
HAL Id: hal-01707737
https://hal.science/hal-01707737

Preprint submitted on 13 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to prevent type-flaw attacks on security protocols
under algebraic properties

Sreekanth Malladi, Pascal Lafourcade

To cite this version:
Sreekanth Malladi, Pascal Lafourcade. How to prevent type-flaw attacks on security protocols under
algebraic properties. 2009. �hal-01707737�

https://hal.science/hal-01707737
https://hal.archives-ouvertes.fr

ar
X

iv
:1

00
3.

53
85

v1
 [

cs
.C

R
]

 2
8

M
ar

 2
01

0

How to prevent type-flaw attacks on security

protocols under algebraic properties

Sreekanth Malladi1⋆ and Pascal Lafourcade2⋆⋆

1 Dakota State University
Madison, SD 57042, USA

Sreekanth.Malladi@dsu.edu
2 Université Grenoble 1, CNRS,Verimag,
2 avenue de Vignate 38000 Gières France

pascal.lafourcade@imag.fr

December 25, 2013

Abstract. Type-flaw attacks upon security protocols wherein agents are
led to misinterpret message types have been reported frequently in the
literature. Preventing them is crucial for protocol security and verifica-
tion. Heather et al. proved that tagging every message field with it’s type
prevents all type-flaw attacks under a free message algebra and perfect
encryption system.

In this paper, we prove that type-flaw attacks can be prevented
with the same technique even under the ACUN algebraic properties of XOR
which is commonly used in “real-world” protocols such as SSL 3.0. Our
proof method is general and can be easily extended to other monoidal
operators that possess properties such as Inverse and Idempotence as
well. We also discuss how tagging could be used to prevent type-flaw
attacks under other properties such as associativity of pairing, commu-
tative encryption, prefix property and homomorphic encryption.

Key words: Cryptographic protocols, Type-flaw attacks, Tagging, Algebraic
properties, Equational theories, Constraint solving, Decidability.

1 Introduction

A type-flaw attack on a protocol is an attack where a message variable of one
type is essentially substituted with a message of a different type, to cause a
violation of a security property.

In their pioneer work, Heather et al. proved that pairing constants called
“tags” with each message prevents type-flaw attacks [1].

Does preventing type-flaw attacks have advantages?

⋆ Supported by a doctoral SEED grant from the graduate school at DSU in 2007.
⋆⋆ Supported by ANR SeSur SCALP, SFINCS, AVOTE projects.

http://arxiv.org/abs/1003.5385v1

2 Malladi, Lafourcade

– As Heather et al. pointed out, besides the obvious advantage to security
in preventing these commonly and frequently reported attacks, preventing
them also allows many unbounded verification approaches (e.g. [2–4]) to be
meaningful, since they assume the absence of type-flaw attacks;

– Further, Ramanujam-Suresh found that the absence of any type-flaw attacks
allows us to restrict analysis to well-typed runs only [5], which is a decidable
problem; i.e., security can be decided with analyzing just a single session.

Thus, prevention of type-flaw attacks is a crucial and significant result toward
protocol analysis and verification.

However, Heather et al.’s work only considered a basic protocol model with
a free message algebra and perfect encryption. Operators such as Exclusive-OR
and ciphers such as CBC possess algebraic properties that violate these assump-
tions. Recent focus in research projects world-wide has been to extend protocol
analysis with algebraic properties to accommodate “real-world” protocols (e.g.
[6, 7]). Naturally, a corresponding study into type-flaw attacks would be both
crucial and interesting.

With this motivation, we examined several algebraic properties described in
the survey by Cortier et al. [8] such as:

– Associative pairing, Commutative encryption, and Monoidal theories that
violate the free algebra assumption;

– the Prefix property, Homomorphic encryption, and Low-exponent RSA weak-
ness that violate the perfect encryption assumption.

We report our observations in this paper. As our main contribution, we prove
that type-tagging prevents all type-flaw attacks under XOR that possesses ACUN
properties (Associativity, Commutativity, existence of Unity and Nilpotence).
The proof approach is quite general and can be easily extended to other monoidal
theories such as Inverse and Idempotence as well. We also advocate some pru-
dent tagging practices to prevent type-flaw attacks under the other algebraic
properties mentioned above.

Organization. In Section 2, we show how type-tagging can prevent type-flaw
attacks under XOR using an example. In Section 3, we give a formal treatment of
type-flaw attacks in a symbolic model and provide a simpler proof compared to
[1] that tagging prevents type-flaw attacks under XOR. In Section 4, we examine
how the result withstands each algebraic property and suggest remedies in the
form of prudent engineering principles. We sum up with a Conclusion.

2 Tagging prevents type-flaw attacks under XOR -

Example

Consider the adapted Needham-Schroeder-Lowe protocol (NSL⊕) by Cheva-
lier et al. [9]:

Preventing type-flaw attacks under algebraic properties 3

Msg 1. A → B : [1, NA, A]→
pk(B)

Msg 2. B → A : [2, NA ⊕B, NB]
→

pk(A)

Msg 3. A → B : [3, NB]
→

pk(B)

(A and B are agent variables; NA, NB are nonce variables; [X]→Y
represents X encrypted with Y using an asymmetric encryption algorithm.).

