
HAL Id: hal-01708137
https://hal.science/hal-01708137v1

Submitted on 13 Feb 2018 (v1), last revised 4 Mar 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Usability for Automatically Structuring
Digitised Dictionaries

Mohamed Khemakhem, Axel Herold, Laurent Romary

To cite this version:
Mohamed Khemakhem, Axel Herold, Laurent Romary. Enhancing Usability for Automatically Struc-
turing Digitised Dictionaries. GLOBALEX workshop at LREC 2018, May 2018, Miyazaki, Japan.
�hal-01708137v1�

https://hal.science/hal-01708137v1
https://hal.archives-ouvertes.fr


Enhancing Usability for Automatically Structuring Digitised Dictionaries

Mohamed Khemakhem†∗§, Axel Herold†‡¶, Laurent Romary†∗‡
† Inria - ALMAnaCH, Paris
∗ Centre Marc Bloch, Berlin
§ Université Paris Diderot

¶ École Pratique des Hautes Études, Paris
‡ Berlin-Brandenburgische Akademie der Wissenschaften, Berlin
{mohamed.khemakhem, axel.herold, laurent.romary}@inria.fr

Abstract
The last decade has seen a rapid development of the number of NLP tools which have been made available to the community. The usability
of several e-lexicography tools represents a serious obstacle for researchers with little or no background in computer science. We present
in this paper our efforts to overcome this issue in the case of a machine learning system for the automatic segmentation and semantic
annotation of digitised dictionaries. Our approach is based on limiting the burdens of managing the tool’s setup in different execution
environments and lightening the complexity of the training process. We illustrate the possibility to reach this goal through the adaptation
of existing functionalities and through using out of the box software deployment technology. We also report on the community’s feedback
after exposing the new setup to real users of different professional backgrounds.

Keywords: electronic lexicography, usability, digitised dictionaries, TEI, Docker

1. Introduction
Web applications have been the main deployment solution
for many NLP tool designers to shortcut the need to deal
with installation and configuration issues that many desktop
applications continue to represent for end users. A web
architecture does not rely on the user being familiar with
local software tools such as command line shells or software
development environments that allow expert and more per-
sonalised use of some advanced libraries. A strong current
development is the integration of sets of tools into unified
web-based working environments for general Humanities
research such as the European CLARIN1 and DARIAH2 ini-
tiatives. On the more specialised field of lexicography, tools
such as the Lexonomy3 dictionary writing system (Měchura,
2017) represent a typical class of web-based applications.
While much of this high level way of accessing NLP tools
also accounts for desktop applications, locally installed tools
and possibly other software they rely on still have to be
updated regularly. Different tools may even form a complex
“eco-system” with delicate dependencies amongst individual
modules. The main concern for users with regard to web-
based tools are the security and possibly the confidentiality
of their data. Therefore desktop applications still exist after
the gereral turn to web-based solutions.
GROBID-Dictionaries4 is a machine learning system which
has been developed to serve as a web application for struc-
turing digitised dictionaries (Khemakhem et al., 2017). It
also exhibits desktop functionality required for the prepro-
cessing of data during the training process. Although it has a
decent documentation, the process of setting up the desktop

1https://www.clarin.eu/
2https://www.dariah.eu/
3http://www.lexonomy.eu/
4https://github.com/MedKhem/

grobid-dictionaries

version of the tool remains very challenging for users with
limited programming knowledge. Annotating the prepro-
cessed XML data also represented a serious challenge in
earlier versions of the tool because initially it did not provide
mechanism for sanity checks or for visualising annotations
for humans.
In this paper we focus on the desktop functionality built
into GROBID-Dictionaries. We present new features which
have been implemented to enhance the usability of the tool.
In section 2. we provide an overview of the architecture
and setup of the system. We detail the different stages
of the training process in section 3.. We then address the
technical challenges related to the installation of the system
as well as the annotation process and present our solution
to overcome them in section 4. In section 5., we report
on first experiences with the new setup and features based
on feedback collected from users who were previously not
familiar with GROBID-Dictionaries.

2. GROBID-Dictionaries
The work carried out by Khemakhem et al. (2017) resulted
in a successful adaptation and extension of GROBID – an ex-
isting machine learning platform (Lopez and Romary, 2015)
– to be used for the automatic identification of lexical infor-
mation in digitised lexical resources. The resulting system is
called GROBID-Dictionaries to reflect the dependency with
the parent project. GROBID-Dictionaries has been tested
with several lexical resources with promising results.

