• The Two-Dimensional Strip Packing Problem (2SP) consists in packing a set of rectangular items
into a strip of known width and infinite height so as to minimize the overall height of the packing.
• The Two-Dimensional Orthogonal Packing Problem (2OPP) consists in determining if a set of
rectangular items can be packed into one bin (rectangle) of fixed size.

Several extensions have been tackled over time in scientific publications, including but not limited to
rotation of items, limitations on the total weight and/or item costs. The 2L-CVRP packing problem
falls into the last category since the objective for a trip is to be sure that items can be packed into the
vehicle.

A 2OPP instance consist in a set { }nI ,...,1= of items which have to be packed and of a bin ()WLB ;=

fully defined by its length L and its width .W An item i has a length il and a width iw (il , iw IN∈).

A solution of the problem consists in defining the position of each item i (denoted by ()ii yx ; and
corresponding to the coordinates of its bottom left-hand corner) without overlapping.

Several exact methods are described in literature for the 2OPP including, methods which pack
items one by one [11] [12], methods promoting constraint programming techniques [13][14], methods
taking advantages of graph theory [15][16] and methods addressing a relaxed problem. Exact
resolution schemes are time consuming and then limited to small and medium scale instances with less
than 20 items to pack. Large scale instances have been efficiently addressed by heuristic and
metaheuristic schemes based on simulated annealing (see for example [17]) or genetic algorithms (see
[18] and [19] for example). In fine, packing problems resolution is one of the challenging problems to
solve when addressing 2L-CVRP: the difficulty mostly comes from a great part, of the huge number of
constraints generated by the items geometry. A 2OPP example is introduced below including a
graphical solution representation.

item i length li width wi

A 4 2
B 2 5
C 3 1
D 1 2
E 2 3
F 3 3

Table 1: An instance of 2OPP

Let us consider a 2OPP instance with 6 items
(table 1) which must be packed into a bin

()5;10=B . Table 1 gives one 2OPP solution i.e.

the position ()ii yx , of each item in the bin.
Figure 1 gives a graphical representation of the
2OPP solution described in table 2.

 item i xi yi
 A 2 0
 B 0 0
 C 2 2
 D 6 0
 E 8 0
 F 5 2

Table 2: One 2OPP solution

Figure 1: One 2OPP graphical representation
solution

1.4 Resource-Constrained Project Scheduling Problem: RCPSP

The Resource-Constrained Project Scheduling Problem (RCPSP) is composed of a set of na activities
and a set of m resources. The terminology is quite different from the 2OPP terminology since “item” is
replaced by activity to illustrate there is no geometric consideration in activity definition. Each activity
i is characterized by its duration di and his requirement r ik, k = 1...m, in resources. Activities are

Submitted to Computers and Operations Research

 4

interrelated by precedence constraints which state that one activity j cannot start before its immediate
predecessors have been achieved. For the sake of simplicity, a unique source activity s and a unique
sink activity u are usually included in the project. They correspond to the “project start” and to the
“project end”, respectively. The aim of the RCPSP is to schedule all activities satisfying both
precedence and resource constraints and minimizing the total project duration (the makespan). The
structure of the project is usually modeled by a so-called activity-on-node (AON) network where the
nodes represent the activities and the arcs represent the precedence constraints.

The RCPSP is a challenging problem of great interest that has been widely studied over the past
decades. Since it is an extension of the job-shop, it is NP-hard (see [20] [21] for details on
complexity). Several surveys are available including the survey of Herroelen et al. [22], of Kolisch and
Padman [23], of Weglarz [24] and of Demeulemeester and Herroelen [25]. Kolisch and Padman [23]
also surveyed some heuristic methods for classes of project scheduling problems. Heuristic-based
approaches are completed by numerous iterative improvement schemes including Memetic Algorithm,
Tabu Search for instance. Note that an efficient insertion technique has been proposed by Artigues et
al. [26]. Tseng and Chen provided detailed experiments on methods taking into account the
computation time and other performance criteria [27]. A RCPSP solution is fully defined by the
starting time of each activity.

activity j duration dj resource rj

A 4 2
B 2 5
C 3 1
D 1 2
E 2 3
F 3 3

Table 3: An instance of RCPSP

The RCPSP solution only guaranties that the
total amount of resources satisfies the total
consumption of activities, at any time.

For the instance of table 3, we provide the
RCPSP solution of table 4 with the starting time
xi of all activities i.

An example of RCPSP instance is provided in
table 3. The RCPSP instance is composed of 6
activities and 5 units of a single resource.

In RCPSP, the resource consumption over time depends of the starting time xi of activity. Figure 2
gives the resource consumption linked to the solution of table 4.

activity j xj
A 2
B 0
C 2
D 6
E 8
F 5

Table 4: One RCPSP solution

 Figure 2: One RCPSP graphical representation
of the resource consumption

1.5 RCPSP and two orthogonal packing problem

Table 5 sums up the similarities between the two problems for both objective and solutions required.
This table highlights that a 2OPP solution consists in defining for each item i a pair ()ii yx , , while a

RCPSP solution consists in defining only a starting time ix for each activity i . Hartman [28] stressed
that packing and project scheduling problems are completely different with respect to their
applications but it is possible to compare the mathematical properties of packing and project
scheduling problems. Extra details between 2OPP and RCPSP including algorithms are introduced in
[29].

Submitted to Computers and Operations Research

 5

 2OPP RCPSP

Problem statement Pack items into one bin Schedule activities

Object
2 dimensional items defined by

length and width
Activities defined by resources

requirement and duration

 Items Activities

 Length Duration

 width Resource requirement

Solution
for each item i ,

position ()ii yx ,

for each activity i ,

starting time ix

Table 5: RCPSP vs 2OPP

One can note that a single resource RCPSP is a special case of 2OPP where items geometric
considerations (items cannot be cut) are replaced by resource consumption. Most of the time,
depending on the data characteristics, it is possible to compute a 2OPP solution respecting the RCPSP
activities starting time. Relaxation of items geometry in the 2OPP results in a Resource-Constrained
Project Scheduling Problem (RCPSP) easier to solve in the sense the problem is less constrained and
RCPSP solutions can be investigated in smaller computation time than for packing problems using
heuristic and/or metaheuristics. Note that both 2OPP and RCPSP are both NP-Hard to solve.

Since the RCPSP is less constrained than 2OPP, greedy heuristics and meta-heuristic are more
efficient to provide quality solutions in reasonable computational time. The 2L-CVRP framework we
promote, takes advantages of this feature and it solves a RCPSP-CVRP i.e. a CVRP with a RCPSP trip
check avoiding costly 2OPP trip check. This approach belongs to the GRASP× ELS framework fully
described in section 2.

2 GRASP× ELS framework for the UO-2L-CVRP

2.1 Key-features

We propose to solve the 2L-CVRP with Unrestricted Oriented Loading (2|UO|L CVRP) by
relaxing packing problem constraints into Resource Constrained Project Scheduling Problem (RCPSP)
constraints. A Greedy Randomized Adaptive Search Procedure (GRASP) is used to compute high
quality RCPSP-CVRP solutions. At the end of the optimization process the RCPSP-CVRP solutions
are transformed into 2L-CVRP solutions. During the optimization, trips are checked to be “RCPSP-
feasible”: items can be loaded into the vehicle with respect to the RCPSP constraints, i.e. at each point
of the vehicle length the total width used does not exceed the vehicle width. Note the vehicle width is
related to the RCPSP resource availability.

The framework we introduce works in two steps (see figure 3): in the first step, the bin-packing
constraints are relaxed into RCPSP constraints. The resulting problem to be solved is denoted RCPSP-
CVRP since we consider only that a trip must complied with the RCPSP constraints and that no
packing constraints hold. Thus the resulting RCPSP-CVRP problem becomes easier to solve. The
second step consists in converting a RCPSP-CVRP solution into a 2L-CVRP solution.
The first step is solved by a GRASP× ELS metaheuristic. Solutions are only required to be both
“weight-feasible” and “RCPSP-feasible”. The load of each vehicle is limited by a coefficient p to limit
unsuccessful conversions into a 2L-CVRP solution. However, it is possible that high quality RCPSP-
CVRP solutions may not lead to feasible 2L-CVRP solution. Thus, the nb best RCPSP-CVRP
solutions built during the GRASP× ELS process are kept. At the end of GRASP× ELS, these solutions
are iteratively investigated and the best that can be transformed into a 2L-CVRP solution is kept as the
best solution found during the process.

Submitted to Computers and Operations Research

 6

Figure 3: 2L-CVRP optimization flowchart

During the optimization, the number of trips can exceed the number of allowed vehicles. These
solutions are considered but they are penalized as follows:
 f(S) = ∑

∈

+×−
)(

)())((
Stt

tfNSN α where :

- N(S) is the number of trips in solution S
- N is the number of vehicles
- α is the penalty
- t(S) is the set of trips of solution S
- f(t) is the cost of trip t

2.2 GRASP× ELS Principle

The purpose of this section is to evoke the principles of GRASPxELS where:
• GRASP (Greedy Randomized Adaptive Search Procedure) is a multi-start local search

metaheuristic in which each initial solution is constructed using a greedy randomized heuristic.
• ELS (Evolutionary Local Search) is an evolved version of ILS (Iterated Local Search). The

purpose of ELS is to better investigate the current local optimum neighborhood, before leaving it
whereas the purpose of the GRASP consists in managing diversity in search space investigation.

Starting from an initial solution, each ILS iteration consists in taking a copy of the incumbent solution
S, applying a perturbation similar to the mutation operator of genetic algorithms, and improving the
perturbed solution using a local search. The resulting solution S' becomes the incumbent solution. The
evolutionary local search or ELS, introduced in [30] for the routing problems, is similar but, at each
iteration nd "chidren" instead of 1 are generated from S, using mutation and local search, and the best
child replaces S. The framework we promote is a multi-start ELS in which an ELS is applied to the
initial solutions generated by greedy randomized heuristics. Such metaheuristic can also be viewed as
a GRASP× ELS in which the local search is replaced by an ELS. GRASP× ELS [30] [31] is a
hybridization of both GRASP and ELS capturing the positive features of both methods (figure 4).

