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Abstract: While it is known that strongly correlated transition metal oxides described by a multi-band
Hubbard model show microscopic multiscale phase separation, little is known about the possibility
to manipulate them with vacuum ultraviolet (VUV), 27 eV lighting. We have investigated the
photo-induced effects of VUV light illumination of a super-oxygenated La2NiO4+y single crystal by
means of scanning photoelectron microscopy. VUV light exposure induces the increase of the density
of states (DOS) in the binding energy range around Eb = 1.4 eV below EF. The photo-induced states
in this energy region have been predicted due to clustering of oxygen interstitials by band structure
calculations for large supercell of La2CuO4.125. We finally show that it is possible to generate and
manipulate oxygen rich domains by VUV illumination as it was reported for X-ray illumination
of La2CuO4+y. This phenomenology is assigned to oxygen-interstitials ordering and clustering by
photo-illumination forming segregated domains in the La2NiO4+y surface.

Keywords: defects in multi-band Hubbard model; photo-induced effects; oxygen interstitials; phase
separation; quasi stationary states out of equilibrium; metastable phases; defects self-organization

1. Introduction

Writing patterns in organic and inorganic media by illumination, starting from silver-halide
processes for traditional photography, is a key method to manipulate materials for advanced
technologies. In the last decade, photo-induced effects have been investigated in the families of
strongly correlated complex quantum matter like transition metal oxides, showing high temperature
superconductivity [1–14] and colossal magneto resistance [15,16]. Controlling photo-induced effects in
complex matter is of high interest in nanotechnology for novel oxide nanoelectronics on demand [17–21].
The interest has been mostly addressed on (A2MO4+y) systems having the K2NiF4-type structure
with A = Cu, i.e., La2CuO4+y structure, which received much attention since these compounds show
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nano-scale phase separation [22–24]. The emergence of multiscale phase separation from nano-scale to
micron-scale has been explained to be driven by tuning the chemical potential at a Lifshitz transition
in a multi-band Hubbard model [25–27]. In this regime, the competition between spin, charge, orbital
and elastic interactions can drive the system into metastable phases, i.e., quasi stationary states out of
equilibrium with the coexistence and competition between a metallic phase and a localized charge
ordered phase. While “large polarons” spanning about 8 lattice sites in the intermediate coupling
regime have been found in cuprates, [28] “small polarons” localized in a single lattice unit cell in the
strong coupling regime have been found in manganites [29]. In these systems a relevant lattice effect
is due to mobile oxygen interstitials in the spacer layers, which contribute to the complexity with
the formation of dopant rich domains anticorrelated with charge ordered domains which control the
nanoelectronic functionality [30].

In these complex systems characterized by a large variety of coexisting superconducting,
insulating, ferromagnetic, antiferromagnetic states, X-ray illumination induces electronic and structural
changes [1–21] allowing tuning of material functionalities, which allow the development of many
device capabilities. The electronic properties of super-oxygenated La2NiO4+y have high technological
interest [31–39]. This A2MO4+y system A = Ni having the K2NiF4-type structure has the ability to
accommodate a large oxygen over-stoichiometry. It is formed by a stack of bcc atomic NiO2 layers
intercalated by [La2O2] atomic layers similar to the simplest high temperature cuprate superconductor
La2CuO4+y, but it does not show superconductivity at any measurable doping level. It may be possible
that oxygen interstitial ordering at room temperature can be manipulated in La2NiO4+y as in the
cuprate La2CuO4+y.

The [NiO2] layers are typical charge transfer Mott insulators [31–39]. The Ni2+ ion has a Ni
3d8 configuration whereas the antiferromagnetic order is comparable to NiO. The mobile oxygen
interstitials in La2NiO4+y enter in the rocksalt spacer layer [La2O2+y] and sit at (1/4,1/4,1/4) type
positions of the orthorhombic lattice creating nh = 2y holes into the NiO2 planes. The doped holes
enter in the oxygen 2p orbital L forming 3d8L localized states, similar to NiO [40]. The 3d8L states
form “small polarons” localized on single atomic oxygen L sites in the NiO2 plane where the doped
charge is associated with a local lattice distortion of the NiO2 plane similarly to the insulating phase of
manganites [29]. The idea of polaron ordering in doped NiO2, as the source of magnetic stripes driven
by doping, has been proposed by Zaanen and Littlewood [33]. In doped Mott–Hubbard insulators,
the electron-phonon interaction and the strong Coulomb repulsion can reinforce each other to stabilize
small polarons, domain walls, and charge-density waves. At low temperature, the holes are ordered
such that they form polaronic stripes of localized charges and magnetic moments in the diagonal
direction of the Ni-O bond direction. The complexity of the striped magnetic phase is related to
phase separation and ordering of oxygen interstitials. Measurements of the in-plane resistance in
the nickelates suggest that oxygen interstitial orderings appear below TCO = 320 K. In comparison,
the magnetic and small polaron ordering occurs at temperature lower than Tm = 110 K.

