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Effect of Hydrogen Fluoride Addition and Synthesis
Temperature on the Structure of Double-Walled Carbon
Nanotubes Fluorinated by Molecular Fluorine

Yuliya V. Fedoseeva,* Marc Dubois, Emmanuel Flahaut, Oleg Yu. Vilkov,

Andrey Chuvilin, Igor P. Asanov, Alexander V. Okotrub, and Lyubov G. Bulusheva

Double-walled carbon nanotubes (DWCNTs) have been fluorinated by pure

molecular fluorine (F2) at room temperature or 200 !C and a mixture of F2
with hydrogen fluoride (HF) at 200 !C that resulted in products with

compositions of CF0.12, CF0.39, and CF0.53 as determined by X-ray photoelec-

tron spectroscopy. The differences in the structures of three kinds of

fluorinated DWCNTs were revealed using transmission electron microscopy,

Raman scattering, and near-edge X-ray absorption fine structure (NEXAFS)

spectroscopy. Quantum-chemical modeling of the NEXAFS F K-edge spectra

detected a change in the fluorine pattern with the increase of the F2
treatment temperature. The presence of HF in fluorine gas was found to

accelerate the fluorination process and cause a partial destruction of outer

shells of the DWCNTs.

1. Introduction

Fluorinated carbon nanotubes (CNTs)
attract the interest for electronic applica-
tions because of the possibility of energy
gap tuning through sidewall chemical
modification. Density functional theory
(DFT) calculations have shown that
depending on the fluorination pattern
and the tube chirality, the bandgap in the
fluorinated CNTs may vary from 2.7 to
0 eV.[1] The different structures and hence
properties of the fluorinated CNTs can be
obtained by using various fluorination
techniques.[2,3] CNTs as well as graphite
and graphene are usually fluorinated with
the help of fluorine gas (F2) at elevated
temperatures.[4–6] Fluorination tempera-

ture is one of the key parameters, which influence the
composition and types of C─F bonding in the product.[7,8]

Note, that graphite does not interact with pure F2 at ordinary
conditions, while the process occurs with an admixture of
hydrogen fluoride (HF) in the reacting gas.[9,10] DFTcalculations
have revealed polarization of F2 molecule when it forms a
F2─HF complex.[11] Thus, HF plays a catalytic role in the
fluorination process by increasing the reactivity of F2. Zhang
with co-authors have shown that in contrast to fluorination by
atomic fluorine, fluorination by “pure” F2 produces nonhomo-
geneous distribution of fluorine on the surface of single-walled
CNTs (SWCNTs).[2]Using DFTcalculations, they demonstrated a
chemisorption of HFmolecules beside the fluorinated areas and
concluded that HF influences the increase in the size of highly
fluorinated regions, thus enhancing the fluorination
inhomogeneity.

The questions about the destruction of CNT shells and
fluorination of the inner tubes of double-walled CNTs
(DWCNTs) and multi-walled CNTs (MWCNTs) during the
fluorination procedure are still opened. With the help of high-
resolution transmission electron microscopy (HRTEM), Raman
spectroscopy, and X-ray photoelectron spectroscopy (XPS) data,
Muramatsu with co-authors have revealed that fluorine atoms
can be successfully attached to the outer shells of DWCNTs
through the reaction with pure F2 at 200

!C for 5 h, preserving
the nanotube morphology.[12] It has been demonstrated that in
the fluorination process the outer surfaces of the DWCNTs are
fluorinated and the inner shells remain intact.[13,14]
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set. The CNT surface was modeled by a segment of an armchair
(10,10) tube C96H24. Central part of the segment surface was
decorated with fluorine atoms. Positions of carbon and hydrogen
atoms at the segment edges were frozen during optimization,
which was conducted using an analytical method to the gradient
of 5 # 10"4 atomic units for atom displacements.

Theoretical NEXAFS F K-spectra were constructed within the
(Zþ 1) approximation,[21] which accounted for the effect of a final
core hole created in the absorption process on the spectral profile.
Tomodel a corehole, the excitingfluorine atom (Z)was replacedby
neon atom (Zþ 1). For compensation of the extra valence electron,
thecalculatingsystemwaschargedpositively. Intensitiesof spectral
lines were obtained by summing the squared coefficients at Ne 2p
orbitals and broadened with Lorentzian functions of a width of
0.7 eV. X-ray transition energies were determined as a difference
between Kohn-Sham eigenvalues of virtual molecular orbitals of a
model calculatedwithin the (Zþ 1)approximation (excited system)
and the1s-level energy offluorine in thegroundstate of thatmodel.
In such calculations, we use the energy of doubly occupied level
instead of the energy of the F 1s level with a hole. This introduces a
differenceof$21 eVrelative to themeasuredenergiesas ithasbeen
found fromthecomparisonof theexperimental FK-edge spectrum
of graphite fluoride (CF)n and theoretical spectrum[22] obtained
using the approach described above. This difference was used to
correct the theoretical energy scale.