A type-flaw attack is possible on this protocol even in the presence of com-
ponent numbering (recently presented in [10]):

Msg α.1. a → i : [1, na, a]pk(i)
Msg β.1. i(a) → b : [1, na ⊕ b ⊕ i, a]pk(b)
Msg β.2. b → i(a) : [2, na ⊕ b ⊕ i⊕ b, nb]pk(a)

Msg α.2. i → a : [2, na ⊕ i, nb]pk(a) (replaying Msg β.2)
Msg α.3. a → i : [3, nb]pk(i)

Msg β.3. i(a) → b : [3, nb]pk(b)

Notice the type-flaw in the first message (na ⊕ b ⊕ i substituted for the
claimed NA) that induces a type-flaw in the second message as well. This is
strictly a type-flaw attack since without the type-flaw and consequently without
exploiting the algebraic properties, the same attack is not possible.

Component numbering cannot also prevent type-flaw attacks under the In-
verse property that allows cancellation much like Nilpotence. Consider opera-
tors {+,−}, where + is binary addition, − a unary operator, and 0
a constant. Then, if we change the ⊕ operator in the NSL⊕ protocol to
+, variable NA could be substituted with na + i − b to form the same
attack as with ⊕.

The above attack can be avoided if type-tagging were to be adopted for the
elements of the XOR operator:

Msg 1. A → B : [1, NA, A]→pk(B)

Msg 2. B → A : [2, [nonce, NA]⊕ [agent, B], NB]
→

pk(A)

Msg 3. A → B : [3, NB]
→

pk(B)

Msg β.2 is then not replayable as Msg α.2 even when i(a) sends
Msg β.1 as i(a) → b : [1, [nonce, na] ⊕ [agent, b]⊕ [agent, i], a]→

pk(b),

4 Malladi, Lafourcade

since Msg β.2 then becomes b → i(a) : [2, [nonce, [nonce, na] ⊕
[agent, b]⊕ [agent, i]]⊕ [agent, b], nb]

→

pk(a).

This is not replayable as the required Msg α.2: i → a : [2, [nonce, na]⊕
[agent, i], nb]

→

pk(a) because, inside Msg β.2, one occurence of [agent, b]

is in [nonce, [nonce, na] ⊕ [agent, b] ⊕ [agent, i]] and the other is outside.
Hence, they cannot be canceled.

A similar reasoning applies to Inverse property for ⊕ instead of
Nilpotence. We leave this for the reader to verify.

In the next subsection, we will prove these claims formally.

3 Type-tagging prevents type-flaw attacks: Proof

In this section, we present a formal proof extending an approach presented in
[11] that non-unifiability of encryptions (which can be ensured by tagging with
component numbers) prevents type-flaw attacks with free operators and a more
detailed type-tagging will prevent them under the monoidal XOR operator. Our
proof is much simpler than [1], and more importantly, allows us to easily study
extrapolating the result to operators with algebraic properties. Furthermore,
being a symbolic protocol model, the framework is quite flexible to include the
much needed equational unification for additional equational theories.

3.1 Term Alegbra

We start off with a term algebra with mostly free operators except for the XOR

operator.

Definition 1. [Terms] A term is one of the following:
Variable (can be an Agent, Nonce etc., that are all subsets of Var); Con-

stant (numbers 1,2, . . .; name of the attacker ǫ etc.); Atom (split into sets
agents, nonces etc.); Concatenation denoted [t1, . . . , tn] if t1, . . . , tn are
terms; Public-Key denoted pk (A) with A of type Agent; Shared-
Key denoted sh(A,B) with A and B of type Agent; Asymmetric
encryption denoted [t]→k where t and k are terms; Symmetric encryp-
tion denoted [t]↔k where t and k are terms; Hash denoted h(t) where t is
a term; Signature denoted Sigk(t) where t is a term to be validated using
the key k; XOR denoted t1 ⊕ . . . ⊕ tn where t1, . . . , tn are terms.

We will drop the superscript → and ↔ if the mode of encryption is
irrelevant.

We will call terms with no atoms (but only constants and variables) as para-
metric terms. We will call a parametric term in which the variables were substi-
tuted with variables and/or atoms as a semi-term.

We will assume that the reader is familiar with the standard definitions of
syntactic unification, and the most general unifier (mgu). We will write t ≈ t′

if t and t′ are unifiable.
As usual, subterms are defined to capture parts of messages:

Preventing type-flaw attacks under algebraic properties 5

Definition 2. [Subterm]
Term t is a subterm of t′ (denoted t ⊏ t′) if

– t = t′, or
– t′ = [t1, . . . , tn] with t ⊏ t

′′

, where t
′′

∈ {t1, . . . , tn} or
– t′ = [t

′′

]k′ with t ⊏ t
′′

, or
– t′ = h(t

′′

) with t ⊏ t
′′

, or
– t′ = Sigk(t

′′

) with t ⊏ t
′′

; or
– t′ = t1 ⊕ . . . ⊕ tn with t ⊏ t

′′

where t
′′

∈ {t1, . . . , tn}.

