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Discovering Flaws in IDS through Analysis of their Inputs

Raphaël Jamet and Pascal Lafourcade

Université Grenoble 1, CNRS, VERIMAG, France
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Abstract. To secure Wireless Ad-hoc Networks (WANET) against malicious be-
haviors, three components are needed: prevention, detection, and response. In this
paper, we focus on Intrusion Detection Systems (IDS) for WANET. We classify the
different inputs used by the decision process of these IDS, according to their level
of cooperation, and the source of their data. We then propose a decision aid which
allows automated discovery of attacks for IDS, according to the inputs used. Finally
we apply our framework to discover weaknesses in two existing IDS.

Keywords: Wireless Ad-hoc Networks, Formal Methods, Intrusion Detection Sys-
tems, Security.

1 Introduction

Wireless Ad-hoc Networks (WANET) are networks built from several devices,
which use multi-hops radio communications to form a mesh network. For in-
stance, such networks can be used to provide low-cost internet in developing
countries [1], or to spread messages and make calls in a smartphone-equipped
group of people when the infrastructure is unavailable [14]. Wireless Sensor Net-
works (WSN) are a subset of these networks. They are built from a large quantity
of inexpensive motes, which have little computing power and wireless communi-
cation abilities, in order to generate data covering a large area. These motes form
an ad-hoc network, usually centered around a base station, also called a sink.

Due to their intrinsic properties and their applications, these networks are vul-
nerable to attackers. In order to guarantee the security of ad-hoc wireless net-
works, several complementary layers of protection are needed. First, intrusion
prevention methods strive towards blocking eventual attacks. Since these systems
are seldom infallible, intrusion detection should also be used, to ensure that an
attacker bypassing the prevention layer will be noticed. The last level is the intru-
sion response system, whose goal is to mitigate the effect that detected attackers
have on the network.

By consequence, intrusion detection systems (IDS) are critical for the security
of WANET. Network-based IDS are often evaluated against a few attack scenarios
based on specific intruder node behavior. We argue that such an analysis can be
dangerous, as they do not specify how the intruder node became part of the net-
work, what is the attacker achieving with that attack, nor what exactly the IDS is



trying to prevent. This lack of precision can lead to undiscovered flaws in the net-
work. It is therefore important to formulate the properties that they try to achieve
in a clear way, to define the intruder model, to model the protocols and to state the
network assumptions, in a formal framework. Then, we can use formal methods,
in order to sytematically find the flaws in an IDS. A similar process has been done
in the last years in cryptographic protocol analysis [3], and our goal is to provide
the first components to enable the use of such methods in the context of IDS.

Contributions: Our contribution is threefold: i) We survey different inputs that
an IDS decision process can use. We base our analysis on two axis: the degree
of cooperation, and what is being monitored. We also give examples of mecha-
nisms from existing IDS to illustrate our classification. ii) We develop a formal
model to evaluate such systems, based on anomalies, which are the results of at-
tacker behavior. We propose some deduction rules (around 40) expressing how
the combination of certain anomalies allows an attacker to build more complex
attacks. These rules model the logical steps needed for constructing a specific
attack. Then, depending on inputs used by an IDS, we determine whether an at-
tacker can mount an attack without being detected. We also provide a prototype
of our formal framework. iii) Using that prototype, we analyze two IDS from the
literature, [9] and [21]. We show that it is not possible to fool the first IDS in
presence of restricted intruders. However, by relaxing some of the hypothesis, we
discover some weaknesses in the IDS. For the second IDS, we found undetected
attacks using intruder nodes with directional antennas. Finally, we propose some
modifications for these IDS in order to prevent these attacks. Overall, using our
approach, it is easy to compare the inputs of an IDS to others from the literature,
and to find its flaws and possible improvements.

Related work: Intrusion detection systems are usually classified with two main
characteristics, which evolved from the seminal work in [10]. The first character-
istic expresses what is being observed, and contains two categories: host-based
IDS monitor their node only, while network-based IDS search for signs of mali-
cious activity in the network. The second characteristic is based on the method
used to detect intrusions. We do not consider this second aspect. Our classifica-
tion can be seen as a refinement of the first category. Instead of having two broad
categories, we separate the different inputs that an IDS uses and we determine the
cooperation level and the sources of the data being monitored.

In [16], the authors provide a specification-based IDS for the AODV routing
protocol, based on an extended finite state automaton for modeling the protocol. In
their paper, attacks cause various anomalous basic events, which are defined as the
segments of a routing process that do not follow the routing specification. These
events are then classified in two categories: those that can be detected directly, and
those that require statistical analysis. They also give a correspondence between
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some classical attacker models and the related anomalous basic events. Finally,
they propose an IDS which is built to detect all of the anomalous basic events they
identified. Our work is different from theirs in two ways. First of all, instead of
building an IDS specifically for AODV, we focus on the evaluation of any IDS for
a wireless ad-hoc network. To achieve this, we built a model which is not protocol
dependent and adjustable depending on the assumptions. The second important
difference is our concept of anomaly. It is based on their anomalous events, but
instead of isolating them, we add a model of their dependencies. This allows us to
describe attacks taking into account the whole process, instead of just taking the
end results of the attack into account.