Submitted to Computers and Operations Research

 7

Figure 4: GRASP × ELS principle

2.3 Search space investigation strategy

The GRASP × ELS efficiency is based on a swap between solution representations: solutions encoded
as giant tours (TSP tours on the n customers) and RCPSP-CVRP solutions encoded as the set of trips
(figure 5). Such an approach allows GRASP to focus on the giant tour space (which is smaller than the
space of RCPSP-CVRP solutions) and a giant tour T is converted into an RCPSP-CVRP solution S
(with respect to the sequence) using a dedicated splitting procedure (Split). Split has been successfully
applied to numerous routing problems including the Capacitated Arc Routing Problem (CARP [32]),
the Vehicle Routing Problem (VRP [33]), the Location Routing Problem (LRP [34][35]). The high
quality solutions obtained by Prins [33], alternating between two search spaces (giant tour and VRP
solutions) is a first-rate indication of the approach quality. The GRASPxELS takes advantages in this
line of research, by investigating both the space of giant tours and the space of complete 2L-CVRP
solutions.

Split

Concat

GRASPxELS search space RCPSP-CVRP search space

Figure 5: Combination of the two search spaces

Submitted to Computers and Operations Research

 8

During the GRASP× ELS process, a giant tour T is converted by Split into a RCPSP-CVRP solution S
with respect to the given sequence and to the RCPSP constraints. The Concat procedure converts S
into a giant tour T’ by concatenating its trips. The giant tour T’ can be split again in order to get a new
RCPSP-CVRP solution. This process allows alternating between the giant tours space and the RCPSP-
CVRP space.

The Local Search is a first improvement descent method using several classical VRP
neighborhoods to improve the initial RCPSP-CVRP solution: 2-Opt within a trip, 2-Opt between two
trips, Swap within a trip and Swap between two trips.

Connecting these components together leads to the GRASP × ELS scheme presented in

Algorithm 1. T, S and f(S) respectively denote a giant tour, a RCPSP-CVRP solution and its cost.
During the algorithm, the incumbent solution is stored, thus S* denotes the incumbent solution and f *
is its value. The lines 14-36 correspond to the GRASP× ELS loop of figure 4. It generates np pairs
(S,T) used as starting points by the embedded ELS. The ns iterations of ELS are performed in the loop
lines 20-35 and the nd parallel mutations are done in lines 22-28. To compute each pair (S,T),
randomized versions of the well-known Clarke and Wright’s heuristic [36] and of Path Scanning
heuristic [37] are used. The initial solution S is improved by a procedure Local_Search introduced in
section 2.6 and it is converted into a giant tour T using the Concat procedure. Any giant tour is
scanned into trips tackling if a trip t is RCPSP-feasible.

During the GRASP× ELS process, the nb best RCPSP-CVRP solutions are saved into an ordered
set O (sorted on increasing costs). At the end of GRASP× ELS, the solutions from O are iteratively
inspected and tentatively transformed into a 2L-CVRP solution using a Transform procedure (step 41
in algorithm 1). O is scanned as long as the transformation fails. Thus the scan stops with the best
solution that can be transformed into a 2L-CVRP solution. If no solution of O can be successfully
transformed, the GRASP× ELS fails and returns f(S)=∞. The Transform procedure is detailed in
section 2.9.

In order to be efficient, the GRASP× ELS process must include an intensification procedure to

favor convergence into promising search space area for large scale instances. The initial heuristic
solutions are discarded if they are worse than the incumbent (S*): this favors the neighborhoods
exploration around the best solution. The intensification process is not useful for small and medium
scale instances and it is activated using a global GRASP× ELS parameter denoted intensification.

2.4 Random heuristics to generate initial solutions

Clarke and Wright’s heuristic and Golden et al.’s heuristics are used in a wide range of routing
problems since they provide high quality solutions in a rather short computational time and since they
are easy to randomize. Our heuristic procedure iteratively applies the four considered heuristics:
randomized Clarke and Wright (RCW), Path Scanning (PS), randomized Path Scanning (RPS) and a
basic random generation (RS). Note that seven criteria are used for the Path Scanning heuristic. All
heuristics compute a weight-feasible and load-feasible solution without considering the RCPSP
constraints but considering that the area of the vehicle available is limited to p percent of the initial
area. Solutions are “load-feasible” and “weight-feasible” only and transform into a giant tour which is
lately split into trip using the split procedure (see Section 2.8) which ensures the RCPSP constraints
hold for trips i.e. trips are “RCPSP-feasible”. The procedure Generation_of_Initial_Solutions detailed
in Algorithm 2 uses the two well-known powerful heuristics denoted Path-Scanning and Clarke and
Wright. Clarke and Wright’s heuristic introduced in 1964 [36] consists in first providing a number of
trips equal to the number of customers to service. Path-Scanning was initially designed for arc routing
problems but we have adapted it to the 2L-CVRP.

Submitted to Computers and Operations Research

 9

1. procedure GRASP× ELS
2. global parameters
3. np: number of GRASP iterations (initial solut ions)
4. ns: maximum number of iterations per ELS
5. nr: maximum number of iterations without impr ovement per ELS
6. nd: number of diversifications (mutations)
7. nb: number of high quality solutions saved
8. output parameters
9. S*: best 2L-CVRP solution found
10. begin

11. f* := ∞; O := Ø
12. for p := 1 to np do
13. S := call Generation_of_initial_solution ()
14. T := call Concat (S)
15. if (f(S) < f*) then f* := f(S); S* := S
16. else
17. if (intensification = true) then
18. S := S*
19. endif
20. endif
21. i, r := 0
22. while (i < ns) and (r < nr) do // ELS loop

23. i := i + 1; f” := ∞
24. for j := 1 to nd do // mutation loop
25. T’ := call Mutation (T)
26. S’ := call Split (T’)
27. S’ := call Local_Search (S’)
28. T’ := call Concat (S’)
29. if (f(S’) < f”) then f” := f(S’); T” := T’; S” := S’; endif
30. endfor
31. if (f” ≥ f(S)) then // check if not improved solution
32. r := r + 1 // update the number iterations without improvement
33. endif
34: if (f” < f*) then // if a new best solution
35. add (O, S) // add this solution to list O
36. S*:= S” // update S*
37. endif
38. T := T”; // best ELS solution becomes the new initial solution
39. endwhile
40. endfor
41. Iterative check of solutions in O looking for a 2L-CVRP solution
42. end

Algorithm 1: GRASP × ELS for the 2L-CVRP

Path-Scanning is a greedy heuristic assigning new customers in trips according to a function which
depends on five criteria (see [37]). Initially, the heuristic uses a nearest neighbor technique building
VRP trips one by one: different rules are used to break ties. In the present implementation, the
minimal distance is not used and some non promising solutions can be obtained without damage for
the global metaheuristic performance since these solutions are used for the evolutionary local search
scheme which consists in generation of nd children. This approach provides a great diversity in the
initial solutions generation. Five executions of the heuristic over the five criteria permit to keep the
best solution. The five criteria first introduced in [37] are the following: the customer with the
maximal distance to the depot (C1); the customer with the minimal distance to the depot (C2); the
customer with the maximal ratio between the quantity to deliver and the distance (C3); the customer
with the minimal ratio between the quantity to deliver and the distance (C4); the first criterion until the
vehicle is half-loaded and the second criterion otherwise (C5). Our procedure includes a randomized
version of Clarke and Wright, the deterministic adaptation of path-scanning, a randomized adaptation
of path-scanning and also a full randomized generation. One run consists in calling one of these
procedures.

Seven criteria are used as input parameter for the two adaptations of path-scanning:

• customer with the maximal distance to the depot (C1’),

Submitted to Computers and Operations Research

 10

• customer with the minimal distance to the depot (C2’);

• customer with the minimal weight to deliver (C3’);

• customer with the maximal weight to deliver (C4’);

• customer with the minimal area to deliver (C5’);

• customer with the maximal area to deliver (C6’);

• customer with the maximal distance to the depot if the vehicle area is half-loaded and customer
with the minimal distance if not (C7’).

Since there is no guarantee on the number of vehicles used by each heuristic, the solution is checked at
each iteration and stops as soon as the number of vehicles satisfies the number of available vehicles
with a number of iterations upper bounded by ne. If a non feasible solution is obtained (loop of
algorithm 2 stops because i>ne), a penalty is included according to the penalty function defined in
section 2.1. At the end of the procedure, trips of the solution are concatenated to get a giant tour. This
giant tour is then submitted to Split to obtain RCPSP-feasible trips. One call to
Generation_of_initial_solution (algorithm 2) leads to the execution of one heuristic: two times for
both RCW and RS, one time with the 7 criteria for PS and RPS. Note that current is a global
parameter to provide a loop over the heuristics.

1. procedure Generation_of_initial_solution
2. input parameters
3. ne: maximal number of iterations
2. output parameters
3. S: a RCPSP-CVRP solution
4. begin
5. current := 1; cpt := 0; i := 1
6. while ((i ≤ ne) and (no solution found)) do
7. case current of
8. case 1:
9. S := call RCW ()
10. cpt := cpt + 1
11. i f (cpt > 2) then
12. cpt := 0; current := current + 1
13. endif
14. case 2 :
15. S := call PS (criterion)
16. criterion := criterion + 1
17. i f (criterion > 7) then
18. criterion := 1; current := current + 1
19. e ndif
20. case 3 :
21. S := call RPS (criterion)
22. cpt := cpt + 1
23. i f (cpt > 2) then
24. cpt := 0; criterion := criterion + 1
25. i f (criterion > 7) then
26. criterion := 1; current := current + 1
27. e ndif
28. endif
29. case 4 :
30. S := call RS ()
31. cpt := cpt + 1
32. if (cpt > 2) then
33. cpt := 0; current := 1
34. endif
35. endcase
36. i:=i+1
37. T := call Concat (S); S := call Split (T);
37. endwhile
38. return S
38. end

Algorithm 2: Generation of initial solutions

Submitted to Computers and Operations Research

 11

The procedure Generation_of_initial_solution generates a lot of different solutions by taking
advantage of the four procedures and of the seven criteria introduced in the two versions of Path-
Scanning.