We will call encrypted subterms, hashes and signatures as Compound Terms ;
we will denote them as CT (T) for a set of terms, T .

We will denote the type of a variable or atom t as type(t). We over-
load this to give the type of other terms. For instance, type([t1, . . . , tn]) =
[type(t1), . . . , type(tn)] and type([t]k) = [type(t)]type(k).

We will call a substitution of a term t to a variable V a “well-
typed” substitution, if type(t) = type(V). We will call a set of substitutions
σ well-typed and write well-typed(σ) if all its members are well-typed;
otherwise, we call σ ill-typed.

We will assume that all operators in the term algebra except the XOR

operator are free of equations of the form t = t′ where t and t′

are two different terms. Thus, every equation between two terms that were not
constructed with the XOR operator is of the form t = t. We will denote
this theory, ESTD.

On the other hand, we will assume that terms created with the XOR operator
to contain the following equational theory denoted EACUN corresponding to
it’s ACUN algebraic properties: t1 ⊕ (t2 ⊕ t3) = (t1 ⊕ t2) ⊕ t3
(Associativity); t1 ⊕ t2 = t2 ⊕ t1 (Commutativity); t1 ⊕ 0 = t1
(existence of Unity); t1 ⊕ t1 = 0 (Nilpotence).

We will denote the unification algorithms for terms constructed purely with
the standard operators and purely with the XOR operator as ASTD and AACUN

respectively.
Terms constructed using both the standard operators and the XOR operator

can be unified using ASTD, AACUN and the combination algorithm of Baader
& Schulz [12] resulting in a finite number of most general unifiers.

3.2 Strands and Semi-bundles

The protocol model is based on the strand space framework of [2].

Definition 3. [Node, Strand, Protocol]
A node is a tuple 〈Sign , Term〉 denoted +m when it sends a term

m, or −m when it receives m. The sign of a node n is denoted
sign(n) that can be ‘+’ or ‘−’ and its term as term(n) derived
from the term algebra. A strand is a sequence of nodes denoted 〈n1, . . . , nk〉
if it has k nodes. Nodes in a strand are related by the edge ⇒ defined such

6 Malladi, Lafourcade

that if ni and ni+1 belong to the same strand, then we write ni ⇒ ni+1.
A parametric strand is a strand with all parametric terms on its nodes. A
protocol is a set of parametric strands.

Protocol roles (or parametric strands) can be partially instantiated to pro-
duce semi-strands containing semi-terms on nodes obtained instantiating their
parametric terms, depending on the knowledge of agents concerning the variables
being instantiated: A variable is instantiated to an atom if the agent to which
the strand corresponds to, either creates the atom according to the protocol or
knows the value (e.g. being public such as an agent name). Variables may also
be replaced with new variable substitutions in order for different semi-strands
of the same parametric strand to be distinguishable. This is done if more than
one instance of a role is visualized in an execution scenario.

We will denote the substitution to a parametric strand ‘p’ by an honest
agent leading to a semi-strand ‘s’ as σh

s p.

For instance, role ‘A’ in the NSL⊕ protocol is the parametric strand

roleA = 〈 + [1, NA, A]→pk(B), − [2, [nonce, NA]⊕ [agent, A], NB]
→

pk(A),

+ [3, NB]
→

pk(B) 〉

and an agent ‘a’ that plays the role could be the semi-strand

σh
s roleA = 〈 + [1, na, a]→

pk(B), − [2, [nonce, na]⊕ [agent, a], NB]
→

pk(a),

+ [3, NB]
→

pk(B) 〉

where σh
s = {a/A, na/NA}.

A set of semi-strands is a semi-bundle. We will denote the set of all
substitutions to a protocol by honest agents leading to a semi-bundle S as
σH
S .

We will assume that honest agent substitutions leading to semi-strands are
always well-typed:

Assumption 1 Let P be a protocol and S be a semi-bundle such that
S = σH

S P . Then, (∀σ ∈ σH
S)(well-typed(σ)).

We will use the relation ‘precedes’ (�) on stand-alone strands in semi-
bundles: Let s be a strand in a semi-bundle S. Then,
(∀ni, nj ∈ s)(i ≤ j ⇒ ni � nj).

We will abuse the notation of CT () on strands, protocols and semi-bundles
as well. We will write t ∈ S even if t is a term on some node of some
strand of a semi-bundle S.

Preventing type-flaw attacks under algebraic properties 7

3.3 Constraints and Satisfiability

We use the constraint solving model of Millen-Shmatikov [13] that was later
modified by Chevalier [14] to model the penetrator3.

The main constraint satisfaction procedure, denoted P⊕ first forms a
constraint sequence from an interleaving of nodes belonging to strands in a
semi-bundle:

Definition 4. [Constraint sequence]
A constraint sequence C = 〈 term(n1) : T1, . . . , term(nk) : Tk〉

is from a semi-bundle S with k ‘−’ nodes if (∀n)(∀n′)((term(n′) : T ∈ C)∧
(term(n) ∈ T) ⇒ (n � n′)). Further, if i < j and ni, nj belong to
the same strand, then ni � nj and (∀i = 1 to k)(Ti ⊆ Ti+1).

