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Abstract: Cancer, also known as malignant tumor or malignant neoplasm, is the name given
to a collection of related diseases. In all types of cancer, some of the body’s cells begin to
divide abnormally without stopping and have the potential to invade surrounding tissues. In
this work, we focus on estimating the parameters of a model which tries to describe the growth
of a cancer tumor based on the available measurements of the tumor volume and on comparing
the effectiveness with respect to the accuracy of the estimation of the various methods we have
tested. The Gompertz function is used as the model basis, and our analysis aims to compute the
growth rate and the plateau size of the tumor. The methods used to estimate these parameters
are based on least squares, maximum likelihood and the Extended Kalman Filter (EKF). In
this work, we present five different methods. The results show that, when the process and
measurement noise characteristics are known, maximizing the joint probability density function
of the observations using numerical integration to compute the probability density functions
yields most times the best results. The methods based on the EKF also yield satisfactory
results.

Keywords: Tumor Growth Modeling, Biomedical Systems, Nonlinear Systems, Parameter
Estimation, Maximum Likelihood, Extended Kalman Filter, Least Squares

1. INTRODUCTION

Cancer is the leading cause of death in the developed world
and the second leading cause of death in the developing
world (WHO, 2014). The great majority of cancers, some
around 90-95% of cases, are due to environmental factors
and the remaining 5-10% are due to inherited genetics
(Anand et al., 2008). Treatment options − some of the
primary are chemotherapy, surgery and radiation therapy
− depend on the type, location and grade of the cancer
(WHO, 2014, Wikipedia, 2016).

Chemotherapy is the treatment of cancer with one or more
cytotoxic anti-neoplastic drugs (chemotherapeutic agents)
as part of a standardized regiment. Traditional chemother-
apeutic agents act by killing cells that divide rapidly, one
of the main properties of most cancer cells. Mathematical
modeling and optimal control techniques could help to

deliver a better outcome of cancer chemotherapy. Mathe-
matic models are used to describe the evolution of a tumor,
the mechanism of drug effects and the constraints of drug
use due to subsequent toxicities, while optimal control
uses the developed models to design optimal chemother-
apy strategies (Barbolosi and Iliadis, 2001, Dua and Pis-
tikopoulos, 2008, Hadjiandreou and Mitsis, 2014).

In the literature, a lot of works deal with the evaluation
of the ability the existing models have to describe the
tumor dynamics (Benzekry et al., 2014, Nguimkeu, 2014,
Ribba et al., 2014) or with the problem of predicting
the future volumes of a tumor (Hadjiandreou and Mitsis,
2014, Achilleos et al., 2012, Achilleos et al., 2014). To the
best of our knowledge, this is the first work comparing
the performance of various methods for estimating the
parameters of the Gompertz function.



In this work, we focus on estimating the parameters of a
model that can describe the evolution of a tumor growth
in an individual subject. As tumor growth depends on
various parameters according to the individual patient, it
is important to compute personalized models. This may
lead to better chemotherapy strategies. The results depend
on the method used. In our analysis, we use the Gompertz
curve, a widely used model which takes into account the
reduced growth rate of the tumor that is observed as its
size increases. In that model, we consider that the initial
tumor size is known and we need to identify two unknown
parameters, the proliferative ability of the cells and the
carrying capacity (the maximum size that can be reached
with the available nutrients, also referred to as plateau).
Both parameters are considered constant. In our approach,
we have a set of measurements representing the volumes
of a tumor at various time instants and we need to find
the parameters that create the curve fitting best to the set
of measurements.

This paper is organized as follows: Section 2 describes
the tumor growth model used in this work, Section 3
describes the techniques used in order to estimate the
parameters of the Gompertz function, Section 4 presents
the results from the experiments we conducted, Section
5 contains the discussion about the experimental results
and Section 6 contains the conclusions and suggestions for
further research.