Outline: In section 2, we provide our classification of IDS inputs and illustrate it
through examples. In section 3, we formally define our model, which we apply on
two existing IDS using our prototype in section 4.

2 Decision Process Inputs

IDS build their decision process over a multitude of inputs that we classify along
two axis. The first one is made of three categories, that express the level of coop-
eration needed to use an input:

a. Local inputs are accessible by a node, without help from their neighbors.
b. Inputs requiring k-neighborhood-wide cooperation.
c. Inputs requiring global cooperation.

The other axis corresponds to how the IDS collect their inputs. We identified
five categories. The first category is independent on the network, then the next
categories depend on the protocols.

1. Offline inputs, which can be created even if the node is not part of a network.
2. Topological inputs, related to the positions of the nodes.
3. Radio inputs, linked to the medium access control protocol.
4. Routing inputs, related to the routing protocol directly or indirectly.
5. Inputs extracted from the application data, as opposed to all the previous cat-

egories which analyze how the nodes and the network behave.

Using the second axis, we now describe and illustrate with references each of
those inputs according the level of involvement or cooperation needed to use an
input, followed by a summary of this classification.

2.1 Offline inputs

Offline inputs do not depend on the network: the object of their monitoring is
internal to a node.
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a) The first family of offline inputs we identified are local: host-based IDS
(with for instance [30]). This family of IDS are looking for a partial compro-
mise of the node running the detection, for instance through viruses or vulnerable
applications. b) To allow compromise detection by third-party nodes, we need
neighborhood cooperation. In [31], the authors proposed a scheme where free
memory in nodes is pre-loaded with random noise, the knowledge of which is
shared among the node’s neighbors. They make the hypothesis that a compro-
mised node would have deleted some of that noise to include its rogue algorithms.
Therefore, to detect whether a suspected node has been compromised, its neigh-
bors can collaboratively query it to check the integrity of its random noise. c)
Finally, global offline inputs would examine something independent of the net-
work on a network-wide scale, which would not add anything significantly more
useful than local or neighborhood-scale analysis, which explains the absence of
such systems in the literature.

2.2 Inputs Based on the Network Topology

This category contains mechanisms that use distances, or neighborhoods.
a) First, this analysis can be local to a node. For instance, in the IDS described

in [9], nodes have a list of verified neighbors, so that messages coming from unver-
ified neighbors trigger alerts. In [11, 20, 21], nodes remember the strength of the
signal received for the last transmissions from each neighbor. The signal strength
is related to distance: if an intruder node impersonates some honest node, then
the receiver may notice the change of received signal strength. In [24], instead of
using previous measurements of signal strength to detect anomalies, the expected
value is deduced from distance data.

b) The IDS described in [25] requires neighborhood-wide cooperation to
measure distances between nodes in a static network, which allows to detect unex-
pected changes in localization that are characteristic of a node being manipulated.
A similar neighborhood-wide effort can identify Sybil intruders (single nodes that
use multiple identities) through signal strength, as described in [11]. By comput-
ing the ratios of the signal strength of different nodes, the authors show that it is
feasible to triangulate the position of other nodes, allowing detection of nodes that
share the same exact position who may be Sybil intruders.

c) Finally, such an analysis can be done from a global point of view. In [12],
the authors argue that under some hypothesis on the underlying network, it is
feasible to detect wormholes (two distant intruder nodes, linked with a special
communication channel) using only topological data. In [7], the authors propose
a mechanism to detect nodes sharing identities in the network. It is a global algo-
rithm which reports a suspect node’s identity and location to a specific third-party
node, using the suspect identity. Then, if that third-party node receives several
reports containing different locations for a single identity, an alert is raised.
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2.3 Inputs from the Medium Access Control (MAC) Protocol

This category contains all the inputs which use data originating from the wireless
transmission medium.

a) This category is well-suited to local analysis, but increasing the cooperation
will not significantly improve these techniques. By looking at indicators in the
MAC such as collision rate or the number of retransmissions requests, a node
may be able to tell if there are degradations of the radio medium, whether they
are environmental or caused by an attacker. In all of [4, 9, 22, 26], there is a part
of the intrusion detection being done based on the collision rate. This mechanism
is close to the definition of specification-based IDS, which detects whether a node
respects the protocol they should run. Another approach based on the radio layer is
to use characteristic features of the radio emitters to identify them. This technique
is called fingerprinting [5, 15], and would allow detection of some Sybil attackers
and impersonation-based attacks.