3. Results and Discussion

HRTEM images of the products detected the preservation of
tubular structure of DWCNTs after fluorination at different
conditions (Figure 1). The bundles of DWCNTs with an average
size of $20 nm did not change their size after the fluorination at
room temperature and decreased by half after the high-
temperature fluorination. The interlayer separation in the
fluorinated DWCNTs is close to 0.34 nm. However, the images

Figure 1. HRTEM images of DWCNTs fluorinated by pure F2 at room

temperature (a) and 200 !C (b) and F2 in the presence ofHF at 200 !C (c–e).

In this paper, we used a DWCNTsample as a perfect model for the 
discovery of possible chemical modification of surface and interior 
space. Fluorination of DWCNTs was carried out by pure molecular 
fluorine at room temperature or 200 !C, and a mixture of F2 withHF 
at 200 !C. HRTEM, Raman scattering, energy-variable XPS and 
near-edge X-ray absorption fine structure (NEXAFS) spectroscopy 
were used to reveal the changes in the composition and structure of 
DWCNTs fluorinated at these different conditions.

2. Experimental Section
2.1. Materials

DWCNTs were grown by catalytic chemical vapor deposition 
(CCVD) method using a mixture of methane (18 mol.%) and 
hydrogen at 1000 !C and a Mg1"xCoxO catalytic system[15] and 
purified by heating in air at 450 !C for 1 h followed by treatment 
with concentrated HCl.[16] The obtained sample consisted of ca. 
80% DWCNTs, 20% SWCNTs, and a few triple-walled nanotubes. 
The outer diameter of theDWCNTs ranged from 1.2 to 3.2 nm, and 
the diameter of inner tubes varied from 0.5 to 2.5 nm.

Fluorination of DWCNTs was carried out under a pure F2 gas 
flow at room temperature for 3 h (marked as sample RT) and at 
200 !C for 2 h (marked as sample 200C). The mixture of F2 and 
HF (less than 5%) produced by electrolysis of a KF # 2HF melt at 
100 !C has been used for fluorination of DWCNTs at 200 !C for 
10 min (marked as sample HF-200C).

2.2. Characterization

HRTEM images of fluorinated DWCNTs were collected on a JEOL-
2010 microscope and a Titan 80–300 microscope. Raman spectra 
were measured on a LabRAM HR Evolution spectrometer using 
the 633-nm excitation from a HeNe laser. The NEXAFS and XPS 
experiments were performed at the Berliner Elektronenspeicher-
ring-Gesellschaft für Synchrotronstrahlung (BESSY II) using 
monochromatic radiation from the Russian-German beamline. 
NEXAFS spectra near the C K- and F K-edges were acquired in the 
total-electron yield mode with a typical probing depth of a few 
nanometers.[17] The spectra were normalized to the primary 
photon current from a gold-covered grid. XPS C 1s spectra were 
measured at an excitation energy of 400 and 800 eV with a 
resolution of $0.07 and $0.1 eV (full width at half maximum, 
FWHM). XPS C 1s spectra were additionally recorded on a 
SpecsLab PHOIBOS 150 spectrometer with Al Kα (1486.74 eV) 
excitation. The binding energies of the fluorinated samples were 
calibrated to the pristine DWCNT C 1s peak at 284.5 eV. In the 
spectrum analysis, the background signal was subtracted by 
Shirley’s method.

2.3. Calculations

Quantum-chemical calculations were carried out using the 
three-parameter hybrid functional of Becke[18] and Lee-Yang-Parr 
correlation functional[19] (B3LYP method) included in the Jaguar 
package.[20] Atomic orbitals were described by the 6-31G% basis



components gave the compositions C0.9(CF)0.08(CF2)0.02 for
sample RT, C0.66(CF)0.29(CF2)0.05 for sample 200C, and
C0.54(CF)0.37(CF2)0.08 for sample HF-200C.

Previously it has been demonstrated, that an increase of the
fluorination temperature enhances the fluorination level of
CNTs.[4,7] According to the TEM and XPS characterizations,
fluorination of MWCNTs by F2/N2 mixture at elevated temper-
atures 380, 420, and 450 !C caused the destruction of the tubular
structure, disordering of graphene layers and formation of CF2
groups mainly.[25] We show that addition of HF in a F2 flow
allows obtaining the fluorinated DWCNTs with the higher
fluorine loading for the shorter treatment period. A high
concentration of CF2 groups in the HF-200C sample is attributed
to breaking of DWCNT layers because two fluorine atoms can be
only bonded with an edge carbon atom. Since RBM signals from
the inner shells are clearly observed in Raman spectra of the
fluorinated DWCNTs, we assign the component C in their C1s
spectra to these non-modified shells. Taking into account the
diameters of the inner and the outer shells in the DWCNTs, we
estimate 40% of interior carbon atoms.