2. TUMOR GROWTH MODEL

During the early stages, cancer tumors proliferate in an
exponential fashion. Later on, as the tumor size increases,
the growth rate decreases and the tumor reaches a plateau
size. Unlike the simple exponential model, the Gompertz
function can predict this behavior successfully. This model
has been widely used because of its simplicity and its
ability to describe experimental data reasonably well. It
is given by:

xk+1 = θ2exp

(
log(

xk

θ2
)exp(− 1

θ1
T )

)
(1)

where xk (mm3) is the tumor size, θ1 (days) is a constant
related to the proliferative ability of the cells, θ2 (mm3) is
the carrying capacity ( lim

k→∞
xk = θ2), T (days) is the time

interval between k and k + 1, and k ∈ N - see Dennis and
Ponciano (2014).

Assuming random additive process and measurement noise
the model can be formulated as follows:

xk+1 = f(xk, θ) + wk (2a)

yk = xk + υk (2b)

where

f(xk, θ) = θ2exp

(
log(

xk

θ2
)exp(− 1

θ1
T )

)
(3)

and

θ =

[
θ1

θ2

]
. (4)

The random variables wk and υk, k ∈ N are mutually inde-
pendent and normally distributed with known parameters:
wk ∼ N (0, σ1xk

e1) and υk ∼ N (0, σ2xk
e2). Measurements

are available from time k=1 onwards and x0 = y0 = 1 is
assumed. Because of the random components wk and υk,

the model (2) can also be represented via the description:

xk+1 ∼ p(xk+1|xk) (5a)

yk ∼ p(yk|xk) (5b)

where p(xk+1|xk) is the probability density function de-
scribing the dynamics for given values of xk, and p(yk|xk)
is the probability density function describing the measure-
ments.

3. PARAMETER ESTIMATION TECHNIQUES

In this paper, the following problem is considered: let
Y N = {y1, y2, ..., yN} be the available measurements of
a cancer tumor volume and (2a), (2b) describe the system

dynamics; compute an estimate θ̂ of the parameter θ based
on the N available measurements, considering that the
process and measurement noise parameters (σ1, e1, σ2,
e2) are known. In the rest of this section, we describe
the techniques used to estimate the parameters of the
Gompertz function.

3.1 Naive Least Squares

The Least Squares approach used in this work is a very
simple and easily applicable implementation. In this text,
the method will be referred to as Naive Least Squares
(NLS). In this method, the measurement noise is not taken
into consideration, and as a result it is assumed that
yk = xk. The goal is to find an estimate for θ ∈ Θ that
minimizes the error:

εθ =

N∑
k=1

(yk − x̂k)2 (6)

where

x̂k = f(yk-1, θ) = θ1exp

(
log(

yk-1

θ1
)exp(− 1

θ2
T )

)
(7)

with Θ ⊆ R2 denoting a compact set of permissible values
of the unknown parameter θ, and y0 considered known.

3.2 Maximum Likelihood

The Maximum Likelihood approach involves maximizing
the joint density (likelihood) pθ(Y N) of the observation:

θ̂ = arg max
θ∈Θ

pθ(y1, ..., yN) (8)

with Θ ⊆ R2 denoting a compact set of permissible
values of the unknown parameter θ (Schön et al., 2011).
To compute this, Bayes’ rule can be used in order to
decompose the joint density according to

pθ(y1, ..., yN) = pθ(y1)

N∏
k=2

pθ(yk|Y k-1) (9)

where

p(yk+1|Y k) =

∫
p(yk+1|xk+1)p(xk+1|Y k)dxk+1 (10)

p(xk+1|Y k) =

∫
p(xk+1|xk)p(xk|Y k)dxk (11)



and

p(xk+1|Y k+1) =
p(yk+1|xk+1)p(xk+1|Y k)

p(yk+1|Y k)
. (12)

In this work, the permissible values Θ consist of a nΘ×nΘ

grid. Since the dimension of xk is 1, numerical integration
can be used to approximate the integrals of (10) and (11).

The most crucial part in this method is to perform
an accurate integration. The interval of integration is
[0, Xmax] and in order to compute this definite integral
the trapezoidal rule

∫ b

a

f(x)dx ≈ (b− a)

[
f(a) + f(b)

2

]
(13)

is used. The smaller the interval [a, b] is, the smaller the
approximation error will be. For this reason, we can divide
the interval [0, Xmax] to smaller intervals and compute
the sum for all the integrals. However, the number of
intervals required for a very small error is very large in our
case and computing all these integrals at every iteration
is prohibitive. Nevertheless, because of the nature of the
problem, there is a way to find an interval significantly
smaller than the interval [0, Xmax] where the error is also
very small. Based on the Gaussian nature of the noise and
using the measurement yk as the center of the distribution
for xk with standard deviation σ = σ0yk

e0 , we compute
the interval [yk − 4σ, yk + 4σ]. This interval is divided
into smaller intervals (in this work the experiments were
conducted using 50 intervals), and the sum of all these
intervals gives the values for the distributions of (10) and
(11).