A symbolic reduction rule applied to a constraint m : T is said to
“reduce” it to another constraint m : T ′ or m′ : T . P⊕ applies a set
of such rules R⊕ (Table 1) in any order to the first constraint in a sequence
that does not have a variable as it’s target, called the “active constraint”. It
is worth mentioning that P⊕ eliminates any stand-alone or free variables in
the term set of a constraint before applying any rule.

concat [t1, . . . , tn] : T t1 : T ,. . . ,tn : T split t : T ∪ [t1, . . . , tn] t : T ∪ t1 ∪ . . . ∪ tn

penc [m]→k : T k : T, m : T pdec m : [t]→pk(ǫ) ∪ T m : t ∪ T

senc [m]↔k : T k : T, m : T sdec m : [t]↔k ∪ T k : T, m : T ∪ {t, k}

XORR m : T ∪ {t1, . . . , tn} m : T ∪ t1 ⊕ . . .⊕ tn XORL t1 ⊕ . . .⊕ tn : T t1 : T, t2 ⊕ . . .⊕ tn : T

Sig Sigk(f(t)) : T t : T Hash h(t) : T t : T

Table 1. Set of reduction rules, R⊕ = R ∪ { XORL, XORR }

The rules in Table 1 do not affect the attacker substitution. There are two
other rules that involve unification, and generate a new substitution that is to
be applied to the whole sequence before applying the next rule. It is worth
giving a more detailed account of those rules including the transformation to
the constraints before the active constraint (C<) and the ones after (C>):

C<, m : T ∪ t, C>; σ

τC<, τC>; τ ∪ σ
where τ = mgu(m, t) (un)

C<, m : [t]→k ∪ T, C>; σ

τ C<, τ m : τ [t]→k ∪ τ T, τ C>; τ ∪ σ
,where τ = mgu(k, pk(ǫ)), k 6= pk (ǫ) (ksub)

A sequence of applications of reduction rules on a constraint sequence can
transform it into a “simple” constraint sequence:

3 Heather et al. [1] used classical penetrator strands of [2], but the basic penetrator
capabilities are equal in both models.

8 Malladi, Lafourcade

Definition 5. [Simple constraint sequence]
A constraint m : T is a simple constraint if m is a variable.

A constraint sequence C is a simple constraint sequence if every
constraint in C is a simple constraint.

The possibility of forming bundles from a given semi-bundle can be deter-
mined by testing if constraint sequences from it are satisfiable. Satisfiability is
usually defined in terms of attacker operations on ground terms; however, Cheva-
lier [14] proved that P⊕ is terminating, sound and complete with respect to
the attacker capabilities. Hence, we define satisfiability directly in terms of the
decision procedure:

Definition 6. [Satisfiability]
A constraint is satisfiable if a sequence of reduction rule application from

R result in a simple constraint. A constraint sequence C is satisfiable
if every constraint in the sequence is satisfiable. Further, the initially empty
substitution σ is said to satisfy C, denoted σ ⊢ C.

It is useful to characterize “normal” constraint sequences which are those
that do not contain pairs on the left and right sides of any constraint:

Definition 7. [Normal Constraint Sequence]
A constraint sequence C is normal iff for every constraint m : T ∈ C,

m is not a pair and for every t ∈ T , t is not a pair.

It has been proven in [14] that any constraint sequence can be “normalized”
such that if a substitution satisfies the original sequence, it can also satisfy the
normalized sequence.

Violations of trace properties such as secrecy and authentication can be em-
bedded in a semi-bundle so that a satisfiable constraint sequence from the semi-
bundle points to an attack. Using this concept, we define a type-flaw attack:

Definition 8. [Type-flaw attacks]
A type-flaw attack exists on a semi-bundle S if a constraint sequence

C from S is satisfiable with an ill-typed substitution, but not with a well-typed
substitution. i.e. (∃σ)(σ ⊢ C) ∧ (∄σ

′

)((σ′ ⊢ C) ∧ (well-typed(σ
′

))).

3.4 Main requirement — Non-Unifiability of Terms

We will now state our main requirement on protocol messages which states that
textually distinct compound terms should be non-unifiable and that all XORed
terms must be type-tagged:

Definition 9. [NUT]
Let P be a protocol. Then P is NUT-Satisfying iff

– (∀t1 ∈ CT (P))(∀t2 ∈ CT (P))(t1 6= t2 ⇒ t1 6≈ t2).;

Preventing type-flaw attacks under algebraic properties 9

– (∀t)(∀t′)((t ∈ P) ∧ (t = t1 ⊕ . . . ⊕ tn) ∧ (t′ ∈ {t1, . . . , tn}) ⇒ (∃t
′′

)(t′ =
[type(t

′′

), t
′′

])).