2.1. Architecture
The system’s architecture is cascaded. Textual and typo-
graphical information are processed by means of multi-level
classifications performed by machine learning models.
Figure 1 sums up the architecture described in Khemakhem
et al. (2017). Each blue object represents a conditional ran-
dom field (CRF) model. These models are used to classify

https://www.clarin.eu/
https://www.dariah.eu/
http://www.lexonomy.eu/
https://github.com/MedKhem/grobid-dictionaries
https://github.com/MedKhem/grobid-dictionaries


Figure 1: General architecture of GROBID-Dictionaries

the input text together with its typographical features. The
other objects represent resulting text clusters to be either
directly wrapped into proper TEI elements (elements with
angle brackets) or they are temporarily tagged with pivot
elements that are transformed into valid TEI constructs only
in the final output (e. g., headnote, footnote, body).
For the sake of simplicity, figure 1 does not include all pos-
sible tags for the Form and Grammatical Group models. A
complete description of all possible TEI structures result-
ing from these two models can be found under the TEI P5
dictionary chapter56 in Budin et al. (2012).

2.2. Configuration
GROBID-Dictionaries depends on core utilities and libraries
provided by GROBID7. The installation of the system must
be preceded by the installation and setup of the parent
project. Therefore GROBID-Dictionaries needs to be cloned
as an extension module within GROBID’s project structure
and needs to be built after its parent project.
Due to differences in technical preferences of the project
leaders, two different automation build technologies need to
be used for building each project: Gradle8 for GROBID and
Maven9 for GROBID-Dictionaries. Successful builds of the
system are packaged as Java libraries in two formats:

• a JAR (Java ARchive): this file is required for all
processing stages which precede the training of each
model, and

• a WAR (Web Application Resource or Web application
ARchive): in the case of GROBID-Dictionaries this is
not only a standalone web application but also a self-
contained one that can be run after the training of the
CRF models. It provides a graphical user interface to
the existing web services, each corresponding to one
or more of the cascading classification models.

GROBID-Dictionaries has been developed, tested and doc-
umented for the Linux and Mac operating systems. The
behaviour of the resulting libraries is expected to be the

5http://www.tei-c.org/release/doc/
tei-p5-doc/en/html/ref-form.html

6http://www.tei-c.org/release/doc/
tei-p5-doc/en/html/ref-gramGrp.html

7https://github.com/kermitt2/grobid
8https://gradle.org
9https://maven.apache.org

same when run in other operating systems. However, there
is no explicit guarantee for such uniform behaviour.

3. MATTER Annotation Workflow
The annotation workflow in GROBID-Dictionaries follows
the MATTER methodology (Model–Annotate–Train–Test–
Evaluate–Revise, see figure 2) introduced by Pustejovsky
and Stubbs (2012). Projected onto GROBID-Dictionaries
and the processing of lexical resources, the individual steps
are as follows:

Model: define a CRF model for predicting different text
structures at one stage and determine the corresponding
feature set. This phase requires the involvement of a
programmer to create the defined models and integrate
them into the cascading architecture.

Annotate: assign a TEI tag to each text block representing
a lexical entity defined within a model’s scope. This
task must be performed on an XML representation of
the data and must be strictly synchronised with the cor-
responding feature set file. The annotation guidelines10

need to be respected.

Train: use each annotated batch of data to train a corre-
sponding model. The cascading architecture of the
models should be respected here.

Test: this step gives just a rough idea about how the trained
model behaves on unseen data. There are many ways
to accomplish this goal. The easiest one is to run the
corresponding web service from the web application
on a held-out sample.

Evaluate: a precise evaluation with different measures is
enabled at the end of the training process as long as an-
notated data are provided under the dedicated location
in the dataset.

Revise: the last stage is about reviewing the modelling and
annotation steps that have been described in the guide-
lines. Four possible measures are the outcome of this
step:

• annotate more data when an improvement of the
results was achieved,

• refine the annotation guidelines for new variation
noticed in the last training batch

• proof-read the performed annotations when minor
anomalies are noticed

• think about redefining the modelling when the
results represent unexplainable anomalies. This
could be translated either into a simple feature
engineering process or into a change of the logic
behind and the scope of the models or their archi-
tecture.