2.5 Mutation

The mutation operator is defined on giant tours ())(10 ,...,, TnTTTT = (where iT is the i th trip and)(Tn is

the number of trips in T) and based first on generation of new trip concatenation order and second on
customer exchange to obtain a children giant trip 'T .

During the first step, one cutting trip iT is randomly selected in T and the substring)(,..., Tni TT is

copied into 1)(1 ',...,' +−iTnTT . Finally T is swept from 1 to 1−iT to complete 'T with the missing trips.

Second two customers are randomly chosen in 'T and exchanged in 'T .

2.6 Local search

The purpose of the local search is to improve a RCPSP-feasible solution by investigating the RCPSP-
CVRP space. As mentioned before, the procedure relies on classical 2-Opt and Swap moves. These
moves exist in two versions: inside a single trip and between two trips. At each iteration the local
search uses the procedures LS_2Opt_Intra, LS_2Opt_Inter, LS_Swap_Intra, LS_Swap_Inter. These
procedures define an iterative search scheme using respectively the following neighborhood structures
2-Opt inside a trip, 2-Opt between two trips, Swap inside a trip and Swap between two trips. The order
in which these procedures are called depends on probability q as stressed in algorithm 3.

This algorithm depends on a threshold ε used to guarantee a minimal improvement on the solution
cost. The iterative search stops when the improvement is lower than ε (typically 1=ε) or when the
maximal of iterations has been reached. The first improvement criterion is used when exploring the
neighborhood and the Check_RCPSP procedure is called on each move. An additional neighborhood
(LS_Split) is used when the current solution has not been improved by at least one of the first four
local searches. It consists in random trips concatenations into giant tours and projecting it back into the
RCPSP-CVRP solution space using Split. Its purpose is to check if Split is able to find a better
solution with the modified sequence. As LS_Split requires Split, its time complexity is high
nevertheless it provides an efficient local search scheme. Thus it is called only if the current solution
has not been sufficiently improved.

Compared to more elaborate neighborhood structures, we choose to restrict the local search to the 2-
Opt and to the Swap for two reasons: the time complexity remains low and the intrinsic structure of
the GRASP × ELS scheme handles well a restricted local search.

Submitted to Computers and Operations Research

 12

1. procedure Local_Search
2. input parameters
3. S: RCPSP-feasible initial solution
4. global parameters
5. max_iter: maximum number of iterations
6. ε : threshold on the improvement
7. q : probability
8. output parameters
9. S: incumbent RCPSP-feasible solution
10. begin
11. iter := 0
12. do
13. old_val := f(S)
14. S := call LS_2Opt_Intra (S)
15. S := call LS_2Opt_Inter (S)
16. if (random < q) then // random : random number generation between 0..1
17. S := call LS_Swap_Intra (S)
18. S := call LS_Swap_Inter (S)
19. else
20. S := call LS_Swap_Inter (S)
21. S := call LS_Swap_Intra (S)
22. endif
23. if (old_val- f(S) ≤ ε) then S := call LS_Split (S) endif
24. iter := iter + 1
25. while (f(S) + ε < old_val) and (iter < max_iter)
26. return S
27. end

Algorithm 3: local search

2.7 A simple and effective RCPSP resolution (Check_RCPSP)

During the GRASP× ELS, a RCPSP with a single resource and with no precedence constraints is
addressed. The vehicle length gives an upper bound of the completion time of the last activity to
schedule. For each trip, we have to solve a RCPSP where activity duration and requirement in resource
are given by item length and width respectively. A trip is RCPSP-feasible if the makespan of the
corresponding RCPSP does not exceed the vehicle length. Each time a trip is modified in the local
search or each time the Split propagates labels by adding a new trip, a check RCPSP-feasibility must
be achieved. Thus the efficiency, in terms of quality and in terms of speed, of the corresponding
algorithm is critical.

The Schedule Generation Schemes (SGS) [38] for RCPSP are based on priority-rule relying both the
precedence constraints and the limitation on the total amount of resources. Initially, no activity is
scheduled. At each iteration, activity with the highest priority is selected and scheduled. The priority
of each activity depends on both the precedence constraints and the resources consumption and
previously scheduled activities.
The efficiency of priority rules depends on the number of resources and on the number of precedence
constraints to generate adequate activity list. According to Kolisch [38] WCS is one of the best
priority rules. It provides an average deviation of 3.71% to optimality on Patterson instances with a
short computational time. However, since there is no precedence constraint and only one resource is
used, the priority rule computation is unattractive and it does not induce a profitable activity list. Since
our RCPSP handles few constraints, it leads to activities with identical (or similar) priorities. One
could use a randomized-WCS (random selection of activity between the best activities) which required
time consuming priorities computation without any profitable result since WCS is not adequate for this
specific RCPSP (one resource only with no precedence constraint). Thus, we propose a randomized
activity selection which has been benchmarked and which seems to be highly efficient on this specific
RCPSP.

Submitted to Computers and Operations Research

 13

Our SGS (Algorithm 4) performs n iterations, one per activity. At an iteration k, the partial schedule
contains k activities. Several variables are associated to iteration k:

• tk: the schedule time (current time);
• Ak: the active set, i.e. the activities scheduled but not finished at time tk;
• Rk: the amount of resources available at time tk, ∑

∈

−=
kAi

ik rMR where M is the total amount

of resource available (the vehicle width) and r i is the requirement in resource of activity i (the
item width)

• Dk: the decision set, i.e. the activities which can be scheduled at tk (one activity i can be
scheduled at tk if all its predecessors are finished and if r i ≤ Rk).

1. procedure Randomized_SGS
2. input parameters
3. set: set of na activities j of duration d j
4. M : maximal project duration
5. output parameters
6. ES j : earliest starting time of activity j
7. LS j : latest starting time of activity j
10. begin
11. t 0 := 0
12. D 0 := set // set of activities which can be scheduled at t k = 0
13. A 0 := {}
14. for k := 1 to na do
15. randomly choose an activity j in D k
16. schedule j at t k: ES j := t k
17. update A k, D k
18. while (D k is empty)
19. t k := min{EF j / j in A k}
20. update D k, A k
21. endwhile
22. endfor
23. if max(ES j +d j)<M then
24. compute LS j
25. endif
26. end

Algorithm 4: A randomized schedule generation scheme for the 2L-CVRP

Note the procedure Randomized_SGS looks for a RCPSP solution less or equal than a maximal
project duration M . If the makespan (earliest finish time of the last activity) is less or equal than M
the latest starting time of activities are computed and the procedure return both jES and jLS for each

activity j . To check the RCPSP-feasibility, the basic procedure Basic_Check_RCPSP (Algorithm 5)
calls the Randomized_SGS procedure until a RCPSP solution is feasible (all activities end before the
maximal project duration) or until the maximal number of iterations is reached.

Submitted to Computers and Operations Research

 14

1. procedure Basic_Check_RCPSP
2. input parameters
3. set: set of activities j of duration d j
4. M : maximal project duration
7. nm : maximal number of attempts
8. output parameters
9. res : result for the procedure (success/f ailure)
10. makespan: the makespan
10. begin
11. k := 1
12. do
13. (ES,LS) := call Randomized_SGS (set, M)
14. k := k + 1
15. while (max{ES j +d j } > M) and (k ≤ nm)

16. res := (max{ES j +d j } ≤ M) ; makespan := max{ES j +d j }
17. end

Algorithm 5: Basic RCPSP check

The aim of the procedure Check_RCPSP is to check if the makespan of the RCPSP does not exceed
the vehicle length L. Trying to speed up the Check_RCPSP procedure, we propose to iteratively use
the Basic_Check_RCPSP procedure with different decreasing total project duration. The main idea
consists in considering that if the best solution found over the first iterations is strongly greater than
the vehicle length, then it is possible to state that extra investigation are useless for RCPSP resolution.

The procedure Check_RCPSP uses two arrays Ψ and ∆ of length K where K is the number of steps
investigated in Check_RCPSP. Ψ keeps the successive value (in percent) and ∆ is an array of
iterations assigned to each percent in Ψ . For example let us consider L=40, Ψ =(1.25;1.15;1.10;1.00)
and ∆ =(10;100;300;1000). Thus, the first call to Basic_Check_RCPSP is achieved with

5025.140 =× for the maximal project duration and 10 iterations. If in 10 iterations the best solution
found is greater than 50, the algorithm stop assuming the probability of finding a makepsan less than
L=40 is too low. Otherwise, starting from this solution, 100 iterations are used to find a schedule with
a duration less than 4615.140 =× .

1. procedure Check_RCPSP
2. input parameters
3. set: set of activities j of duration d j
6. global parameter
7. L : vehicle length
8. Ψ []: array of percent
9. ∆ []: array of number of iterations
10. output parameters
11. res: result for the procedure (success/failu re)
12. begin
13. k := 1
14. do
15. (res, makespan) := call Basic_Check_RCPSP (set, L* Ψ [k], ∆ [k])
16. k := k + 1
17. while ((res = true) and (makespan>M) and (k<K))
18. end

Algorithm 6: RCPSP check

During the experiments, we noted that Check_RCPSP usually works better with a larger amount of
resources than the duration. Thus, as the vehicle length is larger than its width, the two dimensions are
exchanged before entering the procedure.