It can be easily seen that NUT for terms constructed with standard operators
is achieved by placing component numbers as the beginning element of concate-
nations inside all distinct compound terms in a protocol. E.g. [1, NA, A]→pk(B),

[2, NA, [3, NB, A]↔
sh(A,B)]

↔

sh(B,S), etc. Further, for terms that are XORed to-

gether, type tags must be included. For instance, NA⊕B⊕[1, NA, A]K should
be transformed into [nonce, NA]⊕[agent, B]⊕[[nonce, agent]→key, [1, NA, A]

→
K].

The tagged NSL⊕ protocol in Section 2 clearly conforms to these stipulations
and hence is a NUT-Satisfying protocol.

3.5 Main result

We will now prove that NUT-Satisfying protocols are not vulnerable to type-flaw
attacks.

The main idea is to show that every unification when applying P⊕ to a con-
straint sequence from a NUT-Satisfying protocol results in a well-typed unifier.

The intuition behind showing that unifiers are necessarily well-typed is as
follows: informally, the problem of unification of two terms under the combined
theory of (ESTD ∪ EACUN) must first result in subproblems that are purely in
ESTD or purely in EACUN according to Baader-Schulz algorithm.

Now EACUN problems will have a unifier only if the XOR terms contain vari-
ables. However, according to our extended requirement of NUT above, no pro-
tocol term has an XOR term with an untagged variable. Further, the XOR terms
produced by P⊕ in the term set of a constraint cannot contain variables either
since like in P, the rule (elim) eliminates any stand-alone variables in a term set
before applying any other rule. Thus, algorithm AACUN returns an empty unifier.
Unification of EACUN problems only happens when two standard terms that were
replaced by variables belong to the same equivalence class, can be unified with
ASTD and could thus be canceled.

In summary, the unifier for a problem in (ESTD ∪EACUN) under the extended
requirement on NUT is only from applying ASTD. We show that these problems
always produce well-typed unifiers.

For instance, consider the unification problem

[1, na]pk(B)
?

≈E [1, NB]pk(a) ⊕ [2, A] ⊕ [2, b]

Following Baader & Schulz method, we first purify this to sub-problems:

W
?

≈ESTD
[1, na]pk(B), X

?
≈ESTD

[1, NB]pk(a), Y
?

≈ESTD
[2, A], Z

?
≈ESTD

[2, b],

and W
?

≈EACUN
X ⊕ Y ⊕ Z.

10 Malladi, Lafourcade

Now, the new variables W , X , Y , and Z are treated as constants
during AACUN. In that case, the problem W = X ⊕ Y ⊕ Z is
not unifiable. However, there is a step we missed: we need to form equivalence
classes from the variables W , X , Y , and Z such that variables from
one class can be replaced with just one representative element. In this case, if we
partition the variables into { { W }, { X }, { Y, Z } }, then we can change

the problem W
?

≈EACUN
X ⊕ Y ⊕ Z into W

?
≈EACUN

X ⊕ Y ⊕ Y

with an additional problem of Y
?

≈ESTD
Z. This is obviously equivalent to

W
?

≈ESTD
X since the Y ’s cancel out leading to another sub-problem.

Now all the sub-problems are purely in the STD theory (terms on either
sides do not involve the ⊕ operator):

[1, na]pk(B)
?

≈ESTD
[1, NB]pk(a), [2, A]

?
≈ESTD

[2, b].

It can be easily seen that ASTD outputs a well-typed unifier ({na/NB, b/A})
for these problems resulting in a well-typed unifier for a combination of ASTD

and AACUN, since AACUN outputs an empty unifier.

Theorem 1. [NUT prevents type-flaw attacks]

Let P be a NUT-Satisfying protocol and S = σH
S P . Let C be a normal con-

straint sequence from S. Then, (σ ⊢ C) ⇒ (∃σ′)((σ′ ⊢ C) ∧ (well-typed(σ′))).

Proof. If σ satisfies C, then from Def. 6, rules from R⊕ have been used to reduce
it to a simple constraint sequence. The only rules that can change σ are (un)
and (ksub). (ksub) makes a well-typed substitution since it unifies a term with
the attacker’s public-key which is of the same type.

We prove below that ifm : T∪t ∈ C, andm ≈ t then for each mgu(m, t) = τ ,
well-typed(τ). Since initially σ is empty, using induction on each constraint of
the sequence, we can then conclude that σ is well-typed.

Following the combination algorithm of [12] described in [15], let the initial

problem of Γ = {m
?

≈E t} be reduced to (Γ ′, <, p) where

– Γ ′ is a set of unification problems {m1
?
≈ t1, . . . ,mn

?
≈ tn};

– Let Γ ′ be pure with every m ≈E t ∈ Γ ′ have m, t formed purely from
operator ⊕ on 0, constants and variables or from the standard theory in the
term algebra defined in Def. 1;

– < is a linear ordering on variables such that if X < Y then Y does not occur
as a subterm of the instantiation of X ;

– p is a partition {V1, V2} on the set of all variables V such that V2 are treated
as constants when ASTD is applied and V1 are constants when AACUN is
applied;

– Let another partition p′ of variables identifies equivalence classes of V where
every class in a partition is replaced with a representative and where mem-
bers of the class are unifiable;

Preventing type-flaw attacks under algebraic properties 11

Let the combined unifier of σSTD and σACUN denoted σSTD ⊙ σACUN = σ
which is obtained by applying [15, Def. 9]; i.e., by induction on <. Our aim is to
prove that every σ obtained for different combinations of <, p, p′ is well-typed.