As regards the grid, there are two important parameters.
The size of the grid (how many values it contains) and
the range between these values. The size of the grid is
the main parameter that affects the execution time, while
the range between the values the grid contains affects
the accuracy of the parameter estimation. In order to
reduce the size of the grid, the ML method is executed
three times, each time decreasing the range between the
minimum and the maximum value. The first time the
search interval is big enough to contain the real value of
the unknown parameters. During the subsequent steps, the
search interval becomes smaller, and the grid is centered
at the value estimated in the previous step. The default
values for the aforementioned variables will be mentioned
in Section 4.

3.3 Naive Maximum Likelihood

Inspired by the NLS method in 3.1 a simplification con-
cerning the noise can be made, which leads to equations
that can be dealt with easier. If (2a) and (2b) are modified
to

xk+1 = f(yk, θ) + dk (14a)

yk = xk (14b)

where

f(yk, θ) = θ1exp

(
log(

yk

θ1
)exp(− 1

θ2
T )

)
(15)

θ =

[
θ1

θ2

]
(16)

and dk ∼ N (0, σk), where σk = σ1yk-1
e1 + σ2yk-1

e2 , then
maximum likelihood estimation can be used to find an
estimate θ̂ for the unknown parameter θ that maximizes
the likelihood plike θ(Y N):

θ̂ = arg max
θ∈Θ

plike θ(y1, ..., yN) (17)

where

plike θ(y1, ..., yN) =

N∏
k=1

pθ(yk|yk−1) (18)

with Θ ⊆ R2 denoting a compact set of permissible values
of the unknown parameter θ, y0 being considered known
and pθ(yk|yk−1) coming from (2b). This method will be
referred to in this text as Naive Maximum Likelihood
(NML).

3.4 Extended Kalman Filter

In this subsection, we use the Extended Kalman Filter
(EKF) to estimate the parameters of the stochastic system
using a state augmentation. The EKF gives an approxi-
mation of the optimal estimate. In order to approximate
the non-linearities of the system dynamics, a linearized
version of the nonlinear system model around the last state
estimate is created (Maybeck, 1982, Charalampidis and
Papavassilopoulos, 2011, Charalampidis et al., 2016).

If, in (3), we consider that the parameters θ1 and θ2 are
also states of the system, and we name θ1 as x2

k and θ2 as
x3
k (these are not exponents), the equation becomes:

f(x1
k, x

2
k, x

3
k) = x3

kexp

(
log(

x1
k

x3
k

)exp(− 1

x2
k

T )

)
(19)

where xji ∈ (0,+∞) for every i = 1, 2, ...N and j = 1, 2, 3.
Then:

x1
k+1 = f(x1

k, x
2
k, x

3
k) + wk (20a)

x2
k+1 = x2

k (20b)

x3
k+1 = x3

k (20c)

yk = x1
k + vk (21)

where wk ∼ N (0, qk) and υk ∼ N (0, rk). If we define

Xk+1 =

 x1
k+1

x2
k+1

x3
k+1

 =

 f(x1
k, x

2
k, x

3
k)

x2
k
x3
k

+

[
wk
0
0

]
=

F (Xk) +Wk

(22)

Yk = [Xk 0 0 ] + Vk = H(Xk) + Vk (23)

where W k ∼ N (0, Qk), 0 =

[
0
0
0

]
, Qk =

[
qk 0 0
0 0 0
0 0 0

]
and

V k ∼ N (0, Rk = rk), then we have



Xk+1 = F (X̂k) +
∂F

∂xk
|x̂k

(Xk − X̂k) +Wk (24)

and

Yk+1 = H(X̂k) +
∂H

∂xk
|x̂k

(Xk − X̂k) + Vk. (25)

Therefore, the prediction step is:

X̂−k+1 = F (X̂k) (26)