2.8 Split procedure

As previously stressed, Split is a key-procedure to convert a giant tour into a RCPSP-CVRP solution
(with respect to the sequence). It is based on the classical Split procedure [39][32][33], tuned to
address the specific RCPSP-CVRP constraints.

Submitted to Computers and Operations Research

 15

The Split procedure first builds an auxiliary digraph HT = (X, Y, Z) where X is a set of n+1 nodes
indexed from 0 to n. Node 0 is a dummy node, while the nodes 1…n correspond to the sequence of the
giant tour ()nvvT ...1= . An arc (i,j) belongs to Y if a trip servicing customers vi+1 to vj (included) is

both weight-feasible and RCPSP-feasible. The weight of the arc () Yji ∈; is the trip cost

∑
−=

++=
+

1..
00 1

jik
vvvvij jkki

cccz . Optimally splitting T (figure 6) corresponds to a min-cost path from node

0 to node n in H. An initial label is set at node 0. The labels are propagated from node to node in H
using the arcs and the best label at node n is kept.

Figure 6: Split transformation

Let ()jkzNL p
i

p
i

P
i ,,,= be the pth label assigned to node i. It corresponds to a feasible split of the

initial customers t1...ti into trips. p
iN is the number of vehicles remaining available, p

iz is the cost of

the trips previously built and ()jk, is the reference to its father label, e.g. k
jL , the kth label at node j.

The initial label at node 0 is defined as ()1,1,0,1
0 −−= NL . It corresponds to the empty solution where

all the vehicles are available. Given the arc () Aji ∈, , label p
iL generates label ()pizNL q

j
q
j

q
j ,,,= by

propagation as follows:

• 1−= p
i

q
j NN

• i
p
i

q
j zzz +=

Since large number of labels on node has significant impacts the efficiency, dominance rules can be
defined considering that label piL dominates q

iL if one of the following conditions holds:

() ()
() ()

≥<
≤>

q
i

p
i

q
i

p
i

q
i

p
i

q
i

p
i

NNandzz

zzandNN

The critical path leading to the best final label defines the trips of the solution. The procedure Split is
detailed in Algorithm 7. For each node i, NB[i] gives the number of related labels. The procedure
Check_Domination_On_Node checks if the new label L is dominated by another label at node j. The
procedure Insert inserts this label into the set of node j labels and removes the dominated labels. The
number of labels is updates accordingly.

Submitted to Computers and Operations Research

 16

1. procedure Split
2. input parameters
3. T: giant tour
4. output parameters
5. S: RCPSP-CVRP solution
6. global parameter
7. D : maximal vehicle weight capacity
8. d i : total items weight of customer i
9. c ij : cost from customer i to j
10. n : number of customers
11. begin

12. ()1,1,0,:1
0 −−= NL , S := ∅

13. for i := 1 to n do L i := ∅ endfor
14. for i := 0 to n - 1 do
15. j := i + 1
16. trip := ∅; client := ∅
17. repeat
18. prev := client
19. client := T j
20. trip := trip + client
21. if (j = i + 1) then
22. trip_load := d client
23. trip_cost := c depot,client + c client,depot
24. else
25. trip_load := trip_load + d client
26. trip_cost := trip_cost +c prev,client +c client,depot -c prev,depot
27. endif
28. check := (trip_load < D) and (Check_RCPSP(trip) = true)
29. if (check = true) then
30. for p := 1 to NB i do

31. let ()jkzNL p
i

p
i

P
i ,,,:= be the current label

32. propagate on j: ()pizzNL ij
p
i

p
i ,,,1: +−=

33. if (Check_Domination_On_Node(L , j, NB j) = false) then
34. call Insert(L, j, NB j)
35. endif
36. endfor
37. endif
38. j := j + 1
39. until (check = false) or (j > n)
40. endfor
41. if (NB n > 0) then
42. S := call extract_trips ()
43. endif
44. end

Algorithm 7: Split

2.9 Transformation of a RCPSP-CVRP solution into a 2L-CVRP solution

Several authors, including Iori et al. [10], have previously noticed that greedy algorithms could lead to
efficient frameworks by carefully managing the classical envelope (or contour) as defined in Martello
et al. [40] and addressing only normal fillings. Exact methods based on linear formulations cannot be
used due to excessive computational time. As a consequences of the framework we introduce, the
transformation of a RCPSP-CVRP solution into a 2L-CVRP solution is only done at the end of
GRASP× ELS. In order to be efficient, the transformation has to take advantage of the output of the
RCPSP check. In a RCPSP-CVRP solution, items are associated to an abscissa. Note that only one bin
is available (the vehicle) and that the x-position xi of an item i can be given either by its earliest
starting time (ESi) or by its latest starting time (LSi) computed by the procedure Check_RCPSP. A 2L-
CVRP solution is first investigated with the earliest starting time (ESi) and then (if required) using the
latest starting time (LSi).

Submitted to Computers and Operations Research

 17

The Algorithm RCPSP_To_Packing (see Algorithm 8) investigates iteratively all the y-positions
starting from 0 until all items are packed or until the remaining items cannot be packed (we have
reached the vehicle width). Dy is defined as the set of items i which can be scheduled at position (xi,y).
The envelope of items already packed is given by the function Front(x), which returns the smallest y
available at abscissa x. At each iteration, min_front is the smallest value of the front where remaining
items can be scheduled, is considered. Then a random selection is done in Dmin_front. The item is
scheduled and the envelope is updated. The outer loop (steps 11-24) tries to pack the maximal number
of items. When Dy is empty, the next y-position is investigated with respect to the minimal front value
where items can be scheduled.

1. procedure RCPSP_To_Packing
2. input parameters
3. set: set of items of length l j and of width w j
4. x i : abscissa of item i
5. output parameters
6. res: result of the procedure (success/failure)
4. y i : ordinate of item i
5. global parameters
6. L: vehicle length
7. W: vehicle width
7. begin
8. A := set
9. y := 0
10. for x := 0 to L do front[x] := 0 endfor
11. repeat

12. D y := {items which can be scheduled at y according to x i }

13. if (D y = Ø) then
14. prec_y := y
15. y := min {front(x) | front(x) > y}
16. else
17. randomly choose i in D

18. A := A \ {i}
19. schedule i at (x i , y); y i := y
20. for x := x i to x i + l i -1 do
21. front(x) = front(x) + w i
22. endfor
23. endif
24. until (A = Ø) or (y ≥ W)
25. res := (A = Ø)
26. end

Algorithm 8: RCPCP_To_Packing

The following example illustrates the algorithm. Table 6 contains the items to be packed into a vehicle
of size 2035× .

 Width Length xi = ESi
a 6 18 0
b 12 5 0
c 8 5 5
d 10 10 10
e 5 7 18
f 5 15 20

Table 6: Items to be packed

Submitted to Computers and Operations Research

 18

At the beginning, no items are scheduled as
shown in figure 7. Initially, all the items can be
scheduled at y=0, thus D=A. Item b is randomly
chosen and scheduled. The front and D are
updated: D={c,d,e,f} as item a cannot be
scheduled at y=0 anymore. The next item is
randomly chosen, say c.
The front and D are updated: D={d,e,f}, see
figure 8. Suppose the next item is d. D={f} as
item e cannot be scheduled at y=0 anymore. The
item f is scheduled (see figure 8.b). So, the
minimal value of the front where a remaining
item can be scheduled is y=10 and D={e} . Item e
is scheduled, y=12 and D={a} . Item a is
scheduled, D={} and a packing solution has been
found.

20

0
5 10 20 35

b

5

12

6 a

18

d

10

10 f

15

5

c

5

8
e

7

5

0 18

Figure 7 : Initial state

20

0
5 10 20 35

b

6 a

18

d
f

c

e

7

5

0 18

(a) after scheduling b and c (b) after scheduling b, c, d, f

Figure 8: Packing the items

Note that computing a feasible packing solution depends on the date xi assigned to the items. The
procedure Transform performs several successive calls to the procedure RCPSP_To_Packing until a
feasible packing is found. At each iteration, a new schedule is generated. A transformation is
experienced first using the earliest starting times ESi as xi then using the latest starting times LSi.

Submitted to Computers and Operations Research

 19

1. procedure Transform
2. input parameters
3. S: solution (set of trips, where S i is the i th trip)
4. global parameters
5. iter_max: maximal number of iterations per tr ip
6. output parameters
7. x j : starting time of activity j
8. y j : y-position for activity j
9. res: result of the procedure (success/failure)
10. begin
11. i := 1, res := true
12. while (i ≤ number of trips in S) and (res = true) do
13. k := 1; res_trip := false
14. while (res_trip = false) and (k ≤ iter_max) do
15. call Randomized_WCS (S i)
16. for l := 1 to ne do
17. (res_trip, y) := call RCPSP_To_Packing (S i ,ES)
18. if (res_trip = true) then x j = ES j ; break endif
19. endfor
20. if (res_trip = false) then
21. for l := 1 to ne do
22. (res_trip, y):= call RCPSP_To_Packing (S i ,LS)
23. if (res_trip = true) then x j = LS j ; break endif
24. endfor
25. endif
26. k := k + 1
27. endwhile
28. res := res_trip
29. i := i + 1
30. endwhile
31. end

Algorithm 9: Transform

2.10 Hash function for RCPSP

Since a huge number trips are evaluated during the GRASP× ELS and because each trip required a
RCPSP-feasibility check the process (which checks the RCPSP feasiblity) must be time efficient. It
can take advantages of both a map to store the result of the RCPSP-feasibility for trips previously
evaluated and of a hash function to address the results within the map. The hash function)(th
associated to a trip t is defined as follows:

∏
∈

=
ti

Kiprimeth mod][)(

where][iprime is the thi prime number and K is a constant. We consider a table of ordered prime
numbers (2, 3, 5, 7…). The value of K impacts the size of the map and the probability of collision (so
K must be as large as possible considering the memory available). Two different trips t and 't leading
to the same hash value are stated to be in collision. This hash function has interesting properties on
RCPSP-equivalent trips.