Let us examine the possible forms of problem elements in Γ ′:

ACUN theory: m
?

≈ACUN t exist wherem = a1⊕a2⊕. . .⊕ai and b = b1⊕b2⊕. . .⊕
bj where each of a ∈ {a1, . . . , ai} and b ∈ {b1, . . . , bj} is a constant or a new
variable in V for some positive i and j. The reason is as follows: according to
the requirement on protocol messages for a NUT-Satisfying protocol, none
of {a1, . . . , ai} can be an untagged variable. Also, none of {b1, . . . , bj} is a
variable, since P⊕ applies rule (elim) eliminating all stand-alone variables
before applying any other rule. Lastly, the new variables in m and t would be
other problems in Γ ′ of the form X = [tag, x] where X is the new variable,
tag is a constant and x is any term. These new variables have to be treated as
constants when applying AACUN (they cannot be substituted with 0’s which
is the only substitution that AACUN can return). With all constants in m
and t, AACUN that would normally return a set of ‘0’ substitutions for some
variables, returns an empty set of substitutions answering that m and t are
equivalent (if they are);

STD theory: m ≈STD t where

1. either m or t is a new variable belonging to V ; there is no unifier to
existing variables here;

2. m, t are tagged terms of the form, [tag, x] and [tag, x′] where tag is a
constant. In this case, m unifies with t only if x unifies with x′ and the
proof can be applied recursively;

3. m, t ∈ CT (S); In this case, again the proof applies recursively. For in-
stance, if m = h(m′) and t = h(t′) then we need to unify m′ and t′;
Suppose m′ = [tag, x1, . . . , xn] and t′ = [tag, y1, . . . , yn]. The constant
tag guarantees that m′ and t′ have the same number of elements (n).
Now we need to unify every xi with yi for i = 1 to n. Firstly, if one of
xi and yi is a variable, then:

– If xi or yi is a new variable, there is no substitution to existing
variables;

– If both are existing variables, then they are both of the same type
by Def. 9 and Assumption 1; similarly if one of them is an atom;

If xi, yi ∈ CT (S), then the proof proceeds recursively to each subterm
in turn.

4. m and t are two new variables in a subset of the variable identification
partition p′. However, since both are problems in Γ ′ are such that they
map to a tagged pair or compound term in the standard theory, their
unifier is once again well-typed from above. Note that m and t cannot
be existing variables since these variables are from ACUN problems and
ACUN problems contain necessarily new variables as explained previously
in the case for ACUN theory.

12 Malladi, Lafourcade

4 More algebraic properties

We now consider some more algebraic properties of message operators. The first
set breaks the free algebra assumption for protocol messages like XOR. The second
set breaks the perfect encryption assumption.

4.1 Algebraic properties with equational theories

Monoidal theories. Following the definition of monoidal theories from [16],
we can determine that

– the theory ACU over {+, 0} where A stands for associativity, C for commu-
tativity and U for the existence of Unity is a monoidal theory;

– the theories ACUIdem and ACUN where Idem stands for Idempotence and N
for Nilpotence are also monoidal theories over {+, 0} and {⊕, 0} respectively;

– the theory of Abelian Groups (AG or ACUInv) over {+,−, 0} where Inv stands
for Inverse is also monoidal where − is a unary operator.

If we replace or overload the ⊕ operator in Section 3 with Idem or Inv, we
can make a similar reasoning as made for ACUN properties in Theorem 1:

When the combination algorithm of Baader & Schulz is applied for ESTD∪ET

where T is a theory with any, some or all of A, C, U, N, Idem, Inv, the algorithm
for T, say AT will return an empty substitution when the operator with theory
is so used in the protocol such that every term is type-tagged. Consequently, the
unifier for the combined unification problem will only have substitutions from
ASTD which will be well-typed as explained in Theorem 1.

However, we must note that the procedure P⊕ in [14] that we followed only
considered ACUN properties. We conjecture that if a suitable constraint solving
algorithm is developed for other monoidal theories as well, then the above con-
cept of necessarily well-typed unifiers could be used to extend Theorem 1 under
those theories.

Associativity of Pairing. This property allows the equation [a, [b, c]] = [[a, b], c].
Denote this as the theory Assoc.

Component numbering cannot prevents ill-typed unifiers. A simple exam-
ple can prove this: [1, A, [b, c], d] can be unified using [1, [a,B], C, d], with σ =
{[a,B]/A, [b, c]/C, d/D}. Obviously, σ is ill-typed.

However, type-tagging prevent ill-typed unifiers. If we consider the same
example,
[[agent, A], [pair, [[nonce, b], [agent, c]]], [key, d]] cannot be unified with
[[pair, [[agent, a], [nonce, B]]], [agent, C], [key, D]] even under associativity, due to
the “pair” tag for pairs.