The ordering of oxygen interstitials in the CuO2 plane in the families of cuprates is controlled
by the compressive misfit strain [41,42] in the [CuO2] active layer near the spacer layer [La2O2+y].
The [CuO2] compressive strain is compensated by the [La2O2+y] tensile misfit strain in the formation
of the multilayer crystal. The increase of the [CuO2] compressive misfit strain pushes the system to the
formation of small polarons, but at the same time the [La2O2+y] tensile misfit strain determines the
increase of the mobility of the y oxygen interstitials. This is the case of doped La2NiO4+y where, due to
the large tensile misfit strain in the [La2O2+y], the mobility of oxygen interstitials is high. The latter
is in fact an oxygen ion conductor at high temperature with high technological relevance [43–50].
Synchrotron radiation investigations of La2NiO4+y [51,52] and La2CuO4+y [53] have been performed
using standard XANES, X-ray absorption near edge structure, [54–58] interpreted considering many
body final states configurations, relevant in these strongly correlated oxides [59–65].
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2. Results and Discussion

Scanning photoelectron microscopy (SPEM) was performed on the insulating La2NiO4+y
(y = 0.14) [34,35,66]. The SPEM measurements were performed at the SPECTROMICROSCOPY-3.2L
beamline at the Elettra synchrotron light source, Trieste (Italy) [67,68]. Data presented here were
collected at the photon energy of 27 eV. The beam size in focus is ~500 nm FWHM by a Schwarzschild
objective. The VUV illumination was performed by leaving sample under same but defocused beam
having donut like shape due to a presence of central stop in the optics. Surface effects such as
topographical contrast were eliminated by following the procedure described in [67].

Energy distribution curves of selected micro-spots of illuminated and non-illuminated regions
are presented in Figure 1. A clear difference between these photoelectron spectra has been observed.
In the light exposed regions an increase of the DOS compared to the non-illuminated DOS can be
observed. The difference of the DOS between illuminated and non-illuminated photoelectron spectra
is represented by the blue curve in Figure 1. It reveals that states in the region around 1.4 eV below EF
are those affected by light illumination. Actually, photons in the VUV region with an energy hν = 27 eV
lead to a significant change of the DOS in La2NiO4+y. This result is in excellent agreement with the
theoretical simulations of the increase of ordered oxygen interstitial domains presented in Figure 2
that suggest that the DOS increases in this energy region due to oxygen interstitials.
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Figure 2. (a) Total DOS for La2NiO4+y for different oxygen interstitials concentrations y = 0, 0.125 and
0.25 and (b) the relative increase of the DOS centered at 1.4 eV binding energy the for y = 0.25 and
y = 0.125 oxygen interstitial concentration relative to the undoped lattice (y = 0, from [69]).
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Detailed simulations on the variation of the electronic band structure vs. oxygen interstitials
concentration were performed by Jarlborg et al. [69–71] using the linear muffin-tin orbital method and
the local spin density approximation. These simulations on La2CuO4+y are in good agreement with
experimental results. The excess oxygen interstitials sit at the interstitial interlayer positions, above the
oxygen ion in the CuO2 plane of the orthorhombic unit cell, form 3D ordered puddles below 320 K.
The non-magnetic total band DOSs for n = 0, 1 and 2 corresponding to y = 0, y = 0.125 and y = 0.25 are
displayed in Figure 2a. It can be seen that the DOS is increasing considerably near EF when one or two
Oi’s are added in form of stripes, as also shown by the relative increase of the DOS in Figure 2b.

In the imaging mode, the analyzer channels well below the Fermi energy EF can be used to
detect surface effects whereas others above EF are used to determine the background. This allows
determining differences in the electronic structure and to spatially resolve the averaged spectroscopic
information from photoemission.

In Figure 3a a SPEM image is shown where photoelectrons are collected around normal to the
sample surface. The intensity, from white to black, represents the photoemission spectroscopy yield
integrated over the binding energies around 1.4 eV below EF. The DOS in this binding energy range
appears homogeneous over the sample surface with no significant visible features. The corresponding
histogram of the normalized integrated intensity in an energy window of 0.6 eV around 1.4 eV below
EF is shown in Figure 3b. This Gauss like distribution points that the DOS at every point of the surface
is the same.

The illuminated region in the SPEM image shown in Figure 3c is represented as a bright broken
circle. In this region, the DOS in the energy window of 0.6 eV around 1.4 eV below EF is higher than in
the non-illuminated regions. This is demonstrated by the shape of the histogram shown in Figure 3d
that exhibits a double peak structure. The maximum of the main peak is nearly at the same integrated
normalized intensity as the non-illuminated contribution shown in Figure 3b, characteristic of the
signal from the non-illuminated area of the sample. The second maximum in Figure 3d occurs at a
significantly higher integrated intensity, representing the average intensity after the illumination.
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Figure 3. (a) Scanning photoelectron microscopy (SPEM) image of La2NiO4+y of a non-illuminated
region with no inhomogeneity; (b) the corresponding histogram shows a homogeneous distribution of
the integrated intensity with the Gauss shape; (c) SPEM image after the illumination with the defocused
beam with photons of 27 eV. Where the La2NiO4+y sample was exposed to the light, an increase of
the integrated intensity is observed. This is also seen in the corresponding histogram; (d) after the
illumination two maxima are present representing the low-intensity non-illuminated area of the sample
and the illuminated area with higher intensity. The scale bar in panel (a,c) corresponds to 10 µm.
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3. Conclusions

In conclusion, scanning photoelectron microscopy measurements of valence band photoemission
were performed in order to measure the effect of photon illumination on super-oxygenated La2NiO4+y
(y = 0.14). The light exposure leads to an increase of the DOS mainly in the region around 1.4 eV
below EF, in agreement with calculations showing an increase of the DOS in the same energy
window, due to oxygen interstitials. An effect of light illumination was observed by several other
experiments as well. Scanning nano X-ray diffraction studies on La2CuO4+y revealed that light
exposure in super-oxygenated LCO lead to an ordering of the oxygen interstitials forming rows in
the La2CuO4+y, the spacer La2O2 layer between the active layers [9–11]. Such induced ordering can
be used to induce new states in transition metal oxides, supporting the development of new device
possibilities. Finally, this experiment shows that spectromicroscopy can be successfully used to pump
and probe photoinduced mechanisms in complex solids and biological matter in quasi-stationary
states out-of-equilibrium [72–76].
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