Definition: two trips t and 't which visit the same set of customers are RCPSP-equivalent.

As the set of customers is the same for t and 't , t is RCPSP-feasible if and only if 't is RCPSP-
feasible. Thus the following property holds:

Property: RCPSP-equivalent trips t and 't have the same hash value ())'()(thth =

This property is interesting as it means that only one RCPSP-feasibility check has to be done for all
the trips having the same set of customers. The value stored in the map, along with the trip, is defined
as follows:

Submitted to Computers and Operations Research

 20

()
feasibleRCPSPnotistif

feasibleRCPSPistif

donebeenyetnothasyfeasibilitRCPSPif

thF

−
−

−

−
=

1

1

0

)(

The improved version of Check_RCPCP (see Algorithm 10) takes into account the hash function and
the map. The structure map stores the trips already checked and the structure F stores the result of the
RCPCP check. To further improve the speed of the procedure, only trips requiring more than a given
number of iterations in Check_RCPSP are considered for insertion in the map. Such strategy aims at
limiting collisions by giving priority, in the storage, to the RCPSP solution whose check has been time
consuming.

1. procedure improved_check_RCPSP
2. input parameters
3. t : trip
4. set: set of activities of trip t
5. output parameters
6. res: result of the procedure (success/failure)
7. begin
8. if (F(h(t)) = 0) then // set was never checked
9. res := call check_RCPSP(set)
10. if (the number of iterations used in Check_RCPSP is l arge enough) then
11. map(h(t)) := t
12. if (res = true) then
13. F(h(t)) := 1
14. else
15. F(h(t)) := -1
16. endif
17. endif
18. else // set has already been checked
19. if (t = map(h(t))) then // RCPSP-equivalent
20. res := (F(h(set)) = 1)
21. else // not RCPSP-equivalent
22. res := call check_RCPSP(set)
23. endif
24. endif
25. end

Algorithm 10: improved RCPCP check

3 Computational evaluation
3.1 Implementation and benchmarks used

We report results on the set of instances used in previous publications [7][8][9]. Each instance is
divided into 5 classes: class 1 defines a single 1x1 item for each customer corresponding to basic
CVRP instances (there is no 2OPP to solve). Classes 2-5 contain instances with non-unit item sizes.
The item size has been randomly generated to define “vertical” instances (width greater than length),
“homogenous” instances and “horizontal” instances. The number of items for each customer for class i
has been generated according to an uniform distribution in the interval [1;i] (see [7] for more details
about the instances characteristics). These instances can be downloaded at
http://www.or.deis.unibo.it/research.html. As mentioned at the beginning the best results published so
far for those instances use Ant Colony [9]. The details of the solutions are available at
http://prolog.univie.ac.at/research/VRPandBPP/. We also report the results from [7] and [8]. The
solutions produced by GRASP × ELS are available at
http://www.isima.fr/~lacomme/2lcvrp/2lcvrp.html. All procedures in our framework are implemented
in C++ using the g++ compiler. Numerical experiments were carried out on a 2.1 GHz computer
running Linux. Since the GRASP × ELS is a random search algorithm, each instance was solved ten
times and the best found solution over the runs is kept with the CPU time required to reach this value.
The set of parameters used, for small scale (from 01 to 15), medium scale (from 16 to 19) and large

Submitted to Computers and Operations Research

 21

scale (20 to 36) instances, is given in table 7 and table 8. For all instances, Ψ =(1.25;1.15;1.10;1.00)
and ∆ =(10;100;300;1000).

 small scale medium scale large scale

np 20+[n/10] * 2 20+[n/10] * 20 infinite
α 100 000 100 000 100 000
ne 5 5 5
ns 20 20 20
nr 15 15 15
nd 10 15 15
nb 20 000 20 000 20 000

max_iter 50+[n/10] 50+[n/10] 50+[n/10] *7
p 1 1 1
ε 1 1 1

intensification no no yes

Table 7: parameter settings for class 1

 small scale medium scale large scale

np 20+[n/10] 20+[n/10] 20+[n/10]
α 100 000 100 000 100 000
ne 5 5 5
ns 20 20 20
nr 15 15 15
nd 10 15 15
nb 20 000 20 000 20 000

max_iter 50+[n/10] 50+[n/10] 50+[n/10]
p 0.95 0.95 0.95
ε 1 1 1
K 1 000 000 1 000 000 1 000 000

intensification no no yes

Table 8: parameter settings for classes 2 to 5

To provide a fair comparative study, the computational time of each method has been scaled by the
speed factor presented in table 9. This coefficient takes into account the MIPS performance of each
processor.

 (Gendreau, 2008) (Zachariadis, 2009) (Fuellerer, 2009) GRASP × ELS
Computer PIV 1.7 GHz PIV 2.4 GHz PIV 3.2 GHz Opteron 2.1 GHz
OS ? Windows XP Linux Linux
Language C Visual C++ C++ C++
Speed factor 1 0.66
Time limit 1h 1h 1h 1h30
Nb of runs 1 200 10 10

Table 9: comparative performance of processors

All previously published methods were benchmarked over 1 hour of computational time i.e. 1 hour of
computation is assigned for one run of the method. Since the reference results [9] have been obtained
on a computer 1.5 times faster, the GRASP × ELS time limit is set to 1h30. As stated in table 9 the
number of runs used in methods varies from 1 to 200 which does not favor fair comparative study.
Note also that all authors report the best found solution using the total number of runs reported in
table 8.

Submitted to Computers and Operations Research

 22

3.2 Performance of the procedure RCPSP_To_Packing

To solve the packing problem, our heuristic uses the RCPSP solution. In order to assess its
performance, we compare it with two efficient exact methods. The first one is a MIP formulation
proposed by Pisinger and Sigurd [14] solved with Cplex 11. The second one is a branch & bound
developed by Martello et al. [41]. It is initially dedicated to the 3D bin packing problem and looks for
the minimal number of bins. Several trips coming from several instances are evaluated using the three
packing methods. The area of the vehicle is set to 800. In table 10, the first two columns refer to the
number of items and to the total area required by the items. Then, the results from the MIP formulation
(column CPLEX), the branch & bound and our method are presented. For each method, the answer
(packable or not packable) along with the CPU time in seconds is reported. A time limit of 3h has been
set. As solutions are already RCPSP-feasible, few answers might be ‘false’. Only one such situation
happens and it requires much more time, comparatively to problems of equivalent size. For the ‘true’
answers, the time depends on the number of items and on the area required by the items. The approach
using MIP formulation seems to be slightly better than the branch & bound. However, both are
dominated by our approach in terms of CPU time on these instances. Note that our approach is
heuristic: there is no guaranty on the answer, even though no erroneous answer has been reported in
our experiments.

 CPLEX branch & bound RCPSP_To_Packing
nb items area answer CPU(s) answer CPU(s) answer CPU(s)

10 692 true 0.58 true 0.14 true <0.01
11 673 true 0.23 true 0.39 true 0.11
11 736 false 1362.66 false 78.11 false 2.86
12 702 true 1.06 true 2.22 true <0.01
12 737 true 264.11 true 11.23 true <0.01
12 737 true 37.20 true 2500.66 true 0.02
13 664 true 0.30 true 0.23 true 0.02
13 759 - 10800.00 - 10800.00 true 0.40
15 715 true 3.59 true 215.88 true <0.01
15 727 true 8.88 true 1244.66 true <0.01
16 726 true 67.28 true 3357.28 true 0.02
17 488 true 0.50 true 1.34 true 0.02
17 746 true 313.97 - 10800.00 true 0.28
18 639 true 0.92 true 2.01 true 0.34
18 670 true 1.50 true 2.80 true <0.01
18 770 true 65.30 - 10800.00 true 0.67
19 739 true 1315.73 true 40.63 true 0.02
21 715 - 10800.00 - 10800.00 true <0.01
21 723 - 10800.00 true 0.45 true 0.02
25 773 - 10800.00 - 10800.00 true 1.56

Table 10: packing algorithms on several packing problems

3.3 Average results on CVRP instances

Class 1 instances are pure CVRP instances as all items are 1x1 squares. On those 36 instances, the
method competes with the best published methods of [7][8][9] (see table 11). GRASP × ELS gets the
best result 34 times and provides 10 new best solutions. Details on the results for each instance can be
found in table A1. Row “nb best” gives the number of times a method provides the best result and “nb
of record” gives the number of times the method gives a solution strictly better than all others methods.

 Gendreau Zachariadis Fuellerer GRASP × ELS
nb best 18 21 23 34
nb of record 0 0 2 10
avg value 792.31 777.75 776.04 770.77

Table 11: results for class 1 instances

Submitted to Computers and Operations Research

 23

3.4 Average results for 2L-CVRP instances

Average results for classes 2 to 5 are presented in table 12. The same information is reported as before.
Note that only aggregated values are available for the approach of Gendreau et al. [7]. GRASP × ELS
outperforms the other methods on all the classes, especially in classes 3 and 4. Details on the results
for each instance can be found in table A2, table A3, table A4, table A5 and table A6.

 Gendreau Zachariadis Fuellerer GRASP × ELS
class 2 nb best - 3 15 32
 nb of record - 0 4 21
 avg value - 1205.45 1150.68 1140.44
class 3 nb best - 3 7 36
 nb of record - 0 0 29
 avg value - 1217.40 1174.98 1149.14
class 4 nb best - 3 8 36
 nb of record - 0 0 28
 avg value - 1223.45 1191.59 1168.25
class 5 nb best - 8 15 32
 nb record - 0 4 21
 avg value - 1078.24 1059.55 1052.29
Average nb best 0 0 3 36
class 2-5 nb of record 0 0 0 33
 avg value 1216.08 1181.13 1144.20 1127.53

Table 12: results on class 2-5 instances

3.5 Example of a 2L-CVRP solution

Let us consider the instance 01 from class 3 (referred as 0103 in table A3). The solution of value 284.52
corresponds to the best ever published solution with 3 trips (see figure 9). Sub-figures (9.b) (9.c) (9.d) provide a
graphical representation of the three packing solutions for the three trips involved in the solution.