2.4 Data Based on the Routing Layer and Traffic

This category is based on the analysis of the way messages are routed through the
network. Some of the IDS mechanisms we present here are tied to a specific rout-
ing protocol, which allows them to monitor the protocol compliance of suspected
nodes at the cost of genericity. On the other hand, some of them are built upon
generic properties that are common to most routing protocols, such as immediate
packet retransmission or each node using only one public identity.

a) A local input common to several IDS is that the nodes monitor the varia-
tions in the volume of incoming traffic. Then, if there are significant differences
when comparing to some reference measure, the node will raise an alert. We ob-
serve several variants such as separating traffic streams per message type [8], per
neighbor [9], or depending on the messages source and destination [18]. Some
IDS also monitor the intervals between reception of messages of different types [8].
Finally, instead of looking at the traffic flow, the authors of [4] suggest observing
the data types which are expected on each route. Another category of local in-
puts require using promiscuous listening, so that a monitor node can observe its
neighbor’s behavior. By designing an IDS more specific to the routing protocol, it
becomes possible to detect deviations from the routing protocol, using an analysis
that can span from simple rules or features to a complete specification-based mon-
itoring. Both [9] and [26] propose some IDS which uses promiscuous listening.
The IDS in [27, 29] monitor the routing process of neighboring nodes using finite
state machines, respectively built for AODV1 and OLSR2. Another specification-
based IDS built on top of an extended finite state machine for AODV is described
in [16]. These examples are still local to a node.

1 Advanced On-Demand Distance Vector, a routing protocol described in [23].
2 Open Link-State Routing, another routing protocol [6].
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b) By extending to a neighborhood-wide effort, specification-based IDS can
be more efficient and accurate. For instance, in [28], the authors present DEMEM,
a specification-based IDS with new messages overlayed on the routing protocol.
These messages allow nodes to verify the claims of their neighbors, to detect more
attacks on the routing protocol.

c) Finally, the global scale inputs can be illustrated with Lipad [2]. This IDS
does traffic analysis in a centralized way, which allows to locate precisely where
the anomaly occurred.

2.5 Inputs Based on the Application Data
The last category concerns all the inputs which use the application data, and as-
sumptions about it.

a) A good illustration of local application data analysis can be found in [17].
This IDS is designed for general-purpose networks, and operates by statistical
analysis of the application data being transmitted in the captured packets, with a
different model for each application. b) Using neighborhood collaboration, the
authors of [13] present an IDS based on analyzing the data delivered to the ap-
plication using hidden Markov models. Such a data analysis allows them to de-
tect altered data, depending on what is being monitored. This example is on a
global scale, but the idea of application data modeling can also be applied with
a lower cooperation level. For instance, in a network monitoring earthquakes,
neighborhood-scale cooperation makes sense to detect falsified data insertion. On
the other hand, if the network measures are purely local (such as motion sensors
in a building), global-scale analysis may not be useful. We only found [13] to il-
lustrate such an analysis for WANET in the literature. We conjecture that this is
because this technique is strongly tied to the application.

2.6 Summary
Our classification allows us to categorize the various inputs a network-based IDS
uses in its decision process. In Figure 1, we recapitulate our classification, and
we provide a list of the different inputs we identified from existing IDS, plus the
categories in which they belong. Note that the same IDS can use different inputs,
and will therefore be in several different categories. We also include a few mecha-
nisms built to detect specific intruders such as [7, 11], as they are compatible with
our definition of IDS input.

We denote by a ’X’ the categories which do not bring any new significant
information when compared to the lower cooperation levels. Since the MAC pro-
tocol is by essence local to a link, nodes have little interest in relying on the decla-
rations of distant nodes to detect intruders. A similar situation appears for global
offline inputs. We also denote with a ’?’ the categories of data analysis where we
did not find any example, but we think this combination can be relevant to detect
malicious nodes.
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Data source Offline Topology Radio Routing Data

Local [30] [9, 11, 20, 21, 24] [4, 5, 9, 15, 22, 26] [4, 8, 9, 16, 18]
[19, 26, 27, 29] [17]

Neighborhood [31] [11, 25] X [28] [13]
Global X [7, 12] X [2] ?

Fig. 1. Classification of IDS data sources

3 Automating Vulnerabilities Discovery

We now introduce our model that finds whether an attacker can reach a certain goal
without its actions being noticed by an IDS. This is done through modelization of
the different steps necessary to mount an attack. We call those steps anomalies. We
model the IDS using the different inputs to its detection process, which gives us a
set of anomalies that could cause detection of the attack. If an attacker can reach
its target, without using any of the steps monitored by the IDS, then this attack
will be undetected. We start by giving some definitions then we present differents
components of our model: facts, anomalies and our attack detection mechanism.

3.1 Definitions

An identity is the different items a node needs to join and operate legitimately
in the network. For example, in a network where nodes only use their hardware
identifier to identify themselves and where there are no other forms of security, the
identity is composed of that identifier only (which is trivial to copy or create). Al-
ternatively, the identity can be a combination of various things such as frequency
hopping schedules, pre-shared cryptographic material, or a radio which has the
right fingerprints.