It would be straightforward to prove this claim formally:

– Following Baader-Schulz algorithm again, we can first purify the main uni-
fication problem into sub problems that are either purely in the STD theory

Preventing type-flaw attacks under algebraic properties 13

and through the introduction of new variables, to those that resemble m ≈ t
where all subterms of m and t are variables, atoms or pairs for the Assoc
theory;

– The STD theory returns well-typed unifiers as described in the proof of
Theorem 1;

– The unifiable problems in the Assoc theory will resemble [[tag1, x1], . . . , [tagn, xn]] ≈
[[tag1, y1], . . . , [tagn, yn]]. This returns a well-typed unifier if all xi ≈ yi (i = 1
to n) return well-typed unifiers which they do if at least one of xi or yi are
variables from Def. 9 and Assumption 1. If they are both compound terms,
the proof proceeds recursively.

Associativity and Commutativity of a general operator The concepts
above can easily be extrapolated to associativity of a general operator, say ‘.’
as well. For instance, [1, [a.b].C] and [2, A.[b.c]] return an ill-typed unifier, but
[[pair, [agent, a].[nonce, b]].[key, C]] and [[agent, A].[pair, [nonce, b].[key, c]]] do not.

These concepts can be extrapolated to commutativity as well: Consider [1, na.B.a]
unified with [1, A.b.NA] that results in an ill-typed unifier {na/A, b/B, a/NA} but
type-tagging does not allow such a unification and ensures well-typed unification.
Consider the same example: [nonce.agent.agent, [nonce, na].[agent, B].[agent, a]]
cannot be unified with [nonce.agent.agent, [agent, A].[agent, b].[nonce, NA]].

It should be straightforward to extend the formal proof that we outlined
for associativity of pairing to the cases of associativity and commutativity of a
general operator.

4.2 Algebraic properties with cipher weaknesses

Some algebraic properties violate the perfect encryption assumption, without
altering the freeness of the message algebra. If they produce subterms, like the
following inference rule due to Coppersmith [17], the main theorem still stands
tall since unification in the STD theory will still be well-typed (recall the steps
of STD theory unification in the proof of Theorem 1 that handles the case of
m ≈STD t – they consider m and t being subterms of the semi-bundle):

{ [a, x, b]→k , [c, x, d]→k , a, b, c, d } ⊢ x, where a 6= c ∨ b 6= d.

Clearly, since this inference produces a subterm (‘x’), the main result stands
tall in its presence and no type-flaw attacks can be possible if the protocol obeys
NUT.

Some others produce non-subterms such as the Prefix property and homo-
morphic encryption discussed in [8]. Let us examine if and how prudent tagging
could be adopted to prevent type-flaw attacks under these properties:

Prefix property. The Prefix property is obeyed by block ciphering techniques
such as CBC and ECB. This property leads the attacker to infer [m]↔k (a non-
subterm) from [m,n]↔k thereby invalidating Theorem 1.

14 Malladi, Lafourcade

Consider the Woo and Lam π1 protocol modified by inserting component
numbers inside each encrypted component4:

Msg 1. a → b : a
Msg 2. b → a : nb

Msg 3. a → b : [a, b, nb, 1]
↔

sh(a,s)

Msg 4. b → s : [a, b, [a, b, nb, 1]
↔

sh(a,s), 2]
↔

sh(b,s)

Msg 5. s → b : [a, b, nb, 3]
↔

sh(b,s)

sh(x, y) represents a shared-key between agents x and y. We presented a type-
flaw attack on this protocol in [18] even when it uses component numbering if
the Prefix property is exploited, and if pairing is associative:

Msg 1. a → b : a
Msg 2. b → a : nb

Msg 3. I(a) → b : [nb, 3] /* In place of [a, b, nb, 1]sh(a,s) */
Msg 4. b → I(s) : [a, b, [nb, 3], 2]

↔

sh(b,s)

Msg 5. I(s) → b : [a, b, nb, 3]
↔

sh(b,s) /* using Prefix property on Msg 4. */

This attack works because, an attacker can infer [a, b, nb, 3]
↔

sh(b,s) from Msg 4

([a, b, [nb, 3], 2]
↔

sh(b,s)) exploiting the Prefix property and associativity of pairing.
This attack can be easily prevented by adopting type-tagging since it elim-

inates associativity of pairing as explained previously. It can also be prevented
by simply inserting component numbers at the beginning of encryptions, instead
of at the end.

Homomorphism of Encryptions. With this property, it would be possible
to infer the non-subterms [m]k, and [n]k from [m,n]k. Obviously, this is stronger
than the Prefix property.

The “pair” tag assumed to contain within parentheses cannot void this infer-
ence. For instance, a term [[type1, t1], [type2, t2]]k can still yield the non-subterms
[type1, t1]k, and [type2, t2]k. Even with component numbering, a term such as
[1, [t1, t2]]k can be broken down into [1]k, and [t1, t2]k.

With a range of such non-subterm encryptions to infer, it can be easily seen
that neither component numbers, nor type-tags, no matter how they are placed,
can prevent the attack on the Woo and Lam protocol above under this inference.