(a) solution (b) vehicle load for trip 1

(c) vehicle load trip 2 (d) vehicle load for trip 3

Figure 9: solution for instance 01 class 3

Submitted to Computers and Operations Research

 24

4 Concluding remarks
This article considers an extension of the well-known CVRP in which two dimensional packing

constraints must be addressed in each trip servicing customers. This problem deals with two
combinatorial optimization problems: vehicle routing and two-dimensional bin packing. The initial
2L-CVRP is first relaxed into the easier RCPSP-CVRP. The relaxation problem is solved using the
GRASP × ELS framework. At the end of GRASP × ELS, the solution is transformed back into a 2L-
CVRP solution by packing the items into the vehicles. To our knowledge, this is an innovative
approach. The results show that our method is highly efficient and outperforms the best previous
published methods on the topic. We are currently investigating the 3L-CVRP, the sequence-dependant
2L-CVRP and the non-orientated cases.

Acknowledgement

Special thanks to referees who provides us constant support and help in a previous version of this
article.

5 Notations
Problem definition
G=(V;E) a complete undirected graph
V set of n+1 nodes with 0 the depot node
cij cost from node i to j
n number of nodes (a node is a customer)
N number of vehicles
D weight capacity of vehicles
W vehicle width
L vehicle length
A=W×L vehicle area
mi number of items to deliver at customer i
di total weight of items to service at customer i
wik item width of item k at customer i
l ik item length of item k at customer i

Framework parameters
p percent of vehicle volume used during heuristics runs
nb number of solutions kept during the grasp process
np number of GRASP iterations (number of initial solutions investigated)
ns number of ILS iterations
nd number of parallel mutation/local search
nr maximum number of iterations without improvement per ELS
ne number of attempts to generated a initial feasible solution
ε a small real number representing the threshold required to continue the RL

Solution
T a giant tour
T=(v1, ..., vn) sequence customer in the giant tour T
t a trip
n(t) number of customers in trip t
t = (t0, t1, ..., tn(t), tn(t)+1) sequence customers in trip t
S a RCPSP-CVRP solution (set of trips)
f(S) cost of S
N(S) number of trips in solution S
α penalty
t(S) set of trips of solution S
f(t) cost of the trip t
S* best RCPSP-CVRP solution found
f* cost of S*
O cost ordered set of RCPSP-CVRP solutions

Submitted to Computers and Operations Research

 25

RCPSP
na number of activities to schedule
m number of resources
i / j activity to schedule
di duration of activity i
r ik requirement of activity i for resource k
u sink activity
s source activity
ESi earliest starting time of activity i
LSi latest starting time of activity i

Split
HT = (X, Y, Z) auxiliary digraph linked to the giant trip T
X set of n+1 nodes
Y set of arcs in H where arc (i,j) represent a trip servicing customers vi+1 to vj
Zij trip cost link to the arc (i,j)

Bin packing
W×L bin size
wi ×l i item size
ni number of items
Dy set of items i which can be scheduled at position (xi,y)
xi x-position of item i (either ESi or LSi)

Hash function / map
K a huge number used by the hash function
h(t) hash value for trip t
F(h(t)) function giving in O(1) the RCPSP feasibility of trip t with hash function h(t)

References

[1] Eksioglu B., A.V. Vural and A. Reisman. The vehicle routing problem: a Taxonomic review. Computers
and Industrial Engineering 2008;57:1472-1483.

[2] Current J.R. and M. Marsh. Multiobjective transportation network design and routing problems:
Taxonomy and annotation. European Journal of Operational Research 1993; 65: 4–19.

[3] Baldacci R., M. Battarra and D. Vigo. Routing a Heterogeneous Fleet of Vehicles. In: The Vehicle
Routing Problem: Latest Advances and New Challenges, Ed. B. Golden and E. Wasil. 2008. p. 3-27.

[4] Toth P. and D. Vigo. An overview of vehile routing problems. in: The Vehicle Routing Problem, P. Toth
and D. Vigo, editeurs, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia 2002;
1-26.

[5] Prins C. Two memetic algorithms for heterogeonous fleet vehicle routing problems, Engineering
Applications of Artificial Intelligence 2009; 22:916-928.

[6] Cordeau J.F., M. Gendreau, A. Hertz, G. Laporte and J.S. Sormany, New heuristics for the vehicle routing
problem. In: Logistic systems: design and optimization, A. Langevin and D. Riopel (eds.), Wiley, New
York 2005. p. 279-298.

[7] Gendreau M., M. Iori, G. Laporte and S. Martello, A Tabu Search Heuristic for the Vehicle Routing
Problem with Two-Dimensional Loading Constraints, Networks 2008; 51(1): 4-18.

[8] Zachariadis E.E, C.D. Tarantilis and C. Kiranoudis, A guided Tabu Search for the Vehicle Routing
Problem with two dimensional loading constraints, European Journal of Operational Research 2009;
3(16): 729-743.

[9] Fuellerer G., K.F. Doerner, R.F. Hartl and M. Iori, Ant colony optimization for the two-dimensional
loading vehicle routing problem, Computers and Operations Research 2009; 36(3): 655-673.

[10] Iori M., J.J. Salazar González and D. Vigo, An exact approach for capacitated vehicle routing problems
with two-dimensional loading constraints, Transportation Science 2007; 41(2); 253–26.

Submitted to Computers and Operations Research

 26

[11] Hadjiconstantinou E. and N. Christofides. An exact algorithm for general, orthogonal, two-dimensional
knapsack problem. European Journal of Operational Research 1995; 83:39–56.

[12] Martello S. and D. Vigo. Exact solution of the two-dimensional finite bin packing problem. Management
Science 1988;44:388–99.

[13] Beldiceanu N. and M. Carlsson. Sweep as a generic pruning technique applied to the non-overlapping
rectangles constraints. Principles and practice of constraint programming (CP’2001). Lecture Notes in
Computer Science 2001, 2239:377–391.

[14] Pisinger D. and M. Sigurd. On using decomposition techniques and constraint programming for solving
the two-dimensional bin packing problem, Technical Report, Department of Computer Science,
University of Copenhagen 2003.

[15] Fekete S., J. Schepers and J. van der Veen. An exact algorithm for higher-dimensional orthogonal
packing. Operations Research 2006; 55(3):569-587.

[16] Fekete S. and J. Schepers. A combinatorial characterization of higher-dimensional orthogonal packing.
Mathematics of Operations Research 2004;29:353–68.

[17] Leung T.W., C.K. Chan and M.D. Troutt. Application of a mixed simulated annealing-genetic algorithm
heuristic for the two-dimensional orthogonal packing problem. European Journal of Operational Research
2003; 145(3):530-542.

[18] Gonçalves J.F. A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem
European Journal of Operational Research 2007; 183(3):1212-1229.

[19] Hopper E. and B. Turton. A genetic algorithm for a 2D industrial packing problem
Computers & Industrial Engineering 1999; 37(1-2):375-378.

[20] Blazewicz J., J.K. Lenstra and A.H.K. Rinooy Kan. Scheduling subject to resource constraints:
Classification and complexity. Discrete Applied Mathematics 1983; 5: 11–24.

[21] Brucker P., A. Drexl, R. Mohring, K. Neumann and E. Pesch. Resource-constrained project scheduling:
Notation, classification, models, and methods. European Journal of Operational Research 1999; 112(1):
3–41.

[22] Herroelen W., B. De Reyck and E. Demeulemeester. Resource-constrained project scheduling: A survey
of recent developments. Computers and Operations Research 1998; 25 (4): 279–302.

[23] Kolisch R. and R. Padman. An integrated survey of deterministic project scheduling, Omega 2001; 29:
249–272.

[24] Weglarz J. Project Scheduling. Recent Models, Algorithms and Applications. Kluwer Academic
Publishers 1999.

[25] Demeulemeester E. and W. Herroelen. Project scheduling: a research handbook. Kluwer’s International
Series, International series in operations research & management science; 49, 2002, Kluwer Academic
Publishers, ISBN: 1-40207-051-9.

[26] Artigues C., P. Michelon and S. Reusser. Insertion Techniques for static and dynamic resource-
constrained project scheduling, European Journal of Operational Research 2003; 149: 249-267.

[27] Tseng L.Y. and S.C. Chen. A hybrid metaheuristic for the resource-constrained project scheduling
problem, European Journal of Operational Research 2006; 175: 707-721.

[28] Hartmann S. Packing Problems and Project Scheduling Models: An Integrating Perspective, Journal of the
Operational Research Society 51:1083-1092, 2000.

[29] Toussaint H. Algorithmique rapide pour les problèmes de tournées et d’ordonnancement. Thèse de
l’Université Blaise Pascal, Ecole Doctorale Sciences pour l’Ingénieur, D.U. 2053, 2010.

[30] Prins C. A GRASP×Evolutionary Local Search Hybrid for the Vehicle Routing Problem, in: F.B. Pereira
and J. Tavares (Ed.), Bio-inspired Algorithms for the Vehicle Routing Problem, Studies in Computational
Intelligence, publisher Springer, Berlin, 2009; 161: 35–53.

[31] Feo T.A. and M.G.C. Resende. Greedy randomized adaptive search procedures, Journal of Global
Optimization 1995; 6: 109–33.

Submitted to Computers and Operations Research

 27

[32] Lacomme P., C. Prins and W. Ramdane-Chérif. Competitive Memetic Algorithms for Arc Routing
Problems, Annals of Operations Research 2004; 131: 159-185.