P−Xk+1
=

∂F

∂xk
|x̂k
PXk

∂F

∂xk

T

|x̂k
+Qk (27)

while the correction step is:

Ŷ −k+1 = H(X̂−k+1) (28)

P−Yk+1
=
∂H

∂xk
|X̂−

k+1
P−Xk+1

∂H

∂xk

T

|X̂−
k+1

+Rk (29)

P−Xk+1Yk+1
= P−Xk+1

∂H

∂xk

T

|X̂−
k+1

(30)

X̂k+1 = X̂−k+1 +Kk+1(Yk+1 − Ŷ −k+1) (31)

PXk+1
= P−Xk+1

−Kk+1P
−
Yk+1

KT
k+1 (32)

Kk+1 = P−Xk+1Yk+1
+ (P−Yk+1

)−1. (33)

The initial conditions for the EKF are x1
0 = 1, x2

0 = θ
(1)
1

and x3
0 = θ

(1)
2 , where θ

(1)
1 and θ

(1)
2 are the estimates of the

unknown parameters computed using the NML method,
and PX0

= I. After the execution of the EKF algorthm,
a new estimate for the unknown parameters is available.
Using that estimation as initial condition for x2

0 and x3
0 and

repeating the same procedure, a new estimation is derived.
This is repeated until the estimated parameters converge

to a θ̂.

3.5 ML - EKF Combination

Another approach is the combination of the EKF and the
ML method. This method uses the ML technique and the
EKF in turn. At the first iteration, NML can be used to

find an estimate θ̂(1) for the unknown parameter θ. At

later iterations, θ̂(i), where i = 2j + 1 and j ∈ N, is the
estimate for the unknown parameter θ that maximizes the
likelihood plike θ(Y N):

θ̂(i) = arg max
θ∈Θ

plike θ(y1, ..., yN) (34)

where

plike θ(y1, ..., yN) =

N∏
k=1

pθ(yk|x̂i−1
k ) (35)

and pθ(yk|x̂i−1
k ) is given by (2b).

Having the estimate θ̂(i) available and using it as initial
condition in the EKF, we can get an estimate x̂i+1

k for

the system states xk. Using the new estimate x̂i+1
k in

the maximum likelihood estimator, we can get another

estimate θ̂(i+2), and so on. This procedure can be repeated

several times until θ̂(k) converges to a vector θ̂.

4. SIMULATIONS

In this section, we present the results of the simulations
performed using Matlab. In the first experiment, we sim-
ulate the growth of 100 cancer tumors. (2a) and (2b)
describe the tumor dynamics. For each tumor, the tumor’s
carrying capacity θ2 (parameter θj2) and the doubling time

θ1 (parameter θj1), as long as the process and measurement

noise parameters (σj1, e
j
1, σ

j
2, e

j
2), where j = 1, ..., 100 is the

identification number of the test subject, were chosen ran-
domly from uniform distributions. Table 1 shows the min-
imum and maximum possible values for each parameter.
The sampling time between two consecutive measurements
is two days and the number of available measurements for
each tumor is 30. The initial volume for x0 for every tumor
is 1 (mm3).

As regards the ML method described in 4.3, nΘ = 11,
σ0 = σ1 + 0.1 and e0 = e1. Furthermore, in the first
execution of the method, the grid’s intervals are [xc1 −
10, xc1 +10] for the x-axis and [xc2−10, xc2 +10] for the y-
axis, where xc1 = 12 and xc2 = 15. In the second and third

execution, the variables xc1 and xc2 take the values θ̂1 and

θ̂2 estimated by the previous execution of the algorithm,
and the grid’s intervals are [xc1 − 2, xc1 + 2] for the x-axis
and [xc2 − 2, xc2 + 2] for the y-axis in the second iteration
and [xc1 − 1, xc1 + 1] for the x-axis and [xc2 − 1, xc2 + 1]
for the y-axis in the third iteration.

The function fmincon provided in The Mathworks (2016)
is used to minimize the error εθ and the likelihood
plike θ(YN ) in NLS and NML, respectively. In order to
test if fmincon can provide the set of parameters which
minimizes the error εθ and the likelihood plike θ(YN ), we
used parameter grids and performed extensive simulations
to check if there is any set from the grids which is better
than the set provided by fmincon. In every case, fmincon
provided the best set of parameters.