An associated node is a node who is able to use an identity. If this node
is an intruder node, the identity is said to be compromised. Finally, valid mes-
sages are messages whose data would be delivered to the application if they reach
their destination. Moreover, the wireless network is composed of honest nodes.
These nodes generate data messages, which are then routed to one or several des-
tinations, in order to be delivered to the application. These nodes all possess an
identity. Also, the attacker can deploy several intruder nodes, which are attacker-
controlled nodes. These also have memory, computing power, and wireless com-
munication capabilities using an omnidirectionnal antenna unless otherwise spec-
ified. To denote the logical transitions between the attack steps, we use inference
rules and axioms.

Definition 1 (Axioms and Rules). Given T1, . . . , Tn, a rule (R) concluding C

is denoted by (R)
T1 . . . Tn

C
. An axiom is a rule without any conditions.

Such an axiom named (A) concluding C is denoted by (A)
C

.
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3.2 Facts and Relationships

We now describe formally our model, beginning with the notion of facts. A fact is
an assumption about the network, the protocols used or the attacker.

Definition 2 (Facts). Assumptions about the network, protocols and attackers are
called facts. They are represented by keywords in italic. We denote the set of all
facts F.

We now detail all facts contained in F, ordered by category. A fact holds if the
topology, attacker or protocol described has the associated property.
• The first category contains facts related to the attacker. CompromisableNodes:
An attacker is able to take full control of legitimate nodes, and recover their iden-
tity and knowledge. TxPowAdjust: Intruder nodes are able to adjust their radio
transmission power. DirAntenna: Intruder nodes are equipped with directionnal
antennas. CanImpersonate: The attacker is able to impersonate honest nodes (but
this does not assume anything about validity).
• The second category contains the facts related to the protocols in use in the
network. SimpleValidity: An attacker can alter or create a message and keep it
valid. ValidityCheckedEachHop: An attacker cannot alter a given message in a
way that keeps it valid, and originating from an uncompromised node. Validity
of a message is checked at each hop. NoConfidentiality: Any passive listener is
able to recover the contents of messages. HopConfidentiality: Nodes outside of
the message route cannot recover the contents of a message. EndToEndConfiden-
tiality: Only the source and destination(s) of a message can recover its contents.
OpenNetwork: Nodes have access to new identities at will. Thus, any node can
associate, regardless of initial knowledge or pre-existing relationships.

Some of these facts are related. We define that a fact F1 is more restrictive for
an attacker than F2 when any possible attack when F1 holds is also possible when
F2 holds.

Definition 3 (Factual relationships F). If a fact F1 ∈ F is more restrictive for
an attacker than a fact F2 ∈ F, we express that relation using the following rule

named (FR): (FR)
F2

F1
. We denote by F the set of rules (F-Conf1),(F-Conf2)

and (F-VC1).

We now describe the contents of F . Having validity checks at each hop blocks
any invalid message before it gets retransmitted by an honest node, which only
limits what messages an attacker can usefully send. Therefore, the fact Validity-
ChecksAtEachHop is more restrictive for an attacker than SimpleValidity.

(F − V C1)
SimpleV alidity

V alidityChecksAtEachHop
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Regarding the confidentiality-related facts, the relationship is similar. Hop-
Confidentiality strictly restricts attacker knowledge when compared to NoConfi-
dentiality, as it only prevents listeners outside of the route from being able to read
the data. Therefore, HopConfidentiality is more restrictive for an attacker than
NoConfidentiality.

(F − Conf1)
NoConfidentiality

HopConfidentiality

If an attack is possible when considering the EndToEndConfidentiality fact,
then removing the confidentiality aspect for intermediate nodes does not change
that possibility, as it merely adds more possibilities for the intruder. Therefore, we
say that EndToEndConfidentiality is more restrictive for an attacker than HopCon-
fidentiality, and the rule, named (F-Conf2), is written as follows:

(F − Conf2)
HopConfidentiality

EndToEndConfidentiality

The set of facts we want to use for the analysis is denoted FI ⊆ F . Using this
set of facts, we build a set of axioms, named the selected hypothesis.

Definition 4 (Selected hypothesis Hyp(H,FI)). LetH be the set of all possible
axioms deducing a fact from F, and let FI be a subset of F we want to assume
for the verification. The set of selected hypothesis is a set of axioms, denoted by
Hyp(H,FI), and defined by:

Hyp(H,FI) =

{
(AF )

F

∣∣∣∣∣F ∈ FI

}

3.3 Anomalies

Anomalies are components used to describe the different steps in an attack, which
are linked together using rules. We first define them, then we present the contents
of A, separated in categories.