10https://github.com/MedKhem/
grobid-dictionaries/wiki/How-to-Annotate%3F

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-form.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-form.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-gramGrp.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-gramGrp.html
https://github.com/kermitt2/grobid
https://gradle.org
https://maven.apache.org
https://github.com/MedKhem/grobid-dictionaries/wiki/How-to-Annotate%3F
https://github.com/MedKhem/grobid-dictionaries/wiki/How-to-Annotate%3F


Figure 2: Implemented MATTER Workflow

4. Enhanced Usability
Section 2. has drawn a detailed picture of the technical
setup required to install and execute the different parts of
the system. Thus it is clear that a certain expertise and
understanding of the system architecture is mandatory to
successfully install the tool. Section 3. presented the chal-
lenges of the iterative training cycle which involves costly
manual work by way of carry out data annotation.
Such requirements present a twofold obstacle: on the one
hand the tool’s target community mostly consists of users
with limited programming skills, such as lexicographers or
linguists. If these users are not able to get technical support,
the tool will not be usable for an important part of its target
community. In the other hand the GROBID-Dictionaries
project aims to constantly improve its architecture and to
provide more fine-grained lexical information. On the long
term, the goal of project is the provision of generic machine
learning models which will be able to exploit different types
of digitised dictionaries. Collecting and working with differ-
ent types of lexical data (or at least samples thereof) drawn
from a preferably diverse users community is a crucial step
in the further development of GROBID-Dictionaries.
The usability of the tool is a vital aspect to it as this en-
ables a broad user community to productively make use of
GROBID-Dictionaries. Therefore, issues of usability are
of similar importance like the tool’s earlier defined purpose
and the research challenges it encounters.

4.1. Unified Execution Environment
As a first measure, we have investigated different ways for
streamlining the setup process and for guaranteeing a unique
behaviour of the system across different execution environ-
ments.
A possible solution would have been using a system image
runnable on a virtual machine. Such an image should have
a Linux based operating system, a Java development kit
(JDK) and the different automated build systems installed.
GROBID and GROBID-Dictionaries should also already be
cloned and built correctly. This type of solution suffers from
two main issues. Firstly, the size of the image would be
huge as it would include several unneeded tools and system
files that are still part of the operating system. Secondly, the

static nature of such an image would make it complicated
to update it after a new version of GROBID-Dictionaries is
released. Updates to GROBID-Dictionaries are published
frequently since the tool is under continuous development.
However, a system image containing the above mentioned
components can be built in a more efficient way using a
different technique. Docker11 is a state of the art software
technology which is also based on the virtualisation of the
execution environment. Contrary to the static image ap-
proach sketched out initially, Docker allows for the flexible
composition of an image. An image is shaped by instruc-
tions written in a Docker file12. Theses instructions make
sure that only the required components are included in the
image. Moreover, several alternatives are available to effi-
ciently update a build within an image starting from pushing
a newly created image to the online Docker Hub reposi-
tory13, to linking the corresponding GitHub and Docker
Hub repositories coupled with activating the automatic build
to synchronise the image after each update of the code.

Figure 3: A GROBID-Dictionaries image in a Docker con-
tainer

To run a Docker image of GROBID-Dictionaries (see fig-
ure 3), a user needs to install the version of the Docker
software corresponding to his operating system and pull
the latest image of the tool from Docker Hub. The pulled
image (orange box) will not be run directly on top of the
operating system of the host machine but rather inside a
Docker controlled container (yellow box). Thus testing the
tool on Docker is enough to guarantee a unified behaviour,
regardless of the particular system configuration of a user’s
computer environment.
It is also possible to synchronise files on the host machine
with a running image in the Docker container. This feature
allows for the tool hosted inside of a Docker container to
directly interact with files stored on the host machine. We
profited from this alternative to make the dataset directory
shared between the two environments. With this mechanism,
the user can exploit the full functionality of the tool living

11https://www.docker.com
12https://github.com/MedKhem/

grobid-dictionaries/blob/master/Dockerfile
13https://hub.docker.com/r/medkhem/

grobid-dictionaries/

https://www.docker.com
https://github.com/MedKhem/grobid-dictionaries/blob/master/Dockerfile
https://github.com/MedKhem/grobid-dictionaries/blob/master/Dockerfile
https://hub.docker.com/r/medkhem/grobid-dictionaries/
https://hub.docker.com/r/medkhem/grobid-dictionaries/


in the Docker image to train the machine learning models
on the data residing locally on his machine.
In addition, thanks to the self contained nature of the tool’s
web application coupled with its fluid setup and manip-
ulation through the Docker image, using the GROBID-
Dictionaries image enables running both of the desktop and
web based functionality on the local machine of the user.
As previously introduced, such a feature represents an asset
for researchers who care about the security of their data and
experiments.