Table 1. Minimum and maximum parameter
values

Parameters Minimum Value Maximum Value

θ1 5 15
θ2 8 20

σ1, σ2 0.1 0.3
e1, e2 0.3 0.5

Table 2. Simulation results

Method
Mean Div. (%) RMS Div.
θ1 θ2 θ1 θ2

NLS 16.0612 7.1645 13.3365 7.3556
NML 14.5844 6.6445 10.8416 6.7939
ML 12.6019 6.8500 10.7606 7.3053

EKF/EKF − ML 14.0094 7.0537 11.9133 7.4391

Table 2 shows the absolute mean percentage and the
RMS value of the divergence of the estimated value for
parameters θ1 and θ2 from the real value for every method
described in Section 3. We also present the minimum and
maximum values of the absolute percentage of divergence
for each of the two unknown parameters, as well as the real
values of θ1 and θ2 for the test subjects that the parame-
ters showed the minimum and maximum divergence from

the real ones, and the estimated values θ̂1 or θ̂2 (based



on which parameter shows the minimum or maximum).
Tables 3 and 4 contain the aforementioned information.

Table 3. Minimum divergence between real
and estimated parameters achieved by each

method

Method Div. (%) θ1 θ2 θ̂1
NLS 0.0413 13.6740 8.1862 13.6796
NML 0.5213 8.6419 18.9599 8.5969
ML 0.0722 8.7937 14.5772 8.8000

EKF/EKF − ML 0.6290 13.9511 19.1620 13.9423

θ̂2
NLS 0.0241 10.5643 8.9633 8.9654
NML 0.0368 9.0437 18.6802 18.6733
ML 0.1569 6.9781 9.2145 9.2000

EKF/EKF − ML 0.0386 5.9121 9.0397 9.0432

Table 4. Maximum divergence between real
and estimated parameters achieved by each

method

Method Div. (%) θ1 θ2 θ̂1
NLS 71.3236 19.2754 17.0948 33.0234
NML 53.4808 8.6876 8.1531 4.0414
ML 53.2046 18.2762 15.2335 28.0000

EKF/EKF − ML 52.1723 19.0060 9.0625 9.0901

θ̂2
NLS 37.2337 19.2754 17.0948 23.4599
NML 32.3063 18.2762 15.2335 20.1549
ML 53.2046 18.2762 15.2335 22.0000

EKF/EKF − ML 37.1583 18.0459 14.0771 8.8463

By observing Table 2, we can see that estimating the dou-
bling time of the tumor is not as accurate as estimating the
carrying capacity. In order to test if this behavior is a result
of the system dynamics or it occurs due to the available
measurements, we conducted two different experiments.
Instead of waiting to obtain 30 measurements, the tumor
size measurement procedure stops when the last measured
volume reaches the 75% of the carrying capacity in the
first experiment and the 50% of the carrying capacity in
the second one. The results from these experiments are
presented in Tables 5 and 6 and are discussed in the next
section.

Table 5. Simulation results (75%) of carrying
capacity

Method
Mean Divergence (%) RMS Divergence
θ1 θ2 θ1 θ2

NLS 35.1654 38.3545 19.3628 30.4817
NML 32.7685 38.8622 21.3486 29.9026
ML 34.4015 33.2359 31.3080 22.9401
EKF 34.3691 43.8032 19.5450 31.0698

EKF − ML 34.3689 43.4494 19.5449 29.8533

Table 6. Simulation results 50% of carrying
capacity

Method
Mean Divergence (%) RMS Divergence
θ1 θ2 θ1 θ2

NLS 62.4214 53.3370 58.1404 35.1616
NML 64.5582 53.1736 42.1386 35.1578
ML 73.3614 67.1030 62.8518 55.3252
EKF 66.7913 55.7251 41.6237 34.9852

EKF − ML 66.5279 55.4277 41.5188 34.5241

Lastly, the final experiment is conducted to check the
effect of process and measurement noise to the estimation
results. Three noise categories have been created, see Table
7, based on the values the parameters σj1 and σj2 take.
For every category, the experiment described at the start
of this section was repeated. The results are presented in
tables 8 to 10.