Definition 5 (Anomalies). Anomalies are the results of the attacker’s behavior.
We denote the set of all anomalies A.

• The following anomalies are related to impersonation.

– OmniImpersonation: An intruder node transmits packets as if they were emit-
ted by an honest neighbor, but the message can be received by any neighbor,
and the received signal strength may differ from the one from legitimate trans-
missions.
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– DirImpersonation: An intruder node transmits packets in a directed fashion,
such that only the attacker and the receiver know the transmission happened.
The signal strength of this transmission may however be different from what
is expected from the impersonated node.

– TxPowImpersonation: An intruder node impersonates an honest node, while
adjusting its transmission power so that the signal strength at the receiver cor-
responds to the signal strength which would be expected from the imperson-
ated node.

– DirTxPowImpersonation: An intruder node transmits packets in a directed
fashion, such that only the attacker and the receiver know the transmission
happened. Furthermore, the intruder adjusted its transmission power so that
the signal strength at the receiver corresponds to the signal strength which
would be expected from the impersonated node.

– Impersonation: The attacker can communicate with any node, as if the com-
munication happened from an honest neighbor. This anomaly is a generic ver-
sion of the previous ones.

• The next category are anomalies related to node compromise and identities.

– VirusCompromise: The attacker compromises some part of a node, whose
identity is now compromised. The attacker is also able to control this node.

– TotalCompromise: The attacker takes full control of a node, whose identity is
now compromised.

– AttackerAssociated: The attacker uses intruder nodes which are associated.
– RoutingMisbehavior: Intruder nodes deviate from the routing protocol.

• Finally, the last category of anomalies are related to the application data.

– ApplicationDataAltered: The attacker alters the data which is delivered to the
application, either by adding, altering or substracting data.

– Snooping: The attacker reads some of the application data going through the
network.

– Alteration: The attacker alters data in messages.
– ValidAlteration: The attacker alters data in messages, while keeping them both

valid and appearing to be from an emitter whose identity is uncompromised.
– ImmediateAlteration: An intruder node is able to alter the data in a message it

received.
– NeighborVisibleAlteration: An intruder node alters the data in a message it

received, in a way that can be overheard by neighbors.
– NeighborVisibleValidAlteration: An intruder node alters the data in a message

it received, while keeping them both valid and appearing to be from an emitter
whose identity is uncompromised, in a way that can be overheard by neigh-
bors.
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– ImmediateValidAlteration: An intruder node is able to alter the data in a mes-
sage it received, while keeping it both valid and appearing to be from an emit-
ter whose identity is uncompromised.

– NeighborVisibleSuppression: The attacker drops data messages, which pre-
vents them from being delivered to their destinations. This action can be over-
heard by the node’s neighbors.

– Suppression: The attacker drops data messages at some point in the network,
which prevents them from being delivered to their destinations.

– ImmediateSuppression: An intruder node is able to drop valid data-bearing
messages.

– Insertion: The attacker creates valid data messages.
– NeighVisibleInsertion: An intruder node creates valid data messages, which

may be overheard by neighbors.
– ImmediateInsertion: An intruder node can create valid data messages.

Anomalies follow a logical progression, with certain anomalies and facts be-
ing prerequisites to other anomalies. To model these dependancies, we use rules.

We denote by R the set of all our rules. The set R contains 39 rules, given in
Figure 2. Due to space constraints, their justifications are available in our technical
report [?], Section 6. We now explain how those anomalies and rules are used to
search for undetected attack.

3.4 Attack Detection

An IDS has a certain number of inputs, each of these noticing a certain number
of anomalies. To know if an IDS is adequate to prevent an attacker from reaching
a given goal, we need to check if there is a way to reach a target anomaly from
accepted facts, in a way that do not use any of the anomalies covered by the set
of this IDS’s inputs. To model this, given an IDS, we remove all the rules going
to anomalies detected by that IDS, leaving only anomalies which do not trigger
detection.

Definition 6 (IDS). We denote the anomalies monitored by an IDS by AI ⊆ A.
We define the set of rules IDS(R,AI) which is the allowed set of rules for the
attacker given the base rules. This set is defined as:

IDS(R,AI) =

{
(R)

T0 ... Tn

A
∈ R

∣∣∣∣∣ A /∈ AI ∧ ∀i, Ti /∈ AI

}

To build AI , one should examine which are the inputs the IDS uses, and for
each of them, which are the anomalies that may be detected by such an input.
For instance, message addition or substraction can be detected by traffic analysis.
Then, the set IDS(R,AI) is used to build the set of rules which will be used by
the analysis.