[33] Prins C. A simple and effective evolutionary algorithm for the vehicle routing problem, Computers and
Operations Research 2004; 31: 1985–2002.

[34] Duhamel C., P. Lacomme, C. Prins and C. Prodhon. A GRASPxELS approach for the capacitated
location-routing problem, Computers and Operations Research 2010; 37(11):1912-1923.

[35] Duhamel C, P. Lacomme, C. Prins, C. Prodhon. A memetic approach for the capacitated location routing
problem, EU-MEeting 2008, Troyes, France, October 23-24, 2008.

[36] Clarke G. and J.W. Wright. Scheduling of vehicles from a central depot to a number of delivery points,
Operations Research 1964; 12: 568-581.

[37] Golden B.L., J.S. DeArmon and E.K. Baker. Computational experiments with algorithms for a class of
routing problems, Computers and Operations Research 1983; 10(1): 47-59.

[38] Kolisch R. Experimental investigation of heuristics for resource-constrained project scheduling: an
update, European Journal of Operational Research 2006; 174: 23-37.

[39] Beasley J.E. Route-first cluster-second methods for vehicle routing, Omega 1983; 11: 403–408.

[40] Martello S, D. Pisinger and D. Vigo. The three-dimensional bin packing problem. Operations Research
2000;48:256–67.

[41] Martello S., D. Pisinger, D. Vigo, E. Den Boef and J. Korst. Algorithm 864: general and robot-packable
variants of the three-dimensional bin packing problem, ACM Transactions on Mathematical Software
2007; 33(1), article number 7.

Submitted to Computers and Operations Research

 28

Appendix

 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS

 s t s t s t s t
0101 278.73 2.0 278.73 2.9 278.73 0.09 278.73 0.0
0201 334.96 0.0 334.96 1.4 334.96 0.05 334.96 0.0
0301 359.77 3.5 358.40 3.8 358.4 0.23 358.4 0.0
0401 430.88 0.1 430.88 1.0 430.88 0.27 430.88 0.0
0501 375.28 1.4 375.28 1.3 375.28 0.32 375.28 0.0
0601 495.85 0.3 495.85 1.9 495.85 0.30 495.85 0.0
0701 568.56 0.5 568.56 0.8 568.56 0.24 568.56 0.0
0801 568.56 0.5 568.56 0.4 568.56 0.24 568.56 0.0
0901 607.65 0.4 607.65 1.2 607.65 0.57 607.65 0.0
1001 538.79 6.1 535.80 5.9 535.8 2.27 535.80 0.0
1101 505.01 2.5 505.01 3.8 505.01 0.81 505.01 0.0
1201 610.57 28.5 610.00 6.3 610.00 1.54 610.00 0.2
1301 2006.34 29.9 2006.34 5.8 2006.34 1.26 2006.34 0.0
1401 837.67 22.2 837.67 17.1 837.67 4.10 837.67 0.2
1501 837.67 1.7 837.67 7.9 837.67 2.83 837.67 0.0
1601 698.61 2.7 698.61 13.0 698.61 1.97 698.61 0.0
1701 862.62 59.0 863.27 32.9 861.79 3.28 861.79 0.0
1801 723.54 81.9 730.85 47.1 723.54 9.51 723.54 8.3
1901 524.61 128.8 524.61 100.2 524.61 7.94 524.61 0.3
2001 241.97 253.6 244.54 198.3 241.97 56.06 241.97 4.5
2101 688.18 325.0 687.6 221.5 690.2 26.45 687.60 1.4
2201 740.66 2070.7 740.66 662.9 742.91 57.43 740.66 2.1
2301 860.47 2210.1 839.07 1531.4 845.34 55.94 835.26 339 1.3
2401 1048.91 866.9 1035.33 1012.7 1030.25 49.77 1026.6 5 3.3
2501 830.26 2371.0 829.45 953.8 830.82 167.14 827.39 2.4
2601 819.56 3597.6 819.56 1031.7 819.56 175.69 819.56 0. 4
2701 1099.95 355.9 1097.63 871.2 1100.22 190.52 1082.65 486.5
2801 1078.27 985.2 1042.12 781.4 1062.23 252.48 1042.12 129.8
2901 1179.01 3080.0 1188.15 1641.9 1168.13 769.14 1162.9 6 549.6
3001 1061.55 1834.4 1037.05 873.3 1041.05 310.25 1033.42 2165.9
3101 1464.04 288.8 1421.2 631.4 1341.89 521.84 1306.07 5 096.1
3201 1352.61 1780.8 1328.68 905.5 1334.26 517.68 1303.52 4492.4
3301 1361.51 2531.7 1328.19 1708.6 1331.69 476.63 1301.0 6 4842.1
3401 858.94 1941.9 719.91 834.1 712.32 614.53 713.51 300 7.4
3501 992.86 766.7 877.04 907.2 868.12 1452.58 870.63 261 6.5
3601 678.87 1530.9 594.10 1492.6 616.69 1588.25 592.87 5 264.7

Table A1: class 1 instances

Submitted to Computers and Operations Research

 29

 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS

 s t s t s t s t
0102 / / 305.92 / 284.52 1.18 284.42 0.2
0202 / / 334.96 / 334.96 0.14 334.96 0.0
0302 / / 401.81 / 387.70 1.29 387.70 0.8
0402 / / 440.94 / 430.88 0.98 430.88 0.3
0502 / / 381.85 / 375.28 7.27 375.28 0.1
0602 / / 498.16 / 495.85 1.77 495.85 0.4
0702 / / 741.91 / 725.46 3.99 725.46 0.3
0802 / / 718.18 / 709.39 8.45 674.55 0.2
0902 / / 607.65 / 607.65 2.39 607.65 0.2
1002 / / 708.63 / 689.68 30.29 689.68 6.1
1102 / / 719.56 / 711.08 22.63 693.45 25.9
1202 / / 628.86 / 610.57 4.26 610.57 5.4
1302 / / 2705.05 / 2588.81 39.22 2585.72 105.3
1402 / / 1117.24 / 1038.68 92.42 1038.09 177.5
1502 / / 1099.75 / 1021.00 73.43 1013.29 482.8
1602 / / 702.70 / 698.61 6.30 698.61 0.9
1702 / / 870.86 / 870.86 4.68 870.86 53.1
1802 / / 1065.3 / 1030.64 176.61 1004.99 885.9
1902 / / 796.87 / 767.41 58.94 754.53 440.6
2002 / / 569.20 / 534.95 726.15 537.88 2904.5
2102 / / 1076.24 / 1013.49 589.8 992.83 942.9
2202 / / 1088.33 / 1052.85 400.88 1036.11 1741.9
2302 / / 1124.60 / 1043.99 1191.5 1041.04 1226.9
2402 / / 1234.03 / 1188.09 238.22 1190.70 515.6
2502 / / 1500.07 / 1430.31 834.92 1419.42 3154.8
2602 / / 1387.3 / 1298.02 1025.08 1285.01 2314.6
2702 / / 1402.42 / 1336.67 924.97 1327.06 4162.1
2802 / / 2856.93 / 2650.06 3600.00 2587.23 4473.9
2902 / / 2362.75 / 2260.47 3600.00 2212.22 3025.5
3002 / / 1929.93 / 1840.56 3600.00 1816.05 4969.2
3102 / / 2456.28 / 2325.98 3600.00 2311.11 5207.1
3202 / / 2465.17 / 2319.31 3600.00 2322.17 5083.2
3302 / / 2508.68 / 2326.13 3600.00 2285.94 5000.4
3402 / / 1268.93 / 1220.53 3600.00 1212.04 5020.6
3502 / / 1464.93 / 1416.88 3600.00 1419.37 5315.5
3602 / / 1854.06 / 1787.01 3600.00 1782.99 4608.7

Table A2: class 2 instances

Submitted to Computers and Operations Research

 30

 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS

 s t s t s t s t
0103 / / 299.70 / 296.87 8.93 284.52 0.9
0203 / / 355.65 / 352.16 0.44 352.16 0.1
0303 / / 409.17 / 394.72 2.08 394.72 0.4
0403 / / 446.61 / 445.49 1.37 430.88 0.3
0503 / / 387.89 / 381.69 10.34 381.69 0.2
0603 / / 499.08 / 499.08 3.42 498.16 0.6
0703 / / 706.99 / 701.08 4.10 678.75 0.2
0803 / / 749.70 / 740.85 6.88 738.43 0.6
0903 / / 622.16 / 607.65 2.00 607.65 0.3
1003 / / 655.70 / 624.62 35.89 615.68 0.8
1103 / / 746.12 / 723.00 23.49 706.73 4.5
1203 / / 610.00 / 610.00 2.08 610.00 54.1
1303 / / 2542.86 / 2470.42 33.32 2454.37 20.2
1403 / / 1092.10 / 1018.75 104.56 996.25 28.1
1503 / / 1186.61 / 1171.35 73.10 1154.66 248.9
1603 / / 698.61 / 698.61 5.26 698.61 2.9
1703 / / 861.79 / 861.79 3.41 861.79 2.3
1803 / / 1124.54 / 1091.89 135.52 1069.45 110.4
1903 / / 816.77 / 786.43 53.55 771.74 155.3
2003 / / 557.72 / 544.12 375.47 524.81 1824.2
2103 / / 1191.07 / 1148.02 250.91 1121.84 759.1
2203 / / 1110.73 / 1075.55 305.15 1052.98 1189.9
2303 / / 1141.51 / 1098.70 298.37 1081.48 1288.2
2403 / / 1136.1 / 1116.98 155.45 1083.14 796.3
2503 / / 1476.14 / 1409.5 777.12 1374.68 2539.3
2603 / / 1436.55 / 1384.75 759.12 1344.66 2170.3
2703 / / 1476.73 / 1398.52 560.96 1378.01 1343.6
2803 / / 2867.46 / 2740.68 3600.00 2629.38 5289.0
2903 / / 2249.8 / 2184.45 3600.00 2107.87 3895.1
3003 / / 2038.55 / 1894.16 3600.00 1850.78 5126.6
3103 / / 2478.94 / 2366.77 3600.00 2305.51 5107.4
3203 / / 2422.98 / 2327.25 3600.00 2267.82 5255.0
3303 / / 2595.41 / 2470.07 3600.00 2390.58 4853.6
3403 / / 1298.48 / 1259.88 3600.00 1237.27 5168.7
3503 / / 1570.67 / 1511.42 3600.00 1477.05 5165.8
3603 / / 1965.46 / 1891.90 3600.00 1834.97 5069.6