Table 7. Noise categories

Parameters Minimum σj
1 and σj

2 Maximum σj
1 and σj

2

Low 0.01 0.1
Medium 0.1 0.25
High 0.25 0.4

Table 8. Low system and measurement noise
variance

Method
Mean Divergence (%) RMS Divergence
θ1 θ2 θ1 θ2

NLS 3.6265 1.6377 3.0243 1.4587
NML 3.3309 1.5478 2.5050 1.3714
ML 3.3001 1.5336 2.7131 1.3701

EKF/EKF − ML 3.9977 2.1865 3.6205 3.2832

Table 9. Medium system and measurement
noise variance

Method
Mean Divergence (%) RMS Divergence
θ1 θ2 θ1 θ2

NLS 19.1271 6.9694 14.1750 7.9602
NML 17.1271 6.6480 10.8947 6.7706
ML 13.8611 6.8200 11.3370 7.4151

EKF/EKF − ML 18.6537 9.7560 10.9018 11.1491

Table 10. High system and measurement noise
variance

Method
Mean Divergence (%) RMS Divergence
θ1 θ2 θ1 θ2

NLS 33.3905 11.5012 19.2734 11.3903
NML 32.8010 11.4564 17.6611 12.0277
ML 22.3425 11.3136 18.3328 14.5604
EKF 30.3944 14.2893 15.5761 16.2113

EKF − ML 30.9344 14.1240 15.5761 15.4199

5. DISCUSSION

In the discussion section, we start by commenting how
the implemented techniques performed and continue with
presenting and explaining the observations which can be
made by studying the results.

It is obvious that the implementation of the NLS method
used is outperformed by the other methods (except in case
of low process and measurement noise where the EKF
methods have a slightly worse result). Nevertheless, it is a
very simple and fast approach and its results will probably
be better than random estimates. The estimates computed
using this method could be used as initial conditions for
the EKF methods.

A second approach used due to its simplicity is the NML
method. Simulation results show that in a few cases this
method performs better than all the other methods used,
but this behavior is not ensured. Also, in most cases, the
ML method described in 3.3 performs better than NML.
NML is preferable to NLS regarding the estimation of the
initial conditions.



When the noise parameters are known, the EKF method
and the combination of the EKF and ML yield the same
results. This does not happen if the carrying capacity
has not been reached, if noise parameters are high, or
if the noise parameters are unknown (this is a more
complex problem and it is outside the scope of this paper).
Judging from the experimental results, it is not clear if the
methods using the EKF are better compared to NLS and
NML. Sometimes they perform better and sometimes they
perform worse. Generally, they are better at estimating
the doubling time and worse at estimating the carrying
capacity. However, it is clear that the ML method performs
better than the EKF methods.

The last method used in order to estimate the unknown
parameters of the Gompertz function is the ML method
described in 3.3. As mentioned before, compared to the
other methods, the estimated values of the unknown pa-
rameters have the least divergence from the real parame-
ters. However, in order to achieve this improvement, the
amount of time needed to compute the integrals numeri-
cally is many times bigger than the time needed to com-
pute parameter estimates using the other methods, but it
is still acceptable.

Table 11 shows the mean time (in seconds) that each
method needs. The simulations were performed using an
Intel Core i7-6700K @ 4.00GHz and 16GB of DDR4 @
3200 MHz.

Table 11. Mean execution time for each
method

Method Mean Time (seconds)

NLS 0.5
NML 0.1
ML 224
EKF 1.8

EKF − ML 1.1

Starting from Table 2, as regards the doubling time pa-
rameter θ1, the ML method shows the best general perfor-
mance, EKF methods (EKF and EKF-ML) come second,
NML performs a little worse than the EKF methods and
last comes the NLS method. Regarding the carrying ca-
pacity θ2, the NML method performs sightly better than
the ML and then follows the EKF methods and the NLS
method. However, the results of carrying capacity estima-
tion do not diverge as much as the results of doubling time
estimation.

In Table 3, we can see the minimum absolute divergence
between the real tumor’s doubling time (θ1) and the es-

timated doubling time (θ̂1) achieved by each method. We
can also see the minimum absolute divergence between the
real tumor’s carrying capacity (θ2) and the estimated car-

rying capacity (θ̂2). These minimum values were achieved
when the noise category for the system was low or medium.