11



Name Prerequisite(s) Conclusion
CompV CompromisableNodes VirusCompromise
CompT CompromisableNodes TotalCompromise
VAssoc VirusCompromise AttackerAssociated
TAssoc TotalCompromise AttackerAssociated
Open OpenNetwork AttackerAssociated
Misbehave AttackerAssociated RoutingMisbehavior
OmnI CanImpersonate OmniImpersonation
DirI DirAntenna ∧ CanImpersonate DirImpersonation
PowI TxPowAdjust ∧ CanImpersonate TxPowImpersonation
DirPowI TxPowAdjust ∧ DirAntenna ∧ CanImpersonate DirTxPowImpersonation
OtoI OmniImpersonation Impersonation
DtoI DirImpersonation Impersonation
TtoI TxPowImpersonation Impersonation
DTtoI DirTxPowImpersonation Impersonation
IStoS ImmediateSuppression NeighVisibleSuppression
DirIStoS ImmediateSuppression ∧ DirAntenna Suppression
IIntoNVIn ImmediateInsertion NeighVisibleInsertion
AssoIns AttackerAssociated ImmediateInsertion
ImpInser Impersonation ∧ SimpleValidity ImmediateInsertion
IAlt AttackerAssociated ∧ RoutingMisbehavior ImmediateAlteration
VIAlt ImmediateAlteration ∧ SimpleValidity ImmediateValidAlteration
VIaltIAlt ImmediateValidAlteration ImmediateAlteration
ValtAlt ValidAlteration Alteration
NVIaltAlt ImmediateAlteration NeighVisibleAlteration
NVIValtVAlt ImmediateValidAlteration NeighVisibleValidAlteration
NVIaltAlt ImmediateAlteration ∧ DirAntenna Alteration
NVIValtVAlt ImmediateValidAlteration ∧ DirAntenna ValidAlteration
AssoISup AttackerAssociated ∧ RoutingMisbehavior ImmediateSuppression
InSupAlt ImmediateSuppression ∧ ImmediateInsertion ImmediateAlteration
S NeighVisibleSuppression Suppression
DirIIntoIn ImmediateInsertion ∧ DirAntenna Insertion
NVIntoIn NeighVisibleInsertion Insertion
IaltAlt NeighVisibleAlteration Alteration
IValtVAlt NeighVisibleValidAlteration ValidAlteration
SApp Suppression ApplicationDataAltered
AApp ValidAlteration ApplicationDataAltered
IApp Insertion ApplicationDataAltered
HopSnoop AttackerAssociated ∧ HopConfidentiality Snooping
ConfSnoop NoConfidentiality Snooping

Fig. 2. List of all the rules
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Definition 7 (Setting). The set of rules obtained by the union of selected hypoth-
esis, the rules allowed given a specific IDS, and factual relationships is called a
setting. We denote it by : S = IDS(R,AI) ∪Hyp(H,FI) ∪ F

Once the setting is determined, we can search for undetected attacks, by look-
ing at which anomalies are reachable using the rules.

Definition 8 (Undetected attack). Let S be a setting describing an IDS together
with assumptions about the network, protocol and attacker. Let G ∈ A be an
anomaly. We say that there exists an attack resulting in G which can not be de-
tected by the IDS described in S if G is reachable using S.

To summarize, in our model, an attack is a chain of anomalies, linked together
by rules. Starting from facts, the attacker mounts his attack using only the rules
in the setting (i.e. the rules that allow him to stay undetected). Each of those rules
allow him to progress to further anomalies. Therefore, analyzing whether the at-
tacker can reach a certain anomaly in a specific setting allows us to know whether
an undetected attack is possible against that IDS. Also, we focus only on attacks
which change the data to the application, impersonations, and node compromise.
All considerations linked to the performances and availability of the network are
not captured by our model, and constitute a natural future extension of this work.

We built a prototype which automatically goes through all the reachable anoma-
lies, given an IDS and facts. It is available online, along with instructions on how
to use it, at the following url: http://www-verimag.imag.fr/˜rjamet/
IDS/. The examples in the next section were analyzed using that tool, and the
analysis took less than a second for each of them on a regular laptop.

4 Modeling Existing IDS

We now use the inputs and the intruder model previously described to evaluate
two existing IDS, [21] and [9], and show the weaknesses and the possible im-
provements we discovered. All the outputs of the tool are available in our technical
report [?] Section 7.

4.1 A Real-Time Node-Based Traffic Anomaly Detection Algorithm [21]

In [21], Ilker Onat and Ali Miri present an anomaly-based IDS based on two in-
puts, received signal strength, and packet arrival rates. They make several hypoth-
esis: the routing protocol is based on a tree (such as GBR), nodes are static and
can uniquely identify neighbors, all nodes use the same hardware and software,
and all nodes use constant transmission power. Our model does not take into ac-
count movement of nodes, and assumes that neighbors can be identified. Thus, the
only assumption we need to transpose is the constant transmission power. This is
modeled by not adding TxPowAdjust to the hypothesis set.
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We now build the set AI of anomalies the IDS can detect. The first input used
by this IDS is a packet arrival rate analysis. This input is able to discover any
attacker that stops or inserts more messages than expected from an honest node.
The corresponding anomalies in our model are Suppression and Insertion. Each
node running this IDS also observe the received signal strength, which will detect
the anomalies OmniImpersonation and DirImpersonation. We therefore have our
set of anomalies AI = { Suppression, Insertion, OmniImpersonation, DirImper-
sonation }.