Hence, in the case of fluorine attachment to the outer shells
only, the area of the C component should be no less than 40% of
the total spectrum area. The portion of this component
determined from the XPS C1s spectra fitting is 59% for sample
RT, 40% for sample 200C, and 24% for sample HF-200C. The
reduced intensity of the component C for the last sample may
indicate that inner shells of DWCNTs are partially fluorinated in
this case. An average amount of carbon atoms adjacent to the CF-
groups was estimated from a ratio of spectral areas of CF and C-
CF components. The obtained values are 2.1 for sample RT, 0.9
for sample 200C, and 0.8 for sample HF-200C. In an ideal case,
values 2 and 1 correspond to two and one bare (non-fluorinated)
carbon atoms in a CF group surrounding. Thus, addition of HF

Figure 2. Raman spectra of initial DWCNTs and those after fluorination

by pure F2 at room temperature (RT) and 200 !C (200C) and by F2 in the

presence of HF at 200 !C (HF-200C) in RBM (a) and D- and G-mode (b)

regions.

Figure 3. XPS spectra of initial DWCNTs and DWCNTs fluorinated by

pure F2 at room temperature (RT) and 200 !C (200C) and F2 in the

presence of HF at 200 !C (HF-200C) measured in theС 1s (a) and F 1s (b)

regions at 800 eV.

of the sample HF-200C obtained with a higher magnification 
display that some outer layers of DWCNTs are partially 
destructed and disoriented (Figure 1d,e).

To reveal the fluorination of the inner DWCNT shells, we have 
invoked the Raman spectroscopy. Figure 2 shows the Raman 
spectra measured in the region of radial breathing modes (RBM) 
from 100 to 300 cm"1, corresponding to symmetric radial 
vibrations of carbon atoms, and in the region of D- and G-modes. 
In the spectrum of initial DWCNTs, the D-mode peak centered at 
1324 cm"1 is a defect-activated feature, and G-mode peak at 
1588 cm"1 appears owing to tangential in-plane stretching 
vibrations.[23] Low intensity of D-mode peak indicates a high 
crystallinity of DWCNTs and low concentration of amorphous 
carbon in the purified sample. According to the relations 
ωRBM(cm

"1) ¼ 228/d(nm) for inner tubes, and ωRBM(cm
"1) 

¼ 204/d(nm) þ 27(cm"1) for outer tubes, where d is a nanotube 
diameter, we detected responses from the inner shells with 
diameters of 0.9, 1.0, and 1.2 nm and from the outer shells with 
diameters of 1.4, 1.6, and 1.76 nm.[24] As compared to initial 
DWCNTs, the Raman spectra of fluorinated DWCNTs showed 
suppressing the RBMs below 180 cm"1 (outer shells), while 
intensities of RBM peaks from the inner shells did not change 
significantly. The G-modes in the spectra of the fluorinated 
DWCNTs have different shapes and are slightly downshifted 
relative to the peak position for initial DWCNTs. The intensity of 
D-mode peak increased after the fluorination of DWCNTs. This 
peak is relatively weak in the spectrum of sample fluorinated at 
room temperature indicating a low amount of the attached 
fluorine. The largest intensity of D-mode peak for the DWCNTs 
fluorinated by F2–HF at 200 !C points at a high disordering of 
graphitic shells in this sample.

Figure 3 shows XPS C 1s and F 1s spectra of initial and 
fluorinated DWCNTs measured at an excitation energy of 800 eV. 
The XPS С 1s spectrum of pristine DWCNTs has a single 
asymmetric peak at 284.5 eV characteristic of sp2-graphitic carbon 
(peak C). The spectrum of DWCNTs fluorinated at room 
temperature exhibits new peaks centered at 285.4, 288.4, and 
290.6 eVand attributed to carbon atoms linked with CF-groups (C-
CF) and carbon atoms covalently bonded with one (C-F) and two 
(C-F2) fluorine atoms, respectively. In the spectra of DWCNTs 
fluorinated at 200 !C, these additional peaks have the enhanced 
intensity, andthey are shifted to higher energies to 286.1 eV (C-CF), 
289.0 eV (CF), and 291.0 eV (CF2). The fitting of the spectra by



2.1 nm. A reduced number of bare carbon atoms around a CF
group should be attributed to the clustering of fluorine atoms
inside the DWCNT bundles.