4.2. Lightening MATTER Process
The second major category of improvements specifically
targets the annotation workflow. Annotating training data
involves challenging manual work and demands provisions
to ensure data integrity and validity.

4.2.1. Creating Training Data
To train a model in GROBID-Dictionaries based on a PDF
file containing the raw text and the typographical features
of a lexical resource, two additional files are necessary: a
TEI document containing the corresponding reference en-
coding and a feature file decribing textual and typographical
information of each printed line or token.
To generate the training files, embedded functionalities of
the tool should be used following one of the two options:

• pre-annotated training data: it used to be the default
mode for creating automatically training data, inherited
directly from GROBID’s core functionality. This mode
is useful when a model was trained on a substantial
amount of data. The task of the annotator is then to
correct the automatically placed TEI tags by moving,
adding or removing them.

• raw training data: constitutes new functionality we
have implemented to shortcut the checkout and clean-
ing of the tags automatically generated by using the
default mode. The idea is simply creating training
data without pre-annotations. Despite being obvious,
starting annotating a document from scratch was not
possible before integrating this new feature. Such a
mode cuts with the old practice of correcting the pre-
dictions a model trained on different sample, to make it
possible to start annotating totally fresh data. Besides
giving more choices to the annotator, such mode saves
him time and effort especially if an old model has been
trained with multiple TEI elements.

A legitimate question remains yet unanswered: how can a
user generate training data based on a selection of specific
pages from possibly hundreds of pages a dictionary may
comprise? After annotating different lexical samples in PDF
format, we could qualify splitting an existing document to
separate pages, or sequence of pages, as a very critical step.
With some supposedly dedicated PDF manipualtion tools
producing damaged pages, we found only one tool reliably
useful for the purpose of separating PDF pages14 which
seems to produce a quality split as good as the original
document. Using workaround solutions for this purpose,

14http://community.coherentpdf.com

such as print-to-file functionality in web browsers, is also
not recommended.

4.2.2. Training Data Annotation
As previously stated, GROBID-Dictionaries generates a pre-
processed XML representation from PDF files containing
the raw text of a lexical resource. To create training data
for the tool the user is then required to introduce semantic
mark-up for the different models. Typically, an XML aware
editor should be used to perform this task. Some advanced
editors such as oXygen15 allow for visual annotating XML
files (see figure 4 for an example).
We aimed to profit from the visual feature to avoid per-
forming inline annotation directly on the text of the XML
elements. This is catered for by a new feature in GROBID-
Dictionaries that now for each model provides both a schema
description (in Relax NG) and a presentational stylesheet (in
CSS). The schema description enables the editing software
to check or even enforce schema compliance of the training
data. The stylesheet can be exploited by the editing soft-
ware to allow users to mark up the training data semantically
by highlighting portions of the text and then enclosing the
highlighted portion with a suitable XML tag. The colours
attributed to each element can be customised by a simple
modification in the stylesheet.

Figure 4: Training data annotation in oXygen author mode
for the first model: page headers vs. page body

4.2.3. Train, Test and Evaluate
For this segment of the MATTER workflow, the user is
provided with straightforward shell commands to execute,
graphical mode to test and varied measures to evaluate and
decide whether a model has reached an acceptable level of
accuracy. A simple but effective trick could be however
employed at this stage to verify the accuracy of the anno-
tations performed in the previous step. Where in a normal
case the annotated data should be split between training and
evaluation datasets, the training dataset could be used also
as evaluation dataset to verify any inconsistencies that might
have accrued during the annotation process. In such a setup,
a correct annotation should give 100 % accuracy, which

15https://www.oxygenxml.com/

http://community.coherentpdf.com
https://www.oxygenxml.com/


means that model could reproduce what it has learnt cor-
rectly. Any other result should lead to the last step described
in section 2.