The next step is to set the attacker’s goal. In their paper, the authors address
node impersonation, and resource depletion by excessive generation of traffic. As
the latter is not covered by our model, we will focus on impersonation first, and
then consider a more general anomaly, ApplicationDataAltered.

In order to find if an attacker in our model is able to impersonate honest nodes,
we need to choose the facts modeling the attacker. The IDS supposes that attackers
have the ability to impersonate honest nodes (fact CanImpersonate), and we also
suppose that they have directionnal antennas (fact DirAntenna) as no assumptions
were made about this in the paper. We therefore set FI = { CanImpersonate,
DirAntenna }.

From the facts and the IDS description, we compute the set of rules S, and
search for a way to reach Impersonation using S. We see that in this case, the tool
cannot apply any rules, and so our system did not find weaknesses on this aspect
of the IDS.

However, the assumption that the attacker cannot modify its intruder nodes’s
transmission power is strong, as such hardware is readily available. If we relax
that assumption by removing TxPowAdjust from FI , we find that the attacker can
now reach Impersonation by doing an impersonation with adjusted transmission
power, effectively bypassing the IDS input. To prevent this, the IDS would need a
way of detecting this behavior.

We can also consider other intruder goals. For instance, we wonder if an at-
tacker would be able to alter the data going to the application (ApplicationDataAl-
tered). Let us assume that nodes can be compromised by an attacker (fact Compro-
misableNodes), and that validity is easy to fake for the attacker (fact SimpleValid-
ity). As we assumed that nodes can be compromised, and there are no protections
against this in the IDS, the intruder can take control of some nodes, and make
them alter the data they retransmit. As we assumed that an attacker can fake the
validity of a message, the results of that alteration is valid, thus the altered data
will get delivered without any alert.

This attack path uses the fact that traffic flow analysis does not protects against
message alterations. To prevent this, the IDS would need countermeasures pre-
venting message alterations, such as choosing the right protocols to have integrity
and authenticity of the messages, or using more IDS inputs such as the ones used
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by [9]. The other way to prevent this attack would be to prevent the compromise
of nodes, either through specific inputs (see for instance [31] or [25]).

4.2 Decentralized Intrusion Detection [9]

In [9], the authors propose an IDS for WSNs based on promiscuous listening. The
network contains monitoring nodes, which observe their neighbor’s behavior. If
their neighbors break one of a series of rules, an alert is raised. To avoid confusion
with the rules from our model, we will call the rules from this IDS behavior rules.
They are the following: A node must receive messages regularly (the interval rule),
neighbors must retransmit packets quickly (the delay rule), without altering them,
nor repeating them. Also, transmissions must come from a sensible distance, and
there must not be too many collisions.

We first build the set of monitored anomalies AI . The interval rule detects
Suppression and Insertion, as both addition or suppression of messages alters
downstream traffic flows. The integrity rule detects NeighVisibleAlteration and
NeighVisibleValidAlteration, as they are based on promiscuous monitoring. The
delay rule detects NeighVisibleSuppression. The last three behavior rules are not
considered in our model, as we do not model any sort of distance measurements
for the range rule, nor availability-related anomalies regarding the collision rule.
We therefore have our set of anomalies AI = { Suppression, Insertion, NeighVis-
ibleAlteration, NeighVisibleValidAlteration, NeighVisibleSuppression }.

There are no specific hypothesis about the nodes in the paper. Regarding facts,
we include CompromisableNodes to allow the attacker to compromise nodes. We
also add DirAntenna to model the attacker’s access to advanced hardware. Regard-
ing the protocols, we add EndToEndConfidentiality to model a protocol ensuring
that the data stays confidential, and SimpleValidity to be able to find an attack.
Thus, we have FI = { CompromisableNodes, DirAntenna, EndToEndConfiden-
tiality, SimpleValidity }. For the intruder goal, we select ApplicationDataAltered
as it encompasses most of what this IDS aims to prevent. The tool’s output shows
that there is an undetected attack.

Similarly to the previous IDS, this attack stems from the assumption that the
attacker can compromise honest nodes, as there are no countermeasures regard-
ing these anomalies. With an associated intruder node, the attacker can therefore
modify the data being routed, as we assumed intruder nodes can alter data while
keeping packets valid. However, the IDS makes honest nodes monitor their neigh-
bors for such a behavior. This is where we use the directionnal antennas: with
these, the intruder node is able to send the altered packet to its destination, while
sending the initial version of that packet to the monitors. This way, the attacker
can alter data, while appearing to satisfy the behavior rules triggering the intru-
sion detection. Then, that altered packet will be forwarded to its destination and
delivered, effectively altering application data, which is the goal we set.
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The straightforward way to prevent this specific attack in our model is to use a
protocol that guarantees the validity of the transmitted message. Indeed, when re-
moving the SimpleValidity fact, our tool was not able to find an undetected attack.
Alternatively, one may try to prevent any association of the intruder, through for
instance tamper-resistant nodes and secure software. This way, attackers will not
be able to alter the traffic going through the network, and this would also prevent
an attacker from reaching ApplicationDataAltered in our model.