NEXAFS spectroscopy is a bulk sensitive method for
nanostructured materials. Figure 5 compares the spectra
measured near the C K- and F K-edges of the samples. The C
K-edge spectrum of the initial DWCNTs exhibits intensive π

%-
and σ

%- resonances at 285.4 and 291.8 eV, which are typical for
graphite, carbon nanotubes and other structures with sp2-
hybridized graphitic structure (Figure 5a). In the spectra of the
fluorinated DWCNTs, intensity of the π

%-resonance is reduced
and the σ

%-resonance has a smooth shape. Both these facts
evidence changes in electronic structure of the DWCNTs as
result of the fluorination. The spectral features located between
286.5 and 290.6 eV are contributed by carbon atoms covalently
bonded with fluorine. The spectra of samples 200C andHF-200C
are similar in appearance, while the spectrum of the sample RT
shows higher π%- and σ

%- resonances and weaker and localized
peak C─F because of the lower fluorination degree and,
probably, the different fluorine pattern.

The difference in the fluorine patterning for room-tempera-
ture and high-temperature fluorinated DWCNTs is detected
from the NEXAFS F K-edge spectra. Before the σ%- absorption
edge at 692.2 eV, the spectrum of sample RT shows two
shoulders A at 687.2 eV and B at 689.2 eV, while samples 200C
and HF-200C have a single peak C at 688.3 eV (Figure 5b). The
number, position, and intensity of pre-edge features are
determined by the local surrounding of CF groups and depend

Figure 4. XPS C 1s spectra of DWCNTs fluorinated at 200 !C by pure F2
(200C) and F2 mixed with HF (HF-200C) measured at 400, 800, and

1486.74 eV.

Figure 5. NEXAFS C K-edge spectra (a) and F K-edge spectra (b) of

DWCNTs fluorinated by pure F2 at RT and 200 !C and F2 mixed with HF at

200 !C. The optimized fragments of carbon nanotube (10, 10) C96H24with

two (F2), six (F6), ten (F10), and fourteen (F14) fluorine atoms (c).

Theoretical F K-spectra calculated for all fluorine atoms in the models (d).

to F2 should not change the fluorine pattern for DWCNTs 
fluorinated at 200 !C.

This conclusion is supported by comparing the XPS F 1s 
spectra of the fluorinated DWCNTs (Figure 3b). The spectra are 
presented by a single symmetric peak located at 687.3 eV for the 
sample RT and 687.7 eV for the samples 200C and HF-200C. 
Previously it has been shown experimentally that the F 1s 
binding energy can increase with fluorine concentration and 
depends on fluorine pattern.[7,22,26] The lower fluorine concen-
tration and the weaker C–F interaction are observed for the 
DWCNTs fluorinated at room temperature, while the chemical 
state of fluorine is similar in both high-temperature fluorinated 
samples.

To study how the presence of HF in fluorine gas flow 
influences the ability of the F2 molecules to penetrate inside the 
DWCNT bundles, the XPS C 1s spectra were measured at photon 
energies of 400, 800, and 1486.74 eV providing a sample probing 
depth of 0.44, 1.08, and 2.1 nm, respectively (Figure 4).[27] The 
composition of the samples 200C and HF-200C estimated from 
the spectra fitting is CF0.35-CF0.39 and CF0.52-CF0.53, respectively. 
The ranges of the values show that fluorine is uniformly 
distributed within the bundles, independently on the presence or 
the absence of HF in the reaction volume. This observation is in 
contrast to that observed in Ref. [28], where the XPS C 1s spectra 
of MWCNTs fluorinated by a F2–HF mixture at 420 !C have 
detected an increase of the fluorinated carbon with probing 
depth.

The main difference between the C 1s spectra recorded at 
different excitation energies is a ratio between intensities of the 
components C─CF and C─F (Figure 4). The value C─CF/C─F 
decreases from 0.9 to 0.7 for sample 200C and from 0.8 to 0.7 for 
sample HF-200C, when the energy increases from 400 and 800 
to 1486.74 eV. This evidences the change in the local surround-
ing of CF groups for the bundle surface and the bundle depth of



4. Conclusions

DWCNTs have been fluorinated by pure F2 at room temperature
for 3 h, at 200 !C for 2 h, and by F2 mixed with HF at 200 !C for
10min. The fluorination products were investigated by HRTEM,
Raman spectroscopy, XPS, and NEXAFS. With the help of DFT
modeling of NEXAFS F K-edge spectra, we found that increase of
the fluorination temperature results not only in enhanced
fluorine content but also in different fluorine patterns. Fluorine
atoms covalently attach to pair or a few neighboring carbon
atoms under room-temperature conditions, and to more than
ten adjacent carbon atoms forming (CF)n regions on outer sides
of DWCNTs. The presence of HF in the fluorine gas significantly
accelerates the process of DWCNT fluorination, but does not
affect the fluorine pattern. The stoichiometry of CF0.53 achieved
by DWCNT fluorination by F2–HFat 200 !Cwas formed about 12
times faster than the composition of CF0.39 obtained using pure
F2 gas at the same temperature.
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