Table A3: class 3 instances

Submitted to Computers and Operations Research

 31

 (Gendreau et al.. 2008) (Zahariadis et al.. 2009) (Fuellerer et al.. 2009) GRASPxELS

 s t s t s t s t
0104 / / 296.75 282.95 0.96 282.95 0.0
0204 / / 342.00 342.00 0.13 334.96 0.1
0304 / / 368.56 364.45 0.96 364.45 0.2
0404 / / 447.37 447.37 2.64 447.37 0.1
0504 / / 383.87 383.88 6.74 383.87 0.2
0604 / / 504.78 498.32 2.38 498.32 0.5
0704 / / 703.85 702.45 4.79 702.45 2.0
0804 / / 711.07 692.47 6.01 692.47 1.6
0904 / / 625.13 625.13 3.02 625.1 1.7
1004 / / 792.30 724.77 27.76 711.01 17.8
1104 / / 843.52 816.45 24.75 786.85 10.7
1204 / / 618.23 614.24 5.43 614.23 1.6
1304 / / 2714.69 2607.66 41.65 2587.63 15.5
1404 / / 994.66 985.01 84.86 981.90 5.5
1504 / / 1258.49 1246.54 72.61 1234.14 55.7
1604 / / 709.27 703.35 10.22 703.35 12.00
1704 / / 861.79 861.79 4.08 861.79 29.7
1804 / / 1171.51 1124.37 138.46 1118.71 235
1904 / / 819.79 798.33 58.19 778.35 350.2
2004 / / 576.92 553.03 271.42 547.95 720.4
2104 / / 1019.74 1001.14 365.03 978.82 1544.9
2204 / / 1119.34 1093.16 221.98 1045.91 673.5
2304 / / 1123.17 1089.66 281.65 1080.02 1523.1
2404 / / 1160.92 1133.98 174.27 1111.27 178.4
2504 / / 1486.54 1441.11 669.36 1405.65 2246.1
2604 / / 1491.00 1451.71 1490.06 1405.57 2913.8
2704 / / 1397.75 1362.87 585.99 1326.16 2643.8
2804 / / 2770.05 2716.94 3600.00 2654.75 5258
2904 / / 2427.95 2350.62 3600.00 2270.44 4406.9
3004 / / 1965.45 1902.68 3600.00 1856.54 3936.3
3104 / / 2585.67 2495.39 3600.00 2436.42 4538.8
3204 / / 2432.49 2362.22 3600.00 2308.4 3908.2
3304 / / 2601.34 2504.63 3600.00 2416.77 5388
3404 / / 1279.65 1251.87 3600.00 1235.58 5402.9
3504 / / 1634.63 1593.25 3600.00 1538.30 5291.0
3604 / / 1803.86 1771.31 3600.00 1728.69 4785.5

Table A4: class 4 instances

Submitted to Computers and Operations Research

 32

 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS

 s t s t s t s t
0105 / / 280.60 278.73 0.41 278.73 2.5
0205 / / 334.96 334.96 0.04 334.96 0
0305 / / 358.40 358.40 0.40 358.40 0.4
0405 / / 430.88 430.88 0.74 430.88 0.2
0505 / / 375.28 375.28 1.36 375.28 0.1
0605 / / 495.85 495.85 0.56 495.85 0.0
0705 / / 661.22 658.64 6.41 657.77 3.0
0805 / / 643.43 621.85 18.79 609.9 0.7
0905 / / 607.65 607.65 1.10 607.65 0.2
1005 / / 695.37 691.04 26.46 686.78 35.9
1105 / / 652.42 636.77 23.67 636.77 4.2
1205 / / 610.23 610.23 3.27 610.23 6.4
1305 / / 2434.99 2416.04 42.31 2334.78 171
1405 / / 943.08 922.58 104.25 921.45 108.5
1505 / / 1246.46 1230.22 56.51 1176.68 243.4
1605 / / 698.61 698.61 2.89 698.61 8.4
1705 / / 862.62 861.79 3.79 861.79 1.3
1805 / / 945.88 926.34 200.06 925.72 422.5
1905 / / 674.20 656.03 71.2 652.15 128
2005 / / 503.01 480.59 420.29 480.1 1184.2
2105 / / 914.68 897.55 414.62 884.84 2556.2
2205 / / 986.02 956.42 396.93 950.79 254.9
2305 / / 975.42 956.55 300.97 950.09 1456.3
2405 / / 1065.41 1049.76 88.83 1046.63 430.8
2505 / / 1212.73 1182.14 1175.34 1180.57 3930.6
2605 / / 1267.68 1250.41 859.96 1234.39 1798.1
2705 / / 1309.5 1271.08 780.39 1262.93 2717
2805 / / 2453.59 2412.8 3600.00 2368.88 5241
2905 / / 2220.32 2191.56 3600.00 2175.31 5187.1
3005 / / 1625.42 1570.75 3600.00 1578.41 4982.5
3105 / / 2132.92 2080.25 3600.00 2076.07 5099.3
3205 / / 2086.13 2039.14 3600.00 2034.68 5356
3305 / / 2117.72 2050.72 3600.00 2046.00 4713.7
3405 / / 1086.79 1070.28 3600.00 1079.61 5385.9
3505 / / 1324.89 1301.27 3600.00 1306.19 4289.7
3605 / / 1582.25 1570.81 3600.00 1572.49 5032.1

Table A5: class 5 instances

Submitted to Computers and Operations Research

 33

 (Gendreau et al., 2008) (Zahariadis et al., 2009) (Fuellerer et al., 2009) GRASPxELS

 s t s t s t s t
01 291.60 4.2 295.74 2.2 285.77 2.87 282.65 0.9
02 341.02 0.1 341.89 1.3 341.02 0.1875 339.26 0.1
03 377.35 1.6 384.49 0.7 376.32 1.1825 376.32 0.5
04 437.45 0.5 441.45 2.2 438.65 1.4325 435.01 0.2
05 380.20 5.0 382.22 4.7 379.03 6.4275 379.03 0.1
06 501.02 7.2 499.47 4.4 497.27 2.0325 497.04 0.4
07 700.34 6.3 703.49 4.5 696.91 4.8225 691.11 1.4
08 694.99 11.2 705.60 6.4 691.14 10.0325 678.84 0.8
09 619.69 3.6 615.65 5.1 612.02 2.1275 612.01 0.6
10 700.39 36.0 713.00 9.5 682.53 30.10 675.79 15.1
11 739.04 55.7 740.04 18.1 721.82 23.635 705.95 11.3
12 620.62 49.0 616.83 61.9 611.26 3.76 611.26 16.9
13 2598.2 57.5 2599.40 44.4 2520.73 39.125 2490.62 78. 0
14 1047.72 375.8 1036.77 167.4 991.26 96.5225 984.42 7 9.9
15 1201.38 156.7 1197.83 86.1 1167.28 68.9125 1144.69 257.7
16 702.03 20.5 702.30 78.3 699.80 6.1675 699.79 6.0
17 866.37 64.9 864.26 26.4 864.06 3.99 864.05 21.6
18 1085.84 589.3 1076.81 250.7 1043.31 162.6625 1029.7 1 413.5
19 772.25 633.7 776.91 376.5 752.05 60.47 739.19 268.5
20 564.67 954.5 551.71 518.7 528.17 448.3325 522.68 16 58.3
21 1066.21 460.1 1050.43 129.0 1015.05 405.09 994.58 1 450.8
22 1087.46 1191.2 1076.11 941.1 1044.49 331.235 1021.4 5 965.0
23 1104.72 2032.4 1091.17 1000.8 1047.23 518.1225 1038 .16 1373.6
24 1187.62 1454.1 1149.12 553.5 1122.2 164.1925 1107.9 3 480.3
25 1436.09 1205.8 1418.87 635.9 1365.77 864.185 1345.0 8 2967.7
26 1404.49 1173.9 1395.63 875.3 1346.22 1033.555 1317. 41 2299.2
27 1450.18 521.3 1396.60 492.5 1342.28 713.0775 1323.5 4 2716.6
28 2738.31 2051.2 2737.01 1079.1 2630.12 3600.00 2560. 06 5065.5
29 2474.33 1406.5 2315.20 1059.0 2246.78 3600.00 2191. 46 4128.6
30 1948.72 1185.4 1889.84 1711.2 1802.04 3600.00 1775. 44 4753.7
31 2506.99 2375.8 2413.45 2500.7 2317.10 3600.00 2282. 28 4988.2
32 2486.43 1664.8 2351.69 2240.1 2261.98 3600.00 2233. 27 4900.6
33 2504.00 1843.2 2455.79 2074.1 2337.89 3600.00 2284. 82 4988.9
34 1466.06 1359.1 1233.46 2549.7 1200.64 3600.00 1191. 13 5244.5
35 1765.30 2061.7 1498.78 2964.5 1455.70 3600.00 1435. 22 5015.5
36 1909.88 2265.8 1801.41 2680.3 1755.26 3600.00 1729. 79 4874

Table A6: class 2-5 instance

Submitted to Computers and Operations Research

 34