In particular, if the plaintext block length equals the length of a nonce or
agent, then the attacker can infer [a]sh(b,s), [b]sh(b,s), [nb]sh(b,s) easily from Msg 4
under any tagging. He can then replay Msg 5 by stitching these together.

However, this inference is only possible under an extremely weak system such
as ECB, so a realistic threat in real-world situations is unlikely.

4 Heather et al. [1] do not specify the exact position where component numbers need
to be inserted, although they inserted numbers at the beginning of encryptions in
their examples.

Preventing type-flaw attacks under algebraic properties 15

5 Conclusion

In this paper, we provided a proof that adopting type-tagging for message fields
in a protocol prevents type-flaw attacks under the ACUN properties induced by
the most popular Exclusive-OR operator. We also extrapolated those results to
many other interesting and commonly encountered theories.

We did not find a single property under which component numbering pre-
vents type-flaw attacks that type-tagging cannot, although we presented several
examples where the opposite could be true. However, we advocate the use of
component numbering in addition to type-tagging, since they prevent the replay
of different terms with the same type as well.

The most significant advantage of being able to prevent type-flaw attacks is
that analysis could be restricted to well-typed runs only. This has been shown
to be a decidable problem in the standard, free theory but not for monoidal
theories. We are currently in this pursuit5.

Acknowledgments. We benefited greatly from the following people’s help and
guidance: Gavin Lowe (OUCL) provided many useful explanations and insight-
ful observations into type-flaw attacks during 2003-2005. Cathy Meadows (NRL)
gave useful guidance and suggested adopting of Baader & Schulz algorithm
when dealing with XOR unification. Jon Millen (MITRE) clarified numerous con-
cepts about constraint solving and some crucial aspects of XOR unification. Yan-
nick Chevalier (IRIT) explained some concepts about his extensions to Millen-
Shmatikov model with XOR.

References

1. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security
protocols. Journal of Computer Security 11(2) (2003) 217–244

2. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is a security pro-
tocol correct? In: Proc. IEEE Symposium on Research in Security and Privacy,
IEEE Computer Society Press (1998) 160–171

3. Cohen, E.: Taps: A first-order verifier for cryptographic protocols. In: Computer
Security Foundations Workshop (CSFW). (2000) 144–158

4. Heather, J., Schneider, S.: Towards automatic verification of security protocols on
an unbounded network. In: Proc. 13th Computer Security Foundations Workshop,
IEEE Computer Society Press (2000) 132–143

5. Ramanujam, R., Suresh, S.P.: Tagging makes secrecy decidable for unbounded
nonces as well. In: 23rd FST&TCS, Lecture Notes in Computer Science. Volume
2914. (2003) 323–374

6. Küsters, R., Truderung, T.: Reducing protocol analysis with xor to the xor-free
case in the horn theory based approach. In: ACM Conference on Computer and
Communications Security. (2008) 129–138

5 We previously made an attempt at this under the belief that tagging might not
prevent type-flaw attacks [19]. We intend to reattempt it by taking advantage of the
results in this paper.

16 Malladi, Lafourcade

7. Escobar, S., Meadows, C., Meseguer, J.: Equational cryptographic reasoning in
the maude-nrl protocol analyzer. Electr. Notes Theor. Comput. Sci. 171(4) (2007)
23–36

8. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1) (2006) 1–43

9. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision proce-
dure for protocol insecurity with XOR. In: Proc. 18th Annual IEEE Symposium
on Logic in Computer Science (LICS’03), IEEE Computer Society Press (2003)
261–270

10. Malladi, S., Hura, G.S.: What is the best way to prove a cryptographic protocol
correct? (position paper). In: Workshop on Security in Systems and Networks
(SSN 2008), IEEE International Symposium on Parallel and Distributed Processing
(IPDPS 2008). (2008) 1–7

11. Malladi, S.: Phd dissertation - formal analysis and verification of password proto-
cols. ACM Portal, University of Idaho (2004)

12. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories:
Combining decision procedures. J. of Symbolic Computation 21 (1996) 211–243

13. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proc. ACM Conference on Computer and Communication
Security, ACM press (2001) 166–175

14. Chevalier, Y.: A simple constraint solving procedure for protocols with exclusive-
or. Presented at Unif 2004 workshop (2004) available at http://www.lsv.ens-cacha-
n.fr/unif/past/unif04/program.html.

15. Tuengerthal, M.: Implementing a Unification Algorithm for Protocol Analysis with
XOR. Technical Report 0609, Institut für Informatik, CAU Kiel, Germany (2006)

16. Cortier, V., Delaune, S.: Deciding knowledge in security protocols for monoidal
equational theories. In: LPAR. (2007) 196–210

17. Coppersmith, D., Franklin, M., Patarin, J., Reiter, M.: Low-exponent RSA with
related messages. Lecture notes in computer science 1070 (1996)

18. Malladi, S., Alves-Foss, J.: How to prevent type-flaw guessing attacks on password
protocols. In: Workshop on Foundations of Computer Security (FCS03), Ottawa,
Canada (2003)

19. Chevalier, Y., Malladi, S.: Decidability of “real-world” context-explicit security
protocols. Unpublished draft (2007)