5 Conclusion
We presented a characterization and modeling of the different data sources used in
network-based intrusion detection systems, focusing on wireless ad-hoc networks.
We found that a lot of IDS from the literature base their decisions on a small set
of distinct inputs, which we have listed in this paper. We then used those inputs
to build a decision aid in order to help IDS designers to locate some of the weak
points of their algorithms, depending on the protocols used in their network.

In the future, we would like to further refine that model and take into account
various families of protocols, especially when looking at the low levels of the pro-
tocol stack, such as the medium access protocols. Also, we would like to extend
our model to include availability attacks.

References

1. M. Adeyeye and P. Gardner-Stephen. The village telco project: a reliable and practical wireless
mesh telephony infrastructure. EURASIP Journal on Wireless Communications and Network-
ing, 2011(1):1–11, 2011.

2. F. Anjum and R. Talpade. Lipad: lightweight packet drop detection for ad hoc networks. In Ve-
hicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, volume 2, pages 1233–
1237. IEEE, 2004.

3. D. Basin, C. Cremers, and C. Meadows. Model checking security protocols. Hand-
book of Model Checking. Springer, Heidelberg (to appear, 2011), http://people. inf. ethz.
ch/cremersc/publications/index. html, 2011.

4. V. Bhuse and A. Gupta. Anomaly intrusion detection in wireless sensor networks. Journal of
High Speed Networks, 15(1):33–51, 2006.

5. K. Bonne Rasmussen and S. Capkun. Implications of radio fingerprinting on the security of
sensor networks. In Security and Privacy in Communications Networks and the Workshops,
2007. SecureComm 2007. Third International Conference on, pages 331–340. IEEE, 2007.

6. T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). RFC 3626 (Exper-
imental), Oct. 2003.

7. M. Conti, R. Di Pietro, L. V. Mancini, and A. Mei. A randomized, efficient, and distributed
protocol for the detection of node replication attacks in wireless sensor networks. In Proceed-
ings of the 8th ACM international symposium on Mobile ad hoc networking and computing,
pages 80–89. ACM, 2007.

8. J. Cucurull, M. Asplund, and S. Nadjm-Tehrani. Anomaly detection and mitigation for disaster
area networks. In S. Jha, R. Sommer, and C. Kreibich, editors, Recent Advances in Intrusion
Detection, volume 6307 of Lecture Notes in Computer Science, pages 339–359. Springer Berlin
Heidelberg, 2010.

16



9. A. P. R. da Silva, M. H. Martins, B. P. Rocha, A. A. Loureiro, L. B. Ruiz, and H. C. Wong.
Decentralized intrusion detection in wireless sensor networks. In Proceedings of the 1st ACM
international workshop on Quality of service & security in wireless and mobile networks, pages
16–23. ACM, 2005.

10. H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection systems. Com-
puter Networks, 31(8):805–822, 1999.

11. M. Demirbas and Y. Song. An rssi-based scheme for sybil attack detection in wireless sensor
networks. In Proceedings of the 2006 International Symposium on on World of Wireless, Mobile
and Multimedia Networks, pages 564–570. IEEE Computer Society, 2006.

12. D. Dong, M. Li, Y. Liu, X.-Y. Li, and X. Liao. Topological detection on wormholes in wireless
ad hoc and sensor networks. IEEE/ACM Transactions on Networking (TON), 19(6):1787–1796,
2011.

13. S. S. Doumit and D. P. Agrawal. Self-organized criticality and stochastic learning based intru-
sion detection system for wireless sensor networks. In Military Communications Conference,
2003. MILCOM’03. 2003 IEEE, volume 1, pages 609–614. IEEE, 2003.

14. P. Gardner-Stephen and S. Palaniswamy. Serval mesh software-wifi multi model management.
In Proceedings of the 1st International Conference on Wireless Technologies for Humanitarian
Relief, pages 71–77. ACM, 2011.

15. J. Hall, M. Barbeau, and E. Kranakis. Enhancing intrusion detection in wireless networks using
radio frequency fingerprinting. In Proceedings of the 3rd IASTED International Conference on
Communications, Internet and Information Technology (CIIT), pages 201–206, 2004.

16. Y.-a. Huang and W. Lee. Attack analysis and detection for ad hoc routing protocols. In Recent
Advances in Intrusion Detection, pages 125–145. Springer, 2004.
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