5. User Experience
We had the opportunity to expose the system with its new
setup and features to a mixed group of users in the course of
a winter school on lexicography that was held at the Berlin-
Brandenburg Academy of Sciences and Humanities at the
end of 201716. During this event we collected information
about the usability of the tool. Additionally, we asked partic-
ipants to respond to a questionnaire after the winter school
to gain further insights as to their experiences while working
with the tool.

5.1. Setup
A group of nine users participated in the experiment which
was carried out during three hands-on sessions of four hours
length each. The users were free to join one or more ses-
sions of the the tutorial. The goal of the tutorial was to
familiarise the participants with the MATTER workflow
as implemented in GROBID-Dictionaries, while excluding
the first modelling step which requires programming skills.
Note that none of the participants was familiar with the tool
prior to the tutorial.
After a short introduction to the architecture of the system,
the users were guided through the process of installing and
running the docker image17. Running the docker image,
the participants were then able to reproduce the results re-
ported in Khemakhem et al. (2017) which are based on a
modern English monolingual dictionary. As the next step,
several users used the possibility to experiment with their
own lexical samples by repeating the learnt workflow and
crafting new models for their individual datasets. Two of
the participants succeeded in training and using all of the
implemented models for their own datasets, thus adapting
all of the functionality currently implemented in GROBID-
Dictionaries.18

5.2. Gathered Insights
We asked the participants of our tutorial to respond to a
questionnaire that we made available to them after the winter
school. The questionnaire was created as a Google Form19.
The results of the inquiry can be summed up in the following
points:

Tool setup / user profile The first three questions focus on
establishing the professional background of the partici-
pants. The tutorial group consisted of lexicographers,
linguists, computational linguists, a computer scien-
tist, a web developer and a philologist. Participants
were free to name more than one field of expertise. Of

16https://lexmc.sciencesconf.org/
17see instructions at https://github.com/

MedKhem/grobid-dictionaries/wiki/Docker_
Instructions

18A more detailed description of the conditions of the ex-
periment can be found in a blogpost at https://digilex.
hypotheses.org/250 as shared by of one of the participants.

19https://goo.gl/Zt2gDy

the nine respondents, seven reported previous knowl-
edge of machine learning techniques but only four of
them had actually worked with machine learning tools
before.

When asked whether they encountered any problems
with actually running the tool from the docker image,
the majority of the participants (seven) responded that
this was not the case. The setup failed once on a Win-
dows based computer with insufficiently sized memory
that was running an advanced version of the operating
system. Consequently there was not enough memory
left to run the Docker software which requires more
than the 1 GB of free memory. The participant could
still continue the tutorial by sharing a machine with
her colleague. Without taking into account the answer
of another respondent who has involuntarily reported
encountering an installation issue, almost 90% of the
users were able to launch the tool without any problem.

Sample data / Initial training The lexical resources
brought to the tutorial were considerably varied.
They included different types of dictionaries (some
digitised, some born digital with no explicit semantic
markup) such as general monolingual, bilingual and
etymological dictionaries as well as a dictionary from
a language documentation field project (see table 1).

We asked the participants whether they successfully
trained at least the first two models and thus were
able to perform the general dictionary segmentation
(page segmentation) and the dictionary segmentation
(entry recognition). Despite the variety of their datasets,
100% of the answers were positive. This supports the
assumption of the implemented cascading approach to
be sample independent.

Type Language(s) Size
general, bilingual Greek, English ≈ 17 000 entries
general, monolin-
gual

Basque ≈ 16 000 pages

etymological,
bilingual

Hittite (a lan-
guages of the
ancient Near
East), English

≈ 470 pages

lang. documenta-
tion

French, Yemba
(an African
language family)

≈ 2 1000 entries

lang. documenta-
tion

German (Bavarian
dialects in Aus-
tria)

≈ 75 000 entries

general, monolin-
gual

English ≈ 370 pages

Table 1: Dictionaries experimented with during the tutorial.
Note that two participants worked on the same resource and
another two used the resource provided by us.