In order to estimate the carrying capacity θ2 accurately,
it is necessary that the tumor volume has reached the
plateau. This also explains why the real value of doubling
time θ1 is low in Table 3. Because of the way the experi-
ment has been set up - N is chosen to be 30 (measurements)
and t is 2 (days) - the doubling time has to have a low value
so that the tumor is able to reach the plateau during the
measurement time. Another important factor in estimat-

ing the carrying capacity is the number of measurements
near the plateau size, more measurements near the plateau
resulting to higher accuracy. We also need to add that the
reason the value of real θ2 in Table 3 is most times low, is
that the measurement noise variance is considered to be
σ2y

e2
k . Indeed, when θ2 has small values, the variance is

low and as a result the measurement noise will probably
be smaller.

As regards the cases when the methods fail to make
a good estimation of the parameters, for parameter θ1

this happens mostly when the doubling time is high and
the plateau is low, and so the measurements do not
provide a good description of the tumor growth procedure.
However, there are also cases where the tumor grows too
fast and in combination with the high divergence among
measurements at the plateau, the proposed methods fail
to give a good estimation. For parameter θ2, the methods
fail to give good estimates if the doubling time is high and
as a result there are only a few or no measurements of the
plateau size during the monitoring time. This observation
led us to the next experiment, where we investigate how
well can the proposed methods estimate the parameter θ2,
when the measurements have reached only the 75% or the
50% of the carrying capacity.

Judging by the first experiment only, could lead to the
conclusion that it is easier to estimate θ2 compared to
estimating θ1. This happens because there are a lot of
measurements describing the plateau of the tumor. When
the tumor has not reached the plateau, estimating the
carrying capacity is as difficult as estimating the doubling
time. Additionally, the less measurements there are, the
less accurate the parameter estimation is.

The last experiment was conducted to check the effect
of the noise to the parameter estimation. Three noise
categories were created (low, medium and high - see Table
7), depending on parameters σ1 and σ2. The simulation
results confirm the intuitive expectation that higher noise
variance results in a less accurate estimation. Furthermore,
this experiment also provides us with another important
observation, that the ML method proposed in 3.3 performs
better than all the other methods tested and in addition
when the process and measurement noise are medium or
high, ML provides significantly better results regarding the
estimation of the doubling time. The estimation of the
carrying capacity is also better when ML is used but there
is no significant difference from the other methods. This
last conclusion can be also reached for the case of low noise
variance.

Regarding the execution time, the simpler a method is,
the faster it performs. NLS and NML are the fastest and
then follows the EKF and the EKF-ML. ML needs a lot
more time than all the other, but using this method we
can compute even better estimates.

6. CONCLUSIONS

In this work, we developed methods that can estimate
the unknown parameters of the Gompertz function, in
order to use the function to describe the evolution of
tumor volumes. Furthermore, we created synthetic data
representing measurements of tumor volumes by using the



same function and we applied the methods we developed.
The parameters we considered unknown and tried to es-
timate are the tumor’s doubling time and the carrying
capacity of the tumor. Both process and measurement
noise characteristics are considered known. We used the
Least Squares method, the Maximum Likelihood and the
Extended Kalman Filter. We also combined the aforemen-
tioned methods to check if we could achieve better results.

The simulation results show that ML yields the best esti-
mates in case the process and measurement noise charac-
teristics are known. However, it requires a lot of time com-
pared to the other methods. Using the EKF to estimate
the unknown parameters, or using the EKF to estimate
the states of the system and ML to estimate the unknown
parameters yields the same estimates when the process
and measurement noise characteristics are known. Finally,
making the assumption that there is no measurement noise
and thus using NLS or NML can provide a good estimate
that can be used as initial condition when using the EKF.

For further research, we propose investigating the cases
where the characteristics of one or both of the noises are
unknown. In practice, both process and measurement noise
characteristics are unknown. However, investigating the
case where process or measurement noise characteristics
is known may provide useful hindsights. Furthermore, we
propose the implementation of Particle Filtering, a method
widely used in nonlinear system filtering. Particle Filtering
can be used instead of the EKF, in order to estimate
the unknown states xk. Finally, the application of these
methods to real data is proposed for future work in order to
test if the results match with the results from the synthetic
data.
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