Creating training data Two questions focus on the usabil-
ity of the graphical annotation of the training data using
oXygen’s author mode. None of the participants found

https://lexmc.sciencesconf.org/
https://github.com/MedKhem/grobid-dictionaries/wiki/Docker_Instructions
https://github.com/MedKhem/grobid-dictionaries/wiki/Docker_Instructions
https://github.com/MedKhem/grobid-dictionaries/wiki/Docker_Instructions
https://digilex.hypotheses.org/250
https://digilex.hypotheses.org/250
https://goo.gl/Zt2gDy


graphically marking the training data a hard task and
six qualified it as a straightforward process. Compared
to creating the training data by manipulating the XML
structure directly with a text editor, most of the partic-
ipants (seven) confirmed that the graphical approach
was easier.

Training workflow Although just two participants could
finish the training for all models of the tool, all those
who were not able to train the remaining models during
the tutorial expect to be able to complete the training
on their own. Moreover, all participants reported to
be confident that they were able to re-apply what they
learnt on other lexical resources. It’s important though
to clarify why some users could not successfully train
all of the models until the end of the tutorial. This was
mainly due to the fact that participants were free to
attend only parts of the tutorial sessions and due to the
considerable long time spent for downloading the huge
Docker image with the available internet connection.

Future use of the tool Based on the apparently successful
mastering of the training workflow, all but one partici-
pant declared to be willing to continue using GROBID-
Dictionaries after the tutorial. It is worth noting that
the participant who does not intend to continue using
GROBID-Dictionaries is working with non-lexical data
and still plans to adapt the parent project GROBID to
his type of data.

Having motivated inter-disciplinary experts participating in
the tutorial as well as testing the tool on new lexical samples
provided us with the opportunity to spot some issues and
several possible improvements. We could fix some of the
minor triggered implementation issues in the course of the
tutorial. Other issues have been filed as new tickets on
GitHub, e. g. issues concerning the treatment of lexical
entries that stretch over more than two pages in print. Some
serious technical issues related to GROBID core still need to
be overcome such as the support for some classes of special
characters which are wrongly encoded in the preprocessing
of the raw input text. The annotation guidelines should also
be further refined to provide clearer definitions of constructs
to be annotated, such as related entries.

6. Conclusion
Where Khemakhem et al. (2017) presented the basis of the
approach to implement GROBID-Dictionaries and first ex-
perimental results, this paper aims to provide an in-depth
description of the machine learning system with a focus on
its architecture, technical setup and the training workflow.
Enhancing the usability of the tool has been addressed as
a fundamental feature given the fact that the tool is in its
early development stage and the involvement of end users is
a key factor for the evolution of the tool. Therefore several
measures have been implemented to guarantee a straight-
forward installation and user friendly annotation process.
The exposure of the tool to real users has confirmed many
of our choices to alleviate the challenges of a complex ML
workflow. This experiment also provided us with a pos-
sibility to promote the tool as well as to collect in-depth

feedback, which will help us to efficiently set our priorities.
The recent version and setup of the tool, presented in this
paper, do not only enhance its usability but also support the
reproducibility of findings resulting from its use.

7. Acknowledgement
This work has been supported by the “Pooling Activities,
Resources and Tools for Heritage E-research Networking,
Optimization and Synergies” (PARTHENOS) project.

8. References
Budin, G., Majewski, S., and Mörth, K. (2012). Creating

lexical resources in tei p5. a schema for multi-purpose dig-
ital dictionaries. Journal of the Text Encoding Initiative,
(3).

Khemakhem, M., Foppiano, L., and Romary, L. (2017).
Automatic Extraction of TEI Structures in Digitized Lex-
ical Resources using Conditional Random Fields. In
electronic lexicography, eLex 2017, Leiden, Netherlands,
September.

Lopez, P. and Romary, L. (2015). Grobid - information
extraction from scientific publications. ERCIM News.

Měchura, M. B. (2017). Introducing Lexonomy: an open-
source dictionary writing and publishing system. In elec-
tronic lexicography, eLex] 2017, Leiden.

Pustejovsky, J. and Stubbs, A. (2012). Natural Language
Annotation for Machine Learning: A guide to corpus-
building for applications. ” O’Reilly Media, Inc.”.


	Introduction
	GROBID-Dictionaries
	Architecture
	Configuration

	MATTER Annotation Workflow
	Enhanced Usability
	Unified Execution Environment
	Lightening MATTER Process
	Creating Training Data
	Training Data Annotation
	Train, Test and Evaluate


	User Experience
	Setup
	Gathered Insights

	Conclusion
	Acknowledgement
	References

